Datasets:
Tasks:
Text Classification
Languages:
English
Size:
n<1K
ArXiv:
Tags:
Hate Speech Detection
License:
File size: 8,033 Bytes
f8dec51 6a1a2cc f8dec51 6a1a2cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
annotations_creators:
- crowdsourced
- expert-generated
language_creators:
- found, other
languages:
- en
licenses:
- agpl-3-0-or-later
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
binary:
- sentiment-classification
- text-classification-other-Hate Speech Detection
multilabel:
- multi-label-classification
- sentiment-classification
- text-classification-other-Hate Speech Detection
---
# Dataset Card for Ethos
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [ETHOS Hate Speech Dataset](https://github.com/intelligence-csd-auth-gr/Ethos-Hate-Speech-Dataset)
- **Repository:**[ETHOS Hate Speech Dataset](https://github.com/intelligence-csd-auth-gr/Ethos-Hate-Speech-Dataset)
- **Paper:**[ETHOS: an Online Hate Speech Detection Dataset](https://arxiv.org/abs/2006.08328)
### Dataset Summary
ETHOS: onlinE haTe speecH detectiOn dataSet. This repository contains a dataset for hate speech detection on social media platforms, called Ethos. There are two variations of the dataset:
- **Ethos_Dataset_Binary**: contains 998 comments in the dataset alongside with a label about hate speech *presence* or *absence*. 565 of them do not contain hate speech, while the rest of them, 433, contain.
- **Ethos_Dataset_Multi_Label** which contains 8 labels for the 433 comments with hate speech content. These labels are *violence* (if it incites (1) or not (0) violence), *directed_vs_general* (if it is directed to a person (1) or a group (0)), and 6 labels about the category of hate speech like, *gender*, *race*, *national_origin*, *disability*, *religion* and *sexual_orientation*.
***Ethos /ˈiːθɒs/***
is a Greek word meaning “character” that is used to describe the guiding beliefs or ideals that characterize a community, nation, or ideology. The Greeks also used this word to refer to the power of music to influence emotions, behaviors, and even morals.
### Supported Tasks and Leaderboards
[More Information Needed]
- `text-classification-other-Hate Speech Detection`, `sentiment-classification`,`multi-label-classification`: The dataset can be used to train a model for hate speech detection. Moreover, it can be used as a benchmark dataset for multi label classification algorithms.
### Languages
The text in the dataset is in English.
## Dataset Structure
### Data Instances
A typical data point in the binary version comprises a comment, with a `text` containing the text and a `label` describing if a comment contains hate speech content (1 - hate-speech) or not (0 - non-hate-speech). In the multilabel version more labels like *violence* (if it incites (1) or not (0) violence), *directed_vs_general* (if it is directed to a person (1) or a group (0)), and 6 labels about the category of hate speech like, *gender*, *race*, *national_origin*, *disability*, *religion* and *sexual_orientation* are appearing.
An example from the binary version, which is offensive, but it does not contain hate speech content:
```
{'text': 'What the fuck stupid people !!!',
'label': '0'
}
```
An example from the multi-label version, which contains hate speech content towards women (gender):
```
{'text': 'You should know women's sports are a joke',
`violence`: 0,
`directed_vs_generalized`: 0,
`gender`: 1,
`race`: 0,
`national_origin`: 0,
`disability`: 0,
`religion`: 0,
`sexual_orientation`: 0
}
```
### Data Fields
Ethos Binary:
- `text`: a `string` feature containing the text of the comment.
- `label`: a classification label, with possible values including `no_hate_speech`, `hate_speech`.
Ethis Multilabel:
- `text`: a `string` feature containing the text of the comment.
- `violence`: a classification label, with possible values including `not_violent`, `violent`.
- `directed_vs_generalized`: a classification label, with possible values including `generalized`, `directed`.
- `gender`: a classification label, with possible values including `false`, `true`.
- `race`: a classification label, with possible values including `false`, `true`.
- `national_origin`: a classification label, with possible values including `false`, `true`.
- `disability`: a classification label, with possible values including `false`, `true`.
- `religion`: a classification label, with possible values including `false`, `true`.
- `sexual_orientation`: a classification label, with possible values including `false`, `true`.
### Data Splits
The data is split into binary and multilabel. Multilabel is a subset of the binary version.
| | Instances | Labels |
| ----- | ------ | ----- |
| binary | 998 | 1 |
| multilabel | 433 | 8 |
## Dataset Creation
### Curation Rationale
The dataset was build by gathering online comments in Youtube videos and reddit comments, from videos and subreddits which may attract hate speech content.
### Source Data
#### Initial Data Collection and Normalization
The initial data we used are from the hatebusters platform: [Original data used](https://intelligence.csd.auth.gr/topics/hate-speech-detection/), but they were not included in this dataset
#### Who are the source language producers?
The language producers are users of reddit and Youtube. More informations can be found in this paper: [ETHOS: an Online Hate Speech Detection Dataset](https://arxiv.org/abs/2006.08328)
### Annotations
#### Annotation process
The annotation process is detailed in the third section of this paper: [ETHOS: an Online Hate Speech Detection Dataset](https://arxiv.org/abs/2006.08328)
#### Who are the annotators?
Originally anotated by Ioannis Mollas and validated through the Figure8 platform (APEN).
### Personal and Sensitive Information
No personal and sensitive information included in the dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset will help on the evolution of the automated hate speech detection tools. Those tools have great impact on preventing social issues.
### Discussion of Biases
This dataset tries to be unbiased towards its classes and labels.
### Other Known Limitations
The dataset is relatively small and should be used combined with larger datasets.
## Additional Information
### Dataset Curators
The dataset was initially created by [Intelligent Systems Lab](https://intelligence.csd.auth.gr).
### Licensing Information
The licensing status of the datasets is [GNU GPLv3](https://choosealicense.com/licenses/gpl-3.0/).
### Citation Information
```
@misc{mollas2020ethos,
title={ETHOS: an Online Hate Speech Detection Dataset},
author={Ioannis Mollas and Zoe Chrysopoulou and Stamatis Karlos and Grigorios Tsoumakas},
year={2020},
eprint={2006.08328},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## License
[GNU GPLv3](https://choosealicense.com/licenses/gpl-3.0/)
### Contributions
Thanks to [@iamollas](https://github.com/iamollas) for adding this dataset. |