File size: 5,271 Bytes
7857036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DuoRC: A Paraphrased
Reading Comprehension Question Answering Dataset"""

from __future__ import absolute_import, division, print_function

import json

import datasets


_CITATION = """\
@inproceedings{DuoRC,
author = { Amrita Saha and Rahul Aralikatte and Mitesh M. Khapra and Karthik Sankaranarayanan},\
title = {{DuoRC: Towards Complex Language Understanding with Paraphrased Reading Comprehension}},
booktitle = {Meeting of the Association for Computational Linguistics (ACL)},
year = {2018}
}
"""


_DESCRIPTION = """\
DuoRC contains 186,089 unique question-answer pairs created from a collection of 7680 pairs of movie plots where each pair in the collection reflects two versions of the same movie.
"""

_HOMEPAGE = "https://duorc.github.io/"

_LICENSE = "https://raw.githubusercontent.com/duorc/duorc/master/LICENSE"

_URL = "https://raw.githubusercontent.com/duorc/duorc/master/dataset/"
_URLs = {
    "SelfRC": {
        "train": _URL + "SelfRC_train.json",
        "dev": _URL + "SelfRC_dev.json",
        "test": _URL + "SelfRC_test.json",
    },
    "ParaphraseRC": {
        "train": _URL + "ParaphraseRC_train.json",
        "dev": _URL + "ParaphraseRC_dev.json",
        "test": _URL + "ParaphraseRC_test.json",
    },
}


class DuorcConfig(datasets.BuilderConfig):
    """BuilderConfig for DuoRC SelfRC."""

    def __init__(self, **kwargs):
        """BuilderConfig for DuoRC SelfRC.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(DuorcConfig, self).__init__(**kwargs)


class Duorc(datasets.GeneratorBasedBuilder):
    """DuoRC Dataset"""

    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        DuorcConfig(name="SelfRC", version=VERSION, description="SelfRC dataset"),
        DuorcConfig(name="ParaphraseRC", version=VERSION, description="ParaphraseRC dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=datasets.Features(
                {
                    "plot_id": datasets.Value("string"),
                    "plot": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "question_id": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "answers": datasets.features.Sequence(datasets.Value("string")),
                    "no_answer": datasets.Value("bool"),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        my_urls = _URLs[self.config.name]
        downloaded_files = dl_manager.download_and_extract(my_urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": downloaded_files["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": downloaded_files["dev"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": downloaded_files["test"],
                },
            ),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        with open(filepath, encoding="utf-8") as f:
            duorc = json.load(f)
            for example in duorc:
                plot_id = example["id"]
                plot = example["plot"].strip()
                title = example["title"].strip()
                for qas in example["qa"]:
                    question_id = qas["id"]
                    question = qas["question"].strip()
                    answers = [answer.strip() for answer in qas["answers"]]
                    no_answer = qas["no_answer"]

                    yield question_id, {
                        "title": title,
                        "plot": plot,
                        "question": question,
                        "plot_id": plot_id,
                        "question_id": question_id,
                        "answers": answers,
                        "no_answer": no_answer,
                    }