File size: 8,033 Bytes
f8dec51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a1a2cc
f8dec51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a1a2cc
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
---
annotations_creators:
- crowdsourced
- expert-generated
language_creators:
- found, other
languages:
- en
licenses:
- agpl-3-0-or-later
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
  binary:
  - sentiment-classification
  - text-classification-other-Hate Speech Detection
  multilabel:
  - multi-label-classification
  - sentiment-classification
  - text-classification-other-Hate Speech Detection
---

# Dataset Card for Ethos

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [ETHOS Hate Speech Dataset](https://github.com/intelligence-csd-auth-gr/Ethos-Hate-Speech-Dataset)
- **Repository:**[ETHOS Hate Speech Dataset](https://github.com/intelligence-csd-auth-gr/Ethos-Hate-Speech-Dataset)
- **Paper:**[ETHOS: an Online Hate Speech Detection Dataset](https://arxiv.org/abs/2006.08328)

### Dataset Summary

ETHOS: onlinE haTe speecH detectiOn dataSet. This repository contains a dataset for hate speech detection on social media platforms, called Ethos. There are two variations of the dataset:
- **Ethos_Dataset_Binary**: contains 998 comments in the dataset alongside with a label about hate speech *presence* or *absence*. 565 of them do not contain hate speech, while the rest of them, 433, contain. 
- **Ethos_Dataset_Multi_Label** which contains 8 labels for the 433 comments with hate speech content. These labels are *violence* (if it incites (1) or not (0) violence), *directed_vs_general* (if it is directed to a person (1) or a group (0)), and 6 labels about the category of hate speech like, *gender*, *race*, *national_origin*, *disability*, *religion* and *sexual_orientation*.

***Ethos /ˈiːθɒs/*** 
is a Greek word meaning “character” that is used to describe the guiding beliefs or ideals that characterize a community, nation, or ideology. The Greeks also used this word to refer to the power of music to influence emotions, behaviors, and even morals.

### Supported Tasks and Leaderboards

[More Information Needed]
- `text-classification-other-Hate Speech Detection`, `sentiment-classification`,`multi-label-classification`: The dataset can be used to train a model for hate speech detection. Moreover, it can be used as a benchmark dataset for multi label classification algorithms.

### Languages

The text in the dataset is in English.

## Dataset Structure

### Data Instances

A typical data point in the binary version comprises a comment, with a `text` containing the  text and a `label` describing if a comment contains hate speech content (1 - hate-speech) or not (0 - non-hate-speech). In the multilabel version more labels like *violence* (if it incites (1) or not (0) violence), *directed_vs_general* (if it is directed to a person (1) or a group (0)), and 6 labels about the category of hate speech like, *gender*, *race*, *national_origin*, *disability*, *religion* and *sexual_orientation* are appearing.

An example from the binary version, which is offensive, but it does not contain hate speech content:
```
{'text': 'What the fuck stupid people !!!',
 'label': '0'
}
```

An example from the multi-label version, which contains hate speech content towards women (gender):
```
{'text': 'You should know women's sports are a joke',
 `violence`: 0,
 `directed_vs_generalized`: 0,
 `gender`: 1,
 `race`: 0,
 `national_origin`: 0,
 `disability`: 0,
 `religion`: 0,
 `sexual_orientation`: 0
}
```


### Data Fields

Ethos Binary:
- `text`: a `string` feature containing the text of the comment.
- `label`: a classification label, with possible values including `no_hate_speech`, `hate_speech`.

Ethis Multilabel:
- `text`: a `string` feature containing the text of the comment.
- `violence`: a classification label, with possible values including `not_violent`, `violent`.
- `directed_vs_generalized`: a classification label, with possible values including `generalized`, `directed`.
- `gender`: a classification label, with possible values including `false`, `true`.
- `race`: a classification label, with possible values including `false`, `true`.
- `national_origin`: a classification label, with possible values including `false`, `true`.
- `disability`: a classification label, with possible values including `false`, `true`.
- `religion`: a classification label, with possible values including `false`, `true`.
- `sexual_orientation`: a classification label, with possible values including `false`, `true`.

### Data Splits

The data is split into binary and multilabel. Multilabel is a subset of the binary version.

|                             | Instances   | Labels |
| -----                       | ------ | ----- |
| binary | 998 |  1 |
| multilabel       | 433 |  8 |

## Dataset Creation

### Curation Rationale

The dataset was build by gathering online comments in Youtube videos and reddit comments, from videos and subreddits which may attract hate speech content. 

### Source Data

#### Initial Data Collection and Normalization

The initial data we used are from the hatebusters platform: [Original data used](https://intelligence.csd.auth.gr/topics/hate-speech-detection/), but they were not included in this dataset

#### Who are the source language producers?

The language producers are users of reddit and Youtube. More informations can be found in this paper: [ETHOS: an Online Hate Speech Detection Dataset](https://arxiv.org/abs/2006.08328)

### Annotations

#### Annotation process

The annotation process is detailed in the third section of this paper: [ETHOS: an Online Hate Speech Detection Dataset](https://arxiv.org/abs/2006.08328)

#### Who are the annotators?

Originally anotated by Ioannis Mollas and validated through the Figure8 platform (APEN).

### Personal and Sensitive Information

No personal and sensitive information included in the dataset.

## Considerations for Using the Data

### Social Impact of Dataset

This dataset will help on the evolution of the automated hate speech detection tools. Those tools have great impact on preventing social issues.

### Discussion of Biases

This dataset tries to be unbiased towards its classes and labels.

### Other Known Limitations

The dataset is relatively small and should be used combined with larger datasets.

## Additional Information

### Dataset Curators

The dataset was initially created by [Intelligent Systems Lab](https://intelligence.csd.auth.gr).

### Licensing Information

The licensing status of the datasets is [GNU GPLv3](https://choosealicense.com/licenses/gpl-3.0/).

### Citation Information
```
@misc{mollas2020ethos,
      title={ETHOS: an Online Hate Speech Detection Dataset}, 
      author={Ioannis Mollas and Zoe Chrysopoulou and Stamatis Karlos and Grigorios Tsoumakas},
      year={2020},
      eprint={2006.08328},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

## License
[GNU GPLv3](https://choosealicense.com/licenses/gpl-3.0/)

### Contributions

Thanks to [@iamollas](https://github.com/iamollas) for adding this dataset.