File size: 2,957 Bytes
af77da5 e147042 9522772 af77da5 e69443a af77da5 e69443a 9522772 e69443a 9522772 e69443a 9522772 e69443a 9522772 e69443a 9522772 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: cc-by-nc-4.0
task_categories:
- question-answering
- text-generation
- summarization
language:
- en
tags:
- sports
- nba
- nfl
- reasoning
- long-context
pretty_name: SportsMetrics
size_categories:
- 1K<n<10K
---
# SportsMetrics
Benchmark data to evaluate numerical reasoning and information fusion of LLMs.
**SportsMetrics: Blending Text and Numerical Data to Understand Information Fusion in LLMs** \
Yebowen Hu, Kaiqiang Song, Sangwoo Cho, Xiaoyang Wang, Hassan Foroosh, Dong Yu, Fei Liu \
[*In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL'24), Bangkok, Thailand.*](https://2024.aclweb.org/program/main_conference_papers/) \
[Arxiv Paper](https://arxiv.org/abs/2402.10979)
## Usage
```python
from datasets import load_dataset
def get_task(domain, task):
bench_data = []
dataset = load_dataset("huuuyeah/SportsMetrics",split="test")
for instance in dataset:
if instance["domain"]==domain and instance["task"]==task:
bench_data.append(instance)
return bench_data
def message_iter(domain, task):
bench_data = get_task(domain, task)
if len(bench_data) == 0:
print("No data loaded.")
return
for instance in bench_data:
messages = [
{"role": "system", "content": instance["system"]},
{"role": "user", "content": instance["user"]}
]
yield messages
return
```
## Benchmark Tasks
The LLM is mandatorily required to generate responses in JSON format.
### Reasoning Task
- **reasoning-team_points_tracking**: (NBA) Tracking team points in one match.
- **reasoning-key_stats_tracking**: (NBA, NFL) Tracking the key statistics for sports analytics.
### Conflicts Task
- **conflict-one_point_rule**: (NBA) All scoring actions in the competition are set to be worth only one point.
- **conflict-swap_{num}_players**: (NBA) Swap {num} of spalyer between two teams.
### Robustness Task
- **robustness-duplicate_{prob}**: (NBA) Replicate the non-scoring move with a probability of {prob}.
- **robustness-remove_{prob}**: (NBA) Remove the non-scoring move with a probability of {prob}.
- **robustness-shuffled_pbp**: (NBA) Shuffle the order of all moves in play-by-play descriptions while maintain the original order of timestamps.
- **robustness-{num}_fiction_names**: (NFL) Randomly select {num} of players from both teams and replace them with names from fiction movies.
**Bibtex**
```
@misc{hu2024sportsmetricsblendingtextnumerical,
title={SportsMetrics: Blending Text and Numerical Data to Understand Information Fusion in LLMs},
author={Yebowen Hu and Kaiqiang Song and Sangwoo Cho and Xiaoyang Wang and Hassan Foroosh and Dong Yu and Fei Liu},
year={2024},
eprint={2402.10979},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2402.10979},
} |