Upload finqa.py
Browse files
finqa.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import json
|
16 |
+
import os
|
17 |
+
import datasets
|
18 |
+
|
19 |
+
_CITATION = """\
|
20 |
+
@inproceedings{chen2021finqa,
|
21 |
+
title={FinQA: A Dataset of Numerical Reasoning over Financial Data},
|
22 |
+
author={Chen, Zhiyu and Chen, Wenhu and Smiley, Charese and Shah, Sameena and Borova, Iana and Langdon, Dylan and Moussa, Reema and Beane, Matt and Huang, Ting-Hao and Routledge, Bryan R and others},
|
23 |
+
booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
|
24 |
+
pages={3697--3711},
|
25 |
+
year={2021}
|
26 |
+
}
|
27 |
+
"""
|
28 |
+
|
29 |
+
_DESCRIPTION = """\
|
30 |
+
A large-scale dataset with 2.8k financial reports for 8k Q&A pairs to study numerical reasoning with structured and unstructured evidence.
|
31 |
+
"""
|
32 |
+
|
33 |
+
_HOMEPAGE = "https://finqasite.github.io"
|
34 |
+
|
35 |
+
_GIT_ARCHIVE_URL = (
|
36 |
+
"https://github.com/czyssrs/FinQA/archive/refs/heads/main.zip"
|
37 |
+
)
|
38 |
+
|
39 |
+
class FinQA(datasets.GeneratorBasedBuilder):
|
40 |
+
"""FinQA: A Large-scale Dataset for Numerical Reasoning over Financial Data."""
|
41 |
+
|
42 |
+
VERSION = datasets.Version("1.0.0")
|
43 |
+
|
44 |
+
def _info(self):
|
45 |
+
features = datasets.Features(
|
46 |
+
{
|
47 |
+
"id": datasets.Value("string"),
|
48 |
+
"pre_text": datasets.features.Sequence(datasets.Value("string")), # the texts before the table;
|
49 |
+
"post_text": datasets.features.Sequence(datasets.Value("string")), # the text after the table;
|
50 |
+
"table": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))), # the table;
|
51 |
+
"question": datasets.Value("string"), # the question;
|
52 |
+
"answer": datasets.Value("string"), # the gold execution result;
|
53 |
+
"final_result": datasets.Value("string"), # answer is empty("answer": "") in some samples, so we need this.
|
54 |
+
"program_re": datasets.Value("string"), # the reasoning program;
|
55 |
+
"gold_inds": datasets.features.Sequence(datasets.Value("string")), # the gold supporting facts;
|
56 |
+
}
|
57 |
+
)
|
58 |
+
return datasets.DatasetInfo(
|
59 |
+
description=_DESCRIPTION,
|
60 |
+
features=datasets.Features(features),
|
61 |
+
supervised_keys=None,
|
62 |
+
homepage=_HOMEPAGE,
|
63 |
+
citation=_CITATION,
|
64 |
+
)
|
65 |
+
|
66 |
+
def _split_generators(self, dl_manager):
|
67 |
+
extracted_path = dl_manager.download_and_extract(_GIT_ARCHIVE_URL)
|
68 |
+
|
69 |
+
train_file = os.path.join(extracted_path, "FinQA-main", "dataset", "train.json")
|
70 |
+
dev_file = os.path.join(extracted_path, "FinQA-main", "dataset", "dev.json")
|
71 |
+
test_file = os.path.join(extracted_path, "FinQA-main", "dataset", "test.json")
|
72 |
+
|
73 |
+
return [
|
74 |
+
datasets.SplitGenerator(
|
75 |
+
name=datasets.Split.TRAIN,
|
76 |
+
gen_kwargs={"dataset_filepath": train_file},
|
77 |
+
),
|
78 |
+
datasets.SplitGenerator(
|
79 |
+
name=datasets.Split.VALIDATION,
|
80 |
+
gen_kwargs={"dataset_filepath": dev_file},
|
81 |
+
),
|
82 |
+
datasets.SplitGenerator(
|
83 |
+
name=datasets.Split.TEST,
|
84 |
+
gen_kwargs={"dataset_filepath": test_file},
|
85 |
+
),
|
86 |
+
]
|
87 |
+
|
88 |
+
|
89 |
+
def _generate_examples(self, dataset_filepath):
|
90 |
+
with open(dataset_filepath, encoding="utf-8") as f:
|
91 |
+
lines = json.load(f)
|
92 |
+
for idx, example in enumerate(lines):
|
93 |
+
yield idx, {
|
94 |
+
"id": example['id'],
|
95 |
+
"pre_text": example['pre_text'],
|
96 |
+
"post_text": example['post_text'],
|
97 |
+
"table": example['table'],
|
98 |
+
"question": example['qa']['question'],
|
99 |
+
"answer": example['qa']['answer'],
|
100 |
+
'final_result': str(example['qa']['steps'][-1]['res']),
|
101 |
+
"program_re": str(example['qa']['program']),
|
102 |
+
"gold_inds": list(example['qa']['gold_inds'].values())
|
103 |
+
}
|
104 |
+
|