text
stringlengths
0
1.25M
meta
stringlengths
47
1.89k
import json import pickle import sys from datetime import datetime from json import JSONEncoder import numpy as np import pandas as pd import watchdog.events import watchdog.observers import time import tensorflow as tf import configparser import os from kafka import KafkaProducer tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) from tensorflow.python.keras.models import load_model sys.path.append(sys.path[0] + '/..') from mmt.readerMMT import eventsToFeatures import warnings warnings.filterwarnings('ignore') conf_path = './config.config' max_message_size = 104857600 #bytes # ndarray json encoder class NumpyArrayEncoder(JSONEncoder): def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() return JSONEncoder.default(self, obj) # Kafka Producer producer = KafkaProducer(bootstrap_servers=['localhost:9092'],max_request_size=max_message_size) # value_serializer=serializer # Watchdog part for monitoring creation of csv files from mmt class Handler(watchdog.events.PatternMatchingEventHandler): def __init__(self): # Watch for new csvs from mmt probe folder (./server/csv/) watchdog.events.PatternMatchingEventHandler.__init__(self, patterns=['*_1__data.csv'], ## Monitoring csv repot files (_1_) with name with _data ignore_directories=True, case_sensitive=False) def on_closed(self, event): print("Closing action on csv - % s." % event.src_path) start_time = time.time() mmt_csv = event.src_path ips, x_features = eventsToFeatures(mmt_csv) # if there are more ips then grouped samples from features (i.e. there is an ip but no features for the ip) -> we delete the ip from ip list ips = pd.merge(ips, x_features, how='inner', on=['ip.session_id', 'meta.direction']) ips = ips[['ip.session_id', 'meta.direction', 'ip']] x_features.drop(columns=['ip.session_id', 'meta.direction'], inplace=True) print("Prediction - test") # rescaling with scaler used with trained model x_test = np.asarray(x_features, np.float32) x_test = scaler.transform(x_test) # prediction y_pred = model.predict(x_test) y_pred = np.transpose(np.round(y_pred)).reshape(y_pred.shape[0], ) preds = np.array([y_pred]).T # adding predictions to features as last column res = np.append(x_features, preds, axis=1) res = np.append(ips, res, axis=1) # print(res.nbytes) # results json encoding j_res = json.dumps(res, cls=NumpyArrayEncoder).encode('utf-8') print(f'Producing message @ {datetime.now()} | Message') # = {str(j_res)}') psend = producer.send('predictions', j_res) # print(psend) producer.flush() # pd.DataFrame(res).to_csv(f"{predictions_dir}predictions_{classification_id}.csv", index=False, # header=prediction_names) print("--- %s seconds ---" % (time.time() - start_time)) y_pred = None res = None features = None if __name__ == "__main__": config = configparser.ConfigParser() config.read(conf_path) mmt_csv_dir = config['DEFAULT']['mmt_probe_csv_dir'] model_path = config['DEFAULT']['model_path'] scaler_path = config['DEFAULT']['scaler_path'] print(f'{mmt_csv_dir},{model_path},{scaler_path}') if not mmt_csv_dir or not model_path or not scaler_path: exit('Config does not contain all needed paths') print("Loading model...") model = load_model(model_path) print("Model loaded.\nLoading scaler...") scaler = pickle.load(open(scaler_path, 'rb')) # "./saved_scalers/scaler_2022-03-02_10-37-27.pkl" print("Scaler loaded.") res=np.ndarray(shape=(2,2), dtype=float, order='F') j_res = json.dumps(res, cls=NumpyArrayEncoder).encode('utf-8') print(f'Producing message @ {datetime.now()} | Message') # = {str(j_res)}') asd = producer.send('messages', j_res) # asd = producer.send('messages', 'j_res') print(asd) producer.flush() event_handler = Handler() observer = watchdog.observers.Observer() print("Starting watchdog.") observer.schedule(event_handler, path=mmt_csv_dir, recursive=True) observer.start() try: while True: time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join()
{"hexsha": "430bf6d76f7cc6e2b878aef77405c75d0b53be3e", "size": 4546, "ext": "py", "lang": "Python", "max_stars_repo_path": "continuous_module/observer.py", "max_stars_repo_name": "Montimage/acas", "max_stars_repo_head_hexsha": "49c345cee5eabbda4833119de5403316139031b5", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "continuous_module/observer.py", "max_issues_repo_name": "Montimage/acas", "max_issues_repo_head_hexsha": "49c345cee5eabbda4833119de5403316139031b5", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "continuous_module/observer.py", "max_forks_repo_name": "Montimage/acas", "max_forks_repo_head_hexsha": "49c345cee5eabbda4833119de5403316139031b5", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 35.515625, "max_line_length": 148, "alphanum_fraction": 0.6570611527, "include": true, "reason": "import numpy", "num_tokens": 1040}
import logging import os import shutil import tempfile from urllib import request as request import numpy as np from ase import Atoms import schnetpack as spk from schnetpack.data import AtomsDataError from schnetpack.datasets import DownloadableAtomsData __all__ = ["MD17"] class MD17(DownloadableAtomsData): """ MD17 benchmark data set for molecular dynamics of small molecules containing molecular forces. Args: dbpath (str): path to database molecule (str): Name of molecule to load into database. Allowed are: aspirin benzene ethanol malonaldehyde naphthalene salicylic_acid toluene uracil subset (list): indices of subset. Set to None for entire dataset (default: None) download (bool): set true if dataset should be downloaded (default: True) collect_triples (bool): set true if triples for angular functions should be computed (default: False) load_only (list, optional): reduced set of properties to be loaded environment_provider (spk.environment.BaseEnvironmentProvider): define how neighborhood is calculated (default=spk.environment.SimpleEnvironmentProvider). See: http://quantum-machine.org/datasets/ """ energy = "energy" forces = "forces" datasets_dict = dict( aspirin="aspirin_dft.npz", # aspirin_ccsd='aspirin_ccsd.zip', azobenzene="azobenzene_dft.npz", benzene="benzene_dft.npz", ethanol="ethanol_dft.npz", # ethanol_ccsdt='ethanol_ccsd_t.zip', malonaldehyde="malonaldehyde_dft.npz", # malonaldehyde_ccsdt='malonaldehyde_ccsd_t.zip', naphthalene="naphthalene_dft.npz", paracetamol="paracetamol_dft.npz", salicylic_acid="salicylic_dft.npz", toluene="toluene_dft.npz", # toluene_ccsdt='toluene_ccsd_t.zip', uracil="uracil_dft.npz", ) existing_datasets = datasets_dict.keys() def __init__( self, dbpath, molecule=None, subset=None, download=True, collect_triples=False, load_only=None, environment_provider=spk.environment.SimpleEnvironmentProvider(), ): if not os.path.exists(dbpath) and molecule is None: raise AtomsDataError("Provide a valid dbpath or select desired molecule!") if molecule is not None and molecule not in MD17.datasets_dict.keys(): raise AtomsDataError("Molecule {} is not supported!".format(molecule)) self.molecule = molecule available_properties = [MD17.energy, MD17.forces] super(MD17, self).__init__( dbpath=dbpath, subset=subset, load_only=load_only, collect_triples=collect_triples, download=download, available_properties=available_properties, environment_provider=environment_provider, ) def create_subset(self, idx): idx = np.array(idx) subidx = idx if self.subset is None else np.array(self.subset)[idx] return MD17( dbpath=self.dbpath, molecule=self.molecule, subset=subidx, download=False, collect_triples=self.collect_triples, load_only=self.load_only, environment_provider=self.environment_provider, ) def _download(self): logging.info("Downloading {} data".format(self.molecule)) tmpdir = tempfile.mkdtemp("MD") rawpath = os.path.join(tmpdir, self.datasets_dict[self.molecule]) url = ( "http://www.quantum-machine.org/gdml/data/npz/" + self.datasets_dict[self.molecule] ) request.urlretrieve(url, rawpath) logging.info("Parsing molecule {:s}".format(self.molecule)) data = np.load(rawpath) numbers = data["z"] atoms_list = [] properties_list = [] for positions, energies, forces in zip(data["R"], data["E"], data["F"]): properties_list.append(dict(energy=energies, forces=forces)) atoms_list.append(Atoms(positions=positions, numbers=numbers)) self.add_systems(atoms_list, properties_list) self.update_metadata(dict(data_source=self.datasets_dict[self.molecule])) logging.info("Cleanining up the mess...") logging.info("{} molecule done".format(self.molecule)) shutil.rmtree(tmpdir)
{"hexsha": "4c4d16126a77c3bb2b23ff7a7c51b71f3c5a6722", "size": 4695, "ext": "py", "lang": "Python", "max_stars_repo_path": "src/schnetpack/datasets/md17.py", "max_stars_repo_name": "giadefa/schnetpack", "max_stars_repo_head_hexsha": "9dabc3b6e3b28deb2fb3743ea1857c46b055efbf", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2020-02-21T05:38:27.000Z", "max_stars_repo_stars_event_max_datetime": "2020-11-06T22:02:40.000Z", "max_issues_repo_path": "src/schnetpack/datasets/md17.py", "max_issues_repo_name": "giadefa/schnetpack", "max_issues_repo_head_hexsha": "9dabc3b6e3b28deb2fb3743ea1857c46b055efbf", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2020-06-28T09:47:30.000Z", "max_issues_repo_issues_event_max_datetime": "2020-09-18T10:26:33.000Z", "max_forks_repo_path": "src/schnetpack/datasets/md17.py", "max_forks_repo_name": "giadefa/schnetpack", "max_forks_repo_head_hexsha": "9dabc3b6e3b28deb2fb3743ea1857c46b055efbf", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 3, "max_forks_repo_forks_event_min_datetime": "2020-11-06T22:02:43.000Z", "max_forks_repo_forks_event_max_datetime": "2021-01-28T13:52:22.000Z", "avg_line_length": 32.8321678322, "max_line_length": 86, "alphanum_fraction": 0.6191693291, "include": true, "reason": "import numpy", "num_tokens": 1027}
function create_geostationary_granule( target_lon::Real, target_lat::Real, central_longitude::Real, N_step=35, N_pixel=1016, x_space=5400, # footprint size E-W in m y_space=2700 # footprint size N-S in m ) N = N_step * N_pixel # lon/lat projection object wgs84 = Projection("+proj=longlat +datum=WGS84 +no_defs") # geostationary projection geo_proj = Projection("+proj=geos +lon_0=$(central_longitude) +h=35785831.0 +sweep=y") # Produce a rectangular grid given the parameters c_x = 0.0 c_y = 0.0 try c_x, c_y = Proj4.transform(wgs84, geo_proj, [target_lon, target_lat]) catch return nothing end # Move up to the "top left" scene of the grid topleft_x = c_x + (N_step - 1) / 2 * x_space topleft_y = c_y + (N_pixel - 1) / 2 * y_space x_coords = Float64[] y_coords = Float64[] dts = DateTime[] for xstep in 0:N_step-1 for ystep in 0:N_pixel-1 this_x = topleft_x - x_space * xstep this_y = topleft_y - y_space * ystep push!(x_coords, this_x) push!(y_coords, this_y) end end lons = Float64[] lats = Float64[] for i in 1:N this_lon = NaN this_lat = NaN try this_lon, this_lat = Proj4.transform(geo_proj, wgs84, [x_coords[i], y_coords[i]]) catch end push!(lons, this_lon) push!(lats, this_lat) end locarray = Geolocation[] # Produce the location array # These are the full granule! for i in 1:N this_loc = Geolocation(lons[i] ,lats[i]) push!(locarray, this_loc) end return geo_proj, locarray end function calculate_geocarb_uncertainty(continuum::Real) #a = 833661.0 #b = 4109.0 # THIS IS RELATIVE UNCERTAINTY! # To get absolute uncertainty for 757nm you must multiply # by the reflected continuum level radiance! #return 1.0 / sqrt(a * albedo * cos(deg2rad(sza)) - b) a = 0.0004 b = 0.0016 return sqrt(a + continuum * b) end function GeostationaryIntensiveSampling( radius::Real, target_lon::Real, target_lat::Real, central_longitude::Real, start_time::DateTime, end_time::DateTime; N_step=35, N_pixel=1016, x_space=5400, # footprint size E-W in m y_space=2700, # footprint size N-S in m stare_time=Dates.Second(9) + Dates.Millisecond(600) # How long does one frame take? ) N = N_step * N_pixel instrument = "Geostationary $(central_longitude)" # This would make conversions from compound periods possible stare_time_period = Dates.Millisecond(Dates.toms(stare_time)) geo_proj, locarray = create_geostationary_granule( target_lon, target_lat, central_longitude, N_step, N_pixel, x_space, y_space ) lons = (p -> p.lon).(locarray) lats = (p -> p.lat).(locarray) lon_bound_min = minimum(lons) lon_bound_max = maximum(lons) lat_bound_min = minimum(lats) lat_bound_max = maximum(lats) vnp_sd = create_VNP_SD_from_locbounds( lon_bound_min, lat_bound_min, lon_bound_max, lat_bound_max ) scenearray = Scene[] # repeat the loop over all locations as long as the measurement # time stays within the stated limit.. current_frame_time = start_time current_granule = 1 current_frame = 1 while current_frame_time <= end_time #println(current_frame, "/", current_granule) for i in 1:N_pixel # Grab the location corresponding to pixel/step this_loc = locarray[i + (current_frame - 1) * N_pixel] this_loctime = GeolocationTime( this_loc, current_frame_time ) # ############################# # Calculate viewing zenith here # ############################# # # Position of scene in ECEF r_location = geodetic_to_ecef(this_loc.lon, this_loc.lat, 0.0) # Position of satellite in ECEF r_satellite = geodetic_to_ecef(central_longitude, 0.0, 0.0) # Normalized location r_norm = normalize(r_location) r_loc_to_sat_norm = normalize(r_satellite - r_location) _tmp = dot(r_loc_to_sat_norm, r_norm) if (_tmp > 1) & (_tmp < 1 + 1e-6) _tmp = 1.0 end this_vza = rad2deg(acos(_tmp)) this_scene = create_SIF_scene( instrument, "N/A", this_loctime, this_vza, calculate_geocarb_uncertainty, vnp_sd ) push!(scenearray, this_scene) end if current_frame < N_step current_frame += 1 else current_frame = 1 current_granule += 1 end current_frame_time += stare_time_period end N_scene = length(scenearray) # Once the full scenes have been done, we need to subset # to the radius given by the user. The reason why we can # do this only AFTER all the scenes have been calculated, # is that we must have scenes corresponding to some real # scanning operation, and can only filter afterwards. radius_mask = Int[] for i in 1:N_scene if check_location_within_radius(target_lon, target_lat, radius, scenearray[i].loctime) push!(radius_mask, i) end end # Match the location array with the locations found in the # scenes. Drop any locations that don't appear in scenes. new_locarray = unique((p -> p.loctime.loc).(scenearray)) info = "Geostationary intensive sampling at $(target_lon), $(target_lat)" return GeostationaryIntensiveSampling( info, [instrument], locarray, scenearray[radius_mask] ) end
{"hexsha": "59cc25bae56044bdf2ee1e88cd27b32bb3239b90", "size": 6048, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/Geostationary.jl", "max_stars_repo_name": "PeterSomkuti/jLRS-v1", "max_stars_repo_head_hexsha": "aa08479e3cf4bd855906879fd4c4239cc2ffe988", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/Geostationary.jl", "max_issues_repo_name": "PeterSomkuti/jLRS-v1", "max_issues_repo_head_hexsha": "aa08479e3cf4bd855906879fd4c4239cc2ffe988", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/Geostationary.jl", "max_forks_repo_name": "PeterSomkuti/jLRS-v1", "max_forks_repo_head_hexsha": "aa08479e3cf4bd855906879fd4c4239cc2ffe988", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 24.6857142857, "max_line_length": 90, "alphanum_fraction": 0.5924272487, "num_tokens": 1599}
module Units export second, minute, hour, day, year, meter, kilometer, seconds, minutes, hours, days, years, meters, kilometers, KiB, MiB, GiB, TiB ##### ##### Convenient definitions ##### """ second A `Float64` constant equal to 1.0. Useful for increasing the clarity of scripts, e.g. `Δt = 1second`. """ const second = 1.0 """ seconds A `Float64` constant equal to 1.0. Useful for increasing the clarity of scripts, e.g. `Δt = 7seconds`. """ const seconds = second """ minute A `Float64` constant equal to 60`seconds`. Useful for increasing the clarity of scripts, e.g. `Δt = 1minute`. """ const minute = 60seconds """ minutes A `Float64` constant equal to 60`seconds`. Useful for increasing the clarity of scripts, e.g. `Δt = 15minutes`. """ const minutes = minute """ hour A `Float64` constant equal to 60`minutes`. Useful for increasing the clarity of scripts, e.g. `Δt = 1hour`. """ const hour = 60minutes """ hours A `Float64` constant equal to 60`minutes`. Useful for increasing the clarity of scripts, e.g. `Δt = 3hours`. """ const hours = hour """ day A `Float64` constant equal to 24`hours`. Useful for increasing the clarity of scripts, e.g. `stop_time = 1day`. """ const day = 24hours """ days A `Float64` constant equal to 24`hours`. Useful for increasing the clarity of scripts, e.g. `stop_time = 7days`. """ const days = day """ year A `Float64` constant equal to 365`days`. Useful for increasing the clarity of scripts, e.g. `stop_time = 1year`. """ const year = 365days """ years A `Float64` constant equal to 365`days`. Useful for increasing the clarity of scripts, e.g. `stop_time = 100years`. """ const years = year """ meter A `Float64` constant equal to 1.0. Useful for increasing the clarity of scripts, e.g. `Lx = 1meter`. """ const meter = 1.0 """ meters A `Float64` constant equal to 1.0. Useful for increasing the clarity of scripts, e.g. `Lx = 50meters`. """ const meters = meter """ kilometer A `Float64` constant equal to 1000`meters`. Useful for increasing the clarity of scripts, e.g. `Lx = 1kilometer`. """ const kilometer = 1000meters """ kilometers A `Float64` constant equal to 1000`meters`. Useful for increasing the clarity of scripts, e.g. `Lx = 5000kilometers`. """ const kilometers = kilometer """ KiB A `Float64` constant equal to 1024.0. Useful for increasing the clarity of scripts, e.g. `max_filesize = 250KiB`. """ const KiB = 1024.0 """ MiB A `Float64` constant equal to 1024`KiB`. Useful for increasing the clarity of scripts, e.g. `max_filesize = 100MiB`. """ const MiB = 1024KiB """ GiB A `Float64` constant equal to 1024`MiB`. Useful for increasing the clarity of scripts, e.g. `max_filesize = 50GiB`. """ const GiB = 1024MiB """ TiB A `Float64` constant equal to 1024`GiB`. Useful for increasing the clarity of scripts, e.g. `max_filesize = 2TiB`. """ const TiB = 1024GiB end
{"hexsha": "573ca5fc3af3115abb164c589203fb951d2066b3", "size": 2954, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/Units.jl", "max_stars_repo_name": "charleskawczynski/Oceananigans.jl", "max_stars_repo_head_hexsha": "c34e6cd2166bbaa057186ffa795d348c1802485f", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 393, "max_stars_repo_stars_event_min_datetime": "2020-05-07T19:20:35.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-29T02:09:52.000Z", "max_issues_repo_path": "src/Units.jl", "max_issues_repo_name": "charleskawczynski/Oceananigans.jl", "max_issues_repo_head_hexsha": "c34e6cd2166bbaa057186ffa795d348c1802485f", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1408, "max_issues_repo_issues_event_min_datetime": "2020-05-09T11:39:27.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-31T23:52:36.000Z", "max_forks_repo_path": "src/Units.jl", "max_forks_repo_name": "charleskawczynski/Oceananigans.jl", "max_forks_repo_head_hexsha": "c34e6cd2166bbaa057186ffa795d348c1802485f", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 99, "max_forks_repo_forks_event_min_datetime": "2020-05-10T02:59:08.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-20T21:50:55.000Z", "avg_line_length": 21.4057971014, "max_line_length": 117, "alphanum_fraction": 0.6763710223, "num_tokens": 886}
#!/usr/bin/python3 import csv import numpy as np import matplotlib.pyplot as plt def parsecsvdata(): '''retrns a list. [0] is lan and [1] wan data''' summary = [] # list that will contain [(LAN), (WAN)] #open csv data with open("/home/student/mikerauer/graphing/2018summary.csv",\ "r") as downtime: # parse csv data with csv.reader downdata = csv.reader(downtime, delimiter=",") for row in downdata: rowdat = (row[0], row[1], row[2], row[3]) summary.append(rowdat) # add dict to list return summary def main(): N = 4 summary = parsecsvdata() # grabs data localnetMeans = summary[0] #LAN Length of outage (mins) wanMeans = summary[1] #WAN length of outage (min) ind = np.arange(N) # the x locations for the group # the width of the cars: can also be len(x) sequence width = 0.35 #describe where to display p1 p1 = plt.bar(ind, localnetMeans, width) #stack p2 on top of p1 p2 = plt.bar(ind, wanMeans, width, bottom=localnetMeans) #Describe the table metadata plt.ylabel("Length of Outage (mins)") plt.title("2018 Network Summary") plt.xticks(ind, ("Q1", "Q2", "Q3", "Q4")) plt.yticks(np.arange(0, 81, 10)) plt.legend((p1[0], p2[0]), ("LAN", "WAN")) #display graph #plt.show() #Save the graph plt.savefig\ ("/home/student/mikerauer/graphing/2018summary2.png") print("graph created") main()
{"hexsha": "a419e39dde0c4aeecf5b04a8560e22b3aa38e2a1", "size": 1469, "ext": "py", "lang": "Python", "max_stars_repo_path": "graphing/gramaker-csvreader.py", "max_stars_repo_name": "mikerauer/pyb-class", "max_stars_repo_head_hexsha": "b7f6202c58df654eb81263d12c2634fa37a27e07", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "graphing/gramaker-csvreader.py", "max_issues_repo_name": "mikerauer/pyb-class", "max_issues_repo_head_hexsha": "b7f6202c58df654eb81263d12c2634fa37a27e07", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "graphing/gramaker-csvreader.py", "max_forks_repo_name": "mikerauer/pyb-class", "max_forks_repo_head_hexsha": "b7f6202c58df654eb81263d12c2634fa37a27e07", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 27.7169811321, "max_line_length": 66, "alphanum_fraction": 0.617426821, "include": true, "reason": "import numpy", "num_tokens": 433}
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://nvlabs.github.io/stylegan2/license.html import json import argparse import numpy as np import dnnlib import dnnlib.tflib as tflib import re import sys import os import csv import math import projector import pretrained_networks from training import dataset from training import misc #---------------------------------------------------------------------------- def project_image(proj, targets, png_prefix, num_snapshots): snapshot_steps = set(proj.num_steps - np.linspace(0, proj.num_steps, num_snapshots, endpoint=False, dtype=int)) misc.save_image_grid(targets, png_prefix + 'target.png', drange=[-1,1]) proj.start(targets) while proj.get_cur_step() < proj.num_steps: print('\r%d / %d ... ' % (proj.get_cur_step(), proj.num_steps), end='', flush=True) proj.step() if proj.get_cur_step() in snapshot_steps: misc.save_image_grid(proj.get_images(), png_prefix + 'step%04d.png' % proj.get_cur_step(), drange=[-1,1]) print('\r%-30s\r' % '', end='', flush=True) #---------------------------------------------------------------------------- def project_generated_images(submit_config, network_pkl, seeds, num_snapshots, truncation_psi): print('Loading networks from "%s"...' % network_pkl) _G, _D, Gs = pretrained_networks.load_networks(network_pkl) proj = projector.Projector() proj.verbose = submit_config.verbose proj.set_network(Gs) noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')] Gs_kwargs = dnnlib.EasyDict() Gs_kwargs.randomize_noise = False Gs_kwargs.truncation_psi = truncation_psi for seed_idx, seed in enumerate(seeds): print('Projecting seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds))) rnd = np.random.RandomState(seed) z = rnd.randn(1, *Gs.input_shape[1:]) tflib.set_vars({var: rnd.randn(*var.shape.as_list()) for var in noise_vars}) images = Gs.run(z, None, **Gs_kwargs) project_image(proj, targets=images, png_prefix=dnnlib.make_run_dir_path('seed%04d-' % seed), num_snapshots=num_snapshots) #---------------------------------------------------------------------------- def project_real_images(submit_config, network_pkl, dataset_name, data_dir, num_images, num_snapshots): print('Loading networks from "%s"...' % network_pkl) _G, _D, Gs = pretrained_networks.load_networks(network_pkl) proj = projector.Projector() proj.verbose = submit_config.verbose proj.set_network(Gs) print('Loading images from "%s"...' % dataset_name) dataset_obj = dataset.load_dataset(data_dir=data_dir, tfrecord_dir=dataset_name, max_label_size=0, repeat=False, shuffle_mb=0) print('dso shape: ' + str(dataset_obj.shape) + ' vs gs shape: ' + str(Gs.output_shape[1:])) assert dataset_obj.shape == Gs.output_shape[1:] for image_idx in range(num_images): print('Projecting image %d/%d ...' % (image_idx, num_images)) images, _labels = dataset_obj.get_minibatch_np(1) images = misc.adjust_dynamic_range(images, [0, 255], [-1, 1]) project_image(proj, targets=images, png_prefix=dnnlib.make_run_dir_path('image%04d-' % image_idx), num_snapshots=num_snapshots) #---------------------------------------------------------------------------- def generate_grid_of_variants(submit_config, network_pkl, truncation_psi, latents_file): print('starting process of generating grid of variants of ' + latents_file) tflib.init_tf({'rnd.np_random_seed': 1000}) f = open(latents_file, 'r') original_latents = np.array(json.load(f)) f.close() print('loaded original latents from ' + latents_file) print('Loading networks from "%s"...' % network_pkl) _G, _D, Gs = pretrained_networks.load_networks(network_pkl) grid_size = (32, 1) grid_labels = [] grid_latents = np.ndarray(shape=(grid_size[0]*grid_size[1],512)) for i in range(grid_size[0] * grid_size[1]): grid_latents[i] = original_latents grid_fakes = Gs.run(grid_latents, grid_labels, is_validation=True, minibatch_size=4) misc.save_image_grid(grid_fakes, dnnlib.make_run_dir_path('latentmod-1.png'), drange=[-1,1], grid_size=grid_size) def generate_mutated_grid(submit_config, network_pkl, truncation_psi, latents_file, minibatch_size=4): print('starting process of generating grid of variants of ' + latents_file) tflib.init_tf({'rnd.np_random_seed': 1000}) grid_size = (128, 1) grid_labels = [] f = open(latents_file, 'r') original_latents = np.array(json.load(f)) f.close() print('loaded original latents from ' + latents_file) print('Loading networks from "%s"...' % network_pkl) _G, _D, Gs = pretrained_networks.load_networks(network_pkl) w_avg = Gs.get_var('dlatent_avg') # [component] Gs_syn_kwargs = dnnlib.EasyDict() Gs_syn_kwargs.randomize_noise = False Gs_syn_kwargs.minibatch_size = minibatch_size all_latents = [] ltnts = original_latents[0] print('Generating W vectors...') for i in range(grid_size[0]*grid_size[1]): ltnts = mutate_latents(ltnts, 4) all_latents.append(ltnts) all_z = np.stack(all_latents) # all_z = np.stack([mutate_latents(original_latents[0], i) for i in range(grid_size[0]*grid_size[1])]) all_w = Gs.components.mapping.run(all_z, None) # [minibatch, layer, component] all_w = w_avg + (all_w - w_avg) * truncation_psi # [minibatch, layer, component] print('Generating images...') all_images = Gs.components.synthesis.run(all_w, **Gs_syn_kwargs) # [minibatch, height, width, channel] misc.save_image_grid(all_images, dnnlib.make_run_dir_path('latentmod-1.png'), drange=[-1,1], grid_size=grid_size) def mutate_latents(latents, num_mutations): ltnts = np.array(latents) for i in range(num_mutations): index = math.floor(np.random.random()*len(latents)) # increment = ((np.random.random()*3)-1) increment = np.random.random() print('chosen index is ' + str(index) + ', adding ' + str(increment)) ltnts[index] += increment return ltnts def generate_interpolation_between(submit_config, network_pkl, truncation_psi, latents_file_start, latents_file_end, num_steps, minibatch_size=4): print('starting process of generating interpolation between ' + latents_file_start + ' and ' + latents_file_end) tflib.init_tf({'rnd.np_random_seed': 1000}) grid_size = (num_steps, 1) grid_labels = [] f = open(latents_file_start, 'r') start_original_latents = np.array(json.load(f)) f.close() print('loaded start latents from ' + latents_file_start) f = open(latents_file_end, 'r') end_original_latents = np.array(json.load(f)) f.close() print('loaded end latents from ' + latents_file_end) print('Loading networks from "%s"...' % network_pkl) _G, _D, Gs = pretrained_networks.load_networks(network_pkl) w_avg = Gs.get_var('dlatent_avg') # [component] Gs_syn_kwargs = dnnlib.EasyDict() Gs_syn_kwargs.randomize_noise = False Gs_syn_kwargs.minibatch_size = minibatch_size all_latents = [] start_ltnts = start_original_latents[0] end_ltnts = end_original_latents[0] ltnt = np.array(start_ltnts) each_step_increment = [((end_ltnts[i] - start_ltnts[i]) / num_steps) for i in range(len(start_ltnts))] #np.zeros(len(start_ltnts)) print(str(each_step_increment)) print('Generating W vectors...') for i in range(grid_size[0]*grid_size[1]): for inc_index in range(len(each_step_increment)): ltnt[inc_index] += each_step_increment[inc_index] all_latents.append(ltnt) ltnt = np.array(ltnt) all_z = np.stack(all_latents) # all_z = np.stack([mutate_latents(original_latents[0], i) for i in range(grid_size[0]*grid_size[1])]) all_w = Gs.components.mapping.run(all_z, None) # [minibatch, layer, component] all_w = w_avg + (all_w - w_avg) * truncation_psi # [minibatch, layer, component] print('Generating images...') all_images = Gs.components.synthesis.run(all_w, **Gs_syn_kwargs) # [minibatch, height, width, channel] misc.save_image_grid(all_images, dnnlib.make_run_dir_path('interpolation.png'), drange=[-1,1], grid_size=grid_size) def get_latents_for_seeds(submit_config, network_pkl, seeds): print('starting process of getting latents for seeds ' + str(seeds)) tflib.init_tf({'rnd.np_random_seed': 1000}) print('Loading networks from "%s"...' % network_pkl) _G, _D, Gs = pretrained_networks.load_networks(network_pkl) for seed_idx, seed in enumerate(seeds): print('Projecting seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds))) rnd = np.random.RandomState(seed) z = rnd.randn(1, *Gs.input_shape[1:]) f = open(dnnlib.make_run_dir_path(str(seed)+'.json'), 'w') json.dump(z.tolist(), f) f.close() def find_common_latents(submit_config, network_pkl, input_dir): print('starting process of finding common latents in directory ' + input_dir) tflib.init_tf({'rnd.np_random_seed': 1000}) print('Loading networks from "%s"...' % network_pkl) _G, _D, Gs = pretrained_networks.load_networks(network_pkl) # parse the seeds out of the filenames in the input directory seeds = [] seed_re = re.compile('^seed(\\d+)\.png') for path, dirs, files in os.walk(input_dir): matches = [seed_re.match(fn) for fn in files] seeds += [match.group(1) for match in matches] # get latents for each seed in the list latents = {} print('operating on seeds: ' + str(seeds)) for seed_idx, seed in enumerate(seeds): print('Projecting seed %s ...' % (seed)) rnd = np.random.RandomState(int(seed)) z = rnd.randn(1, *Gs.input_shape[1:]) latents[seed] = z # f = open(dnnlib.make_run_dir_path(str(seed)+'.json'), 'w') # json.dump(z.tolist(), f) # f.close() # compute average for each latent across all seeds print('we have latents for ' + str(len(latents)) + ' seeds') sums = np.zeros(512, np.float64) for seed in latents: this_seed_latents = latents[seed] # print(str(this_seed_latents[0])) for i in range(len(this_seed_latents[0])): sums[i] += this_seed_latents[0][i] avgs = [(sums[i] / len(latents)) for i in range(len(sums))] # print(str(avgs)) f = open(dnnlib.make_run_dir_path('avgs.json'), 'w') json.dump([avgs], f) f.close() # output the averages, and then for each seed the variance from the average for each latent approx0 = np.zeros(512, np.int) with open(dnnlib.make_run_dir_path('latents-analysis.csv'), 'w', newline='') as csvfile: wrtr = csv.writer(csvfile, quoting=csv.QUOTE_MINIMAL) wrtr.writerow(avgs) for seed in latents: this_seed_latents = latents[seed][0] diffs = [(this_seed_latents[i] - avgs[i]) for i in range(len(this_seed_latents))] wrtr.writerow(diffs) for i in range(len(diffs)): if diffs[i] <= .01: # if the diff between this seed's latent at this position and the average at # this position is approximately 0, that's a sign that this position is part of # what makes this type of image appear - these are what we're trying to find #print('seed ' + str(seed) + ' has approx 0 at ' + str(i)) approx0[i] += 1 for i in range(len(approx0)): print(str(i) + ': ' + str(approx0[i]) + ' approximate zeros') def _parse_num_range(s): '''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.''' range_re = re.compile(r'^(\d+)-(\d+)$') m = range_re.match(s) if m: return range(int(m.group(1)), int(m.group(2))+1) vals = s.split(',') return [int(x) for x in vals] def _str_to_bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') #---------------------------------------------------------------------------- 30/*-1257 _examples = '''examples: # Project generated images python %(prog)s project-generated-images --network=gdrive:networks/stylegan2-car-config-f.pkl --seeds=0,1,5 # Project real images python %(prog)s project-real-images --network=gdrive:networks/stylegan2-car-config-f.pkl --dataset=car --data-dir=~/datasets ''' #---------------------------------------------------------------------------- def main(): parser = argparse.ArgumentParser( description='''StyleGAN2 projector. Run 'python %(prog)s <subcommand> --help' for subcommand help.''', epilog=_examples, formatter_class=argparse.RawDescriptionHelpFormatter ) subparsers = parser.add_subparsers(help='Sub-commands', dest='command') generate_grid_of_variants_parser = subparsers.add_parser('generate-grid-of-variants', help="Generate a grid of variants of a single generated image") generate_grid_of_variants_parser.add_argument('--network', help='Network pickle filename', dest='network_pkl', required=True) generate_grid_of_variants_parser.add_argument('--truncation-psi', type=float, help='Truncation psi (default: %(default)s)', default=1.0) generate_grid_of_variants_parser.add_argument('--result-dir', help='Root directory for run results (default: %(default)s)', default='results', metavar='DIR') generate_grid_of_variants_parser.add_argument('--latents-file', help='File containing a 512-element json array floats representing the latents of the image to generate variations on (default: %(default)s)', metavar='FILE', required=True) generate_grid_of_variants_parser.add_argument('--verbose', help='activate verbose mode during run (defaults: %(default)s)', default=False, metavar='BOOL', type=_str_to_bool) generate_interpolation_between_parser = subparsers.add_parser('generate-interpolation-between', help="Generate a strip of images interpolation between start and end") generate_interpolation_between_parser.add_argument('--network', help='Network pickle filename', dest='network_pkl', required=True) generate_interpolation_between_parser.add_argument('--truncation-psi', type=float, help='Truncation psi (default: %(default)s)', default=1.0) generate_interpolation_between_parser.add_argument('--result-dir', help='Root directory for run results (default: %(default)s)', default='results', metavar='DIR') generate_interpolation_between_parser.add_argument('--latents-file-start', help='File containing a 512-element json array floats representing the latents of the image to start the generation (default: %(default)s)', metavar='FILE', required=True) generate_interpolation_between_parser.add_argument('--latents-file-end', help='File containing a 512-element json array floats representing the latents of the image to finish the generation (default: %(default)s)', metavar='FILE', required=True) generate_interpolation_between_parser.add_argument('--num-steps', help='Number of steps to interpolate between the images', type=int, required=True) generate_interpolation_between_parser.add_argument('--verbose', help='activate verbose mode during run (defaults: %(default)s)', default=False, metavar='BOOL', type=_str_to_bool) get_latents_for_seeds_parser = subparsers.add_parser('get-latents-for-seeds', help='Write out latents for seeds') get_latents_for_seeds_parser.add_argument('--network', help='Network pickle filename', dest='network_pkl', required=True) get_latents_for_seeds_parser.add_argument('--seeds', type=_parse_num_range, help='List of random seeds', default=range(3)) get_latents_for_seeds_parser.add_argument('--result-dir', help='Root directory for run results (default: %(default)s)', default='results', metavar='DIR') get_latents_for_seeds_parser.add_argument('--verbose', help='activate verbose mode during run (defaults: %(default)s)', default=False, metavar='BOOL', type=_str_to_bool) find_common_latents_parser = subparsers.add_parser('find-common-latents', help='Write out a csv containing latents for a directory of seeds along with difference between latent and average of that latent for each item in the vector') find_common_latents_parser.add_argument('--network', help='Network pickle filename', dest='network_pkl', required=True) find_common_latents_parser.add_argument('--result-dir', help='Root directory for run results (default: %(default)s)', default='results', metavar='DIR') find_common_latents_parser.add_argument('--input-dir', help='Directory containing generated images to find common latents between (default: %(default)s)', default='latent-inputs', metavar='DIR') project_real_images_parser = subparsers.add_parser('project-real-images', help='Project real images') project_real_images_parser.add_argument('--network', help='Network pickle filename', dest='network_pkl', required=True) project_real_images_parser.add_argument('--data-dir', help='Dataset root directory', required=True) project_real_images_parser.add_argument('--dataset', help='Training dataset', dest='dataset_name', required=True) project_real_images_parser.add_argument('--num-snapshots', type=int, help='Number of snapshots (default: %(default)s)', default=5) project_real_images_parser.add_argument('--num-images', type=int, help='Number of images to project (default: %(default)s)', default=3) project_real_images_parser.add_argument('--result-dir', help='Root directory for run results (default: %(default)s)', default='results', metavar='DIR') project_real_images_parser.add_argument('--verbose', help='activate verbose mode during run (defaults: %(default)s)', default=False, metavar='BOOL', type=_str_to_bool) args = parser.parse_args() subcmd = args.command if subcmd is None: print ('Error: missing subcommand. Re-run with --help for usage.') sys.exit(1) kwargs = vars(args) sc = dnnlib.SubmitConfig() sc.num_gpus = 1 sc.submit_target = dnnlib.SubmitTarget.LOCAL sc.local.do_not_copy_source_files = True sc.run_dir_root = kwargs.pop('result_dir') sc.run_desc = kwargs.pop('command') if 'verbose' in kwargs: sc.verbose = kwargs.pop('verbose') print('setting verbose mode to ' + str(sc.verbose)) func_name_map = { # 'generate-grid-of-variants': 'run_latentmod.generate_grid_of_variants', 'generate-grid-of-variants': 'run_latentmod.generate_mutated_grid', 'generate-interpolation-between': 'run_latentmod.generate_interpolation_between', 'get-latents-for-seeds': 'run_latentmod.get_latents_for_seeds', 'find-common-latents': 'run_latentmod.find_common_latents' } dnnlib.submit_run(sc, func_name_map[subcmd], **kwargs) #---------------------------------------------------------------------------- if __name__ == "__main__": main() #----------------------------------------------------------------------------
{"hexsha": "a518a6e7fc0aec0f8348b8b1cd1edf8b234e9405", "size": 19430, "ext": "py", "lang": "Python", "max_stars_repo_path": "run_latentmod.py", "max_stars_repo_name": "colrich/stylegan2", "max_stars_repo_head_hexsha": "809ba38c67d4c395c3ab024fbff5909a607dc973", "max_stars_repo_licenses": ["BSD-Source-Code"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "run_latentmod.py", "max_issues_repo_name": "colrich/stylegan2", "max_issues_repo_head_hexsha": "809ba38c67d4c395c3ab024fbff5909a607dc973", "max_issues_repo_licenses": ["BSD-Source-Code"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "run_latentmod.py", "max_forks_repo_name": "colrich/stylegan2", "max_forks_repo_head_hexsha": "809ba38c67d4c395c3ab024fbff5909a607dc973", "max_forks_repo_licenses": ["BSD-Source-Code"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2020-12-08T16:49:40.000Z", "max_forks_repo_forks_event_max_datetime": "2020-12-08T16:49:40.000Z", "avg_line_length": 49.5663265306, "max_line_length": 250, "alphanum_fraction": 0.6780751415, "include": true, "reason": "import numpy", "num_tokens": 4802}
import datetime as dt import numpy as np from hypothesis import given from hypothesis.strategies import floats import pytest from orbit_predictor.utils import ( angle_between, get_sun, get_shadow, eclipse_duration, get_satellite_minus_penumbra_verticals, ) # Data obtained from Astropy using the JPL ephemerides # coords = get_body("sun", # Time(when_utc)).represent_as(CartesianRepresentation).xyz.to("au").T.value @pytest.mark.parametrize("when_utc,expected_eci", [ [dt.datetime(2000, 1, 1, 12), np.array([0.17705013, -0.88744275, -0.38474906])], [dt.datetime(2009, 6, 1, 18, 30), np.array([0.32589889, 0.88109849, 0.38197646])], [dt.datetime(2019, 11, 25, 18, 46, 0), np.array([-0.449363, -0.80638653, -0.34956405])], [dt.datetime(2025, 12, 1, 12), np.array([-0.35042293, -0.84565374, -0.36657211])], ]) def test_get_sun_matches_expected_result_within_precision(when_utc, expected_eci): eci = get_sun(when_utc) assert angle_between(eci, expected_eci) < 1.0 # Claimed precision assert angle_between(eci, expected_eci) < 0.5 # Actual precision # Data obtained from GMAT @pytest.mark.parametrize("when_utc,r_ecef,expected_shadow", [ [dt.datetime(2000, 1, 1, 12, 9, 0), np.array([1272.929355, 6984.992047, 1299.821897]), 2], [dt.datetime(2000, 1, 1, 12, 30, 0), np.array([-7298.548961, 500.322464, 639.443822]), 0], ]) def test_get_shadow_matches_expected_result(when_utc, r_ecef, expected_shadow): shadow = get_shadow(r_ecef, when_utc) assert shadow == expected_shadow # Data obtained from GMAT # Testing the penumbra is much harder, because it only lasts a few seconds # and the uncertainty in the Sun position is even larger than the angle difference # between umbra and penumbra @pytest.mark.xfail @pytest.mark.parametrize("when_utc,r_ecef", [ [dt.datetime(2000, 1, 1, 12, 10, 5), np.array([-2779.471958, 6565.365892, 1625.185914])], [dt.datetime(2000, 1, 1, 12, 10, 15), np.array([-2842.327184, 6539.439097, 1625.522584])], ]) def test_get_shadow_gives_penumbra(when_utc, r_ecef): shadow = get_shadow(r_ecef, when_utc) assert shadow == 1 @pytest.mark.parametrize("beta", [-90, 90]) @given(period=floats(90, 60 * 24)) def test_eclipse_duration_beta_90_is_0(beta, period): expected_eclipse_duration = 0 eclipse_duration_value = eclipse_duration(beta, period) assert eclipse_duration_value == expected_eclipse_duration @given( beta=floats(-90, 90), period=floats(0, 60 * 24, width=16, exclude_min=True), ) def test_eclipse_duration_dwarf_planet_always_0(beta, period): expected_eclipse_duration = 0 eclipse_duration_value = eclipse_duration(beta, period, r_p=0) assert eclipse_duration_value == expected_eclipse_duration @given( beta=floats(-90, 90).filter(lambda f: f > 1e-1), period=floats(90, 60 * 24), ) def test_eclipse_duration_is_maximum_at_beta_0(beta, period): ref_eclipse_duration = eclipse_duration(0, period) assert beta != 0 assert eclipse_duration(beta, period) < ref_eclipse_duration # Examples taken from the predictors in test_predictors, validated with shadow function @pytest.mark.parametrize("when_utc,r_ecef", [ [dt.datetime(2021, 9, 4, 1, 21, 15), np.array((1307.930, -258.467, -6727.760))], # illum [dt.datetime(2021, 9, 4, 1, 25, 15), np.array((2312.642, -1713.363, -6224.066))], # eclipse [dt.datetime(2021, 9, 4, 1, 53, 19), np.array((2104.446, -4747.296, 4476.039))], # eclipse [dt.datetime(2021, 9, 4, 1, 57, 19), np.array((1216.010, -3660.917, 5667.907))], # illum ]) def test_satellite_minus_penumbra_consistent_with_discrete_witness_cases(when_utc, r_ecef): if get_shadow(r_ecef, when_utc) == 2: assert get_satellite_minus_penumbra_verticals(r_ecef, when_utc) > 0 else: assert get_satellite_minus_penumbra_verticals(r_ecef, when_utc) < 0 @pytest.mark.parametrize("when_utc,r_ecef", [ [dt.datetime(2000, 1, 1, 12, 10, 5), np.array([-2779.471958, 6565.365892, 1625.185914])], [dt.datetime(2000, 1, 1, 12, 10, 15), np.array([-2842.327184, 6539.439097, 1625.522584])], ]) def test_satellite_minus_penumbra_is_positive_in_illumination(when_utc, r_ecef): assert get_satellite_minus_penumbra_verticals(r_ecef, when_utc) > 0
{"hexsha": "fc71b3b80c1b2f2b9ebf92b41de2cf90f2645153", "size": 4281, "ext": "py", "lang": "Python", "max_stars_repo_path": "tests/test_sun.py", "max_stars_repo_name": "Juanlu001/orbit-predictor", "max_stars_repo_head_hexsha": "ca67e2e859932938627ed24e5cbf58c887cd99c0", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "tests/test_sun.py", "max_issues_repo_name": "Juanlu001/orbit-predictor", "max_issues_repo_head_hexsha": "ca67e2e859932938627ed24e5cbf58c887cd99c0", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "tests/test_sun.py", "max_forks_repo_name": "Juanlu001/orbit-predictor", "max_forks_repo_head_hexsha": "ca67e2e859932938627ed24e5cbf58c887cd99c0", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 38.9181818182, "max_line_length": 96, "alphanum_fraction": 0.7161878066, "include": true, "reason": "import numpy", "num_tokens": 1415}
import h2o import numpy as np import os import pandas as pd from h2o.estimators.random_forest import H2ORandomForestEstimator from h2o.estimators.xgboost import H2OXGBoostEstimator from h2o.estimators.glm import H2OGeneralizedLinearEstimator from h2o.estimators.gbm import H2OGradientBoostingEstimator schema = {'cat_age': 'enum', 'cat_area': 'enum', 'cat_assured': 'enum', 'cat_cancel': 'enum', #'cat_distr': 'enum', 'cat_marriage': 'enum', 'cat_sex': 'enum', 'cat_vc': 'enum', 'cat_vmm1': 'enum', 'cat_vmm2': 'enum', 'cat_vmy': 'enum', 'cat_vqpt': 'enum', 'cat_vregion': 'enum', 'cat_zip': 'enum', 'int_acc_lia': 'int', 'int_claim_plc': 'int', 'int_others': 'int', 'real_acc_dmg': 'real', 'real_acc_lia': 'real', 'real_loss_plc': 'real', 'real_prem_dmg': 'real', 'real_prem_ins': 'real', 'real_prem_lia': 'real', 'real_prem_plc': 'real', 'real_prem_thf': 'real', 'real_prem_vc': 'real', 'real_vcost': 'real', 'real_ved': 'real'} ######## get model input func ######## def get_train_input(train_only=False, ext='bs', seed=0): ''' In: bool(train_only), int(seed) Out: DataFrame(X_train), DataFrame(X_test), DataFrame(y_train), DataFrame(y_test), Description: if train_only, then split train data into 80/20 else read in train and test data ''' if train_only: np.random.seed(seed) X_all = read_interim_data('X_train_{}.csv'.format(ext)) y_all = read_interim_data('y_train_{}.csv'.format(ext)) msk = np.random.rand(len(X_all)) < 0.8 X_train = X_all[msk] y_train = y_all[msk] X_test = X_all[~msk] y_test = y_all[~msk] else: X_train = read_interim_data('X_train_{}.csv'.format(ext)) X_test = read_interim_data('X_test_{}.csv'.format(ext)) y_train = read_interim_data('y_train_{}.csv'.format(ext)) y_test = read_raw_data('testing-set.csv') cols = ['real_prem_plc', 'real_prem_lia', 'cat_distr', 'int_acc_lia', 'cat_zip', 'cat_sex', 'real_acc_dmg',] X_train = X_train[cols] X_test = X_test[cols] return(X_train, X_test, y_train, y_test) ######## train model func ######## def train_h2o_model(X_train, X_test, y_train, model, params): ''' In: DataFrame(X_train), DataFrame(X_test), DataFrame(y_train) Out: dict(output) -> includes model, fit_test, fit_train Description: train h2o random forest model ''' schema = dict() for col in X_train.columns: if col.startswith('cat'): schema[col] = 'enum' elif col.startswith('int'): schema[col] = 'int' else: schema[col] = 'real' # transform to h2o format df_train = y_train.merge(X_train, how='left', left_index=True, right_index=True) h2o_train = h2o.H2OFrame(df_train, column_types=schema) # split train into train and valid train, valid = h2o_train.split_frame(ratios = [0.8], seed=0) # separate independent variables from dependent variables col_y = 'Next_Premium' col_X = list(X_train.columns) # create random forest model rf_v1 = cv_h2o(col_X, col_y, train, valid, model, params) # fit model to train and test data output = {'model': rf_v1, 'fit_train': get_fit_data(rf_v1, X_train, schema), 'fit_test': get_fit_data(rf_v1, X_test, schema) } return(output) ######## get cross validation func ######## def cv_h2o(col_X, col_y, train, valid, model, params): ''' In: list(col_X), str(col_y), DataFrame(train), DataFrame(valid), list(params), Out: H2ORandomForestEstimator(rf) Description: train h2o random forest model ''' params = [dict(zip(params,t)) for t in zip(*params.values())] rf_list = [] mae_list = [] for p in params: #H2ORandomForestEstimator rf = model(**p) rf.train(col_X, col_y, training_frame=train, validation_frame=valid) mae = rf.mae(valid=True) mae_list.append(mae) rf_list.append(rf) print(mae) mae_min, idx = min((val, idx) for (idx, val) in enumerate(mae_list)) return rf_list[idx] ######## get model prediction func ######## def get_fit_data(model, X, schema): ''' In: Any(model), DataFrame(X), dict(schema), Out: DataFrame(fit) Description: fit model and generate submission df ''' h2o_X = h2o.H2OFrame(X, column_types=schema) fit = model.predict(h2o_X).as_data_frame() fit = fit.assign(Policy_Number = X.index) fit = fit.set_index(['Policy_Number']) fit.columns = ['Next_Premium'] return(fit) ######## get model summary func ######## def get_analysis_on_model(model, X, y, fit): ''' In: DataFrame(X), DataFrame(y), DataFrame(fit), Out: dict(summary) Description: analyze model output ''' # mae mae = (y['Next_Premium'] - fit['Next_Premium']).abs().mean() varimp = pd.DataFrame(model.varimp()) scoring_history = pd.DataFrame(model.scoring_history()) output = {'mae': mae, 'varimp': varimp, 'scoring_history': scoring_history, } return(output) ######## read/write func ######## def read_raw_data(file_name, index_col='Policy_Number'): ''' In: file_name Out: raw_data Description: read data from directory /data/raw ''' # set the path of raw data raw_data_path = os.path.join(os.getcwd(), os.path.pardir, os.path.pardir, 'data', 'raw') file_path = os.path.join(raw_data_path, file_name) raw_data = pd.read_csv(file_path, index_col=index_col) return(raw_data) def read_interim_data(file_name, index_col='Policy_Number'): ''' In: file_name Out: interim_data Description: read data from directory /data/interim ''' # set the path of raw data interim_data_path = os.path.join(os.getcwd(), os.path.pardir, os.path.pardir, 'data', 'interim') file_path = os.path.join(interim_data_path, file_name) interim_data = pd.read_csv(file_path, index_col=index_col) return(interim_data) def write_precessed_data(df): ''' In: DataFrame(df), str(file_name), Out: None Description: Write sample data to directory /data/interim ''' precessed_data_path = os.path.join(os.getcwd(), os.path.pardir, os.path.pardir, 'data', 'processed') write_sample_path = os.path.join(precessed_data_path, 'testing-set.csv') df.to_csv(write_sample_path) return(None) if __name__ == '__main__': # ### Start H2O # Start up a 1-node H2O cloud on your local machine, and allow it to use all CPU cores and up to 2GB of memory: h2o.init(max_mem_size = "2G") #specify max number of bytes. uses all cores by default. h2o.remove_all() #clean slate, in case cluster was already running X_train, X_test, y_train, y_test = get_train_input(train_only=False, ext='fs') # define model and parameters rf_params = { 'ntrees': [50], 'max_depth':[20], 'stopping_metric': ['mae'], 'stopping_rounds': [2], 'score_each_iteration': [True], 'col_sample_rate_per_tree': [1], #'sample_rate': [0.4, 0.6, 0.8], 'seed': [1000000] } output_rf = train_h2o_model(X_train, X_test, y_train, H2ORandomForestEstimator, rf_params) perf_rf_train = get_analysis_on_model(output_rf['model'], X_train, y_train, output_rf['fit_train']) perf_rf_test = get_analysis_on_model(output_rf['model'], X_test, y_test, output_rf['fit_test']) #write_precessed_data(output_rf['fit_test']) xg_params = { 'ntrees': [300], #'max_depth':[15] * 3, 'learn_rate': [0.1], 'stopping_metric': ['mae'], 'stopping_rounds': [2], 'score_each_iteration': [True], #'col_sample_rate_per_tree': [0.6, 0.8, 1], #'sample_rate': [0.6, 0.8, 1], 'seed': [1000000] } output_xg = train_h2o_model(X_train, X_test, y_train, H2OXGBoostEstimator, xg_params) perf_xg_train = get_analysis_on_model(output_xg['model'], X_train, y_train, output_xg['fit_train']) perf_xg_test = get_analysis_on_model(output_xg['model'], X_test, y_test, output_xg['fit_test']) ln_params = { 'lambda_search': [True], 'seed': [1000000] } output_ln = train_h2o_model(X_train, X_test, y_train, H2OGeneralizedLinearEstimator, ln_params) perf_ln_train = get_analysis_on_model(output_ln['model'], X_train, y_train, output_ln['fit_train']) perf_ln_test = get_analysis_on_model(output_ln['model'], X_test, y_test, output_ln['fit_test']) gb_params = { 'learn_rate': [0.1, 0.2, 0.3], 'stopping_metric': ['mae'] * 3, 'stopping_rounds': [2] * 3, 'score_each_iteration': [True] * 3, #'col_sample_rate_per_tree': [0.6, 0.8, 1], #'sample_rate': [0.6, 0.8, 1], 'seed': [1000000] * 3 } output_gb = train_h2o_model(X_train, X_test, y_train, H2OGradientBoostingEstimator, gb_params) perf_gb_train = get_analysis_on_model(output_gb['model'], X_train, y_train, output_gb['fit_train']) perf_gb_test = get_analysis_on_model(output_gb['model'], X_test, y_test, output_gb['fit_test']) h2o.shutdown(prompt=False)
{"hexsha": "f3db39d72b70555629776fd0d4ce93648c9126f5", "size": 9493, "ext": "py", "lang": "Python", "max_stars_repo_path": "src/models/h2o_rf_train.py", "max_stars_repo_name": "zh272/AIGOGO", "max_stars_repo_head_hexsha": "0255cf8c4776358b73ee6b1792325a151a0cfa78", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/models/h2o_rf_train.py", "max_issues_repo_name": "zh272/AIGOGO", "max_issues_repo_head_hexsha": "0255cf8c4776358b73ee6b1792325a151a0cfa78", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/models/h2o_rf_train.py", "max_forks_repo_name": "zh272/AIGOGO", "max_forks_repo_head_hexsha": "0255cf8c4776358b73ee6b1792325a151a0cfa78", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 29.2092307692, "max_line_length": 115, "alphanum_fraction": 0.6239334246, "include": true, "reason": "import numpy", "num_tokens": 2656}
# Loss function for XYZ maps # https://arxiv.org/pdf/2109.07577.pdf import torch import copy import torchvision.models as models import numpy as np import torch.nn as nn import torch.nn.functional as F import Visuallization as vis ######################################################################################################################333 class Loss(nn.Module): ######################################################################################################################## def __init__(self): # Create class for Loss function for XYZ maps device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # choose gpu or cpu super(Loss, self).__init__() self.DifLayers={} self.ROILayers={} # type=np.float32 ##Dif filters use to find the distance between two points on the XYZ map # ROI filters use on the ROI map to find that the points is within the ROI (otherwise the distance is invalid) self.DifLayers['Horizontal']=torch.from_numpy(np.array( [[0,0,0] , [0,1,-1], [0,0,0]],dtype=np.float32)).to(device).unsqueeze(0).unsqueeze(0) self.ROILayers['Horizontal'] = torch.from_numpy(np.array([[0,0,0] , [0,0,1], [0,0,0]],dtype=np.float32)).to(device).unsqueeze(0).unsqueeze(0) self.DifLayers['Vertical'] = torch.from_numpy(np.array( [[0,0,0] , [0,1,0], [0,-1,0]],dtype=np.float32)).to(device).unsqueeze(0).unsqueeze(0) self.ROILayers['Vertical']= torch.from_numpy(np.array( [[0,0,0] , [0,0,0], [0,1,0]],dtype=np.float32)).to(device).unsqueeze(0).unsqueeze(0) self.DifLayers['Diagonal']= torch.from_numpy(np.array( [[0,0,0] , [0,1,0], [0,0,-1]], dtype=np.float32)).to(device).unsqueeze(0).unsqueeze(0) self.ROILayers['Diagonal'] = torch.from_numpy(np.array( [[0,0,0] , [0,0,0], [0,0,1]], dtype=np.float32)).to(device).unsqueeze(0).unsqueeze(0) ####################################################################################################################################################### def DiffrentialLoss(self, PredXYZ, GTXYZ,ROIMask, ConstNP=[]): # Calculate L1 loss using distances between pair of points in XYZ maps (where predicted XYZ map is scaled to match GT map_ # If not given in ConstNp the relative scale is also calculated. device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # choose gpu or cpu ReCalculateNormalizationConst = (len( ConstNP) == 0) # ConstNP is the the relative scale between the predicted and GT XYZ model. This can be either given or be calculated within the function. # print(self.DifLayers['Horizontal']) MaxScale=np.max(ROIMask.shape[2:])# Max Scale of the dilated convolution layer (max distance between pixels in the image that will use to calculate distance between points) MaxScale=np.min([200,MaxScale]) MinScale=1 step=3 NumLayers=int(np.ceil((MaxScale-MinScale)/step)*3*len(list(self.DifLayers))) # distance between points will be calculated on the X Y and Z axis seperately using dilated convolution with [1,-1] structure difPrd=torch.autograd.Variable(torch.zeros(PredXYZ.shape[0],NumLayers,PredXYZ.shape[2],PredXYZ.shape[3]).to(device),requires_grad=False) # Will GT contain the distance between pairs of points in different distances in the X,Y,Z axis difGT=torch.autograd.Variable(torch.zeros(PredXYZ.shape[0],NumLayers,PredXYZ.shape[2],PredXYZ.shape[3]).to(device),requires_grad=False) # Will Predicted contain the distance between pairs of points in different distances in the X,Y,Z axis i=-1 for scale in range(1,MaxScale,3): # Go over all scales (distance between pixels) for l in range(3): # Go over X,Y,Z axis for nm in self.DifLayers: # Go over filters (relative location of points pairs, horizontal/vertical/diagonal) i+=1 ROI = ROIMask * F.conv2d(ROIMask, self.ROILayers[nm], bias=None, stride=1, padding=scale,dilation=scale) # Check that both points are within the ROI difPrd[:,i:i+1] = ROI*F.conv2d(PredXYZ[:,l:l+1,:,:], self.DifLayers[nm], bias=None, stride=1, padding=scale, dilation=scale)# Find distance between two points on the predicted XYZ model difGT[:,i:i+1] = ROI*F.conv2d(GTXYZ[:,l:l+1,:,:], self.DifLayers[nm], bias=None, stride=1, padding=scale, dilation=scale) # Find distance between two points on the GT XYZ model # print("i=",i,"NumLayers=",NumLayers) ##============================Calculate relative scale between predicted and GT maps # ---------This part should NOT transmit gradient----------------------------- if ReCalculateNormalizationConst: # If normalization scale constants are not pregiven calculate them Rat = (difPrd/(difGT+0.00001)) #Ratios of difference bewtween ground truth and predicted distances between points Rat = F.relu(Rat) # Only postive ratios can be used when calculating loss #---------- Const minimize ratio with larger difference contribute more. Basically absolute sum of GT distances divided by absolute sum of predicted distances------------------------- # NormConst is the relative scale between GT and predicted XYZ (one number per image) NormConst=(torch.abs(difGT)*Rat).sum((1,2,3))/((torch.abs(difGT)*(Rat>0)).sum((1,2,3))+0.0001) # Weighted Average of Rat were the weight are the difference ConstNP=NormConst.data.cpu().numpy() # Convert to numpy to block gradient (yes there are more efficent ways but its one number per image so it take little time) # print("ConstNP=",ConstNP) #----------------This part should transmit grdient------------------------- Loss=0 for i in range(len(ConstNP)): #=====================Loss is the absolute difference between predicted and GT XYZ maps, where the prediction is scaled by the scale constant # print("ScaleDif",ScaleDif) if ConstNP[i]>0.0001: # If scale constant too small ignore Loss+=torch.abs(difGT[i]-difPrd[i]/ConstNP[i]).mean() # Calculate loss #----------------make sure predictions will not be too large or small basically punish to small or too big scale constants ---------------------------------------------- if ReCalculateNormalizationConst: # Check that the constant are not too large or small ROISum = ROIMask[i].sum() if ROISum>200: # Make sure ROI is not too small to create reliable statitics MeanPrdDif = torch.abs(difPrd[i]).sum()/(torch.abs(difGT[i]>0).sum()) # The mean average distances between points. difGT[i]>0 term is simply the number of valid distances if MeanPrdDif>30 and ConstNP[i]>10: # Punish relative scale if it too large Loss+=(MeanPrdDif-30) if MeanPrdDif<2 and ConstNP[i]<0.1: # Punish relative scale if it too small Fact = 0.1 / (ConstNP[i] + 0.001) # print("MeanPrdDif",MeanPrdDif) Loss += (0.2-MeanPrdDif)*Fact # Loss/=ROIMask.shape[0] return Loss,ConstNP # return loss and normalization scale constant ########################Find the difference between the vessel and content mask using known normalization constants=========================================
{"hexsha": "1bdf0e1621585b9217ffa99e5aa23b4c7ecbb2b4", "size": 7512, "ext": "py", "lang": "Python", "max_stars_repo_path": "LossFunctions.py", "max_stars_repo_name": "sagieppel/Predict-3D-model-from-image-as-an-XYZ-map", "max_stars_repo_head_hexsha": "90a81bda59b2ab32afff0e5514e8fd5ae4b1a8cb", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2022-03-23T22:16:34.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-23T22:16:34.000Z", "max_issues_repo_path": "LossFunctions.py", "max_issues_repo_name": "sagieppel/Predict-3D-model-from-image-as-an-XYZ-map", "max_issues_repo_head_hexsha": "90a81bda59b2ab32afff0e5514e8fd5ae4b1a8cb", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "LossFunctions.py", "max_forks_repo_name": "sagieppel/Predict-3D-model-from-image-as-an-XYZ-map", "max_forks_repo_head_hexsha": "90a81bda59b2ab32afff0e5514e8fd5ae4b1a8cb", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 82.5494505495, "max_line_length": 246, "alphanum_fraction": 0.6098242812, "include": true, "reason": "import numpy", "num_tokens": 1807}
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 import json import numpy as np import decimal class CompatEncoder(json.JSONEncoder): """ Compatible encoder that supports numpy types and Decimal type json.dumps(data, cls=CompatEncoder) """ def default(self, obj): if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() elif isinstance(obj, decimal.Decimal): if obj % 1 > 0: return float(obj) else: return int(obj) else: return super(CompatEncoder, self).default(obj)
{"hexsha": "417c8483dbff8c114ceea637b782704e81f82fd7", "size": 783, "ext": "py", "lang": "Python", "max_stars_repo_path": "src/recommendations/src/recommendations-service/experimentation/utils.py", "max_stars_repo_name": "honey-sangtani-c5i/retail-demo-store", "max_stars_repo_head_hexsha": "c76e03b2a1750d9ec16f2dd8c952b8c4c8a53ef8", "max_stars_repo_licenses": ["MIT-0"], "max_stars_count": 404, "max_stars_repo_stars_event_min_datetime": "2020-04-10T01:54:50.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-31T08:22:23.000Z", "max_issues_repo_path": "src/recommendations/src/recommendations-service/experimentation/utils.py", "max_issues_repo_name": "honey-sangtani-c5i/retail-demo-store", "max_issues_repo_head_hexsha": "c76e03b2a1750d9ec16f2dd8c952b8c4c8a53ef8", "max_issues_repo_licenses": ["MIT-0"], "max_issues_count": 144, "max_issues_repo_issues_event_min_datetime": "2020-04-14T11:53:15.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-31T07:24:44.000Z", "max_forks_repo_path": "src/recommendations/src/recommendations-service/experimentation/utils.py", "max_forks_repo_name": "honey-sangtani-c5i/retail-demo-store", "max_forks_repo_head_hexsha": "c76e03b2a1750d9ec16f2dd8c952b8c4c8a53ef8", "max_forks_repo_licenses": ["MIT-0"], "max_forks_count": 301, "max_forks_repo_forks_event_min_datetime": "2020-04-13T16:41:39.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-29T23:51:16.000Z", "avg_line_length": 29.0, "max_line_length": 69, "alphanum_fraction": 0.6079182631, "include": true, "reason": "import numpy", "num_tokens": 160}
#!/usr/bin/env python """ Show how to connect to keypress events """ from __future__ import print_function import sys import numpy as np import matplotlib.pyplot as plt class Modulator(object): count = 0 @classmethod def iterate_count(cls): cls.count += 0.1 return cls.count def my_event(event,methd): print('press', event.key) sys.stdout.flush() xpos = methd() ax.text(xpos,0.5,event.key, verticalalignment='bottom',horizontalalignment='right', transform=ax.transAxes, color='green', fontsize=25) fig.canvas.draw() fig, ax = plt.subplots() fig.canvas.mpl_connect('key_press_event', lambda event: my_event(event,Modulator.iterate_count)) ax.plot(np.random.rand(12), np.random.rand(12), 'go') xl = ax.set_xlabel('easy come, easy go') plt.show()
{"hexsha": "38f7154a8e8086374dbd5fb7249aa6e54c762fc3", "size": 860, "ext": "py", "lang": "Python", "max_stars_repo_path": "data-vis-mpl/scripts/keypress_demo.py", "max_stars_repo_name": "chyld/demoX", "max_stars_repo_head_hexsha": "27f26a553aeb6682173f6b1b8dc8969101993324", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "data-vis-mpl/scripts/keypress_demo.py", "max_issues_repo_name": "chyld/demoX", "max_issues_repo_head_hexsha": "27f26a553aeb6682173f6b1b8dc8969101993324", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "data-vis-mpl/scripts/keypress_demo.py", "max_forks_repo_name": "chyld/demoX", "max_forks_repo_head_hexsha": "27f26a553aeb6682173f6b1b8dc8969101993324", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 23.2432432432, "max_line_length": 96, "alphanum_fraction": 0.6534883721, "include": true, "reason": "import numpy", "num_tokens": 207}
import os import sys sys.path.append('.') sys.path.append('/home/wamsterd/git/pretrainedresnet3d') import json import numpy as np import torch from torch import nn from torch import optim from torch.optim import lr_scheduler from opts import parse_opts from model3d import generate_model from mean import get_mean, get_std def get_3d_model(num_feature2d_slices=30): opt = parse_opts() if opt.root_path != '': opt.video_path = os.path.join(opt.root_path, opt.video_path) opt.annotation_path = os.path.join(opt.root_path, opt.annotation_path) opt.result_path = os.path.join(opt.root_path, opt.result_path) if opt.resume_path: opt.resume_path = os.path.join(opt.root_path, opt.resume_path) if opt.pretrain_path: opt.pretrain_path = os.path.join(opt.root_path, opt.pretrain_path) opt.scales = [opt.initial_scale] for i in range(1, opt.n_scales): opt.scales.append(opt.scales[-1] * opt.scale_step) opt.arch = '{}-{}'.format(opt.model, opt.model_depth) opt.mean = get_mean(opt.norm_value, dataset=opt.mean_dataset) opt.std = get_std(opt.norm_value) opt.sample_duration=num_feature2d_slices # print(opt) with open(os.path.join(opt.result_path, 'opts.json'), 'w') as opt_file: json.dump(vars(opt), opt_file) torch.manual_seed(opt.manual_seed) model, parameters = generate_model(opt) return model if __name__ == '__main__': get_3d_model()
{"hexsha": "b8f862009f2a43a6e043f0ff25f26db8e374f1a4", "size": 1472, "ext": "py", "lang": "Python", "max_stars_repo_path": "exportmodel.py", "max_stars_repo_name": "vanAmsterdam/pretrainedresnet3d", "max_stars_repo_head_hexsha": "48797ef9d021f51f82e5eacbf72ac33ca09ced4d", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "exportmodel.py", "max_issues_repo_name": "vanAmsterdam/pretrainedresnet3d", "max_issues_repo_head_hexsha": "48797ef9d021f51f82e5eacbf72ac33ca09ced4d", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "exportmodel.py", "max_forks_repo_name": "vanAmsterdam/pretrainedresnet3d", "max_forks_repo_head_hexsha": "48797ef9d021f51f82e5eacbf72ac33ca09ced4d", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 32.7111111111, "max_line_length": 78, "alphanum_fraction": 0.7085597826, "include": true, "reason": "import numpy", "num_tokens": 361}
Describe Users/alyssasusan here. eggs
{"hexsha": "e392a4c580358ed368632a5d0fd569ca530046cc", "size": 38, "ext": "f", "lang": "FORTRAN", "max_stars_repo_path": "lab/davisWiki/alyssasusan.f", "max_stars_repo_name": "voflo/Search", "max_stars_repo_head_hexsha": "55088b2fe6a9d6c90590f090542e0c0e3c188c7d", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "lab/davisWiki/alyssasusan.f", "max_issues_repo_name": "voflo/Search", "max_issues_repo_head_hexsha": "55088b2fe6a9d6c90590f090542e0c0e3c188c7d", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "lab/davisWiki/alyssasusan.f", "max_forks_repo_name": "voflo/Search", "max_forks_repo_head_hexsha": "55088b2fe6a9d6c90590f090542e0c0e3c188c7d", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 12.6666666667, "max_line_length": 32, "alphanum_fraction": 0.8421052632, "num_tokens": 12}
[STATEMENT] lemma ta_seq_consist_imp_sequentially_consistent: assumes tsa_ok: "thread_start_actions_ok E" and new_actions_for_fun: "\<And>adal a a'. \<lbrakk> a \<in> new_actions_for P E adal; a' \<in> new_actions_for P E adal \<rbrakk> \<Longrightarrow> a = a'" and seq: "ta_seq_consist P Map.empty (lmap snd E)" shows "\<exists>ws. sequentially_consistent P (E, ws) \<and> P \<turnstile> (E, ws) \<surd>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<exists>ws. sequentially_consistent P (E, ws) \<and> P \<turnstile> (E, ws) \<surd> [PROOF STEP] proof(intro exI conjI) [PROOF STATE] proof (state) goal (2 subgoals): 1. sequentially_consistent P (E, ?ws) 2. P \<turnstile> (E, ?ws) \<surd> [PROOF STEP] define ws where "ws i = (THE w. P,E \<turnstile> i \<leadsto>mrw w)" for i [PROOF STATE] proof (state) this: ws ?i = (THE w. P,E \<turnstile> ?i \<leadsto>mrw w) goal (2 subgoals): 1. sequentially_consistent P (E, ?ws) 2. P \<turnstile> (E, ?ws) \<surd> [PROOF STEP] from seq [PROOF STATE] proof (chain) picking this: ta_seq_consist P Map.empty (lmap snd E) [PROOF STEP] have ns: "non_speculative P (\<lambda>_. {}) (lmap snd E)" [PROOF STATE] proof (prove) using this: ta_seq_consist P Map.empty (lmap snd E) goal (1 subgoal): 1. non_speculative P (\<lambda>_. {}) (lmap snd E) [PROOF STEP] by(rule ta_seq_consist_into_non_speculative) simp [PROOF STATE] proof (state) this: non_speculative P (\<lambda>_. {}) (lmap snd E) goal (2 subgoals): 1. sequentially_consistent P (E, ?ws) 2. P \<turnstile> (E, ?ws) \<surd> [PROOF STEP] show "sequentially_consistent P (E, ws)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. sequentially_consistent P (E, ws) [PROOF STEP] unfolding ws_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. sequentially_consistent P (E, \<lambda>i. The (most_recent_write_for P E i)) [PROOF STEP] proof(rule sequentially_consistentI) [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>r. r \<in> read_actions E \<Longrightarrow> P,E \<turnstile> r \<leadsto>mrw The (most_recent_write_for P E r) [PROOF STEP] fix r [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>r. r \<in> read_actions E \<Longrightarrow> P,E \<turnstile> r \<leadsto>mrw The (most_recent_write_for P E r) [PROOF STEP] assume "r \<in> read_actions E" [PROOF STATE] proof (state) this: r \<in> read_actions E goal (1 subgoal): 1. \<And>r. r \<in> read_actions E \<Longrightarrow> P,E \<turnstile> r \<leadsto>mrw The (most_recent_write_for P E r) [PROOF STEP] with seq new_actions_for_fun [PROOF STATE] proof (chain) picking this: ta_seq_consist P Map.empty (lmap snd E) \<lbrakk>?a \<in> new_actions_for P E ?adal; ?a' \<in> new_actions_for P E ?adal\<rbrakk> \<Longrightarrow> ?a = ?a' r \<in> read_actions E [PROOF STEP] obtain w where "P,E \<turnstile> r \<leadsto>mrw w" [PROOF STATE] proof (prove) using this: ta_seq_consist P Map.empty (lmap snd E) \<lbrakk>?a \<in> new_actions_for P E ?adal; ?a' \<in> new_actions_for P E ?adal\<rbrakk> \<Longrightarrow> ?a = ?a' r \<in> read_actions E goal (1 subgoal): 1. (\<And>w. P,E \<turnstile> r \<leadsto>mrw w \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by(auto dest: ta_seq_consist_most_recent_write_for) [PROOF STATE] proof (state) this: P,E \<turnstile> r \<leadsto>mrw w goal (1 subgoal): 1. \<And>r. r \<in> read_actions E \<Longrightarrow> P,E \<turnstile> r \<leadsto>mrw The (most_recent_write_for P E r) [PROOF STEP] thus "P,E \<turnstile> r \<leadsto>mrw THE w. P,E \<turnstile> r \<leadsto>mrw w" [PROOF STATE] proof (prove) using this: P,E \<turnstile> r \<leadsto>mrw w goal (1 subgoal): 1. P,E \<turnstile> r \<leadsto>mrw THE w. P,E \<turnstile> r \<leadsto>mrw w [PROOF STEP] by(simp add: THE_most_recent_writeI) [PROOF STATE] proof (state) this: P,E \<turnstile> r \<leadsto>mrw THE w. P,E \<turnstile> r \<leadsto>mrw w goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: sequentially_consistent P (E, ws) goal (1 subgoal): 1. P \<turnstile> (E, \<lambda>i. The (most_recent_write_for P E i)) \<surd> [PROOF STEP] show "P \<turnstile> (E, ws) \<surd>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. P \<turnstile> (E, ws) \<surd> [PROOF STEP] proof(rule wf_execI) [PROOF STATE] proof (state) goal (2 subgoals): 1. is_write_seen P E ws 2. thread_start_actions_ok E [PROOF STEP] show "is_write_seen P E ws" [PROOF STATE] proof (prove) goal (1 subgoal): 1. is_write_seen P E ws [PROOF STEP] proof(rule is_write_seenI) [PROOF STATE] proof (state) goal (7 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> ws a \<in> write_actions E 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> (ad, al) \<in> action_loc P E (ws a) 3. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 4. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>hb ws a 5. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 6. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 7. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] fix a ad al v [PROOF STATE] proof (state) goal (7 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> ws a \<in> write_actions E 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> (ad, al) \<in> action_loc P E (ws a) 3. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 4. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>hb ws a 5. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 6. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 7. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] assume a: "a \<in> read_actions E" and adal: "action_obs E a = NormalAction (ReadMem ad al v)" [PROOF STATE] proof (state) this: a \<in> read_actions E action_obs E a = NormalAction (ReadMem ad al v) goal (7 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> ws a \<in> write_actions E 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> (ad, al) \<in> action_loc P E (ws a) 3. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 4. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>hb ws a 5. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 6. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 7. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] from ns [PROOF STATE] proof (chain) picking this: non_speculative P (\<lambda>_. {}) (lmap snd E) [PROOF STEP] have seq': "non_speculative P (\<lambda>_. {}) (ltake (enat a) (lmap snd E))" [PROOF STATE] proof (prove) using this: non_speculative P (\<lambda>_. {}) (lmap snd E) goal (1 subgoal): 1. non_speculative P (\<lambda>_. {}) (ltake (enat a) (lmap snd E)) [PROOF STEP] by(rule non_speculative_ltake) [PROOF STATE] proof (state) this: non_speculative P (\<lambda>_. {}) (ltake (enat a) (lmap snd E)) goal (7 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> ws a \<in> write_actions E 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> (ad, al) \<in> action_loc P E (ws a) 3. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 4. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>hb ws a 5. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 6. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 7. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] from seq a seq new_actions_for_fun [PROOF STATE] proof (chain) picking this: ta_seq_consist P Map.empty (lmap snd E) a \<in> read_actions E ta_seq_consist P Map.empty (lmap snd E) \<lbrakk>?a \<in> new_actions_for P E ?adal; ?a' \<in> new_actions_for P E ?adal\<rbrakk> \<Longrightarrow> ?a = ?a' [PROOF STEP] obtain w where mrw: "P,E \<turnstile> a \<leadsto>mrw w" and "w < a" [PROOF STATE] proof (prove) using this: ta_seq_consist P Map.empty (lmap snd E) a \<in> read_actions E ta_seq_consist P Map.empty (lmap snd E) \<lbrakk>?a \<in> new_actions_for P E ?adal; ?a' \<in> new_actions_for P E ?adal\<rbrakk> \<Longrightarrow> ?a = ?a' goal (1 subgoal): 1. (\<And>w. \<lbrakk>P,E \<turnstile> a \<leadsto>mrw w; w < a\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by(auto dest: ta_seq_consist_most_recent_write_for) [PROOF STATE] proof (state) this: P,E \<turnstile> a \<leadsto>mrw w w < a goal (7 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> ws a \<in> write_actions E 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> (ad, al) \<in> action_loc P E (ws a) 3. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 4. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>hb ws a 5. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 6. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 7. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] hence w: "ws a = w" [PROOF STATE] proof (prove) using this: P,E \<turnstile> a \<leadsto>mrw w w < a goal (1 subgoal): 1. ws a = w [PROOF STEP] by(simp add: ws_def THE_most_recent_writeI) [PROOF STATE] proof (state) this: ws a = w goal (7 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> ws a \<in> write_actions E 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> (ad, al) \<in> action_loc P E (ws a) 3. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 4. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>hb ws a 5. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 6. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 7. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] with mrw adal [PROOF STATE] proof (chain) picking this: P,E \<turnstile> a \<leadsto>mrw w action_obs E a = NormalAction (ReadMem ad al v) ws a = w [PROOF STEP] show "ws a \<in> write_actions E" and "(ad, al) \<in> action_loc P E (ws a)" and "\<not> P,E \<turnstile> a \<le>hb ws a" [PROOF STATE] proof (prove) using this: P,E \<turnstile> a \<leadsto>mrw w action_obs E a = NormalAction (ReadMem ad al v) ws a = w goal (1 subgoal): 1. ws a \<in> write_actions E &&& (ad, al) \<in> action_loc P E (ws a) &&& \<not> P,E \<turnstile> a \<le>hb ws a [PROOF STEP] by(fastforce elim!: most_recent_write_for.cases dest: happens_before_into_action_order antisymPD[OF antisym_action_order] read_actions_not_write_actions)+ [PROOF STATE] proof (state) this: ws a \<in> write_actions E (ad, al) \<in> action_loc P E (ws a) \<not> P,E \<turnstile> a \<le>hb ws a goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] let ?between = "ltake (enat (a - Suc w)) (ldropn (Suc w) E)" [PROOF STATE] proof (state) goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] let ?prefix = "ltake (enat w) E" [PROOF STATE] proof (state) goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] let ?vs_prefix = "mrw_values P Map.empty (map snd (list_of ?prefix))" [PROOF STATE] proof (state) goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] { [PROOF STATE] proof (state) goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] fix v' [PROOF STATE] proof (state) goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] assume new: "is_new_action (action_obs E w)" and vs': "?vs_prefix (ad, al) = \<lfloor>(v', True)\<rfloor>" [PROOF STATE] proof (state) this: is_new_action (action_obs E w) mrw_values P Map.empty (map snd (list_of (ltake (enat w) E))) (ad, al) = \<lfloor>(v', True)\<rfloor> goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] from mrw_values_eq_SomeD[OF vs'] [PROOF STATE] proof (chain) picking this: (None = \<lfloor>(v', True)\<rfloor> \<Longrightarrow> \<exists>wa. wa \<in> set (map snd (list_of (ltake (enat w) E))) \<and> is_write_action wa \<and> (ad, al) \<in> action_loc_aux P wa \<and> (True \<longrightarrow> \<not> is_new_action wa)) \<Longrightarrow> \<exists>obs' wa obs''. map snd (list_of (ltake (enat w) E)) = obs' @ wa # obs'' \<and> is_write_action wa \<and> (ad, al) \<in> action_loc_aux P wa \<and> value_written_aux P wa al = v' \<and> is_new_action wa = (\<not> True) \<and> (\<forall>ob\<in>set obs''. is_write_action ob \<longrightarrow> (ad, al) \<in> action_loc_aux P ob \<longrightarrow> is_new_action ob \<and> True) [PROOF STEP] obtain obs' wa obs'' where split: "map snd (list_of ?prefix) = obs' @ wa # obs''" and wa: "is_write_action wa" and adal': "(ad, al) \<in> action_loc_aux P wa" and new_wa: "\<not> is_new_action wa" [PROOF STATE] proof (prove) using this: (None = \<lfloor>(v', True)\<rfloor> \<Longrightarrow> \<exists>wa. wa \<in> set (map snd (list_of (ltake (enat w) E))) \<and> is_write_action wa \<and> (ad, al) \<in> action_loc_aux P wa \<and> (True \<longrightarrow> \<not> is_new_action wa)) \<Longrightarrow> \<exists>obs' wa obs''. map snd (list_of (ltake (enat w) E)) = obs' @ wa # obs'' \<and> is_write_action wa \<and> (ad, al) \<in> action_loc_aux P wa \<and> value_written_aux P wa al = v' \<and> is_new_action wa = (\<not> True) \<and> (\<forall>ob\<in>set obs''. is_write_action ob \<longrightarrow> (ad, al) \<in> action_loc_aux P ob \<longrightarrow> is_new_action ob \<and> True) goal (1 subgoal): 1. (\<And>obs' wa obs''. \<lbrakk>map snd (list_of (ltake (enat w) E)) = obs' @ wa # obs''; is_write_action wa; (ad, al) \<in> action_loc_aux P wa; \<not> is_new_action wa\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: map snd (list_of (ltake (enat w) E)) = obs' @ wa # obs'' is_write_action wa (ad, al) \<in> action_loc_aux P wa \<not> is_new_action wa goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] from split [PROOF STATE] proof (chain) picking this: map snd (list_of (ltake (enat w) E)) = obs' @ wa # obs'' [PROOF STEP] have "length (map snd (list_of ?prefix)) = Suc (length obs' + length obs'')" [PROOF STATE] proof (prove) using this: map snd (list_of (ltake (enat w) E)) = obs' @ wa # obs'' goal (1 subgoal): 1. length (map snd (list_of (ltake (enat w) E))) = Suc (length obs' + length obs'') [PROOF STEP] by simp [PROOF STATE] proof (state) this: length (map snd (list_of (ltake (enat w) E))) = Suc (length obs' + length obs'') goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] hence len_prefix: "llength ?prefix = enat \<dots>" [PROOF STATE] proof (prove) using this: length (map snd (list_of (ltake (enat w) E))) = Suc (length obs' + length obs'') goal (1 subgoal): 1. llength (ltake (enat w) E) = enat (Suc (length obs' + length obs'')) [PROOF STEP] by(simp add: length_list_of_conv_the_enat min_enat1_conv_enat) [PROOF STATE] proof (state) this: llength (ltake (enat w) E) = enat (Suc (length obs' + length obs'')) goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] with split [PROOF STATE] proof (chain) picking this: map snd (list_of (ltake (enat w) E)) = obs' @ wa # obs'' llength (ltake (enat w) E) = enat (Suc (length obs' + length obs'')) [PROOF STEP] have "nth (map snd (list_of ?prefix)) (length obs') = wa" and "enat (length obs') < llength ?prefix" [PROOF STATE] proof (prove) using this: map snd (list_of (ltake (enat w) E)) = obs' @ wa # obs'' llength (ltake (enat w) E) = enat (Suc (length obs' + length obs'')) goal (1 subgoal): 1. map snd (list_of (ltake (enat w) E)) ! length obs' = wa &&& enat (length obs') < llength (ltake (enat w) E) [PROOF STEP] by simp_all [PROOF STATE] proof (state) this: map snd (list_of (ltake (enat w) E)) ! length obs' = wa enat (length obs') < llength (ltake (enat w) E) goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] hence "snd (lnth ?prefix (length obs')) = wa" [PROOF STATE] proof (prove) using this: map snd (list_of (ltake (enat w) E)) ! length obs' = wa enat (length obs') < llength (ltake (enat w) E) goal (1 subgoal): 1. snd (lnth (ltake (enat w) E) (length obs')) = wa [PROOF STEP] by(simp add: list_of_lmap[symmetric] del: list_of_lmap) [PROOF STATE] proof (state) this: snd (lnth (ltake (enat w) E) (length obs')) = wa goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] hence wa': "action_obs E (length obs') = wa" and "enat (length obs') < llength E" [PROOF STATE] proof (prove) using this: snd (lnth (ltake (enat w) E) (length obs')) = wa goal (1 subgoal): 1. action_obs E (length obs') = wa &&& enat (length obs') < llength E [PROOF STEP] using \<open>enat (length obs') < llength ?prefix\<close> [PROOF STATE] proof (prove) using this: snd (lnth (ltake (enat w) E) (length obs')) = wa enat (length obs') < llength (ltake (enat w) E) goal (1 subgoal): 1. action_obs E (length obs') = wa &&& enat (length obs') < llength E [PROOF STEP] by(auto simp add: action_obs_def lnth_ltake) [PROOF STATE] proof (state) this: action_obs E (length obs') = wa enat (length obs') < llength E goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] with wa [PROOF STATE] proof (chain) picking this: is_write_action wa action_obs E (length obs') = wa enat (length obs') < llength E [PROOF STEP] have "length obs' \<in> write_actions E" [PROOF STATE] proof (prove) using this: is_write_action wa action_obs E (length obs') = wa enat (length obs') < llength E goal (1 subgoal): 1. length obs' \<in> write_actions E [PROOF STEP] by(auto intro: write_actions.intros simp add: actions_def) [PROOF STATE] proof (state) this: length obs' \<in> write_actions E goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] from most_recent_write_recent[OF mrw _ this, of "(ad, al)"] adal adal' wa' [PROOF STATE] proof (chain) picking this: \<lbrakk>(ad, al) \<in> action_loc P E a; (ad, al) \<in> action_loc P E (length obs')\<rbrakk> \<Longrightarrow> E \<turnstile> length obs' \<le>a w \<or> E \<turnstile> a \<le>a length obs' action_obs E a = NormalAction (ReadMem ad al v) (ad, al) \<in> action_loc_aux P wa action_obs E (length obs') = wa [PROOF STEP] have "E \<turnstile> length obs' \<le>a w \<or> E \<turnstile> a \<le>a length obs'" [PROOF STATE] proof (prove) using this: \<lbrakk>(ad, al) \<in> action_loc P E a; (ad, al) \<in> action_loc P E (length obs')\<rbrakk> \<Longrightarrow> E \<turnstile> length obs' \<le>a w \<or> E \<turnstile> a \<le>a length obs' action_obs E a = NormalAction (ReadMem ad al v) (ad, al) \<in> action_loc_aux P wa action_obs E (length obs') = wa goal (1 subgoal): 1. E \<turnstile> length obs' \<le>a w \<or> E \<turnstile> a \<le>a length obs' [PROOF STEP] by simp [PROOF STATE] proof (state) this: E \<turnstile> length obs' \<le>a w \<or> E \<turnstile> a \<le>a length obs' goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] hence False [PROOF STATE] proof (prove) using this: E \<turnstile> length obs' \<le>a w \<or> E \<turnstile> a \<le>a length obs' goal (1 subgoal): 1. False [PROOF STEP] using new_wa new wa' adal len_prefix \<open>w < a\<close> [PROOF STATE] proof (prove) using this: E \<turnstile> length obs' \<le>a w \<or> E \<turnstile> a \<le>a length obs' \<not> is_new_action wa is_new_action (action_obs E w) action_obs E (length obs') = wa action_obs E a = NormalAction (ReadMem ad al v) llength (ltake (enat w) E) = enat (Suc (length obs' + length obs'')) w < a goal (1 subgoal): 1. False [PROOF STEP] by(auto elim!: action_orderE simp add: min_enat1_conv_enat split: enat.split_asm) [PROOF STATE] proof (state) this: False goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] } [PROOF STATE] proof (state) this: \<lbrakk>is_new_action (action_obs E w); mrw_values P Map.empty (map snd (list_of (ltake (enat w) E))) (ad, al) = \<lfloor>(?v'2, True)\<rfloor>\<rbrakk> \<Longrightarrow> False goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] hence mrw_value_w: "mrw_value P ?vs_prefix (snd (lnth E w)) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor>" [PROOF STATE] proof (prove) using this: \<lbrakk>is_new_action (action_obs E w); mrw_values P Map.empty (map snd (list_of (ltake (enat w) E))) (ad, al) = \<lfloor>(?v'2, True)\<rfloor>\<rbrakk> \<Longrightarrow> False goal (1 subgoal): 1. mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> [PROOF STEP] using \<open>ws a \<in> write_actions E\<close> \<open>(ad, al) \<in> action_loc P E (ws a)\<close> w [PROOF STATE] proof (prove) using this: \<lbrakk>is_new_action (action_obs E w); mrw_values P Map.empty (map snd (list_of (ltake (enat w) E))) (ad, al) = \<lfloor>(?v'2, True)\<rfloor>\<rbrakk> \<Longrightarrow> False ws a \<in> write_actions E (ad, al) \<in> action_loc P E (ws a) ws a = w goal (1 subgoal): 1. mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> [PROOF STEP] by(cases "snd (lnth E w)" rule: mrw_value_cases)(fastforce elim: write_actions.cases simp add: value_written_def action_obs_def)+ [PROOF STATE] proof (state) this: mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] have "mrw_values P (mrw_value P ?vs_prefix (snd (lnth E w))) (list_of (lmap snd ?between)) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. mrw_values P (mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w))) (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> [PROOF STEP] proof(subst mrw_values_no_write_unchanged) [PROOF STATE] proof (state) goal (2 subgoals): 1. \<And>wa. \<lbrakk>wa \<in> set (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))); is_write_action wa; (ad, al) \<in> action_loc_aux P wa\<rbrakk> \<Longrightarrow> case mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) of None \<Rightarrow> False | \<lfloor>(v, b)\<rfloor> \<Rightarrow> b \<and> is_new_action wa 2. mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> [PROOF STEP] fix wa [PROOF STATE] proof (state) goal (2 subgoals): 1. \<And>wa. \<lbrakk>wa \<in> set (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))); is_write_action wa; (ad, al) \<in> action_loc_aux P wa\<rbrakk> \<Longrightarrow> case mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) of None \<Rightarrow> False | \<lfloor>(v, b)\<rfloor> \<Rightarrow> b \<and> is_new_action wa 2. mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> [PROOF STEP] assume "wa \<in> set (list_of (lmap snd ?between))" and write_wa: "is_write_action wa" and adal_wa: "(ad, al) \<in> action_loc_aux P wa" [PROOF STATE] proof (state) this: wa \<in> set (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))) is_write_action wa (ad, al) \<in> action_loc_aux P wa goal (2 subgoals): 1. \<And>wa. \<lbrakk>wa \<in> set (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))); is_write_action wa; (ad, al) \<in> action_loc_aux P wa\<rbrakk> \<Longrightarrow> case mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) of None \<Rightarrow> False | \<lfloor>(v, b)\<rfloor> \<Rightarrow> b \<and> is_new_action wa 2. mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> [PROOF STEP] hence wa: "wa \<in> lset (lmap snd ?between)" [PROOF STATE] proof (prove) using this: wa \<in> set (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))) is_write_action wa (ad, al) \<in> action_loc_aux P wa goal (1 subgoal): 1. wa \<in> lset (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))) [PROOF STEP] by simp [PROOF STATE] proof (state) this: wa \<in> lset (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))) goal (2 subgoals): 1. \<And>wa. \<lbrakk>wa \<in> set (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))); is_write_action wa; (ad, al) \<in> action_loc_aux P wa\<rbrakk> \<Longrightarrow> case mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) of None \<Rightarrow> False | \<lfloor>(v, b)\<rfloor> \<Rightarrow> b \<and> is_new_action wa 2. mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> [PROOF STEP] from wa [PROOF STATE] proof (chain) picking this: wa \<in> lset (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))) [PROOF STEP] obtain i_wa where "wa = lnth (lmap snd ?between) i_wa" and i_wa: "enat i_wa < llength (lmap snd ?between)" [PROOF STATE] proof (prove) using this: wa \<in> lset (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))) goal (1 subgoal): 1. (\<And>i_wa. \<lbrakk>wa = lnth (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))) i_wa; enat i_wa < llength (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] unfolding lset_conv_lnth [PROOF STATE] proof (prove) using this: wa \<in> {lnth (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))) n |n. enat n < llength (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))} goal (1 subgoal): 1. (\<And>i_wa. \<lbrakk>wa = lnth (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))) i_wa; enat i_wa < llength (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: wa = lnth (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))) i_wa enat i_wa < llength (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))) goal (2 subgoals): 1. \<And>wa. \<lbrakk>wa \<in> set (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))); is_write_action wa; (ad, al) \<in> action_loc_aux P wa\<rbrakk> \<Longrightarrow> case mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) of None \<Rightarrow> False | \<lfloor>(v, b)\<rfloor> \<Rightarrow> b \<and> is_new_action wa 2. mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> [PROOF STEP] moreover [PROOF STATE] proof (state) this: wa = lnth (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))) i_wa enat i_wa < llength (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))) goal (2 subgoals): 1. \<And>wa. \<lbrakk>wa \<in> set (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))); is_write_action wa; (ad, al) \<in> action_loc_aux P wa\<rbrakk> \<Longrightarrow> case mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) of None \<Rightarrow> False | \<lfloor>(v, b)\<rfloor> \<Rightarrow> b \<and> is_new_action wa 2. mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> [PROOF STEP] hence i_wa_len: "enat (Suc (w + i_wa)) < llength E" [PROOF STATE] proof (prove) using this: wa = lnth (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))) i_wa enat i_wa < llength (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))) goal (1 subgoal): 1. enat (Suc (w + i_wa)) < llength E [PROOF STEP] by(cases "llength E") auto [PROOF STATE] proof (state) this: enat (Suc (w + i_wa)) < llength E goal (2 subgoals): 1. \<And>wa. \<lbrakk>wa \<in> set (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))); is_write_action wa; (ad, al) \<in> action_loc_aux P wa\<rbrakk> \<Longrightarrow> case mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) of None \<Rightarrow> False | \<lfloor>(v, b)\<rfloor> \<Rightarrow> b \<and> is_new_action wa 2. mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: wa = lnth (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))) i_wa enat i_wa < llength (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))) enat (Suc (w + i_wa)) < llength E [PROOF STEP] have wa': "wa = action_obs E (Suc (w + i_wa))" [PROOF STATE] proof (prove) using this: wa = lnth (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))) i_wa enat i_wa < llength (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))) enat (Suc (w + i_wa)) < llength E goal (1 subgoal): 1. wa = action_obs E (Suc (w + i_wa)) [PROOF STEP] by(simp_all add: lnth_ltake action_obs_def ac_simps) [PROOF STATE] proof (state) this: wa = action_obs E (Suc (w + i_wa)) goal (2 subgoals): 1. \<And>wa. \<lbrakk>wa \<in> set (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))); is_write_action wa; (ad, al) \<in> action_loc_aux P wa\<rbrakk> \<Longrightarrow> case mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) of None \<Rightarrow> False | \<lfloor>(v, b)\<rfloor> \<Rightarrow> b \<and> is_new_action wa 2. mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> [PROOF STEP] with write_wa i_wa_len [PROOF STATE] proof (chain) picking this: is_write_action wa enat (Suc (w + i_wa)) < llength E wa = action_obs E (Suc (w + i_wa)) [PROOF STEP] have "Suc (w + i_wa) \<in> write_actions E" [PROOF STATE] proof (prove) using this: is_write_action wa enat (Suc (w + i_wa)) < llength E wa = action_obs E (Suc (w + i_wa)) goal (1 subgoal): 1. Suc (w + i_wa) \<in> write_actions E [PROOF STEP] by(auto intro: write_actions.intros simp add: actions_def) [PROOF STATE] proof (state) this: Suc (w + i_wa) \<in> write_actions E goal (2 subgoals): 1. \<And>wa. \<lbrakk>wa \<in> set (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))); is_write_action wa; (ad, al) \<in> action_loc_aux P wa\<rbrakk> \<Longrightarrow> case mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) of None \<Rightarrow> False | \<lfloor>(v, b)\<rfloor> \<Rightarrow> b \<and> is_new_action wa 2. mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> [PROOF STEP] from most_recent_write_recent[OF mrw _ this, of "(ad, al)"] adal adal_wa wa' [PROOF STATE] proof (chain) picking this: \<lbrakk>(ad, al) \<in> action_loc P E a; (ad, al) \<in> action_loc P E (Suc (w + i_wa))\<rbrakk> \<Longrightarrow> E \<turnstile> Suc (w + i_wa) \<le>a w \<or> E \<turnstile> a \<le>a Suc (w + i_wa) action_obs E a = NormalAction (ReadMem ad al v) (ad, al) \<in> action_loc_aux P wa wa = action_obs E (Suc (w + i_wa)) [PROOF STEP] have "E \<turnstile> Suc (w + i_wa) \<le>a w \<or> E \<turnstile> a \<le>a Suc (w + i_wa)" [PROOF STATE] proof (prove) using this: \<lbrakk>(ad, al) \<in> action_loc P E a; (ad, al) \<in> action_loc P E (Suc (w + i_wa))\<rbrakk> \<Longrightarrow> E \<turnstile> Suc (w + i_wa) \<le>a w \<or> E \<turnstile> a \<le>a Suc (w + i_wa) action_obs E a = NormalAction (ReadMem ad al v) (ad, al) \<in> action_loc_aux P wa wa = action_obs E (Suc (w + i_wa)) goal (1 subgoal): 1. E \<turnstile> Suc (w + i_wa) \<le>a w \<or> E \<turnstile> a \<le>a Suc (w + i_wa) [PROOF STEP] by(simp) [PROOF STATE] proof (state) this: E \<turnstile> Suc (w + i_wa) \<le>a w \<or> E \<turnstile> a \<le>a Suc (w + i_wa) goal (2 subgoals): 1. \<And>wa. \<lbrakk>wa \<in> set (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))); is_write_action wa; (ad, al) \<in> action_loc_aux P wa\<rbrakk> \<Longrightarrow> case mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) of None \<Rightarrow> False | \<lfloor>(v, b)\<rfloor> \<Rightarrow> b \<and> is_new_action wa 2. mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> [PROOF STEP] hence "is_new_action wa \<and> \<not> is_new_action (action_obs E w)" [PROOF STATE] proof (prove) using this: E \<turnstile> Suc (w + i_wa) \<le>a w \<or> E \<turnstile> a \<le>a Suc (w + i_wa) goal (1 subgoal): 1. is_new_action wa \<and> \<not> is_new_action (action_obs E w) [PROOF STEP] using adal i_wa wa' [PROOF STATE] proof (prove) using this: E \<turnstile> Suc (w + i_wa) \<le>a w \<or> E \<turnstile> a \<le>a Suc (w + i_wa) action_obs E a = NormalAction (ReadMem ad al v) enat i_wa < llength (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))) wa = action_obs E (Suc (w + i_wa)) goal (1 subgoal): 1. is_new_action wa \<and> \<not> is_new_action (action_obs E w) [PROOF STEP] by(auto elim: action_orderE) [PROOF STATE] proof (state) this: is_new_action wa \<and> \<not> is_new_action (action_obs E w) goal (2 subgoals): 1. \<And>wa. \<lbrakk>wa \<in> set (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))); is_write_action wa; (ad, al) \<in> action_loc_aux P wa\<rbrakk> \<Longrightarrow> case mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) of None \<Rightarrow> False | \<lfloor>(v, b)\<rfloor> \<Rightarrow> b \<and> is_new_action wa 2. mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> [PROOF STEP] thus "case (mrw_value P ?vs_prefix (snd (lnth E w)) (ad, al)) of None \<Rightarrow> False | Some (v, b) \<Rightarrow> b \<and> is_new_action wa" [PROOF STATE] proof (prove) using this: is_new_action wa \<and> \<not> is_new_action (action_obs E w) goal (1 subgoal): 1. case mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) of None \<Rightarrow> False | \<lfloor>(v, b)\<rfloor> \<Rightarrow> b \<and> is_new_action wa [PROOF STEP] unfolding mrw_value_w [PROOF STATE] proof (prove) using this: is_new_action wa \<and> \<not> is_new_action (action_obs E w) goal (1 subgoal): 1. case \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> of None \<Rightarrow> False | \<lfloor>(v, b)\<rfloor> \<Rightarrow> b \<and> is_new_action wa [PROOF STEP] by simp [PROOF STATE] proof (state) this: case mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) of None \<Rightarrow> False | \<lfloor>(v, b)\<rfloor> \<Rightarrow> b \<and> is_new_action wa goal (1 subgoal): 1. mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w)) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> [PROOF STEP] qed(simp add: mrw_value_w) [PROOF STATE] proof (state) this: mrw_values P (mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w))) (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] moreover [PROOF STATE] proof (state) this: mrw_values P (mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w))) (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] from a [PROOF STATE] proof (chain) picking this: a \<in> read_actions E [PROOF STEP] have "a \<in> actions E" [PROOF STATE] proof (prove) using this: a \<in> read_actions E goal (1 subgoal): 1. a \<in> actions E [PROOF STEP] by simp [PROOF STATE] proof (state) this: a \<in> actions E goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] hence "enat a < llength E" [PROOF STATE] proof (prove) using this: a \<in> actions E goal (1 subgoal): 1. enat a < llength E [PROOF STEP] by(rule actionsE) [PROOF STATE] proof (state) this: enat a < llength E goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] with \<open>w < a\<close> [PROOF STATE] proof (chain) picking this: w < a enat a < llength E [PROOF STEP] have "enat (a - Suc w) < llength E - enat (Suc w)" [PROOF STATE] proof (prove) using this: w < a enat a < llength E goal (1 subgoal): 1. enat (a - Suc w) < llength E - enat (Suc w) [PROOF STEP] by(cases "llength E") simp_all [PROOF STATE] proof (state) this: enat (a - Suc w) < llength E - enat (Suc w) goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] hence "E = lappend (lappend ?prefix (LCons (lnth E w) ?between)) (LCons (lnth (ldropn (Suc w) E) (a - Suc w)) (ldropn (Suc (a - Suc w)) (ldropn (Suc w) E)))" [PROOF STATE] proof (prove) using this: enat (a - Suc w) < llength E - enat (Suc w) goal (1 subgoal): 1. E = lappend (lappend (ltake (enat w) E) (LCons (lnth E w) (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))) (LCons (lnth (ldropn (Suc w) E) (a - Suc w)) (ldropn (Suc (a - Suc w)) (ldropn (Suc w) E))) [PROOF STEP] using \<open>w < a\<close> \<open>enat a < llength E\<close> [PROOF STATE] proof (prove) using this: enat (a - Suc w) < llength E - enat (Suc w) w < a enat a < llength E goal (1 subgoal): 1. E = lappend (lappend (ltake (enat w) E) (LCons (lnth E w) (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))) (LCons (lnth (ldropn (Suc w) E) (a - Suc w)) (ldropn (Suc (a - Suc w)) (ldropn (Suc w) E))) [PROOF STEP] unfolding lappend_assoc lappend_code [PROOF STATE] proof (prove) using this: enat (a - Suc w) < llength E - enat (Suc w) w < a enat a < llength E goal (1 subgoal): 1. E = lappend (ltake (enat w) E) (LCons (lnth E w) (lappend (ltake (enat (a - Suc w)) (ldropn (Suc w) E)) (LCons (lnth (ldropn (Suc w) E) (a - Suc w)) (ldropn (Suc (a - Suc w)) (ldropn (Suc w) E))))) [PROOF STEP] apply(subst ldropn_Suc_conv_ldropn, simp) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>enat (a - Suc w) < llength E - enat (Suc w); w < a; enat a < llength E\<rbrakk> \<Longrightarrow> E = lappend (ltake (enat w) E) (LCons (lnth E w) (lappend (ltake (enat (a - Suc w)) (ldropn (Suc w) E)) (ldropn (a - Suc w) (ldropn (Suc w) E)))) [PROOF STEP] apply(subst lappend_ltake_enat_ldropn) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>enat (a - Suc w) < llength E - enat (Suc w); w < a; enat a < llength E\<rbrakk> \<Longrightarrow> E = lappend (ltake (enat w) E) (LCons (lnth E w) (ldropn (Suc w) E)) [PROOF STEP] apply(subst ldropn_Suc_conv_ldropn, simp add: less_trans[where y="enat a"]) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>enat (a - Suc w) < llength E - enat (Suc w); w < a; enat a < llength E\<rbrakk> \<Longrightarrow> E = lappend (ltake (enat w) E) (ldropn w E) [PROOF STEP] by simp [PROOF STATE] proof (state) this: E = lappend (lappend (ltake (enat w) E) (LCons (lnth E w) (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))) (LCons (lnth (ldropn (Suc w) E) (a - Suc w)) (ldropn (Suc (a - Suc w)) (ldropn (Suc w) E))) goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] hence E': "E = lappend (lappend ?prefix (LCons (lnth E w) ?between)) (LCons (lnth E a) (ldropn (Suc a) E))" [PROOF STATE] proof (prove) using this: E = lappend (lappend (ltake (enat w) E) (LCons (lnth E w) (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))) (LCons (lnth (ldropn (Suc w) E) (a - Suc w)) (ldropn (Suc (a - Suc w)) (ldropn (Suc w) E))) goal (1 subgoal): 1. E = lappend (lappend (ltake (enat w) E) (LCons (lnth E w) (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))) (LCons (lnth E a) (ldropn (Suc a) E)) [PROOF STEP] using \<open>w < a\<close> \<open>enat a < llength E\<close> [PROOF STATE] proof (prove) using this: E = lappend (lappend (ltake (enat w) E) (LCons (lnth E w) (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))) (LCons (lnth (ldropn (Suc w) E) (a - Suc w)) (ldropn (Suc (a - Suc w)) (ldropn (Suc w) E))) w < a enat a < llength E goal (1 subgoal): 1. E = lappend (lappend (ltake (enat w) E) (LCons (lnth E w) (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))) (LCons (lnth E a) (ldropn (Suc a) E)) [PROOF STEP] by simp [PROOF STATE] proof (state) this: E = lappend (lappend (ltake (enat w) E) (LCons (lnth E w) (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))) (LCons (lnth E a) (ldropn (Suc a) E)) goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] from seq [PROOF STATE] proof (chain) picking this: ta_seq_consist P Map.empty (lmap snd E) [PROOF STEP] have "ta_seq_consist P (mrw_values P Map.empty (list_of (lappend (lmap snd ?prefix) (LCons (snd (lnth E w)) (lmap snd ?between))))) (lmap snd (LCons (lnth E a) (ldropn (Suc a) E)))" [PROOF STATE] proof (prove) using this: ta_seq_consist P Map.empty (lmap snd E) goal (1 subgoal): 1. ta_seq_consist P (mrw_values P Map.empty (list_of (lappend (lmap snd (ltake (enat w) E)) (LCons (snd (lnth E w)) (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))))))) (lmap snd (LCons (lnth E a) (ldropn (Suc a) E))) [PROOF STEP] by(subst (asm) E')(simp add: lmap_lappend_distrib ta_seq_consist_lappend) [PROOF STATE] proof (state) this: ta_seq_consist P (mrw_values P Map.empty (list_of (lappend (lmap snd (ltake (enat w) E)) (LCons (snd (lnth E w)) (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))))))) (lmap snd (LCons (lnth E a) (ldropn (Suc a) E))) goal (4 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v)\<rbrakk> \<Longrightarrow> value_written P E (ws a) (ad, al) = v 2. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: mrw_values P (mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w))) (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> ta_seq_consist P (mrw_values P Map.empty (list_of (lappend (lmap snd (ltake (enat w) E)) (LCons (snd (lnth E w)) (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))))))) (lmap snd (LCons (lnth E a) (ldropn (Suc a) E))) [PROOF STEP] show "value_written P E (ws a) (ad, al) = v" [PROOF STATE] proof (prove) using this: mrw_values P (mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w))) (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> ta_seq_consist P (mrw_values P Map.empty (list_of (lappend (lmap snd (ltake (enat w) E)) (LCons (snd (lnth E w)) (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))))))) (lmap snd (LCons (lnth E a) (ldropn (Suc a) E))) goal (1 subgoal): 1. value_written P E (ws a) (ad, al) = v [PROOF STEP] using adal w [PROOF STATE] proof (prove) using this: mrw_values P (mrw_value P (mrw_values P Map.empty (map snd (list_of (ltake (enat w) E)))) (snd (lnth E w))) (list_of (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E)))) (ad, al) = \<lfloor>(value_written P E w (ad, al), \<not> is_new_action (action_obs E w))\<rfloor> ta_seq_consist P (mrw_values P Map.empty (list_of (lappend (lmap snd (ltake (enat w) E)) (LCons (snd (lnth E w)) (lmap snd (ltake (enat (a - Suc w)) (ldropn (Suc w) E))))))) (lmap snd (LCons (lnth E a) (ldropn (Suc a) E))) action_obs E a = NormalAction (ReadMem ad al v) ws a = w goal (1 subgoal): 1. value_written P E (ws a) (ad, al) = v [PROOF STEP] by(clarsimp simp add: action_obs_def list_of_lappend list_of_LCons) [PROOF STATE] proof (state) this: value_written P E (ws a) (ad, al) = v goal (3 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 2. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] (* assume "is_volatile P al" *) [PROOF STATE] proof (state) this: value_written P E (ws a) (ad, al) = v goal (3 subgoals): 1. \<And>a ad al v. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); is_volatile P al\<rbrakk> \<Longrightarrow> \<not> P,E \<turnstile> a \<le>so ws a 2. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] show "\<not> P,E \<turnstile> a \<le>so ws a" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<not> P,E \<turnstile> a \<le>so ws a [PROOF STEP] using \<open>w < a\<close> w adal [PROOF STATE] proof (prove) using this: w < a ws a = w action_obs E a = NormalAction (ReadMem ad al v) goal (1 subgoal): 1. \<not> P,E \<turnstile> a \<le>so ws a [PROOF STEP] by(auto elim!: action_orderE sync_orderE) [PROOF STATE] proof (state) this: \<not> P,E \<turnstile> a \<le>so ws a goal (2 subgoals): 1. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 2. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] fix a' [PROOF STATE] proof (state) goal (2 subgoals): 1. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 2. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] assume a': "a' \<in> write_actions E" "(ad, al) \<in> action_loc P E a'" [PROOF STATE] proof (state) this: a' \<in> write_actions E (ad, al) \<in> action_loc P E a' goal (2 subgoals): 1. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 2. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] { [PROOF STATE] proof (state) this: a' \<in> write_actions E (ad, al) \<in> action_loc P E a' goal (2 subgoals): 1. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 2. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] presume "E \<turnstile> ws a \<le>a a'" "E \<turnstile> a' \<le>a a" [PROOF STATE] proof (state) this: E \<turnstile> ws a \<le>a a' E \<turnstile> a' \<le>a a goal (2 subgoals): 1. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 2. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] with mrw adal a' [PROOF STATE] proof (chain) picking this: P,E \<turnstile> a \<leadsto>mrw w action_obs E a = NormalAction (ReadMem ad al v) a' \<in> write_actions E (ad, al) \<in> action_loc P E a' E \<turnstile> ws a \<le>a a' E \<turnstile> a' \<le>a a [PROOF STEP] have "a' = ws a" [PROOF STATE] proof (prove) using this: P,E \<turnstile> a \<leadsto>mrw w action_obs E a = NormalAction (ReadMem ad al v) a' \<in> write_actions E (ad, al) \<in> action_loc P E a' E \<turnstile> ws a \<le>a a' E \<turnstile> a' \<le>a a goal (1 subgoal): 1. a' = ws a [PROOF STEP] unfolding w [PROOF STATE] proof (prove) using this: P,E \<turnstile> a \<leadsto>mrw w action_obs E a = NormalAction (ReadMem ad al v) a' \<in> write_actions E (ad, al) \<in> action_loc P E a' E \<turnstile> w \<le>a a' E \<turnstile> a' \<le>a a goal (1 subgoal): 1. a' = w [PROOF STEP] by cases(fastforce dest: antisymPD[OF antisym_action_order] read_actions_not_write_actions elim!: meta_allE[where x=a']) [PROOF STATE] proof (state) this: a' = ws a goal (2 subgoals): 1. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> a' = ws a 2. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> a' = ws a [PROOF STEP] thus "a' = ws a" "a' = ws a" [PROOF STATE] proof (prove) using this: a' = ws a goal (1 subgoal): 1. a' = ws a &&& a' = ws a [PROOF STEP] by - [PROOF STATE] proof (state) this: a' = ws a a' = ws a goal (4 subgoals): 1. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> E \<turnstile> ws a \<le>a a' 2. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> E \<turnstile> a' \<le>a a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> E \<turnstile> ws a \<le>a a' 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> E \<turnstile> a' \<le>a a [PROOF STEP] next [PROOF STATE] proof (state) goal (4 subgoals): 1. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> E \<turnstile> ws a \<le>a a' 2. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> E \<turnstile> a' \<le>a a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> E \<turnstile> ws a \<le>a a' 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> E \<turnstile> a' \<le>a a [PROOF STEP] assume "P,E \<turnstile> ws a \<le>hb a'" "P,E \<turnstile> a' \<le>hb a" [PROOF STATE] proof (state) this: P,E \<turnstile> ws a \<le>hb a' P,E \<turnstile> a' \<le>hb a goal (4 subgoals): 1. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> E \<turnstile> ws a \<le>a a' 2. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; P,E \<turnstile> ws a \<le>hb a'; P,E \<turnstile> a' \<le>hb a\<rbrakk> \<Longrightarrow> E \<turnstile> a' \<le>a a 3. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> E \<turnstile> ws a \<le>a a' 4. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> E \<turnstile> a' \<le>a a [PROOF STEP] thus "E \<turnstile> ws a \<le>a a'" "E \<turnstile> a' \<le>a a" [PROOF STATE] proof (prove) using this: P,E \<turnstile> ws a \<le>hb a' P,E \<turnstile> a' \<le>hb a goal (1 subgoal): 1. E \<turnstile> ws a \<le>a a' &&& E \<turnstile> a' \<le>a a [PROOF STEP] using a' [PROOF STATE] proof (prove) using this: P,E \<turnstile> ws a \<le>hb a' P,E \<turnstile> a' \<le>hb a a' \<in> write_actions E (ad, al) \<in> action_loc P E a' goal (1 subgoal): 1. E \<turnstile> ws a \<le>a a' &&& E \<turnstile> a' \<le>a a [PROOF STEP] by(blast intro: happens_before_into_action_order)+ [PROOF STATE] proof (state) this: E \<turnstile> ws a \<le>a a' E \<turnstile> a' \<le>a a goal (2 subgoals): 1. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> E \<turnstile> ws a \<le>a a' 2. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> E \<turnstile> a' \<le>a a [PROOF STEP] next [PROOF STATE] proof (state) goal (2 subgoals): 1. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> E \<turnstile> ws a \<le>a a' 2. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> E \<turnstile> a' \<le>a a [PROOF STEP] assume "is_volatile P al" "P,E \<turnstile> ws a \<le>so a'" "P,E \<turnstile> a' \<le>so a" [PROOF STATE] proof (state) this: is_volatile P al P,E \<turnstile> ws a \<le>so a' P,E \<turnstile> a' \<le>so a goal (2 subgoals): 1. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> E \<turnstile> ws a \<le>a a' 2. \<And>a ad al v a'. \<lbrakk>a \<in> read_actions E; action_obs E a = NormalAction (ReadMem ad al v); a' \<in> write_actions E; (ad, al) \<in> action_loc P E a'; is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> E \<turnstile> a' \<le>a a [PROOF STEP] thus "E \<turnstile> ws a \<le>a a'" "E \<turnstile> a' \<le>a a" [PROOF STATE] proof (prove) using this: is_volatile P al P,E \<turnstile> ws a \<le>so a' P,E \<turnstile> a' \<le>so a goal (1 subgoal): 1. E \<turnstile> ws a \<le>a a' &&& E \<turnstile> a' \<le>a a [PROOF STEP] by(auto elim: sync_orderE) [PROOF STATE] proof (state) this: E \<turnstile> ws a \<le>a a' E \<turnstile> a' \<le>a a goal: No subgoals! [PROOF STEP] } [PROOF STATE] proof (state) this: \<lbrakk>is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> E \<turnstile> ws a \<le>a a' \<lbrakk>is_volatile P al; P,E \<turnstile> ws a \<le>so a'; P,E \<turnstile> a' \<le>so a\<rbrakk> \<Longrightarrow> E \<turnstile> a' \<le>a a goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: is_write_seen P E ws goal (1 subgoal): 1. thread_start_actions_ok E [PROOF STEP] qed(rule tsa_ok) [PROOF STATE] proof (state) this: P \<turnstile> (E, ws) \<surd> goal: No subgoals! [PROOF STEP] qed
{"llama_tokens": 37453, "file": "JinjaThreads_MM_SC_Completion", "length": 150}
import yaml import argparse from collections import deque from nes_py.wrappers import JoypadSpace import gym_super_mario_bros from gym_super_mario_bros.actions import SIMPLE_MOVEMENT from models import DeepQ from collections.abc import Iterable from utils import AverageMeter import torch import random import copy import numpy as np import torch.nn.functional as F class MarioGame: def __init__(self, model=DeepQ, optimizer=None, criterion=None, render=False,world=1, stage=1, version=1, args=None): assert 1 <= world <= 8 assert 1 <= stage <= 4 assert 0 <= version <= 3 env_s = f'SuperMarioBros-{world}-{stage}-v{version}' env = gym_super_mario_bros.make(env_s) self.env = JoypadSpace(env, SIMPLE_MOVEMENT) #self.env = JoypadSpace(env, self.action_space) self.action_space = ['NOOP', 'right', 'right A', 'right B', 'right A B', 'A', 'left'] self.render = args.render self.model = model self.optimizer = optimizer self.criterion = criterion self.args = args self.device = self.args.device self.total_steps = 0 self.batch_size = self.args.batch_size self.replay_buf = deque(maxlen=self.args.replay_buffer_size) # Action space is Discrete(7) # Action means ['NOOP', 'right', 'right A', 'right B', 'right A B', 'A', 'left'] # State shape is (240, 256, 3) def game(self, epsilon=0): done = False info = {'x_pos': 40, 'y_pos': 79, 'time': 400} reward = 0 reward_eps = 0 state = self.env.reset() step = 0 loss_eps = AverageMeter() stopEps = StopNonProEps(step_thres=self.args.step_thres) action = None while not done: state_prev, _, _ = self.preprocess(state=state, action_prev=action, info=info) action = self.model(state_prev, epsilon) state, reward, done, info = self.step(action) reward_eps += reward if self.model.training: # samples sars from replay buffer, for now samples if deque size > batch_size # This might lead to earlier samples to be sampled much more than later samples and shift the distribution reward, done = stopEps.action(reward, done, info) state_next, reward, ndone = self.preprocess(state=state, reward=reward, action_prev= action, done=done, info = info) self.buffer_update(state_prev, action, reward, ndone, state_next) if step % self.batch_size == 0 and len(self.replay_buf) >= self.batch_size*16: state_t, action_t, reward_t, ndone_t, state_next_t = self.sample() # Calculate loss and optimize the models # using a tuple to pass actor and critic for gradient clipping loss_batch = self.model_update(state_t, action_t, reward_t, ndone_t, state_next_t) loss_eps.update(loss_batch) if (step // self.args.batch_size) % self.args.print_every == 0: print(f"\tStep [{step}]/XXX " f"Loss : {loss_batch:.4f}" f"\tTotal rewards : {reward_eps}\tepsilon : {epsilon:.2f}") with torch.no_grad(): qsa = self.model.QSA_target((state_t[0][0:5, :], state_t[1][0:5, :])) print("\tQSA:\n\t"+str(qsa[0])+"\n\t"+str(qsa[1])+"\n\t"+str(qsa[2])+"\n\t"+str(qsa[3])) print("\tHistorgam of last batch actions: " + str(torch.histc(action_t.float(), bins=self.args.action_len, min=0, max=self.args.action_len))) if self.total_steps % self.args.update_target_every == 0 or done: # only actor is needed for the target network, avoid copying the replay buffer self.model.QSA_target = copy.deepcopy(self.model.QSA_online) self.model.QSA_target.eval() #self.copy_counter = 0 self.total_steps += 1 #if self.render: # self.env.render() step += 1 return reward_eps, loss_eps.avg, step, self.total_steps def model_update(self, state_t, action_t, reward_t, done_t, state_next_t): loss = self.criterion(state_t, action_t, reward_t, done_t, state_next_t) self.optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(self.model.QSA_online.parameters(), self.args.clip_grad) self.optimizer.step() return loss.item() def step(self, action): reward_eps = 0 for i in range(self.args.skip_frame_cnt): state, reward, done, info = self.env.step(action) reward_eps += float(reward) if self.render: self.env.render() if done: return state, reward, done, info return state, reward_eps, done, info def reset(self): self.env.reset() def stop(self): self.env.close() def preprocess(self, state, reward=0, action_prev=None, info = None, done=False): ################################################ # function to format to the environment variables appropriately so that it can be fed in to NN ############################################### # state tensor size is now 1x1x120x128 state_processed = torch.FloatTensor(np.mean(state[::self.args.downsample, ::self.args.downsample, :], axis=2)/128.0-1).unsqueeze(dim=0) action_tensor = torch.zeros((len(self.action_space),)) if action_prev: action_tensor[action_prev] = 1.0 info_tensor = torch.zeros((3,)) if info: info_tensor[0] = info['x_pos']/120.0-1 info_tensor[1] = info['y_pos']/128.0-1 info_tensor[2] = info['time']/200-1 action_info = torch.cat((action_tensor, info_tensor)).unsqueeze(dim = 0) # normalize reward, reward varies from -15 to 15 # Game objective is to move as far as right as possible, increasing the penatly for deatch bu done_mult if done: reward += -15*self.args.die_mult reward_processed = torch.unsqueeze(torch.tensor(reward)/(15*(1+self.args.die_mult)*self.args.skip_frame_cnt), dim=0).to(self.device) ndone_processed = torch.tensor(not done).unsqueeze(dim=0).to(self.device) return [state_processed, action_info], reward_processed, ndone_processed def buffer_update(self, state_t, action_t, reward_t, done_t, state_tp1): item = (state_t, action_t, reward_t, done_t, state_tp1) self.replay_buf.append(item) def sample(self): if len(self.replay_buf) < self.batch_size: return None, None, None, None rand_indices = random.sample(range(len(self.replay_buf)), k=self.batch_size) state = torch.cat([self.replay_buf[i][0][0] for i in rand_indices], dim=0), torch.cat([self.replay_buf[i][0][1] for i in rand_indices], dim=0) action = torch.unsqueeze(torch.LongTensor([self.replay_buf[i][1] for i in rand_indices]), dim = 1).to(self.device) reward = torch.cat([self.replay_buf[i][2] for i in rand_indices], dim=0) done = torch.cat([self.replay_buf[i][3] for i in rand_indices], dim=0) state_next = torch.cat([self.replay_buf[i][4][0] for i in rand_indices], dim=0), torch.cat([self.replay_buf[i][4][1] for i in rand_indices], dim=0) return state, action, reward, done, state_next class StopNonProEps: def __init__(self, step_thres): self.xpos = -1 self.count = 0 self.step_thres = step_thres def action(self, reward, done, info): if self.xpos == info['x_pos']: self.count += 1 if self.count == self.step_thres: reward = -15 done = True else: self.count = 0 self.xpos = info['x_pos'] return reward, done def main(): parser = argparse.ArgumentParser(description='CS7643 deep_pipes') parser.add_argument('--config', default='./configs/config_ActorCritic.yaml') parser.add_argument('--device', default=torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')) global args args = parser.parse_args() with open(args.config) as f: config = yaml.load(f, yaml.SafeLoader) for key in config: for k, v in config[key].items(): setattr(args, k, v) MG = MarioGame(args=args) state = MG.env.reset() done = False action = 1 count = 1 while not done: i = 0 while i < count and not done: state, reward, done, info = MG.action_wrapper(action) MG.env.render() i += 1 print(reward) def main2(): env_s = f'SuperMarioBros-1-1-v1' env = gym_super_mario_bros.make(env_s) env = JoypadSpace(env,[["NOOP"], ["right"], ["left"], ["A"]]) # Action means ['NOOP', 'right', 'right A', 'right B', 'right A B', 'A', 'left'] state = env.reset() done = False count = 1 while not done: i = 0 while i < count and not done: state, reward, done, info = env.step(action) env.render() i += 1 print(reward) if __name__ == '__main__': main2()
{"hexsha": "9694053559b45a542e2aa9b3328b475024277b44", "size": 9477, "ext": "py", "lang": "Python", "max_stars_repo_path": "game_DQ.py", "max_stars_repo_name": "realAsma/SuperMario_DeepQ", "max_stars_repo_head_hexsha": "ff39590dc7d553602cd55f2c4bd550ffa2f7fdf1", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "game_DQ.py", "max_issues_repo_name": "realAsma/SuperMario_DeepQ", "max_issues_repo_head_hexsha": "ff39590dc7d553602cd55f2c4bd550ffa2f7fdf1", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "game_DQ.py", "max_forks_repo_name": "realAsma/SuperMario_DeepQ", "max_forks_repo_head_hexsha": "ff39590dc7d553602cd55f2c4bd550ffa2f7fdf1", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 39.4875, "max_line_length": 155, "alphanum_fraction": 0.591642925, "include": true, "reason": "import numpy", "num_tokens": 2326}
# -------------------------------------------------------- # Tensorflow VCL # Licensed under The MIT License [see LICENSE for details] # Written by Zhi Hou # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import tensorflow.contrib.slim as slim from tensorflow.contrib.slim import arg_scope from tensorflow.contrib.slim.python.slim.nets import resnet_utils from tensorflow.contrib.slim.python.slim.nets import resnet_v1 from tensorflow.contrib.layers.python.layers import layers from tensorflow.contrib.layers.python.layers import regularizers from tensorflow.python.ops import nn_ops from tensorflow.contrib.layers.python.layers import initializers from tensorflow.python.framework import ops from networks.Fabricator import Fabricator from ult.config import cfg import numpy as np import math import os # print(os.environ['DATASET']) if 'DATASET' not in os.environ or os.environ['DATASET'] == 'HICO': from networks.ResNet50_HICO import ResNet50, resnet_arg_scope parent_model = ResNet50 elif os.environ['DATASET'] == 'HICO_res101': from networks.ResNet101_HICO import ResNet101, resnet_arg_scope parent_model = ResNet101 elif os.environ['DATASET'] == 'VCOCO1': from networks.ResNet50_VCOCO_HOI import ResNet50, resnet_arg_scope parent_model = ResNet50 else: from networks.ResNet50_VCOCO import ResNet50, resnet_arg_scope parent_model = ResNet50 class HOI(parent_model): def __init__(self, model_name='VCL_union_multi_ml5_def1_l2_rew2_aug5_3_x5new_res101'): super(HOI, self).__init__(model_name) self.pos1_idx = None import pickle self.update_ops = [] self.feature_gen = Fabricator(self) self.gt_class_HO_for_G_verbs = None self.gt_class_HO_for_D_verbs = None self.losses['fake_D_total_loss'] = 0 self.losses['fake_G_total_loss'] = 0 self.losses['fake_total_loss'] = 0 def set_gt_class_HO_for_G_verbs(self, gt_class_HO_for_G_verbs): self.gt_class_HO_for_G_verbs = gt_class_HO_for_G_verbs def set_gt_class_HO_for_D_verbs(self, gt_class_HO_for_D_verbs): self.gt_class_HO_for_D_verbs = gt_class_HO_for_D_verbs def set_add_ph(self, pos1_idx=None): self.pos1_idx = pos1_idx def res5_ho(self, pool5_HO, is_training, name): with slim.arg_scope(resnet_arg_scope(is_training=is_training)): if self.model_name.__contains__('unique_weights'): print("unique_weights") st = -3 reuse = tf.AUTO_REUSE if name != 'res5': reuse = True else: st = -2 reuse = tf.AUTO_REUSE fc7_HO, _ = resnet_v1.resnet_v1(pool5_HO, self.blocks[st:st+1], global_pool=False, include_root_block=False, reuse=reuse, scope=self.scope) return fc7_HO def head_to_tail_ho(self, fc7_O, fc7_verbs, fc7_O_raw, fc7_verbs_raw, is_training, name): if name == 'fc_HO': nameprefix = '' # TODO should improve else: nameprefix = name with slim.arg_scope(resnet_arg_scope(is_training=is_training)): print('others concat') concat_hoi = tf.concat([fc7_verbs, fc7_O], 1) # TODO fix print(concat_hoi) concat_hoi = slim.fully_connected(concat_hoi, self.num_fc, reuse=tf.AUTO_REUSE, scope=nameprefix+'Concat_verbs') concat_hoi = slim.dropout(concat_hoi, keep_prob=0.5, is_training=is_training, scope=nameprefix+'dropout6_verbs') fc9_hoi = slim.fully_connected(concat_hoi, self.num_fc, reuse=tf.AUTO_REUSE, scope=nameprefix+'fc7_verbs') fc9_hoi = slim.dropout(fc9_hoi, keep_prob=0.5, is_training=is_training, scope=nameprefix+'dropout7_verbs') return fc9_hoi def head_to_tail_sp(self, fc7_H, fc7_O, sp, is_training, name): with slim.arg_scope(resnet_arg_scope(is_training=is_training)): Concat_SHsp = tf.concat([fc7_H, sp], 1) Concat_SHsp = slim.fully_connected(Concat_SHsp, self.num_fc, reuse=tf.AUTO_REUSE, scope='Concat_SHsp') Concat_SHsp = slim.dropout(Concat_SHsp, keep_prob=0.5, is_training=is_training, scope='dropout6_SHsp') fc7_SHsp = slim.fully_connected(Concat_SHsp, self.num_fc, reuse=tf.AUTO_REUSE, scope='fc7_SHsp') fc7_SHsp = slim.dropout(fc7_SHsp, keep_prob=0.5, is_training=is_training, scope='dropout7_SHsp') return fc7_SHsp def region_classification_sp(self, fc7_SHsp, is_training, initializer, name): with tf.variable_scope(name) as scope: cls_score_sp = slim.fully_connected(fc7_SHsp, self.num_classes, weights_initializer=initializer, trainable=is_training, reuse=tf.AUTO_REUSE, activation_fn=None, scope='cls_score_sp') cls_prob_sp = tf.nn.sigmoid(cls_score_sp, name='cls_prob_sp') tf.reshape(cls_prob_sp, [-1, self.num_classes]) self.predictions["cls_score_sp"] = cls_score_sp self.predictions["cls_prob_sp"] = cls_prob_sp return cls_prob_sp def region_classification_ho(self, fc7_verbs, is_training, initializer, name, nameprefix = ''): # if not self.model_name.startswith('VCL_') and not self.model_name.__contains__('_orig_'): # return None with tf.variable_scope(name) as scope: cls_score_hoi = slim.fully_connected(fc7_verbs, self.num_classes, weights_initializer=initializer, trainable=is_training, reuse=tf.AUTO_REUSE, activation_fn=None, scope='cls_score_verbs') cls_prob_hoi = tf.nn.sigmoid(cls_score_hoi, name='cls_prob_verbs') self.predictions[nameprefix+"cls_score_hoi"] = cls_score_hoi self.predictions[nameprefix+"cls_prob_hoi"] = cls_prob_hoi if self.model_name.__contains__("VCOCO"): # if self.model_name.__contains__('_CL_'): # assert self.num_classes == 222 # print(cls_score_hoi, '=============================================') if self.model_name.__contains__("VCL_V"): self.predictions[nameprefix + "cls_prob_HO"] = cls_prob_hoi if nameprefix == '' else 0 else: self.predictions[nameprefix+"cls_prob_HO"] = self.predictions["cls_prob_sp"] * cls_prob_hoi if nameprefix =='' else 0 return cls_prob_hoi def get_compose_boxes(self, h_boxes, o_boxes): with tf.control_dependencies([tf.assert_equal(h_boxes[:, 0], o_boxes[:, 0], data=[h_boxes[:, 0], o_boxes[:, 0]])]): cboxes1 = tf.minimum(tf.slice(h_boxes, [0, 0], [-1, 3]), tf.slice(o_boxes, [0, 0], [-1, 3])) cboxes2 = tf.maximum(tf.slice(h_boxes, [0, 3], [-1, 2]), tf.slice(o_boxes, [0, 3], [-1, 2])) cboxes = tf.concat(values=[cboxes1, cboxes2], axis=1) return cboxes def verbs_loss(self, fc7_verbs, is_training, initializer, label='', ): with tf.variable_scope('verbs_loss', reuse=tf.AUTO_REUSE): cls_verbs = fc7_verbs # cls_verbs = slim.fully_connected(cls_verbs, self.num_fc, scope='fc8_cls_verbs') # cls_verbs = slim.dropout(cls_verbs, keep_prob=0.5, is_training=is_training, scope='dropout8_cls_verbs') # fc9_verbs = slim.fully_connected(cls_verbs, self.num_fc, scope='fc9_cls_verbs') # verbs_cls = slim.dropout(fc9_verbs, keep_prob=0.5, is_training=is_training, scope='dropout9_cls_verbs') verbs_cls_score = slim.fully_connected(cls_verbs, self.verb_num_classes, weights_initializer=initializer, trainable=is_training, reuse=tf.AUTO_REUSE, activation_fn=None, scope='verbs_cls_score') verb_cls_prob = tf.nn.sigmoid(verbs_cls_score, name='verb_cls_prob') tf.reshape(verb_cls_prob, [-1, self.verb_num_classes]) self.predictions["verb_cls_score" + label] = verbs_cls_score self.predictions["verb_cls_prob" + label] = verb_cls_prob # We do not use this. def objects_loss(self, input_feature, is_training, initializer, name='objects_loss', label='', is_stop_grads=False): with tf.variable_scope(name): print('objects_loss:', self.model_name) if is_stop_grads: input_feature = tf.stop_gradient(input_feature) # cls_verbs = slim.fully_connected(cls_verbs, self.num_fc, scope='fc8_cls_verbs') # cls_verbs = slim.dropout(cls_verbs, keep_prob=0.5, is_training=is_training, scope='dropout8_cls_verbs') # fc9_verbs = slim.fully_connected(cls_verbs, self.num_fc, scope='fc9_cls_verbs') # verbs_cls = slim.dropout(fc9_verbs, keep_prob=0.5, is_training=is_training, scope='dropout9_cls_verbs') obj_cls_score = slim.fully_connected(input_feature, self.obj_num_classes, weights_initializer=initializer, trainable=is_training, reuse=tf.AUTO_REUSE, activation_fn=None, scope='obj_cls_score') obj_cls_prob = tf.nn.sigmoid(obj_cls_score, name='obj_cls_prob') tf.reshape(obj_cls_prob, [-1, self.obj_num_classes]) self.predictions["obj_cls_score" + label] = obj_cls_score self.predictions["obj_cls_prob" + label] = obj_cls_prob def build_network(self, is_training): initializer = tf.random_normal_initializer(mean=0.0, stddev=0.01) num_stop = tf.cast(self.get_num_stop(), tf.int32) # ResNet Backbone head = self.image_to_head(is_training) sp = self.sp_to_head() cboxes = self.get_compose_boxes(self.H_boxes[:num_stop] if self.model_name.__contains__('VCOCO') else self.H_boxes, self.O_boxes) pool5_O = self.crop_pool_layer(head, self.O_boxes, 'Crop_O') pool5_H = self.crop_pool_layer(head, self.H_boxes, 'Crop_H') cboxes = cboxes[:num_stop] pool5_HO = self.extract_pool5_HO(head, cboxes, is_training, pool5_O, None, name='ho_') # further resnet feature fc7_H_raw, fc7_O_raw = self.res5(pool5_H, pool5_O, None, is_training, 'res5') fc7_H = tf.reduce_mean(fc7_H_raw, axis=[1, 2]) fc7_O = tf.reduce_mean(fc7_O_raw, axis=[1, 2]) fc7_H_pos = fc7_H[:num_stop] fc7_O_pos = fc7_O[:num_stop] fc7_HO_raw = self.res5_ho(pool5_HO, is_training, 'res5') fc7_HO = None if fc7_HO_raw is None else tf.reduce_mean(fc7_HO_raw, axis=[1, 2]) if not is_training: # add visualization for test self.add_visual_for_test(fc7_HO_raw, fc7_H_raw, fc7_O_raw, head, is_training, pool5_O) fc7_verbs_raw = fc7_HO_raw fc7_verbs = fc7_HO self.score_summaries.update({'orth_HO': fc7_HO, 'orth_H': fc7_H, 'orth_O': fc7_O}) if self.model_name.__contains__('_orig_'): print('ICAN original code') # Phi head_phi = slim.conv2d(head, 512, [1, 1], scope='head_phi') # g head_g = slim.conv2d(head, 512, [1, 1], scope='head_g') Att_H = self.attention_pool_layer_H(head_phi, fc7_H, is_training, 'Att_H') Att_H = self.attention_norm_H(Att_H, 'Norm_Att_H') att_head_H = tf.multiply(head_g, Att_H) Att_O = self.attention_pool_layer_O(head_phi, fc7_O_pos, is_training, 'Att_O') Att_O = self.attention_norm_O(Att_O, 'Norm_Att_O') att_head_O = tf.multiply(head_g, Att_O) pool5_SH = self.bottleneck(att_head_H, is_training, 'bottleneck', False) pool5_SO = self.bottleneck(att_head_O, is_training, 'bottleneck', True) fc7_SH, fc7_SO, fc7_SHsp = self.head_to_tail(fc7_H, fc7_O_pos, pool5_SH, pool5_SO, sp, is_training, 'fc_HO') cls_prob_H, cls_prob_O, cls_prob_sp = self.region_classification(fc7_SH, fc7_SO, fc7_SHsp, is_training, initializer, 'classification') elif not self.model_name.startswith('_V_'): print('sp', sp) fc7_SHsp = self.head_to_tail_sp(fc7_H, fc7_O, sp, is_training, 'fc_HO') cls_prob_sp = self.region_classification_sp(fc7_SHsp, is_training, initializer, 'classification') print("sp:", fc7_SHsp) else: fc7_SHsp = self.head_to_tail_sp(fc7_H, fc7_O, sp, is_training, 'fc_HO') cls_prob_sp = self.region_classification_sp(fc7_SHsp, is_training, initializer, 'classification') self.additional_loss(fc7_O, fc7_H_pos, fc7_verbs, fc7_verbs_raw, initializer, is_training) print('verbs') if not is_training: self.test_visualize['fc7_O_feats'] = fc7_O self.test_visualize['fc7_verbs_feats'] = fc7_verbs self.test_visualize['fc7_H_feats'] = fc7_H_pos self.intermediate['fc7_O'] = fc7_O[:num_stop] self.intermediate['fc7_verbs'] = fc7_verbs[:num_stop] if is_training and self.model_name.__contains__('gan'): # if model_name contains gan, we will use fabricator. # here, gan do not mean that we use generative adversarial network. # We just was planning to use to GAN. But, it is useless. # Possibly, it is too difficult to tune the network with gan. gt_class = self.gt_class_HO[:num_stop] tmp_fc7_O = fc7_O[:num_stop] tmp_fc7_verbs = fc7_verbs[:num_stop] tmp_O_raw = fc7_O_raw[:num_stop] if self.model_name.__contains__('batch') and self.model_name.__contains__('atl'): tmp_O_raw = fc7_O[:num_stop] tmp_gt_class = gt_class # remove object list semi_filter = tf.reduce_sum(self.H_boxes[:tf.shape(tmp_fc7_O)[0], 1:], axis=-1) semi_filter = tf.cast(semi_filter, tf.bool) gt_class = tf.boolean_mask(gt_class, semi_filter, axis=0) tmp_fc7_O = tf.boolean_mask(tmp_fc7_O, semi_filter, axis=0) tmp_fc7_verbs = tf.boolean_mask(tmp_fc7_verbs, semi_filter, axis=0) fc7_O, fc7_verbs = self.feature_gen.fabricate_model(tmp_fc7_O, tmp_O_raw, tmp_fc7_verbs, fc7_verbs_raw[:num_stop], initializer, is_training, gt_class) # if self.model_name.__contains__('laobj'): # # this aims to evaluate the effect of regularizing fabricated object features, we do not use. # all_fc7_O = fc7_O # tmp_class = self.get_hoi_labels() # self.gt_obj_class = tf.cast( # tf.matmul(tmp_class, self.obj_to_HO_matrix, transpose_b=True) > 0, # tf.float32) # self.objects_loss(all_fc7_O, is_training, initializer, 'objects_loss', label='_o') # pass else: if 'FEATS' in os.environ and self.model_name.__contains__( 'gan'): # This is only for visualization gt_class = self.gt_class_HO if not self.model_name.__contains__( 'VCOCO') else self.gt_compose[:num_stop] old_fc7_O = fc7_O fc7_O, fc7_verbs = self.feature_gen.fabricate_model(fc7_O, None, fc7_verbs, fc7_verbs, initializer, True, gt_class) with tf.device("/cpu:0"): fc7_O = tf.Print(fc7_O, [tf.shape(fc7_O), num_stop, tf.shape(self.H_boxes), tf.shape(old_fc7_O), ], 'after gan:', first_n=100, summarize=10000) if self.model_name.__contains__('varv'): self.test_visualize['fc7_fake_O_feats'] = fc7_verbs[tf.shape(old_fc7_O)[0]:] else: self.test_visualize['fc7_fake_O_feats'] = fc7_O[tf.shape(old_fc7_O)[0]:] pass fc7_O = fc7_O[:num_stop] fc7_verbs = fc7_verbs[:num_stop] fc7_vo = self.head_to_tail_ho(fc7_O, fc7_verbs, fc7_O_raw, fc7_verbs_raw, is_training, 'fc_HO') cls_prob_verbs = self.region_classification_ho(fc7_vo, is_training, initializer, 'classification') if self.model_name.__contains__('_l0_') or self.model_name.__contains__('_scale_'): """ This is for factorized model. """ verb_prob = self.predictions['verb_cls_prob'] obj_prob = self.predictions["obj_cls_prob_o"] print(verb_prob, obj_prob) tmp_fc7_O_vectors = tf.cast( tf.matmul(obj_prob, self.obj_to_HO_matrix) > 0, tf.float32) tmp_fc7_verbs_vectors = tf.cast( tf.matmul(verb_prob, self.verb_to_HO_matrix) > 0, tf.float32) if 'cls_prob_verbs' not in self.predictions: self.predictions['cls_prob_verbs'] = 0 if self.model_name.__contains__('_l0_'): self.predictions['cls_prob_verbs'] = 0 self.predictions['cls_prob_verbs'] += (tmp_fc7_O_vectors + tmp_fc7_verbs_vectors) self.score_summaries.update(self.predictions) def get_hoi_labels(self): if self.gt_class_HO_for_D_verbs is not None: # we might have changed label in Fabricator return self.gt_class_HO_for_D_verbs else: if self.model_name.__contains__('VCOCO') and self.model_name.__contains__('CL'): return self.gt_compose return self.gt_class_HO def add_visual_for_test(self, fc7_HO_raw, fc7_H_raw, fc7_O_raw, head, is_training, pool5_O): self.test_visualize['fc7_H_raw'] = tf.expand_dims(tf.reduce_mean(fc7_H_raw, axis=-1), axis=-1) self.test_visualize['fc7_O_raw'] = tf.expand_dims(tf.reduce_mean(fc7_O_raw, axis=-1), axis=-1) if fc7_HO_raw is not None: self.test_visualize['fc7_HO_raw'] = tf.expand_dims(tf.reduce_mean(fc7_HO_raw, axis=-1), axis=-1) self.test_visualize['fc7_H_acts_num'] = tf.reduce_sum(tf.cast(tf.greater(fc7_H_raw, 0), tf.float32)) self.test_visualize['fc7_O_acts_num'] = tf.reduce_sum(tf.cast(tf.greater(fc7_O_raw, 0), tf.float32)) if fc7_HO_raw is not None: self.test_visualize['fc7_HO_acts_num'] = tf.reduce_sum(tf.cast(tf.greater(fc7_HO_raw, 0), tf.float32)) res5_ho_h = self.res5_ho(self.extract_pool5_HO(head, self.H_boxes, is_training, pool5_O, None), is_training, 'h') if self.model_name.__contains__('humans'): res5_ho_o = self.crop_pool_layer(head, self.O_boxes, 'Crop_HO_h') else: res5_ho_o = self.res5_ho(self.extract_pool5_HO(head, self.O_boxes, is_training, pool5_O, None), is_training, 'o') print("res5_ho_o", res5_ho_o, res5_ho_h) if res5_ho_h is not None and res5_ho_o is not None: self.test_visualize['res5_ho_H'] = tf.expand_dims(tf.reduce_mean(res5_ho_h, axis=-1), axis=-1) self.test_visualize['res5_ho_O'] = tf.expand_dims(tf.reduce_mean(res5_ho_o, axis=-1), axis=-1) self.test_visualize['res5_ho_H_acts_num'] = tf.reduce_sum(tf.cast(tf.greater(res5_ho_h, 0), tf.float32)) self.test_visualize['res5_ho_O_acts_num'] = tf.reduce_sum(tf.cast(tf.greater(res5_ho_o, 0), tf.float32)) def add_pattern(self, name = 'pattern'): with tf.variable_scope(name) as scope: with tf.variable_scope(self.scope, self.scope): conv1_sp = slim.conv2d(self.spatial[:, :, :, 0:2][:self.get_num_stop()], 64, [5, 5], reuse=tf.AUTO_REUSE, padding='VALID', scope='conv1_sp') pool1_sp = slim.max_pool2d(conv1_sp, [2, 2], scope='pool1_sp') conv2_sp = slim.conv2d(pool1_sp, 32, [5, 5], reuse=tf.AUTO_REUSE, padding='VALID', scope='conv2_sp') pool2_sp = slim.max_pool2d(conv2_sp, [2, 2], scope='pool2_sp') pool2_flat_sp = slim.flatten(pool2_sp) return pool2_flat_sp def additional_loss(self, fc7_O, fc7_H, fc7_verbs, fc7_verbs_raw, initializer, is_training): if self.model_name.__contains__('_vloss'): self.verbs_loss(fc7_verbs, is_training, initializer) if self.model_name.__contains__('_objloss'): self.objects_loss(fc7_O, is_training, initializer, 'objects_loss', label='_o') def get_num_stop(self): """ following iCAN, spatial pattern include all negative samples. verb-object branch is for positive samples self.H_num is the partition for positive sample and negative samples. :return: """ if self.model_name.__contains__('batch'): # This is for batch style. i.e. there are multiple images in each batch. return self.H_num num_stop = tf.shape(self.H_boxes)[0] # for selecting the positive items if self.model_name.__contains__('_new'): print('new Add H_num constrains') num_stop = self.H_num elif self.model_name.__contains__('_x5new'): # contain some negative items # I use this strategy cause I found by accident that including # some negative samples in the positive samples can improve the performance a bit (abount 0.2%). # TODO I think it might have a better solution. # No-Frills Human-Object Interaction Detection provides some support # I think VCL do not depend on this. If someone finds This has important impact on result, # feel happy to contact me. H_num_tmp = tf.cast(self.H_num, tf.int32) num_stop = tf.cast(num_stop, tf.int32) num_stop = H_num_tmp + tf.cast((num_stop - H_num_tmp) // 8, tf.int32) else: num_stop = self.H_num return num_stop def get_compose_num_stop(self): num_stop = self.get_num_stop() return num_stop def extract_pool5_HO(self, head, cboxes, is_training, pool5_O, head_mask = None, name=''): if self.model_name.__contains__('_union'): pool5_HO = self.crop_pool_layer(head, cboxes, name + 'Crop_HO') self.test_visualize["pool5_HO"] = tf.expand_dims(tf.reduce_mean(pool5_HO, axis=-1), axis=-1) elif self.model_name.__contains__('_humans'): print("humans") pool5_HO = self.crop_pool_layer(head, self.H_boxes[:self.get_num_stop()],name + 'Crop_HO_h') self.test_visualize["pool5_HO"] = tf.expand_dims(tf.reduce_mean(pool5_HO, axis=-1), axis=-1) else: # pool5_HO = self.crop_pool_layer(head, cboxes, 'Crop_HO') pool5_HO = None print("{} doesn\'t support pool5_HO".format(self.model_name)) return pool5_HO def add_loss(self): import math with tf.variable_scope('LOSS') as scope: num_stop = self.get_num_stop() if self.model_name.__contains__('_VCOCO'): label_H = self.gt_class_H label_HO = self.gt_class_HO label_sp = self.gt_class_sp if self.model_name.__contains__('_CL'): label_H = self.gt_compose label_HO = self.gt_compose label_sp = self.gt_compose else: label_H = self.gt_class_HO[:num_stop] # label_HO = self.gt_class_HO_for_verbs label_HO = self.gt_class_HO[:num_stop] label_sp = self.gt_class_HO if "cls_score_H" in self.predictions: cls_score_H = self.predictions["cls_score_H"] """ The re-weighting strategy has an important effect on the performance. This will also improve largely our baseline in both common and zero-shot setting. We copy from TIN. """ if self.model_name.__contains__('_rew'): cls_score_H = tf.multiply(cls_score_H, self.HO_weight) H_cross_entropy = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=label_H, logits=cls_score_H[:num_stop, :])) self.losses['H_cross_entropy'] = H_cross_entropy if "cls_score_O" in self.predictions: cls_score_O = self.predictions["cls_score_O"] if self.model_name.__contains__('_rew'): cls_score_O = tf.multiply(cls_score_O, self.HO_weight) O_cross_entropy = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=label_HO, logits=cls_score_O[:num_stop, :])) self.losses['O_cross_entropy'] = O_cross_entropy if "cls_score_sp" in self.predictions: cls_score_sp = self.predictions["cls_score_sp"] if self.model_name.__contains__('_rew'): cls_score_sp = tf.multiply(cls_score_sp, self.HO_weight) elif self.model_name.__contains__('_xrew'): reweights = np.log(1 / (self.num_inst_all / np.sum(self.num_inst_all))) cls_score_sp = tf.multiply(cls_score_sp, reweights) print(label_sp, cls_score_sp) sp_cross_entropy = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=label_sp, logits=cls_score_sp)) self.losses['sp_cross_entropy'] = sp_cross_entropy if self.model_name.startswith('_V_'): cls_score_hoi = self.predictions["cls_score_hoi"] if self.model_name.__contains__('_rew'): cls_score_hoi = tf.multiply(cls_score_hoi, self.HO_weight) hoi_cross_entropy = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=label_HO[:num_stop, :], logits=cls_score_hoi[:num_stop, :])) self.losses['hoi_cross_entropy'] = hoi_cross_entropy loss = hoi_cross_entropy elif self.model_name.__contains__('_fac_'): # factorized gt_verb_label = self.gt_verb_class[:num_stop, :] gt_obj_label = self.gt_obj_class[:num_stop, :] # label_verb = tf.matmul() cls_score_verbs = self.predictions["cls_score_verbs_f"][:num_stop, :] cls_score_objs = self.predictions["cls_score_objs"][:num_stop, :] hoi_cross_entropy = self.add_factorized_hoi_loss(cls_score_objs, cls_score_verbs, gt_obj_label, gt_verb_label) # result = tf.equal(tf.cast(tmp_verb_prob * gt_verb_label > 0.5, tf.float32), # tf.cast(gt_verb_label, tf.float32)) # print('res', result) # tmp_hoi_loss = tf.Print(tmp_hoi_loss, [tf.shape(result)], 'HOI acc:') self.losses['verbs_cross_entropy'] = hoi_cross_entropy # self.losses["pos_hoi_cross_entropy"] = tf.reduce_mean( # tf.reduce_sum(tmp_verb_loss * gt_verb_label, axis=-1) / tf.reduce_sum(gt_verb_label, axis=-1)) # self.losses["pos_sp_cross_entropy"] = tf.reduce_mean( # tf.reduce_sum(tmp_sp_cross_entropy * label_sp, axis=-1) / tf.reduce_sum(label_sp, axis=-1)) lamb = self.get_lamb_1() if "cls_score_sp" not in self.predictions: sp_cross_entropy = 0 self.losses['sp_cross_entropy'] = 0 loss = sp_cross_entropy + hoi_cross_entropy * lamb elif self.model_name.startswith('VCL_') or self.model_name.startswith('FCL_') \ or self.model_name.startswith('ATL_'): tmp_label_HO = self.get_hoi_labels()[:num_stop] cls_score_hoi = self.predictions["cls_score_hoi"][:num_stop, :] if self.model_name.__contains__('_rew'): cls_score_hoi = tf.multiply(cls_score_hoi, self.HO_weight) elif self.model_name.__contains__('_xrew'): reweights = np.log(1 / (self.num_inst / np.sum(self.num_inst))) # print(reweights, self.HO_weight, self.num_inst_all, self.num_inst) # import ipdb;ipdb.set_trace() cls_score_hoi = tf.multiply(cls_score_hoi, reweights) if self.model_name.__contains__('batch') and self.model_name.__contains__('semi'): semi_filter = tf.reduce_sum(self.H_boxes[:tf.shape(cls_score_hoi)[0], 1:], axis=-1) semi_filter = tf.cast(semi_filter, tf.bool) tmp_label_HO = tf.boolean_mask(tmp_label_HO, semi_filter, axis=0) cls_score_hoi = tf.boolean_mask(cls_score_hoi, semi_filter, axis=0) tmp_hoi_loss = tf.nn.sigmoid_cross_entropy_with_logits( labels=tmp_label_HO, logits=cls_score_hoi) hoi_cross_entropy = tf.reduce_mean(tmp_hoi_loss) self.losses['hoi_cross_entropy'] = hoi_cross_entropy lamb = self.get_lamb_1() if "cls_score_sp" not in self.predictions: sp_cross_entropy = 0 self.losses['sp_cross_entropy'] = 0 loss = sp_cross_entropy + hoi_cross_entropy * lamb if self.model_name.__contains__('_orig_'): loss = loss + O_cross_entropy + H_cross_entropy print('Add all loss') if 'fake_G_cls_score_hoi' in self.predictions: fake_cls_score_verbs = self.predictions["fake_G_cls_score_hoi"] if self.model_name.__contains__('_rew_'): fake_cls_score_verbs = tf.multiply(fake_cls_score_verbs, self.HO_weight) elif self.model_name.__contains__('_rew2'): fake_cls_score_verbs = tf.multiply(fake_cls_score_verbs, self.HO_weight / 10) elif self.model_name.__contains__('_rew1'): fake_cls_score_verbs = tf.multiply(fake_cls_score_verbs, self.HO_weight) elif self.model_name.__contains__('rewn'): pass print(self.gt_class_HO_for_G_verbs, fake_cls_score_verbs, '======================================') self.losses['fake_G_verbs_cross_entropy'] = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( labels=self.gt_class_HO_for_G_verbs, logits=fake_cls_score_verbs)) if 'fake_G_total_loss' not in self.losses: self.losses['fake_G_total_loss'] = 0 gll = 1. self.losses['fake_G_total_loss'] += (self.losses['fake_G_verbs_cross_entropy'] * gll) else: loss = H_cross_entropy + O_cross_entropy + sp_cross_entropy # verb loss temp = self.add_verb_loss(num_stop) loss += temp if self.model_name.__contains__('_objloss'): obj_cls_cross_entropy = self.add_objloss(num_stop) print('add objloss') loss += obj_cls_cross_entropy self.losses['total_loss'] = loss self.event_summaries.update(self.losses) print(self.losses) print(self.predictions) return loss def add_factorized_hoi_loss(self, cls_score_objs, cls_score_verbs, gt_obj_label, gt_verb_label): # cls_score_verbs = tf.multiply(cls_score_verbs, self.HO_weight) # cls_score_objs = tf.multiply(cls_score_objs, self.HO_weight) # tmp_label_HO = tf.Print(tmp_label_HO, [tf.shape(tmp_label_HO), tf.shape(cls_score_verbs)],'sdfsdfsdf') # print('=======', tmp_label_HO, cls_score_verbs) if self.model_name.__contains__('batch') and self.model_name.__contains__('semi'): semi_filter = tf.reduce_sum(self.H_boxes[:tf.shape(cls_score_verbs)[0], 1:], axis=-1) semi_filter = tf.cast(semi_filter, tf.bool) gt_verb_label = tf.boolean_mask(gt_verb_label, semi_filter, axis=0) gt_obj_label = tf.boolean_mask(gt_obj_label, semi_filter, axis=0) cls_score_verbs = tf.boolean_mask(cls_score_verbs, semi_filter, axis=0) cls_score_objs = tf.boolean_mask(cls_score_objs, semi_filter, axis=0) tmp_verb_loss = tf.nn.sigmoid_cross_entropy_with_logits( labels=gt_verb_label, logits=cls_score_verbs) tmp_obj_loss = tf.nn.sigmoid_cross_entropy_with_logits( labels=gt_obj_label, logits=cls_score_objs) hoi_cross_entropy = tf.reduce_mean(tmp_verb_loss) + tf.reduce_mean(tmp_obj_loss) return hoi_cross_entropy def get_lamb_1(self): lamb = 1 if self.model_name.__contains__('_l05_'): lamb = 0.5 elif self.model_name.__contains__('_l2_'): lamb = 2 elif self.model_name.__contains__('_l0_'): lamb = 0 elif self.model_name.__contains__('_l1_'): lamb = 1 elif self.model_name.__contains__('_l15_'): lamb = 1.5 elif self.model_name.__contains__('_l25_'): lamb = 2.5 elif self.model_name.__contains__('_l3_'): lamb = 3 elif self.model_name.__contains__('_l4_'): lamb = 4 return lamb def filter_loss(self, cls_score_sp, label_sp): if self.model_name.__contains__('batch') and self.model_name.__contains__('semi'): semi_filter = tf.reduce_sum(self.H_boxes[:tf.shape(cls_score_sp)[0], 1:], axis=-1) # label_sp = tf.Print(label_sp, [tf.shape(semi_filter), semi_filter, self.H_boxes, tf.shape(label_sp)], 'batch debug0:', first_n=000, summarize=1000) semi_filter = tf.cast(semi_filter, tf.bool) # label_sp = tf.Print(label_sp, [tf.shape(semi_filter), semi_filter, tf.shape(label_sp)], 'batch debug:', first_n=000, summarize=1000) label = tf.boolean_mask(label_sp, semi_filter, axis=0) logits = tf.boolean_mask(cls_score_sp, semi_filter, axis=0) # label = tf.Print(label, [tf.shape(semi_filter), tf.shape(label)], 'batch debug1:', first_n=000) sp_cross_entropy = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=label, logits=logits)) else: sp_cross_entropy = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=label_sp, logits=cls_score_sp)) return sp_cross_entropy def cal_loss_by_weights(self, cls_score, label, orig_weights): sp_cross_entropy = tf.multiply( tf.nn.sigmoid_cross_entropy_with_logits(labels=label, logits=cls_score), orig_weights) sp_cross_entropy = tf.reduce_mean(sp_cross_entropy) return sp_cross_entropy def obtain_cbl_weights(self, tmp_label_HO, weights): # weights = tf.expand_dims(weights, 0) weights = tf.tile(weights, [tf.shape(tmp_label_HO)[0], 1]) * tmp_label_HO weights = tf.reduce_sum(weights, axis=1) weights = tf.expand_dims(weights, 1) weights = tf.tile(weights, [1, self.num_classes]) return weights def add_objloss(self, num_stop): obj_cls_score = self.predictions["obj_cls_score_o"] if self.model_name.__contains__('_ce'): obj_cls_cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits( labels=self.gt_obj_class[:num_stop], logits=obj_cls_score[:num_stop, :])) else: label_obj = tf.cast( tf.matmul(self.get_hoi_labels(), self.obj_to_HO_matrix, transpose_b=True) > 0, tf.float32) obj_cls_cross_entropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( labels=label_obj[:tf.shape(obj_cls_score)[0], :], logits=obj_cls_score)) self.losses["obj_cls_cross_entropy_o"] = obj_cls_cross_entropy model_name = self.model_name if model_name.__contains__('_pobjloss'): model_name = model_name.replace("_pobjloss", '_objloss') lambda1 = 0.1 if model_name.__contains__('_objloss10'): lambda1 = 1.0 elif self.model_name.__contains__('_objloss20'): lambda1 = 2.0 elif model_name.__contains__('_objloss1'): lambda1 = 0.5 elif model_name.__contains__('_objloss2'): lambda1 = 0.3 elif model_name.__contains__('_objloss3'): lambda1 = 0.08 elif model_name.__contains__('_objloss4'): lambda1 = 0.05 temp = (obj_cls_cross_entropy * lambda1) return temp def add_verb_loss(self, num_stop): temp = 0 if 'verb_cls_score' in self.predictions: vloss_num_stop = num_stop verb_cls_score = self.predictions["verb_cls_score"] verb_cls_cross_entropy = self.filter_loss(verb_cls_score[:vloss_num_stop, :], self.gt_verb_class[:vloss_num_stop]) self.losses["verb_cls_cross_entropy"] = verb_cls_cross_entropy if 'verb_cls_score_gcn' in self.predictions: verb_cls_score = self.predictions["verb_cls_score_gcn"] verb_cls_cross_entropy1 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( labels=self.gt_verb_class[:vloss_num_stop], logits=verb_cls_score[:vloss_num_stop, :])) self.losses["verb_cls_cross_entropy_gcn"] = verb_cls_cross_entropy1 verb_cls_cross_entropy += verb_cls_cross_entropy1 print('add vloss-------') # neg 0.1, negv1 0.5 negv12 0.1 1 lambda1 = 0.1 if self.model_name.__contains__('vloss10'): lambda1 = 1.0 elif self.model_name.__contains__('vloss20'): lambda1 = 2.0 elif self.model_name.__contains__('vloss1'): lambda1 = 0.5 elif self.model_name.__contains__('vloss2'): lambda1 = 0.3 elif self.model_name.__contains__('vloss3'): lambda1 = 0.08 elif self.model_name.__contains__('vloss4'): lambda1 = 0.05 temp = (verb_cls_cross_entropy * lambda1) if 'verb_cls_score_nvgcn_a' in self.predictions: vloss_num_stop = num_stop verb_cls_score = self.predictions["verb_cls_score_nvgcn_a"] verb_cls_cross_entropy = self.filter_loss(verb_cls_score[:vloss_num_stop, :], self.gt_verb_class[:vloss_num_stop]) self.losses["verb_cls_cross_entropy_nvgcn_a"] = verb_cls_cross_entropy print('add vloss===========') # neg 0.1, negv1 0.5 negv12 0.1 1 lambda1 = 0.1 if self.model_name.__contains__('_nvgcn_a10'): lambda1 = 1.0 elif self.model_name.__contains__('_nvgcn_a1'): lambda1 = 0.5 elif self.model_name.__contains__('_nvgcn_a2'): lambda1 = 0.3 elif self.model_name.__contains__('_nvgcn_a3'): lambda1 = 0.08 elif self.model_name.__contains__('_nvgcn_a4'): lambda1 = 0.05 temp += (verb_cls_cross_entropy * lambda1) return temp def add_verb_ho_loss(self, num_stop): vloss_num_stop = num_stop verb_cls_score = self.predictions["verb_cls_score"] verb_cls_cross_entropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( labels=self.gt_class_HO[:vloss_num_stop], logits=verb_cls_score[:vloss_num_stop, :])) self.losses["verb_cls_cross_entropy"] = verb_cls_cross_entropy print('add vloss') # neg 0.1, negv1 0.5 negv12 0.1 1 lambda1 = 1 temp = (verb_cls_cross_entropy * lambda1) return temp def train_step(self, sess, blobs, lr, train_op): feed_dict = self.get_feed_dict(blobs) loss, _ = sess.run([self.losses['total_loss'], train_op], feed_dict=feed_dict) return loss def train_step_with_summary(self, sess, blobs, lr, train_op): feed_dict = self.get_feed_dict(blobs) loss, summary, _ = sess.run([self.losses['total_loss'], self.summary_op, train_op], feed_dict=feed_dict) return loss, summary
{"hexsha": "d2839f333507812c9e348e41708e8c483e638800", "size": 42229, "ext": "py", "lang": "Python", "max_stars_repo_path": "lib/networks/HOI.py", "max_stars_repo_name": "abreza/HOI-CL", "max_stars_repo_head_hexsha": "c5be517bb26eac73ef88a39d6ec9e564c3379714", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 40, "max_stars_repo_stars_event_min_datetime": "2021-04-09T17:53:08.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-30T02:38:10.000Z", "max_issues_repo_path": "lib/networks/HOI.py", "max_issues_repo_name": "abreza/HOI-CL", "max_issues_repo_head_hexsha": "c5be517bb26eac73ef88a39d6ec9e564c3379714", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 21, "max_issues_repo_issues_event_min_datetime": "2021-04-09T19:05:47.000Z", "max_issues_repo_issues_event_max_datetime": "2022-01-31T23:17:16.000Z", "max_forks_repo_path": "lib/networks/HOI.py", "max_forks_repo_name": "abreza/HOI-CL", "max_forks_repo_head_hexsha": "c5be517bb26eac73ef88a39d6ec9e564c3379714", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 8, "max_forks_repo_forks_event_min_datetime": "2021-05-30T12:37:00.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-14T03:13:57.000Z", "avg_line_length": 52.9185463659, "max_line_length": 161, "alphanum_fraction": 0.6024769708, "include": true, "reason": "import numpy", "num_tokens": 9974}
/****************************************************************************** * Author(s): Christopher J. Havlicek * * See LICENSE and CONTACTS. ******************************************************************************/ #include "utility.hpp" #include "contract.hpp" #include "error/master.hpp" #include "error/node_manip.hpp" #include "io.hpp" #include "kmap.hpp" #include <boost/algorithm/string/case_conv.hpp> #include <boost/filesystem.hpp> #include <boost/uuid/random_generator.hpp> #include <boost/uuid/string_generator.hpp> #include <boost/uuid/uuid_io.hpp> #include <emscripten.h> #include <emscripten/val.h> #include <openssl/md5.h> #include <range/v3/action/sort.hpp> #include <range/v3/action/transform.hpp> #include <range/v3/algorithm/copy.hpp> #include <range/v3/algorithm/copy.hpp> #include <range/v3/algorithm/count_if.hpp> #include <range/v3/algorithm/find.hpp> #include <range/v3/algorithm/find_if.hpp> #include <range/v3/algorithm/find_if_not.hpp> #include <range/v3/algorithm/replace.hpp> #include <range/v3/range/conversion.hpp> #include <range/v3/view/drop.hpp> #include <range/v3/view/enumerate.hpp> #include <range/v3/view/filter.hpp> #include <range/v3/view/indices.hpp> #include <range/v3/view/join.hpp> #include <range/v3/view/remove.hpp> #include <range/v3/view/replace.hpp> #include <range/v3/view/split.hpp> #include <range/v3/view/take.hpp> #include <range/v3/view/transform.hpp> #include <zlib.h> #include <algorithm> #include <chrono> #include <cstdlib> #include <iterator> #include <string> #include <vector> using namespace ranges; namespace fs = boost::filesystem; namespace kmap { template<> auto from_string( std::string const& s ) -> Result< bool > { auto rv = KMAP_MAKE_RESULT_EC( bool, error_code::common::conversion_failed ); if( s == "true" ) { rv = true; } else if( s == "false" ) { rv = false; } return rv; } auto compress_resource( std::byte const* data , size_t const size ) -> std::vector< std::byte > { auto rv = std::vector< std::byte >{}; rv.resize( size ); auto stream = [ & ] { auto zsm = z_stream{}; zsm.zalloc = Z_NULL; zsm.zfree = Z_NULL; zsm.opaque = Z_NULL; zsm.avail_in = size; zsm.next_in = reinterpret_cast< Bytef z_const* >( data ); zsm.avail_out = rv.size(); zsm.next_out = reinterpret_cast< Bytef* >( rv.data() ); return zsm; }(); // TODO: Return failure instead of assertion. auto const compression_level = 8; // According to the benchmarks I've seen, level 8 gives the best compression ratio for our use without being egregiously slow. if( auto const succ = deflateInit( &stream, compression_level ) ; succ < 0 ) { KMAP_THROW_EXCEPTION_MSG( "deflateInit failed" ); } if( auto const succ = deflate( &stream, Z_FINISH ) ; succ < 0 ) { KMAP_THROW_EXCEPTION_MSG( "deflate failed" ); } if( auto const succ = deflateEnd( &stream ) ; succ < 0 ) { KMAP_THROW_EXCEPTION_MSG( "deflateEnd failed" ); } rv.resize( stream.total_out ); rv.shrink_to_fit(); return rv; } auto configure_terminate() -> void { std::set_terminate( []() { fmt::print( stderr , "[terminate_handler]: std::terminate called!\n" ); auto eptr = std::current_exception(); if( eptr ) { try { std::rethrow_exception( eptr ); } catch( std::exception& e ) { fmt::print( stderr , "[terminate_handler]: std::terminate called: {}\n" , e.what() ); abort(); } } else { fmt::print( "std::terminate called\n" ); abort(); } } ); } auto decompress_resource( std::byte const* data , size_t const data_size , size_t const out_size ) -> std::vector< std::byte > { auto rv = std::vector< std::byte >{}; rv.resize( out_size ); auto stream = [ & ] { auto zsm = z_stream{}; zsm.zalloc = Z_NULL; zsm.zfree = Z_NULL; zsm.opaque = Z_NULL; zsm.avail_in = data_size; zsm.next_in = reinterpret_cast< Bytef z_const* >( data ); zsm.avail_out = rv.size(); zsm.next_out = reinterpret_cast< Bytef* >( rv.data() ); return zsm; }(); // TODO: Return failure instead of assertion. assert( inflateInit( &stream ) >= 0 ); assert( inflate( &stream , Z_NO_FLUSH ) >= 0 ); assert( inflateEnd( &stream ) >= 0 ); rv.resize( stream.total_out ); rv.shrink_to_fit(); return rv; } auto gen_uuid() -> Uuid { auto rv = Uuid{}; BC_CONTRACT() BC_POST([ & ] { BC_ASSERT( !rv.is_nil() ); }) ; using boost::uuids::random_generator; rv = random_generator{}(); return rv; } // TODO: Use fstream instead? auto gen_md5_uuid( FILE* fp ) -> Uuid { auto rv = Uuid{}; BC_CONTRACT() BC_PRE([ & ] { BC_ASSERT( MD5_DIGEST_LENGTH == sizeof( Uuid::data ) ); }) BC_POST([ & ] { BC_ASSERT( !rv.is_nil() ); }) ; using std::array; using InBuf = array< char , 512 >; auto inbuf = InBuf{}; auto ctx = MD5_CTX{}; auto bytes = fread( inbuf.data() , 1 , 512 , fp ); MD5_Init( &ctx ); while( bytes > 0 ) { MD5_Update( &ctx , inbuf.data() , bytes ); bytes = fread( inbuf.data() , 1 , 512 , fp ); } MD5_Final( rv.data , &ctx ); return rv; } auto gen_md5_uuid( std::byte const* data , size_t const size ) -> Uuid { auto rv = Uuid{}; BC_CONTRACT() BC_PRE([ & ] { BC_ASSERT( MD5_DIGEST_LENGTH == sizeof( Uuid::data ) ); }) BC_POST([ & ] { BC_ASSERT( !rv.is_nil() ); }) ; auto const chunk_size = size_t{ 512 }; auto const dend = data + size; auto next = [ chunk_size , dend ] ( std::byte const* pos ) { assert( pos <= dend ); if( pos == dend ) { return dend; } else if( pos + chunk_size > dend ) { return dend; } else { return std::next( pos , chunk_size ); } }; auto pos = data; auto next_pos = next( pos ); auto count = distance( pos , next_pos ); auto ctx = MD5_CTX{}; MD5_Init( &ctx ); while( count > 0 ) { MD5_Update( &ctx , pos , count ); pos = next_pos; next_pos = next( pos ); count = distance( pos , next_pos ); } MD5_Final( rv.data , &ctx ); return rv; } auto gen_uuid_string() -> std::string { return to_string( gen_uuid() ); } // TODO: rename to to_uuid()? auto uuid_from_string( std::string const& suuid ) -> Result< Uuid > { using boost::uuids::string_generator; try { return string_generator{}( suuid ); } catch( std::exception const& e ) { io::print( "exception: {}\n", e.what() ); // std::cerr << e.what() << '\n'; TODO: Add to EC payload? return KMAP_MAKE_ERROR( error_code::node::invalid_uuid ); } } auto gen_temp_db_name() -> std::string { return ".tmp." + gen_uuid_string() + ".kmap"; } auto to_ordering_id( Uuid const& id ) -> std::string { auto const sid = to_string( id ); return sid | views::take( 8 ) | to< std::string >(); } auto to_uuids( HeadingPath const& path , Database& db , Uuid const& root ) -> std::vector< Uuid > { auto rv = std::vector< Uuid >{}; auto parent = root; for( auto const& e : path ) { auto const ou = db.fetch_child( e , parent ); if( !ou ) { // TODO: report error. assert( false ); } rv.emplace_back( parent ); parent = *ou; } return rv; } auto leaf( UuidPath const& path ) -> Uuid { BC_CONTRACT() BC_PRE([ & ] { BC_ASSERT( path.size() > 0 ); }) ; return path.back(); } auto mid( std::vector< Uuid > const& ids ) -> Uuid { BC_CONTRACT() BC_PRE([ & ] { BC_ASSERT( ids.size() > 0 ); }) ; using std::ceil; auto const offset = static_cast< uint32_t >( ceil( ids.size() / 2.0 ) ); return ids[ offset - 1 ]; } auto match_length( std::string const& s , std::string const& to ) -> uint32_t { using std::min; auto rv = uint32_t{}; for( auto const i : views::indices( min( s.size() , to.size() ) ) ) { if( s[ i ] == to[ i ] ) { ++rv; } else { break; } } return rv; } auto is_valid_heading_char( char const c ) -> bool { if( std::isalnum( c ) ) { if( std::isalpha( c ) ) { if( std::islower( c ) ) { return true; } } else { return true; } } else if( c == '_' ) { return true; } return false; } // TODO: Replace with Boost.Spirit auto fetch_first_invalid( Heading const& heading ) -> Optional< uint32_t > { auto rv = Optional< uint32_t >{}; BC_CONTRACT() BC_POST([ & ] { if( rv ) { BC_ASSERT( *rv < heading.size() ); } }) ; auto const it = find_if_not( heading , is_valid_heading_char ); if( it != heading.end() ) { rv = distance( heading.begin() , it ); } return rv; } // TODO: Should not rather constraints on Heading be expressed in the constructor // of the Heading class? This way, any place a heading is passed, it is known to be // in a good, valid state. auto is_valid_heading( Heading const& heading ) -> bool { return !fetch_first_invalid( heading ); } auto is_valid_heading_path( std::string const& path ) -> bool { auto is_valid = []( auto const c ) { return is_valid_heading_char( c ) || c == ',' // back || c == '.' // forward || c == '\'' // disambiguator || c == '/'; // root }; return end( path ) == find_if_not( path , is_valid ); } auto format_title( Heading const& heading ) -> Title { BC_CONTRACT() BC_POST([ & ] { BC_ASSERT( is_valid_heading( heading ) ); }) ; // TODO: Figure out how to do this all elegantly with one range statement. auto rv = heading | views::transform( []( auto const& e ){ return tolower( e ); } ) | views::split( '_' ) | views::transform( []( auto const& e ){ return to< std::string >( e ); } ) | to< StringVec >(); // Capitalize first of every word. for( auto&& e : rv ) { e[ 0 ] = toupper( e[ 0 ] ); } return rv | views::join( ' ' ) | to< Title >(); } auto format_heading( Title const& title ) -> Heading { auto rv = Heading{}; BC_CONTRACT() BC_POST([ & ] { BC_ASSERT( is_valid_heading( rv ) ); }) ; auto heading = title; boost::to_lower( heading ); for( auto const [ index, c ] : views::enumerate( heading ) ) { if( !is_valid_heading_char( c ) ) { heading[ index ] = '_'; } } rv = heading; return rv; } auto flatten( HeadingPath const& path ) -> Heading { return path | views::join( '.' ) | to< Heading >(); } auto to_string( Color const& c ) -> std::string { switch( c ) { case Color::white: return "white"; case Color::black: return "black"; case Color::red: return "red"; case Color::orange: return "orange"; case Color::yellow: return "yellow"; case Color::green: return "green"; case Color::blue: return "blue"; case Color::indigo: return "indigo"; case Color::violet: return "violet"; default: assert( false ); } return ""; // Avoid compiler warning. } auto to_string( bool const b ) -> std::string { if( !b ) { return "false"; } else { return "true"; } } auto to_uint64( std::string const& s , int const base ) -> Result< uint64_t > { static_assert( sizeof( decltype( std::stoull( "", 0, base ) ) ) == sizeof( uint64_t ) ); auto rv = KMAP_MAKE_RESULT( uint64_t ); BC_CONTRACT() BC_POST([ & ] { if( rv ) { // BC_ASSERT( to_string( rv.value() ) == s ); // TODO. } }) ; try { rv = std::stoull( s, 0, base ); } catch( std::exception& e ) { // TODO: propagate payload? io::print( stderr , "to_uint64 failed: {}" , e.what() ); rv = KMAP_MAKE_ERROR( error_code::common::conversion_failed ); // TODO: numeric::conversion_failed? } return rv; } auto to_uint64( std::string const& s ) -> Result< uint64_t > { return to_uint64( s, 10 ); } // TODO: 'id' Should probably be a integral constant (C++20) auto to_uint64( Uuid const& id ) -> Result< uint64_t > { auto rv = KMAP_MAKE_RESULT( uint64_t ); BC_CONTRACT() BC_POST([ & ] { if( rv ) { BC_ASSERT( to_uuid( rv.value() ) == id ); } }) ; static_assert( sizeof( id.data ) == sizeof( uint64_t ) * 2 ); auto tv = uint64_t{}; std::copy( std::begin( id.data ) + sizeof( uint64_t ), std::end( id.data ) , reinterpret_cast< char* >( &tv ) ); // Only first 8 bytes are allowed to contain data. KMAP_ENSURE( rv, tv == 0, error_code::common::conversion_failed ); std::copy( std::begin( id.data ), std::begin( id.data ) + sizeof( uint64_t ) , reinterpret_cast< char* >( &tv ) ); rv = tv; return rv; } // TODO: 'id' Should probably be a integral constant (C++20) auto to_uuid( uint64_t const& id ) -> Uuid { auto rv = Uuid{}; BC_CONTRACT() BC_POST([ & ] { //BC_ASSERT( to_uint64( rv ) == id ); TODO? }) ; auto const* id_bs = reinterpret_cast< char const* >( &id ); auto const id_begin = id_bs; auto const id_end = id_bs + sizeof( id ); std::copy( id_begin, id_end , std::begin( rv.data ) ); return rv; } auto longest_common_prefix( StringVec const& ss ) -> std::string { if( ss.empty() ) { return {}; } auto const first = ss[ 0 ]; auto count = uint32_t{}; for( auto const& i : views::indices( first.size() ) ) { auto common = true; for( auto const& e : ss ) { if( i >= e.size() || first[ i ] != e[ i ] ) { common = false; } } if( common ) { count = i + 1; } else { break; } } return first | views::take( count ) | to< std::string >(); } auto map_match_lengths( Heading const& from , std::vector< Heading > const& to ) -> std::vector< std::pair< uint32_t , Heading > > { auto map_len = [ from ]( std::string const& e ) -> std::pair< uint32_t , std::string > { return { match_length( from , e ) , e }; }; return to | views::transform( map_len ) | to_vector; } auto match_closest( Heading const& unknown , std::vector< Heading > const& knowns ) -> Heading { auto const matches = map_match_lengths( unknown , knowns ) | actions::sort( []( auto const& lhs , auto const& rhs ) { return lhs.first > rhs.first; } ); auto const out = [ & ] { auto const& ult = matches[ 0 ]; auto const& penult = matches[ 1 ]; if( ult.first == 0) // No match length. { } if( ult.first == penult.first ) // Competing match length. { // TODO: what is the point of calling match_length here? Just use // ult.first or penult.first. auto const shared = match_length( ult.second , penult.second ); auto const rv = ult.second | views::take( shared ) | to< std::string >(); return rv; } else if( unknown.size() == ult.second .size() ) { return unknown; } else { return ult.second; } }(); return out; } auto fetch_completions( std::string const& unknown , StringVec const& knowns ) -> StringVec { auto const usize = distance( unknown ); auto filter = views::filter( [ & ]( auto const& e ) { auto const sub = e | views::take( usize ) | to< std::string >(); return unknown == sub; } ); return knowns | filter | to< StringVec >(); } auto markdown_to_html( std::string const& text ) -> std::string { using emscripten::val; if( text.empty() ) { return {}; } auto v = val::global().call< val >( "convert_markdown_to_html" , text ); if( !v.as< bool >() ) { return "Error: markdown to html conversion failed"; } else { return v.as< std::string >(); } } auto xor_ids( Uuid const& lhs , Uuid const& rhs ) -> Uuid { BC_CONTRACT() BC_PRE([ & ] { BC_ASSERT( lhs.size() == 16 ); BC_ASSERT( rhs.size() == 16 ); }) ; using std::vector; auto v1 = vector< uint8_t >{}; auto v2 = vector< uint8_t >{}; auto vc = vector< uint8_t >{}; v1.resize( lhs.size() ); v2.resize( rhs.size() ); vc.resize( lhs.size() ); copy( lhs.begin() , lhs.end() , v1.begin() ); copy( rhs.begin() , rhs.end() , v2.begin() ); for( auto const i : views::indices( lhs.size() ) ) { vc[ i ] = v1[ i ] ^ v2[ i ]; } auto rv = Uuid{}; copy( vc.begin() , vc.end() , rv.begin() ); return rv; } auto make_alias_id( Uuid const& alias_src , Uuid const& alias_dst ) -> Uuid { return xor_ids( alias_src , alias_dst ); } auto make_edge_id( Uuid const& from , Uuid const& to ) -> Uuid { return xor_ids( from , to ); } auto alias_source( Uuid const& parent , Uuid const& alias ) -> Uuid { return xor_ids( parent , alias ); } auto url_to_heading( std::string const url ) -> Heading { return url | views::replace( '.' , '_' ) | to< Heading >(); } auto present_time() -> uint64_t { using namespace std::chrono; return time_point_cast< seconds >( system_clock::now() ) . time_since_epoch() . count(); } auto fetch_latest_state_path() -> Optional< FsPath > { auto to_paths = views::transform( []( auto const& e ){ return e.path(); } ); auto filter_extension = views::filter( []( auto const& e ){ return e.extension() == ".kmap"; } ); auto sort_by_timestamp = actions::sort( []( auto const& lhs, auto const& rhs ){ return fs::last_write_time( lhs ) > fs::last_write_time( rhs ); } ); auto const di = fs::directory_iterator{ kmap_root_dir }; auto rv = di | to_paths | filter_extension | to_vector | sort_by_timestamp; if( !rv.empty() ) { return { rv.front() }; } else { return nullopt; } } // This function exists purely as a workaround for the fact that lstat does not work properly on MSYS when it is called on a non-existent file. auto file_exists( FsPath const& p ) -> bool { #ifdef KMAP_MSYS auto ec = boost::system::error_code{}; if( fs::exists( p , ec ) ) { return true; } else if( ec ) { fmt::print( stderr , "[Warning] `fs::exists()` failed. Note that lstat does not seem to work properly on MSYS: {}\n" , ec.message() ); } return false; #else // Not MSYS return fs::exists( p ); #endif // KMAP_MSYS } // WARNING,TODO: The current impl. does not properly merge all node attributes e.g., node bodies and aliases. template< typename Stmts > auto merge_trees_internal( Stmts& stmts , Uuid const& src , Uuid const& dst ) -> void { BC_CONTRACT() BC_PRE([ & ] { BC_ASSERT( stmts.exists( src ) ); BC_ASSERT( stmts.exists( dst ) ); }) BC_POST([ & ] { BC_ASSERT( !stmts.exists( src ) ); }) ; auto const src_children = stmts.fetch_children( src ); auto const dst_children = stmts.fetch_children( dst ); auto const src_map = src_children | views::transform( [ &stmts ]( auto const& e ){ return std::pair{ e, stmts.fetch_heading( e ).value() }; } ) | to_vector; auto const dst_map = dst_children | views::transform( [ &stmts ]( auto const& e ){ return std::pair{ e, stmts.fetch_heading( e ).value() }; } ) | to_vector; for( auto const src_child : src_map ) { if( auto const it = find_if( dst_map , [ & ]( auto const& e ){ return src_child.second == e.second; } ) ; it != end( dst_map ) ) { // TODO: Merge aliases and bodies (or at least warn or fail if they are encountered). merge_trees_internal( stmts , src_child.first , it->first ); } else { stmts.move_node( src_child.first , dst ); } } stmts.delete_node( src ); } auto merge_trees( Kmap& kmap , Uuid const& src , Uuid const& dst ) -> void { merge_trees_internal( kmap , src , dst ); } auto merge_trees( StatementPreparer& stmts , Uuid const& src , Uuid const& dst ) -> void { merge_trees_internal( stmts , src , dst ); } auto merge_ranges( std::set< uint64_t > const& values ) -> std::set< std::pair< uint64_t, uint64_t > > { auto rv = std::set< std::pair< uint64_t, uint64_t > >{}; if( values.empty() ) { return rv; } auto first = uint64_t{ *values.begin() }; auto second = first; for( uint64_t const e : values | views::drop( 1 ) ) { if( ( second + 1 ) != e ) { io::print( "[{:#x},{:#x}], {:#x}\n", first, second, e ); rv.emplace( std::pair{ first, second } ); first = e; } second = e; } rv.emplace( std::pair{ first, second } ); return rv; } auto print_stacktrace() -> void { EM_ASM( { console.log( stackTrace() ); } ); } auto copy_body( Kmap& kmap , Uuid const& src , Uuid const& dst ) -> bool { auto rv = false; BC_CONTRACT() BC_PRE([ & ] { BC_ASSERT( kmap.fetch_body( src ) ); }) BC_POST([ & , prev_src_body = kmap.fetch_body( src ) ] { if( rv ) { auto const src_body = kmap.fetch_body( src ); auto const dst_body = kmap.fetch_body( dst ); BC_ASSERT( src_body && dst_body && src_body.value() == src_body.value() ); BC_ASSERT( dst_body && prev_src_body && dst_body.value() == prev_src_body.value() ); } }) ; if( auto const src_body = kmap.fetch_body( src ) ; src_body ) { kmap.update_body( dst , src_body.value() ); rv = true; } return rv; } auto move_body( Kmap& kmap , Uuid const& src , Uuid const& dst ) -> bool { auto rv = false; BC_CONTRACT() BC_PRE([ & ] { BC_ASSERT( kmap.fetch_body( src ) ); }) BC_POST([ & , prev_src_body = kmap.fetch_body( src ) ] { if( rv ) { auto const src_body = kmap.fetch_body( src ); auto const dst_body = kmap.fetch_body( dst ); BC_ASSERT( src_body && src_body.value().empty() ); BC_ASSERT( dst_body && prev_src_body && dst_body.value() == prev_src_body.value() ); } }) ; if( copy_body( kmap , src , dst ) ) { kmap.update_body( src , "" ); rv = true; } return rv; } auto select_median_range( std::vector< Uuid > const& range , Uuid const& median , uint32_t const& max_radius ) -> std::vector< Uuid > { auto rv = std::vector< Uuid >{}; BC_CONTRACT() BC_PRE([ & ] { BC_ASSERT( find( range, median ) != range.end() ); }) BC_POST([ & ] { BC_ASSERT( rv.size() <= ( max_radius * 2 ) ); }) ; auto med_it = find( range, median ); BC_ASSERT( med_it != range.end() ); auto const bit = [ & ] { if( std::distance( range.begin(), med_it ) < max_radius ) { return range.begin(); } else { return std::prev( med_it, max_radius ); } }(); auto const eit = [ & ] { if( std::distance( med_it, range.end() ) < max_radius ) { return range.end(); } else { return std::next( med_it, max_radius ); } }(); rv = std::vector< Uuid >{ bit, eit }; return rv; } auto select_median_range( std::vector< Uuid > const& range , uint32_t const& max_radius ) -> UuidVec { if( range.empty() ) { return {}; } return select_median_range( range , range[ range.size() / 2 ] , max_radius ); } auto fetch_siblings( Kmap const& kmap , Uuid const& id ) -> UuidSet { auto rv = UuidSet{}; if( auto parent = kmap.fetch_parent( id ) ; parent ) { auto const siblings = [ & ] { auto const id_set = UuidSet{ id }; auto const children = kmap.fetch_children( parent.value() ); auto sibs = UuidSet{}; std::set_difference( children.begin(), children.end() , id_set.begin(), id_set.end() , std::inserter( sibs, sibs.end() ) ); return sibs; }(); rv = siblings; } return rv; } auto fetch_siblings_ordered( Kmap const& kmap , Uuid const& id ) -> UuidVec { auto rv = UuidVec{}; if( auto parent = kmap.fetch_parent( id ) ; parent ) { auto const siblings = [ & ] { auto const children = kmap.fetch_children_ordered( parent.value() ); return children | views::remove( id ) | to_vector; }(); rv = siblings; } return rv; } auto fetch_siblings_inclusive( Kmap const& kmap , Uuid const& id ) -> UuidSet { return fetch_parent_children( kmap, id ); } auto fetch_siblings_inclusive_ordered( Kmap const& kmap , Uuid const& id ) -> UuidVec { return fetch_parent_children_ordered( kmap, id ); } auto fetch_parent_children( Kmap const& kmap , Uuid const& id ) -> UuidSet { auto rv = UuidSet{}; if( auto const parent = kmap.fetch_parent( id ) ; parent ) { rv = kmap.fetch_children( parent.value() ); } return rv; } auto fetch_parent_children_ordered( Kmap const& kmap , Uuid const& id ) -> UuidVec { auto rv = UuidVec{}; if( auto const parent = kmap.fetch_parent( id ) ; parent ) { rv = kmap.fetch_children_ordered( parent.value() ); } return rv; } auto to_heading_path( Kmap const& kmap , UuidVec const& lineage ) -> StringVec { return lineage | views::transform( [ & ]( auto const& e ){ return kmap.fetch_heading( e ).value(); } ) | to< StringVec >(); } auto to_heading_path_flat( Kmap const& kmap , UuidVec const& lineage ) -> Heading { auto rv = lineage | views::transform( [ & ]( auto const& e ){ return kmap.fetch_heading( e ).value(); } ) | to_vector; return rv | views::join( '.' ) | to< Heading >(); } auto flatten( StringVec const& v , char const c ) -> std::string { return v | views::join( c ) | to< std::string >(); } auto is_direct_descendant( Kmap const& kmap , Uuid const& root , Heading const& path ) -> bool { auto rv = false; auto const lineage = path | views::split( '.' ) | to< StringVec >(); auto parent = root; for( auto const& schild : lineage ) { if( auto const child = kmap.fetch_child( parent, schild ) ; child ) { parent = child.value(); rv = true; } else { rv = false; break; } } return rv; } } // namespace kmap
{"hexsha": "caec47889f6f6a510334cf8d7392765ceaf2502b", "size": 31463, "ext": "cpp", "lang": "C++", "max_stars_repo_path": "src/utility.cpp", "max_stars_repo_name": "moralismercatus/kmap", "max_stars_repo_head_hexsha": "6887780c2fbe795f07a81808ef31f11dad4f5043", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1.0, "max_stars_repo_stars_event_min_datetime": "2021-06-28T00:31:08.000Z", "max_stars_repo_stars_event_max_datetime": "2021-06-28T00:31:08.000Z", "max_issues_repo_path": "src/utility.cpp", "max_issues_repo_name": "moralismercatus/kmap", "max_issues_repo_head_hexsha": "6887780c2fbe795f07a81808ef31f11dad4f5043", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/utility.cpp", "max_forks_repo_name": "moralismercatus/kmap", "max_forks_repo_head_hexsha": "6887780c2fbe795f07a81808ef31f11dad4f5043", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 22.3617626155, "max_line_length": 164, "alphanum_fraction": 0.477290786, "num_tokens": 7778}
#include "context.hpp" #include "service.hpp" #include <asio_utp/socket.hpp> #include <asio_utp/log.hpp> #include <boost/asio/steady_timer.hpp> #include <iostream> using namespace std; using namespace asio_utp; struct context::ticker_type : public enable_shared_from_this<ticker_type> { bool _running = false; bool _outstanding = false; asio::steady_timer _timer; function<void()> _on_tick; #if BOOST_VERSION >= 107000 ticker_type(asio::executor&& ex, function<void()> on_tick) : _timer(move(ex)) , _on_tick(move(on_tick)) { } #else ticker_type(asio::io_context::executor_type&& ex, function<void()> on_tick) : _timer(ex.context()) , _on_tick(move(on_tick)) { } #endif void start() { if (_running) return; _running = true; if (_outstanding) return; _timer.expires_after(chrono::milliseconds(500)); _outstanding = true; _timer.async_wait([this, self = shared_from_this()] (const sys::error_code& ec) { _outstanding = false; if (!_running) return; _on_tick(); if (!_running) return; _running = false; start(); }); } void stop() { if (!_running) return; _running = false; _timer.cancel(); } ~ticker_type() { stop(); } }; uint64 context::callback_log(utp_callback_arguments* a) { log("LOG: ", a->socket, " ", a->buf); return 0; } uint64 context::callback_sendto(utp_callback_arguments* a) { context* self = (context*) utp_context_get_userdata(a->context); sys::error_code ec; std::vector<asio::const_buffer> bufs { asio::buffer(a->buf, a->len) }; self->_multiplexer->send_to( bufs , util::to_endpoint(*a->address) , 0 , ec); // The libutp library sometimes calls this function even after the last // socket holding this context has received an EOF and closed. // TODO: Should this be fixed in libutp? if (ec && ec == asio::error::bad_descriptor) { return 0; } if (ec && ec != asio::error::would_block) { for (auto& s : self->_registered_sockets) { s.close_with_error(ec); } } return 0; } uint64 context::callback_on_error(utp_callback_arguments*) { return 0; } static const char* libutp_state_name(int state) { switch(state) { case UTP_STATE_CONNECT: return "UTP_STATE_CONNECT"; case UTP_STATE_WRITABLE: return "UTP_STATE_WRITABLE"; case UTP_STATE_EOF: return "UTP_STATE_EOF"; case UTP_STATE_DESTROYING: return "UTP_STATE_DESTROYING"; default: return "UNKNOWN"; } } uint64 context::callback_on_state_change(utp_callback_arguments* a) { auto socket = (socket_impl*) utp_get_userdata(a->socket); auto* ctx = socket ? socket->_context.get() : nullptr; if (ctx->_debug) { log( ctx, " context::callback_on_state_change" , " socket:" ,socket , " new_state:" ,libutp_state_name(a->state)); } if (!socket) { // The utp::socket_impl has detached from this utp_socket return 0; } switch(a->state) { case UTP_STATE_CONNECT: socket->on_connect(); break; case UTP_STATE_WRITABLE: socket->on_writable(); break; case UTP_STATE_EOF: socket->on_eof(); break; case UTP_STATE_DESTROYING: socket->on_destroy(); break; } return 0; } uint64 context::callback_on_read(utp_callback_arguments* a) { auto socket = (socket_impl*) utp_get_userdata(a->socket); assert(socket); socket->on_receive(a->buf, a->len); return 0; } uint64 context::callback_on_firewall(utp_callback_arguments* a) { auto* self = (context*) utp_context_get_userdata(a->context); if (self->_accepting_sockets.empty()) { return 1; } return 0; } uint64 context::callback_on_accept(utp_callback_arguments* a) { auto* self = (context*) utp_context_get_userdata(a->context); if (self->_accepting_sockets.empty()) return 0; auto& s = self->_accepting_sockets.front(); self->_accepting_sockets.pop_front(); s.on_accept(a->socket); return 0; } context::context(shared_ptr<udp_multiplexer_impl> m) : _multiplexer(std::move(m)) , _local_endpoint(_multiplexer->local_endpoint()) , _utp_ctx(utp_init(2 /* version */)) { if (_debug) { log(this, " context::context()"); } // TODO: Throw? assert(_utp_ctx); _recv_handle.handler = [&] ( const sys::error_code& ec , const endpoint_type& ep , const uint8_t* data , size_t size) { return on_read(ec, ep, data, size); }; _ticker = make_shared<ticker_type>(get_executor(), [this] { assert(_utp_ctx); if (!_utp_ctx) return; if (_debug) { log(this, " context on_tick"); } utp_check_timeouts(_utp_ctx); }); utp_context_set_userdata(_utp_ctx, this); #if UTP_DEBUG_LOGGING utp_set_callback(_utp_ctx, UTP_LOG, &callback_log); //utp_context_set_option(_utp_ctx, UTP_LOG_MTU, 1); utp_context_set_option(_utp_ctx, UTP_LOG_NORMAL, 1); utp_context_set_option(_utp_ctx, UTP_LOG_DEBUG, 1); #endif utp_set_callback(_utp_ctx, UTP_SENDTO, &callback_sendto); utp_set_callback(_utp_ctx, UTP_ON_ERROR, &callback_on_error); utp_set_callback(_utp_ctx, UTP_ON_STATE_CHANGE, &callback_on_state_change); utp_set_callback(_utp_ctx, UTP_ON_READ, &callback_on_read); utp_set_callback(_utp_ctx, UTP_ON_FIREWALL, &callback_on_firewall); utp_set_callback(_utp_ctx, UTP_ON_ACCEPT, &callback_on_accept); } void context::register_socket(socket_impl& s) { assert(!s._register_hook.is_linked()); bool was_empty = _registered_sockets.empty(); _registered_sockets.push_back(s); if (was_empty) start(); } void context::unregister_socket(socket_impl& s) { assert(s._register_hook.is_linked()); s._register_hook.unlink(); if (_registered_sockets.empty()) stop(); } void context::start_receiving() { if (_debug) { log(this, " context start_receiving"); } assert(_recv_handle.handler); _ticker->start(); if (!_recv_handle.hook.is_linked()) _multiplexer->register_recv_handler(_recv_handle); } void context::start() { if (_debug) { log(this, " context start"); } } void context::stop() { if (_debug) { log(this, " context stop"); } _ticker->stop(); } void context::on_read( const sys::error_code& read_ec , const endpoint_type& ep , const uint8_t* data , size_t size) { if (_debug) { log(this, " context on_read data.size:", size , " from:", ep); } sys::error_code ec; if (!_multiplexer->available(ec)) { utp_issue_deferred_acks(_utp_ctx); } if (read_ec) return; sockaddr_storage src_addr = util::to_sockaddr(ep); // XXX: This returns a boolean whether the data were handled or not. // May be good to use it to decide whether to pass the data to other // multiplexers. utp_process_udp( _utp_ctx , (unsigned char*) data , size , (sockaddr*) &src_addr , util::sockaddr_size(src_addr)); if (!_multiplexer->available(ec)) { utp_issue_deferred_acks(_utp_ctx); } if (_outstanding_op_count) start_receiving(); } context::executor_type context::get_executor() { assert(_multiplexer && "TODO"); return _multiplexer->get_executor(); } context::~context() { if (_debug) { log(this, " ~context"); } utp_destroy(_utp_ctx); auto& s = asio::use_service<service>(_multiplexer->get_executor().context()); s.erase_context(_local_endpoint); } void context::increment_outstanding_ops(const char* dbg) { if (_debug) { log(this, " context::increment_outstanding_ops " , _outstanding_op_count, " -> ", (_outstanding_op_count + 1) , " ", dbg, " (completed:", _completed_op_count, ")"); } if (_outstanding_op_count++ == 0) { start_receiving(); } } void context::decrement_outstanding_ops(const char* dbg) { if (_debug) { log(this, " context::decrement_outstanding_ops " , _outstanding_op_count, " -> ", (_outstanding_op_count - 1) , " ", dbg, " (completed:", _completed_op_count, ")"); } if (--_outstanding_op_count == 0 && _completed_op_count == 0) { _ticker->stop(); } } void context::increment_completed_ops(const char* dbg) { if (_debug) { log(this, " context::increment_completed_ops " , _completed_op_count, " -> ", (_completed_op_count + 1) , " ", dbg, " (outstanding:", _outstanding_op_count, ")"); } _completed_op_count++; } void context::decrement_completed_ops(const char* dbg) { if (_debug) { log(this, " context::decrement_completed_ops " , _completed_op_count, " -> ", (_completed_op_count - 1) , " ", dbg, " (outstanding:", _outstanding_op_count, ")"); } if (--_completed_op_count == 0 && _outstanding_op_count == 0) { _ticker->stop(); } }
{"hexsha": "66ed6ea224c4f7611b3f32ad0e02f3616bf10f0f", "size": 9777, "ext": "cpp", "lang": "C++", "max_stars_repo_path": "src/context.cpp", "max_stars_repo_name": "inetic/asio-utp", "max_stars_repo_head_hexsha": "3c058a9c7d2ae934764d0aaa72e960870e39950a", "max_stars_repo_licenses": ["BSL-1.0"], "max_stars_count": 28.0, "max_stars_repo_stars_event_min_datetime": "2018-05-23T05:53:20.000Z", "max_stars_repo_stars_event_max_datetime": "2020-09-04T22:13:20.000Z", "max_issues_repo_path": "src/context.cpp", "max_issues_repo_name": "inetic/asio-utp", "max_issues_repo_head_hexsha": "3c058a9c7d2ae934764d0aaa72e960870e39950a", "max_issues_repo_licenses": ["BSL-1.0"], "max_issues_count": 5.0, "max_issues_repo_issues_event_min_datetime": "2019-01-03T10:09:20.000Z", "max_issues_repo_issues_event_max_datetime": "2020-06-11T08:56:39.000Z", "max_forks_repo_path": "src/context.cpp", "max_forks_repo_name": "equalitie/asio-utp", "max_forks_repo_head_hexsha": "3c058a9c7d2ae934764d0aaa72e960870e39950a", "max_forks_repo_licenses": ["BSL-1.0"], "max_forks_count": 1.0, "max_forks_repo_forks_event_min_datetime": "2019-05-19T18:25:16.000Z", "max_forks_repo_forks_event_max_datetime": "2019-05-19T18:25:16.000Z", "avg_line_length": 26.3530997305, "max_line_length": 81, "alphanum_fraction": 0.5939449729, "num_tokens": 2433}
from analysis.jobAnalysis import calculate_histogram import pickle import MySQLdb import numpy as np class Result(object): """ Abstract class for results on a workload analysis. Such a class has to be able to calculate some data over a data set. This class stores the results in an database, data can also be retrieved from a DB. Should expose data in a way that can be plotted. """ def __init__(self, table_name, keys=None): """ Constructor Args: - table_name: string containing the database table name that store data from this Result. - keys: list of unique strings identifying each component of a result. """ if keys is None: keys=[] self._data = {} self._table_name=table_name self._keys= keys def calculate(self, dataset): """ Calculate's statistics on dataset and stores results in self._data. """ pass def store(self, db_obj, trace_id, measurement_type): """ Stores the content of self._data in the self._table_name table. Args: - db_obj: Data DBManager object to interact with database. Returns: the primary key identifying the result entry in the database. Raises SystemError exception if insertiln fails. """ keys = list(self._data.keys()) values = [self._encode(self._data[key], key) for key in keys] keys = ["trace_id", "type"] + keys values= [trace_id, measurement_type] + values ok, insert_id = db_obj.insertValues(self._table_name, keys, values, get_insert_id=True) if not ok: raise SystemError("Data insertion failed") return insert_id def load(self, db_obj, trace_id, measurement_type): """ Loads self._data from the row indentified by data_id in self._table_name table. Args: - db_obj: DBManager object allows access to a database. - data_id: id of the record to load for the database. """ keys = self._keys data_dic=db_obj.getValuesDicList(self._table_name, keys, condition= "trace_id={0} and type='{1}'".format( trace_id, measurement_type)) if data_dic is not None and data_dic != (): for key in keys: self._set(key, self._decode(data_dic[0][key], key)) def get_data(self): return self._data def _set(self, data_name, data_value): self._data[data_name] = data_value def _get(self, data_name): if data_name in list(self._data.keys()): return self._data[data_name] return None def _encode(self, data_value, key): """ Encodes data_value to the format of a column of the table used by this class. To be re-implemented in child classes as the table defintion will change.""" return data_value def _decode(self, blob, key): """ Decodes blob from the format outputed by a dabatase query. To be re-implemented in child classes as the table implementation will change.""" return blob def create_table(self, db_obj): """ Creates the table associated with this Result class. Args: - db_obj: DBManager object allows access to a database. """ db_obj.doUpdate(self._create_query()) def _create_query(self): """Returns a string with the query needed to create a table corresponding to this Result class. To be modifed according to the table formats required by the child classes.""" return "" def get_list_of_results(self, db_obj, trace_id): """Returns a list of the result types corresponding to this Result that are for a trace identified by trace_id. Args: - db_obj: DBMaster connected object. - trace_id: integer id of a trace """ lists = db_obj.getValuesAsColumns( self._table_name, ["type"], condition = "trace_id={0}".format(trace_id)) return lists["type"] def plot(self, file_name): """Plots results on a filename""" pass class Histogram(Result): """ Histogram Result class. It produces an histogram (bins and edges) on a dataset. """ def __init__(self): super(Histogram,self).__init__(table_name="histograms", keys = ["bins", "edges"]) def calculate(self, data_set, bin_size, minmax=None, input_bins=None): """ Calculates the histogram according to the data_set. Args: - data_set: list of numbers to be analyzed. - bin_size: float pointing to the size of the output bins. - minmax: tuple (min, max) numbers to perform the histogram over. - input_bins: list of edges to be used in the histogram. if set it overrides bin_size. """ if bin_size is None and minmax is None: raise ValueError("Either bin_size or bin has to be set") bins, edges = calculate_histogram(data_set, th_min=0.0, th_acc=0.0, range_values=minmax, interval_size=bin_size, bins=input_bins) self._set("bins", bins) self._set("edges", edges) def get_data(self): return self._get("bins"), self._get("edges") def _create_query(self): return """create table {0} ( id INT NOT NULL AUTO_INCREMENT, trace_id INT(10) NOT NULL, type VARCHAR(128) NOT NULL, bins LONGBLOB, edges LONGBLOB, PRIMARY KEY(id, trace_id, type) )""".format(self._table_name) def _encode(self, data_value, key): import codecs """Datbase uses blobls to store the edges and bins""" pickle_data = pickle.dumps(data_value) return codecs.encode(pickle_data, "base64").decode() def _decode(self, blob, key): import codecs pickle_data=codecs.decode(blob, "base64") return pickle.loads(pickle_data) class NumericList(Result): def _create_query(self): cad= """create table `{0}` ( id INT NOT NULL AUTO_INCREMENT, trace_id INT(10) NOT NULL, type VARCHAR(128) NOT NULL, """.format(self._table_name) for field in self._keys: cad+=" {0} DOUBLE,".format(field) cad+=""" PRIMARY KEY(id, trace_id, type))""" return cad def set_dic(self, the_dic): for (key,value) in the_dic.items(): self._set(key, value) def apply_factor(self, factor): for key in self._keys: self._set(key, float(self._get(key))*float(factor)) class NumericStats(Result): """ Does a basic analysis over a dataset including: minimum, maximum, mean, standard deviation, dataset count, median and five percentiles (5, 25, 50 75,95). Returned object by get_data is a dictionary indexed by these keys: "min", "max", "mean", "std", "count", "median", "p05", "p25", "p50", "p75", "p95". """ def __init__(self): super(NumericStats,self).__init__(table_name="numericStats", keys = ["min", "max", "mean", "std", "count", "median", "p05", "p25", "p50", "p75", "p95" ]) def apply_factor(self, factor): for key in ["min", "max", "mean", "std", "median", "p05", "p25", "p50", "p75", "p95" ]: self._set(key, float(self._get(key))*float(factor)) def calculate(self, data_set): """Calculates a number of numerica statistical metrics over the numbers in the data_Set list. """ x = np.array(data_set, dtype=np.float) self._set("min", min(x)) self._set("max", max(x)) self._set("mean", np.mean(x)) self._set("std", np.std(x)) self._set("count", x.shape[0]) percentile_name=["p05", "p25", "p50", "p75", "p95"] percentlie_values = np.percentile(x, [5, 25, 50, 75, 95]) self._set("median", percentlie_values[2]) for (key, per) in zip(percentile_name, percentlie_values): self._set(key, per) def _encode(self, data_value, key): return data_value def _decode(self, blob, key): return float(blob) def _create_query(self): return """create table {0} ( id INT NOT NULL AUTO_INCREMENT, trace_id INT(10) NOT NULL, type VARCHAR(128) NOT NULL, min DOUBLE, max DOUBLE, mean DOUBLE, std DOUBLE, count int, median DOUBLE, p05 DOUBLE, p25 DOUBLE, p50 DOUBLE, p75 DOUBLE, p95 DOUBLE, PRIMARY KEY(id, trace_id, type) )""".format(self._table_name) def get_values_boxplot(self): data_names = "median", "p25", "p75", "min", "max" return [self._get(x) for x in data_names] def calculate_results(data_list, field_list, bin_size_list, minmax_list, store=False, db_obj=None, trace_id=None): """Calculates CDF and Stats result over the lists of values in data_list. Sets the results as variables of caller_obj. Args: - caller_obj: Object over which the results will be set as "_[field_name]_cdf" for Histogram objects and "_[field_name]_stats" for NumericStats objects. - data_list: lists of lists of values to be analyzed. - field_list: list of strings with the name of the data set in the same position as in data_list. - bin_size_list: list of Bin sizes to be used for the CDF analysis of the dataset in the same position at data_list. - minmax_list: lists if tuples of numbers with the maximum and minimum values to use in each CDF analysis. - store: if True, the resulting Result objects will store their content in a database. - db_obj: DBManager object configured to access a database on which data was stored. - trace_id: Numeric ID of the trace originating the data in data_list. """ cdf_field_list = [x+"_cdf" for x in field_list] stats_field_list = [x+"_stats" for x in field_list] results_dic={} for (data, cdf_field, stats_field, bin_size, minmax) in zip(data_list, cdf_field_list, stats_field_list, bin_size_list, minmax_list): if data: cdf = Histogram() cdf.calculate(data, bin_size=bin_size, minmax=minmax) if store: cdf.store(db_obj, trace_id, cdf_field) results_dic[cdf_field]=cdf stats = NumericStats() if data: stats.calculate(data) if store: stats.store(db_obj, trace_id, stats_field) results_dic[stats_field]=stats return results_dic def load_results(field_list, db_obj, trace_id): """Creates a number of Histogram and NumericStats objects, populate from the database and set them as variables of caller_obj. Args: - caller_obj: Object where the result objects will be set. - field_list: type of data the the results are loaded. Corresponding results will be pulled for Histogram and NumericStats tables. - db_obj: DBManager object configured to access a database from which data will be retrieved. - trace_id: numeric id identifying the trace to which the data should be loaded. """ results = {} cdf_field_list = [x+"_cdf" for x in field_list] stats_field_list = [x+"_stats" for x in field_list] for (cdf_field, stats_field) in zip(cdf_field_list, stats_field_list): cdf = Histogram() cdf.load(db_obj, trace_id, cdf_field) if cdf is not None: results[cdf_field] = cdf stats = NumericStats() stats.load(db_obj, trace_id, stats_field) if stats is not None: results[stats_field] = stats return results
{"hexsha": "032cb054d7dbf5df5971c35c073df08fa1f7f97d", "size": 12728, "ext": "py", "lang": "Python", "max_stars_repo_path": "stats/__init__.py", "max_stars_repo_name": "gonzalorodrigo/ScSFWorkload", "max_stars_repo_head_hexsha": "2301dacf486df8ed783c0ba33cbbde6e9978c17e", "max_stars_repo_licenses": ["BSD-3-Clause-LBNL"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2019-03-18T18:27:49.000Z", "max_stars_repo_stars_event_max_datetime": "2019-03-18T18:27:49.000Z", "max_issues_repo_path": "stats/__init__.py", "max_issues_repo_name": "gonzalorodrigo/ScSFWorkload", "max_issues_repo_head_hexsha": "2301dacf486df8ed783c0ba33cbbde6e9978c17e", "max_issues_repo_licenses": ["BSD-3-Clause-LBNL"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2020-12-17T21:33:15.000Z", "max_issues_repo_issues_event_max_datetime": "2020-12-17T21:35:41.000Z", "max_forks_repo_path": "stats/__init__.py", "max_forks_repo_name": "gonzalorodrigo/ScSFWorkload", "max_forks_repo_head_hexsha": "2301dacf486df8ed783c0ba33cbbde6e9978c17e", "max_forks_repo_licenses": ["BSD-3-Clause-LBNL"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2021-01-05T08:23:20.000Z", "max_forks_repo_forks_event_max_datetime": "2021-01-05T08:23:20.000Z", "avg_line_length": 37.7685459941, "max_line_length": 80, "alphanum_fraction": 0.5793526084, "include": true, "reason": "import numpy", "num_tokens": 2867}
# -*- coding: utf-8 -*- # from functools import reduce import numpy as np import talib from .context import ExecutionContext from .utils import FormulaException, rolling_window, handle_numpy_warning from .time_series import ( MarketDataSeries, NumericSeries, BoolSeries, fit_series, get_series, get_bars, ensure_timeseries, ) from .helper import zig_helper # ignore pandas warning import warnings __updated__ = "2021-06-24" warnings.simplefilter(action='ignore', category=FutureWarning) # delete nan of series for error made by some operator def filter_begin_nan(series): i = 0 for x in series: if np.isnan(x): i += 1 else: break return series[i:] class ArgumentSeriesBase(NumericSeries): def getFunc(self): """EXAMPLE: def getFunc(self): return talib.MA """ raise NotImplementedError class OneArgumentSeries(ArgumentSeriesBase): def __init__(self, series, arg): if isinstance(series, NumericSeries): series = series.series try: if series.dtype != int: series[np.isinf(series)] = np.nan # print(f"series type:{type(series)}; self.func: {help(self.func)}") # func = self.getFunc() # series = func(series, arg) series = self.getFunc()(series, arg) # series = filter_begin_nan(series) except Exception as e: if series.dtype == int: series = self.getFunc()(series.astype(float), arg) else: print(f"series error: {series}") raise FormulaException(e) super(ArgumentSeriesBase, self).__init__(series) self.extra_create_kwargs["arg"] = arg # def __init__(self, series, arg): # if isinstance(series, NumericSeries): # series = series.series # # try: # series[np.isinf(series)] = np.nan # print(f"series type:{type(series)}; self.func: {help(self.func)}") # series = self.func(series, arg) # except Exception as e: # raise FormulaException(e) # super(OneArgumentSeries, self).__init__(series) # self.extra_create_kwargs["arg"] = arg class MovingAverageSeries(OneArgumentSeries): """http://www.tadoc.org/indicator/MA.htm""" def getFunc(self): return talib.MA class WeightedMovingAverageSeries(OneArgumentSeries): """http://www.tadoc.org/indicator/WMA.htm""" def getFunc(self): return talib.WMA class ExponentialMovingAverageSeries(OneArgumentSeries): """http://www.fmlabs.com/reference/default.htm?url=ExpMA.htm""" # func = talib.EMA def getFunc(self): return talib.EMA class KAMASeries(OneArgumentSeries): """Kaufman's Adaptative Moving Average 传统的移动均线包括简单移动均线,加权移动均线以及指数式移动均线,它们有着固有的弱点——慢趋势和滞后。 短周期的均线系统虽然能快速反映期货价格的走势,但是又难以抵抗价格“噪音”的干扰,多数情况下短周期所给出的趋势信号并不准确。 为了避免短期噪音产生的虚假信号与长期趋势中的滞后,考夫曼提出来“自适应的”均线系统,AMA。AMA可以在市场沿一个方向快速移动的时候,使用快的移动平均值,而在价格在横盘的市场中拉锯时,使用慢速的移动平均值。 ER是净价格变动与总价格位移的比值,用来度量交易日价格的变化程度,计算很简单。ER的范围从0到1,ER的值越接近1说明市场趋势越快,ER的值越接近0,表明市场噪声越多。 ER = Change/Volatility Change = ABS(Close - Close (10 periods ago)) Volatility = Sum10(ABS(Close - Prior Close)) 根据ER以及两个指数平滑(exponential moving average)常数,可以推导出 SC(Smoothing Constant)= [ER x (fastest SC - slowest SC) + slowest] 其中,fatest SC=2/(2+1), slowest SC=2/(30+1)。SC表征趋势速度,ER变大的过程可以看成是趋势由慢转快的过程,SC与ER成正比例变化。值得指出的是,在此取平方是为了在市场横盘阶段更好地阻止趋势均线的移动。 这样,我们就可以得到: Current KAMA = Prior KAMA + SC x (Price - Prior KAMA) KAMA是自适应的,速度由平滑系数SC决定。 """ def getFunc(self): return talib.KAMA class StdSeries(OneArgumentSeries): def getFunc(self): return talib.STDDEV def __init__(self, series, arg): super().__init__(series, arg) if arg > 1: # 使用样本方差 a = (arg / (arg - 1)) ** 0.5 self._series = self.series * a class TwoArgumentSeries(ArgumentSeriesBase): # class TwoArgumentSeries(NumericSeries): def __init__(self, series, arg1, arg2=None): if isinstance(series, NumericSeries): series = series.series try: series[np.isinf(series)] = np.nan series = self.getFunc()(series, arg1, arg2) series = filter_begin_nan(series) except Exception as e: raise FormulaException(e) super(TwoArgumentSeries, self).__init__(series) self.extra_create_kwargs["arg1"] = arg1 self.extra_create_kwargs["arg2"] = arg2 class SMASeries(TwoArgumentSeries): """同花顺专用SMA""" def getFunc(self): return self.func def func(self, series, n, _): results = np.nan_to_num(series).copy() # FIXME this is very slow # https://stackoverflow.com/questions/42869495/numpy-version-of-exponential-weighted-moving-average-equivalent-to-pandas-ewm for i in range(1, len(series)): results[i] = ((n - 1) * results[i - 1] + results[i]) / n return results class CCISeries(TwoArgumentSeries): def getFunc(self): return talib.CCI def __init__(self, high, low, close): if isinstance(high, NumericSeries) and isinstance(low, NumericSeries) and isinstance(close, NumericSeries): series1 = low.series series2 = close.series try: series1[series1 == np.inf] = np.nan series2[series2 == np.inf] = np.nan except Exception as e: raise FormulaException(e) super(CCISeries, self).__init__(high, series1, series2) # def __init__(self, high, low, close): # if isinstance(high, NumericSeries) and isinstance(low, NumericSeries) and isinstance(close, NumericSeries): # series0 = high.series # series1 = low.series # series2 = close.series # # try: # series0[series0 == np.inf] = np.nan # series1[series1 == np.inf] = np.nan # series2[series2 == np.inf] = np.nan # func = self.getFunc() # # print(func, help(func)) # series = func(series0, series1, series2) # # series = (self.getFunc())(series0, series1, series2) # except Exception as e: # raise FormulaException(e) # super(CCISeries, self).__init__(series) class SumSeries(NumericSeries): """求和""" def __init__(self, series, period): if isinstance(series, NumericSeries): series = series.series try: series[np.isinf(series)] = 0 series = talib.SUM(series, period) except Exception as e: raise FormulaException(e) super(SumSeries, self).__init__(series) self.extra_create_kwargs["period"] = period class AbsSeries(NumericSeries): def __init__(self, series): if isinstance(series, NumericSeries): series = series.series try: series[np.isinf(series)] = 0 # series[series == np.inf] = 0 # series[series == -np.inf] = 0 series = np.abs(series) except Exception as e: raise FormulaException(e) super(AbsSeries, self).__init__(series) @handle_numpy_warning def CrossOver(s1, s2): """s1金叉s2 :param s1: :param s2: :returns: bool序列 :rtype: BoolSeries """ s1, s2 = ensure_timeseries(s1), ensure_timeseries(s2) series1, series2 = fit_series(s1.series, s2.series) cond1 = series1 > series2 series1, series2 = fit_series(s1[1].series, s2[1].series) cond2 = series1 <= series2 # s1[1].series <= s2[1].series cond1, cond2 = fit_series(cond1, cond2) s = cond1 & cond2 return BoolSeries(s) def Ref(s1, n): """引用若干周期前的数据(平滑处理). 用法: REF(X,A),引用A周期前的X值.A可以是变量. 平滑处理:当引用不到数据时进行的操作.此函数中,平滑时使用上一个周期的引用值. 例如: REF(CLOSE,BARSCOUNT(C)-1)表示第二根K线的收盘价. """ if isinstance(n, NumericSeries): return s1[int(n.value)] return s1[n] @handle_numpy_warning def minimum(s1, s2): s1, s2 = ensure_timeseries(s1), ensure_timeseries(s2) if len(s1) == 0 or len(s2) == 0: raise FormulaException("minimum size == 0") series1, series2 = fit_series(s1.series, s2.series) s = np.minimum(series1, series2) return NumericSeries(s) @handle_numpy_warning def maximum(s1, s2): s1, s2 = ensure_timeseries(s1), ensure_timeseries(s2) if len(s1) == 0 or len(s2) == 0: raise FormulaException("maximum size == 0") series1, series2 = fit_series(s1.series, s2.series) s = np.maximum(series1, series2) return NumericSeries(s) @handle_numpy_warning def count(cond, n): """统计满足条件的周期数. 用法: COUNT(X,N),统计N周期中满足X条件的周期数,若N<0则从第一个有效值开始. 例如: COUNT(CLOSE>OPEN,20)表示统计20周期内收阳的周期数 """ # TODO lazy compute series = cond.series size = len(cond.series) - n try: # result = np.full(size, 0, dtype=np.int) result = np.full(size, 0, dtype=int) except ValueError as e: raise FormulaException(e) for i in range(size - 1, 0, -1): s = series[-n:] result[i] = len(s[s == True]) series = series[:-1] return NumericSeries(result) @handle_numpy_warning def every(cond, n): return count(cond, n) == n @handle_numpy_warning def hhv(s, n): # TODO lazy compute series = s.series # size = len(s.series) - n # try: # # result = np.full(size, 0, dtype=np.float64) # # result = np.full(size, 0, dtype=float) # pass # except ValueError as e: # raise FormulaException(e) if 0 < n < len(series): result = np.max(rolling_window(series, n), 1) result = np.append(np.array([np.nan] * (n - 1)), result) else: result = np.array([np.max(series)]) if n > 0: result = np.append(np.array([np.nan] * (len(series) - 1)), result) return NumericSeries(result) @handle_numpy_warning def llv(s, n): """LLV(X,N),求N周期内X最低值,N=0则从第一个有效值开始. 例如: LLV(LOW,N)表示N个周期内的最低价; LLV(LOW,0)表示求历史最低价; """ # TODO lazy compute series = s.series # size = len(s.series) - n # try: # pass # # result = np.full(size, 0, dtype=np.float64) # # result = np.full(size, 0, dtype=float) # except ValueError as e: # raise FormulaException(e) if 0 < n < len(series): result = np.min(rolling_window(series, n), 1) result = np.append(np.array([np.nan] * (n - 1)), result) else: result = np.array([np.min(series)]) if n > 0: result = np.append(np.array([np.nan] * (len(series) - 1)), result) return NumericSeries(result) @handle_numpy_warning def hhvbars(s, n): """HHVBARS 上一高点位置 求上一高点到当前的周期数. 用法: HHVBARS(X,N):求N周期内X最高值到当前周期数,N=0表示从第一个有效值开始统计 例如:HHVBARS(HIGH,0)求得历史新高到到当前的周期数 """ # TODO lazy compute series = s.series size = len(s.series) - n try: # result = np.full(size, 0, dtype=np.float64) result = np.full(size, 0, dtype=float) except ValueError as e: raise FormulaException(e) result = np.argmax(rolling_window(series, n), 1) return NumericSeries(result) @handle_numpy_warning def llvbars(s, n): """LLVBARS 上一低点位置 求上一低点到当前的周期数. 用法: LLVBARS(X,N):求N周期内X最低值到当前周期数,N=0表示从第一个有效值开始统计 例如:LLVBARS(LOW,20)求得20日最低点到当前的周期数 """ # TODO lazy compute series = s.series size = len(s.series) - n try: # result = np.full(size, 0, dtype=np.float64) result = np.full(size, 0, dtype=float) except ValueError as e: raise FormulaException(e) result = np.argmin(rolling_window(series, n), 1) return NumericSeries(result) @handle_numpy_warning def iif(condition, true_statement, false_statement): """IF 逻辑判断 根据条件求不同的值。 用法: IF(X,A,B) 若X不为0则返回A,否则返回B。 例如: IF(CLOSE>OPEN,HIGH,LOW)表示该周期收阳则返回最高值,否则返回最低值。 IFF 逻辑判断 根据条件求不同的值。 用法: IFF(X,A,B) 若X不为0则返回A,否则返回B。 例如: IFF(CLOSE>OPEN,HIGH,LOW) 表示该周期收阳则返回最高值,否则返回最低值。 """ n = len(condition) series1 = get_series(true_statement, n) series2 = get_series(false_statement, n) cond_series, series1, series2 = fit_series( condition.series, series1, series2) series = series2.copy() series[cond_series] = series1[cond_series] return NumericSeries(series) @handle_numpy_warning def ceiling(s): """CEILING 向上舍入 向上舍入。 用法: CEILING(A) 返回沿A数值增大方向最接近的整数。 例如: CEILING(12.3) 求得13,CEILING(-3.5)求得-3。 FLOOR 向下舍入 向下舍入。 用法: FLOOR(A) 返回沿A数值减小方向最接近的整数。 """ series = s.series return NumericSeries(np.ceil(series)) @handle_numpy_warning def const(s): if isinstance(s, NumericSeries): return NumericSeries(s.series) elif isinstance(s, np.ndarray): return NumericSeries(s) else: return NumericSeries(np.array([s])) @handle_numpy_warning def drawnull(s): """DRAWNULL 无效数 返回无效数。 用法: DRAWNULL 例如: IF(CLOSE>REF(CLOSE,1),CLOSE,DRAWNULL) 表示下跌时分析图上不画线。 BACKSET 向前赋值 """ pass @handle_numpy_warning def zig(s, n): """ZIG 之字转向 之字转向。 用法: ZIG(K,N) 当价格变化量超过N%时转向,K表示0:开盘价,1:最高价, 2:最低价,3:收盘价,其余:数组信息 例如: ZIG(3,5) 表示收盘价的5%的ZIG转向。 """ series = s.series assert isinstance(series, np.ndarray) z, _ = zig_helper(series, n) return NumericSeries(z) @handle_numpy_warning def troughbars(s, n, m): """TROUGHBARS 波谷位置 前M个ZIG转向波谷到当前距离。 用法: TROUGHBARS(K,N,M) 表 示之字转向ZIG(K,N)的前M个波谷到当前的周期数,M必须大于等于1。 例如: TROUGH(2,5,2) 表示%5最低价ZIG转向的前2个波谷到当前的周期数。 """ series = s.series assert isinstance(series, np.ndarray) z, peers = zig_helper(series, n) z_in_p = [z[i] for i in peers] count = 0 for i in range(len(z_in_p) - 1, 1, -1): if count == m: return i if z_in_p[i] < z_in_p[i - 1]: count += 1 return 0 @handle_numpy_warning def barslast(statement): """BARSLAST 上一条件成立位置 上一次条件成立到当前的周期数. 用法: BARSLAST(X):上一次X不为0到现在的天数, 例如:BARSLAST(CLOSE/REF(CLOSE,1)>=1. """ series = get_series(statement) size = len(series) end = size begin = size - 1 try: result = np.full(size, 1e16, dtype=int) except ValueError as e: raise FormulaException(e) for s in series[::-1]: if s: result[begin:end] = range(0, end - begin) end = begin begin -= 1 return NumericSeries(result) @handle_numpy_warning def mular(series, n): """求累乘. 用法: MULAR(X,N),统计N周期中X的乘积.N=0则从第一个有效值开始. 例如: MULAR(C/REF(C,1),0)表示统计从上市第一天以来的复利 """ raise Exception("not implement!!!") # @handle_numpy_warning def upnday(s, m: int): """返回是否连涨周期数. 用法: UPNDAY(CLOSE,M) 表示连涨M个周期,M为常量 """ # s = get_series(s) return every(s > Ref(s, 1), m) @handle_numpy_warning def downnday(s, m: int): """返回是否连跌周期. 用法: DOWNNDAY(CLOSE,M) 表示连跌M个周期,M为常量 """ return every(s < Ref(s, 1), m) def nday(s1, s2, m: int): """返回是否持续存在X>Y 用法: NDAY(CLOSE,OPEN,3) 表示连续3日收阳线 """ return every(s1 > s2, m) def codelike(s: str): """品种代码是否以参数开头. 用法: if(CODELIKE('600'),x,y); """ # todo raise Exception("not implemented")
{"hexsha": "be159baeaf8d4a85b407bfe8b75a9949086767a3", "size": 15393, "ext": "py", "lang": "Python", "max_stars_repo_path": "funcat/func.py", "max_stars_repo_name": "pchaos/funcat2", "max_stars_repo_head_hexsha": "ff554cc134906a5a182fc31774488d62a839b314", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 10, "max_stars_repo_stars_event_min_datetime": "2021-05-06T01:17:28.000Z", "max_stars_repo_stars_event_max_datetime": "2022-01-09T16:56:51.000Z", "max_issues_repo_path": "funcat/func.py", "max_issues_repo_name": "pchaos/funcat2", "max_issues_repo_head_hexsha": "ff554cc134906a5a182fc31774488d62a839b314", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "funcat/func.py", "max_forks_repo_name": "pchaos/funcat2", "max_forks_repo_head_hexsha": "ff554cc134906a5a182fc31774488d62a839b314", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 4, "max_forks_repo_forks_event_min_datetime": "2021-05-26T14:25:01.000Z", "max_forks_repo_forks_event_max_datetime": "2022-01-09T16:56:44.000Z", "avg_line_length": 27.1003521127, "max_line_length": 132, "alphanum_fraction": 0.6119664783, "include": true, "reason": "import numpy", "num_tokens": 5121}
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy import numpy as np from pyscf.pbc import gto as pgto import pyscf.pbc.dft as pdft from pyscf.pbc.df import fft, aft, mdf ################################################## # # port from ao2mo/eris.py # ################################################## from pyscf import lib from pyscf.pbc import lib as pbclib from pyscf.pbc.dft.gen_grid import gen_uniform_grids from pyscf.pbc.dft.numint import eval_ao from pyscf.pbc import tools einsum = np.einsum """ (ij|kl) = \int dr1 dr2 i*(r1) j(r1) v(r12) k*(r2) l(r2) = (ij|G) v(G) (G|kl) i*(r) j(r) = 1/N \sum_G e^{iGr} (G|ij) = 1/N \sum_G e^{-iGr} (ij|G) "forward" FFT: (G|ij) = \sum_r e^{-iGr} i*(r) j(r) = fft[ i*(r) j(r) ] "inverse" FFT: (ij|G) = \sum_r e^{iGr} i*(r) j(r) = N * ifft[ i*(r) j(r) ] = conj[ \sum_r e^{-iGr} j*(r) i(r) ] """ def general(cell, mo_coeffs, kpts=None, compact=0): '''pyscf-style wrapper to get MO 2-el integrals.''' assert len(mo_coeffs) == 4 if kpts is not None: assert len(kpts) == 4 return get_mo_eri(cell, mo_coeffs, kpts) def get_mo_eri(cell, mo_coeffs, kpts=None): '''Convenience function to return MO 2-el integrals.''' mo_coeff12 = mo_coeffs[:2] mo_coeff34 = mo_coeffs[2:] if kpts is None: kpts12 = kpts34 = q = None else: kpts12 = kpts[:2] kpts34 = kpts[2:] q = kpts12[0] - kpts12[1] #q = kpts34[1] - kpts34[0] if q is None: q = np.zeros(3) mo_pairs12_kG = get_mo_pairs_G(cell, mo_coeff12, kpts12) mo_pairs34_invkG = get_mo_pairs_invG(cell, mo_coeff34, kpts34, q) return assemble_eri(cell, mo_pairs12_kG, mo_pairs34_invkG, q) def get_mo_pairs_G(cell, mo_coeffs, kpts=None, q=None): '''Calculate forward (G|ij) FFT of all MO pairs. TODO: - Implement simplifications for real orbitals. Args: mo_coeff: length-2 list of (nao,nmo) ndarrays The two sets of MO coefficients to use in calculating the product |ij). Returns: mo_pairs_G : (ngrids, nmoi*nmoj) ndarray The FFT of the real-space MO pairs. ''' coords = gen_uniform_grids(cell) if kpts is None: q = np.zeros(3) aoR = eval_ao(cell, coords) ngrids = aoR.shape[0] if np.array_equal(mo_coeffs[0], mo_coeffs[1]): nmoi = nmoj = mo_coeffs[0].shape[1] moiR = mojR = einsum('ri,ia->ra', aoR, mo_coeffs[0]) else: nmoi = mo_coeffs[0].shape[1] nmoj = mo_coeffs[1].shape[1] moiR = einsum('ri,ia->ra', aoR, mo_coeffs[0]) mojR = einsum('ri,ia->ra', aoR, mo_coeffs[1]) else: if q is None: q = kpts[1]-kpts[0] aoR_ki = eval_ao(cell, coords, kpt=kpts[0]) aoR_kj = eval_ao(cell, coords, kpt=kpts[1]) ngrids = aoR_ki.shape[0] nmoi = mo_coeffs[0].shape[1] nmoj = mo_coeffs[1].shape[1] moiR = einsum('ri,ia->ra', aoR_ki, mo_coeffs[0]) mojR = einsum('ri,ia->ra', aoR_kj, mo_coeffs[1]) #mo_pairs_R = einsum('ri,rj->rij', np.conj(moiR), mojR) mo_pairs_G = np.zeros([ngrids,nmoi*nmoj], np.complex128) fac = np.exp(-1j*np.dot(coords, q)) for i in range(nmoi): for j in range(nmoj): mo_pairs_R_ij = np.conj(moiR[:,i])*mojR[:,j] mo_pairs_G[:,i*nmoj+j] = tools.fftk(mo_pairs_R_ij, cell.mesh, fac) return mo_pairs_G def get_mo_pairs_invG(cell, mo_coeffs, kpts=None, q=None): '''Calculate "inverse" (ij|G) FFT of all MO pairs. TODO: - Implement simplifications for real orbitals. Args: mo_coeff: length-2 list of (nao,nmo) ndarrays The two sets of MO coefficients to use in calculating the product |ij). Returns: mo_pairs_invG : (ngrids, nmoi*nmoj) ndarray The inverse FFTs of the real-space MO pairs. ''' coords = gen_uniform_grids(cell) if kpts is None: q = np.zeros(3) aoR = eval_ao(cell, coords) ngrids = aoR.shape[0] if np.array_equal(mo_coeffs[0], mo_coeffs[1]): nmoi = nmoj = mo_coeffs[0].shape[1] moiR = mojR = einsum('ri,ia->ra', aoR, mo_coeffs[0]) else: nmoi = mo_coeffs[0].shape[1] nmoj = mo_coeffs[1].shape[1] moiR = einsum('ri,ia->ra', aoR, mo_coeffs[0]) mojR = einsum('ri,ia->ra', aoR, mo_coeffs[1]) else: if q is None: q = kpts[1]-kpts[0] aoR_ki = eval_ao(cell, coords, kpt=kpts[0]) aoR_kj = eval_ao(cell, coords, kpt=kpts[1]) ngrids = aoR_ki.shape[0] nmoi = mo_coeffs[0].shape[1] nmoj = mo_coeffs[1].shape[1] moiR = einsum('ri,ia->ra', aoR_ki, mo_coeffs[0]) mojR = einsum('ri,ia->ra', aoR_kj, mo_coeffs[1]) #mo_pairs_R = einsum('ri,rj->rij', np.conj(moiR), mojR) mo_pairs_invG = np.zeros([ngrids,nmoi*nmoj], np.complex128) fac = np.exp(1j*np.dot(coords, q)) for i in range(nmoi): for j in range(nmoj): mo_pairs_R_ij = np.conj(moiR[:,i])*mojR[:,j] mo_pairs_invG[:,i*nmoj+j] = np.conj(tools.fftk(np.conj(mo_pairs_R_ij), cell.mesh, fac)) return mo_pairs_invG def get_mo_pairs_G_old(cell, mo_coeffs, kpts=None, q=None): '''Calculate forward (G|ij) and "inverse" (ij|G) FFT of all MO pairs. TODO: - Implement simplifications for real orbitals. Args: mo_coeff: length-2 list of (nao,nmo) ndarrays The two sets of MO coefficients to use in calculating the product |ij). Returns: mo_pairs_G, mo_pairs_invG : (ngrids, nmoi*nmoj) ndarray The FFTs of the real-space MO pairs. ''' coords = gen_uniform_grids(cell) if kpts is None: q = np.zeros(3) aoR = eval_ao(cell, coords) ngrids = aoR.shape[0] if np.array_equal(mo_coeffs[0], mo_coeffs[1]): nmoi = nmoj = mo_coeffs[0].shape[1] moiR = mojR = einsum('ri,ia->ra', aoR, mo_coeffs[0]) else: nmoi = mo_coeffs[0].shape[1] nmoj = mo_coeffs[1].shape[1] moiR = einsum('ri,ia->ra', aoR, mo_coeffs[0]) mojR = einsum('ri,ia->ra', aoR, mo_coeffs[1]) else: if q is None: q = kpts[1]-kpts[0] aoR_ki = eval_ao(cell, coords, kpt=kpts[0]) aoR_kj = eval_ao(cell, coords, kpt=kpts[1]) ngrids = aoR_ki.shape[0] nmoi = mo_coeffs[0].shape[1] nmoj = mo_coeffs[1].shape[1] moiR = einsum('ri,ia->ra', aoR_ki, mo_coeffs[0]) mojR = einsum('ri,ia->ra', aoR_kj, mo_coeffs[1]) mo_pairs_R = np.einsum('ri,rj->rij', np.conj(moiR), mojR) mo_pairs_G = np.zeros([ngrids,nmoi*nmoj], np.complex128) mo_pairs_invG = np.zeros([ngrids,nmoi*nmoj], np.complex128) fac = np.exp(-1j*np.dot(coords, q)) for i in range(nmoi): for j in range(nmoj): mo_pairs_G[:,i*nmoj+j] = tools.fftk(mo_pairs_R[:,i,j], cell.mesh, fac) mo_pairs_invG[:,i*nmoj+j] = np.conj(tools.fftk(np.conj(mo_pairs_R[:,i,j]), cell.mesh, fac.conj())) return mo_pairs_G, mo_pairs_invG def assemble_eri(cell, orb_pair_invG1, orb_pair_G2, q=None): '''Assemble 4-index electron repulsion integrals. Returns: (nmo1*nmo2, nmo3*nmo4) ndarray ''' if q is None: q = np.zeros(3) coulqG = tools.get_coulG(cell, -1.0*q) ngrids = orb_pair_invG1.shape[0] Jorb_pair_G2 = np.einsum('g,gn->gn',coulqG,orb_pair_G2)*(cell.vol/ngrids**2) eri = np.dot(orb_pair_invG1.T, Jorb_pair_G2) return eri def get_ao_pairs_G(cell, kpt=np.zeros(3)): '''Calculate forward (G|ij) and "inverse" (ij|G) FFT of all AO pairs. Args: cell : instance of :class:`Cell` Returns: ao_pairs_G, ao_pairs_invG : (ngrids, nao*(nao+1)/2) ndarray The FFTs of the real-space AO pairs. ''' coords = gen_uniform_grids(cell) aoR = eval_ao(cell, coords, kpt) # shape = (coords, nao) ngrids, nao = aoR.shape gamma_point = abs(kpt).sum() < 1e-9 if gamma_point: npair = nao*(nao+1)//2 ao_pairs_G = np.empty([ngrids, npair], np.complex128) ij = 0 for i in range(nao): for j in range(i+1): ao_ij_R = np.conj(aoR[:,i]) * aoR[:,j] ao_pairs_G[:,ij] = tools.fft(ao_ij_R, cell.mesh) #ao_pairs_invG[:,ij] = ngrids*tools.ifft(ao_ij_R, cell.mesh) ij += 1 ao_pairs_invG = ao_pairs_G.conj() else: ao_pairs_G = np.zeros([ngrids, nao,nao], np.complex128) for i in range(nao): for j in range(nao): ao_ij_R = np.conj(aoR[:,i]) * aoR[:,j] ao_pairs_G[:,i,j] = tools.fft(ao_ij_R, cell.mesh) ao_pairs_invG = ao_pairs_G.transpose(0,2,1).conj().reshape(-1,nao**2) ao_pairs_G = ao_pairs_G.reshape(-1,nao**2) return ao_pairs_G, ao_pairs_invG def get_ao_eri(cell, kpt=np.zeros(3)): '''Convenience function to return AO 2-el integrals.''' ao_pairs_G, ao_pairs_invG = get_ao_pairs_G(cell, kpt) eri = assemble_eri(cell, ao_pairs_invG, ao_pairs_G) if abs(kpt).sum() < 1e-9: eri = eri.real return eri ################################################## # # ao2mo/eris.py end # ################################################## cell = pgto.Cell() cell.atom = 'He 1. .5 .5; C .1 1.3 2.1' cell.basis = {'He': [(0, (2.5, 1)), (0, (1., 1))], 'C' :'gth-szv',} cell.pseudo = {'C':'gth-pade'} cell.a = np.eye(3) * 2.5 cell.mesh = [21] * 3 cell.build() np.random.seed(1) kpts = np.random.random((4,3)) kpts[3] = kpts[0]-kpts[1]+kpts[2] kpt0 = np.zeros(3) cell1 = pgto.Cell() cell1.atom = 'He 1. .5 .5; He .1 1.3 2.1' cell1.basis = {'He': [(0, (2.5, 1)), (0, (1., 1))]} cell1.a = np.eye(3) * 2.5 cell1.mesh = [21] * 3 cell1.build() kdf0 = mdf.MDF(cell1) kdf0.auxbasis = 'weigend' kdf0.mesh = [21] * 3 kdf0.kpts = kpts def finger(a): w = np.cos(np.arange(a.size)) return np.dot(w, a.ravel()) class KnownValues(unittest.TestCase): def test_get_pp_loc_part1_high_cost(self): df = aft.AFTDF(cell) v1 = aft.get_pp_loc_part1(df, kpts[0]) self.assertAlmostEqual(finger(v1), (-6.0893491060887159+0.19823828749533859j), 8) def test_aft_get_nuc(self): df = aft.AFTDF(cell) v1 = df.get_nuc(kpts[0]) self.assertAlmostEqual(finger(v1), (-5.764786312608102+0.19126292955145852j), 8) def test_aft_get_pp(self): v0 = pgto.pseudo.get_pp(cell, kpts[0]) v1 = aft.AFTDF(cell).get_pp(kpts) self.assertTrue(np.allclose(v0, v1[0], atol=1e-5, rtol=1e-5)) self.assertAlmostEqual(finger(v1[0]), (-5.6240305085898807+0.22094834207603817j), 8) v0 = pgto.pseudo.get_pp(cell, kpts[1]) self.assertTrue(np.allclose(v0, v1[1], atol=1e-5, rtol=1e-5)) self.assertAlmostEqual(finger(v1[1]), (-5.53877585793+1.043933371359j) ,8) self.assertAlmostEqual(finger(v1[2]), (-6.05309558678+0.281728966073j), 8) self.assertAlmostEqual(finger(v1[3]), (-5.60115995450+0.275973062529j), 8) def test_aft_get_ao_eri(self): df0 = fft.FFTDF(cell1) df = aft.AFTDF(cell1) eri0 = df0.get_ao_eri(compact=True) eri1 = df.get_ao_eri(compact=True) self.assertAlmostEqual(abs(eri0-eri1).max(), 0, 9) eri0 = df0.get_ao_eri(kpts[0]) eri1 = df.get_ao_eri(kpts[0]) self.assertAlmostEqual(abs(eri0-eri1).max(), 0, 9) eri0 = df0.get_ao_eri(kpts) eri1 = df.get_ao_eri(kpts) self.assertAlmostEqual(abs(eri0-eri1).max(), 0, 9) def test_aft_get_ao_eri_high_cost(self): df0 = fft.FFTDF(cell) df = aft.AFTDF(cell) eri0 = df0.get_ao_eri(compact=True) eri1 = df.get_ao_eri(compact=True) self.assertTrue(np.allclose(eri0, eri1, atol=1e-5, rtol=1e-5)) self.assertAlmostEqual(finger(eri1), 0.80425361966560172, 8) eri0 = df0.get_ao_eri(kpts[0]) eri1 = df.get_ao_eri(kpts[0]) self.assertTrue(np.allclose(eri0, eri1, atol=1e-5, rtol=1e-5)) self.assertAlmostEqual(finger(eri1), (2.9346374476387949-0.20479054936779137j), 8) eri0 = df0.get_ao_eri(kpts) eri1 = df.get_ao_eri(kpts) self.assertTrue(np.allclose(eri0, eri1, atol=1e-5, rtol=1e-5)) self.assertAlmostEqual(finger(eri1), (0.33709287302019619-0.94185725020966538j), 8) def test_get_eri_gamma(self): odf0 = mdf.MDF(cell1) odf = aft.AFTDF(cell1) ref = odf0.get_eri() eri0000 = odf.get_eri(compact=True) self.assertTrue(eri0000.dtype == numpy.double) self.assertTrue(np.allclose(eri0000, ref, atol=1e-6, rtol=1e-6)) self.assertAlmostEqual(finger(eri0000), 0.23714016293926865, 9) def test_get_eri_gamma(self): odf = aft.AFTDF(cell1) ref = kdf0.get_eri((kpts[0],kpts[0],kpts[0],kpts[0])) eri1111 = odf.get_eri((kpts[0],kpts[0],kpts[0],kpts[0])) self.assertTrue(np.allclose(eri1111, ref, atol=1e-6, rtol=1e-6)) self.assertAlmostEqual(finger(eri1111), (1.2410388899583582-5.2370501878355006e-06j), 9) eri1111 = odf.get_eri((kpts[0]+1e-8,kpts[0]+1e-8,kpts[0],kpts[0])) self.assertTrue(np.allclose(eri1111, ref, atol=1e-6, rtol=1e-6)) self.assertAlmostEqual(finger(eri1111), (1.2410388899583582-5.2370501878355006e-06j), 9) def test_get_eri_0011(self): odf = aft.AFTDF(cell1) ref = kdf0.get_eri((kpts[0],kpts[0],kpts[1],kpts[1])) eri0011 = odf.get_eri((kpts[0],kpts[0],kpts[1],kpts[1])) self.assertTrue(np.allclose(eri0011, ref, atol=1e-3, rtol=1e-3)) self.assertAlmostEqual(finger(eri0011), (1.2410162858084512+0.00074485383749912936j), 9) ref = fft.FFTDF(cell1).get_mo_eri([numpy.eye(cell1.nao_nr())]*4, (kpts[0],kpts[0],kpts[1],kpts[1])) eri0011 = odf.get_eri((kpts[0],kpts[0],kpts[1],kpts[1])) self.assertTrue(np.allclose(eri0011, ref, atol=1e-9, rtol=1e-9)) self.assertAlmostEqual(finger(eri0011), (1.2410162860852818+0.00074485383748954838j), 9) def test_get_eri_0110(self): odf = aft.AFTDF(cell1) ref = kdf0.get_eri((kpts[0],kpts[1],kpts[1],kpts[0])) eri0110 = odf.get_eri((kpts[0],kpts[1],kpts[1],kpts[0])) self.assertTrue(np.allclose(eri0110, ref, atol=1e-6, rtol=1e-6)) eri0110 = odf.get_eri((kpts[0]+1e-8,kpts[1]+1e-8,kpts[1],kpts[0])) self.assertTrue(np.allclose(eri0110, ref, atol=1e-6, rtol=1e-6)) self.assertAlmostEqual(finger(eri0110), (1.2928399254827956-0.011820590601969154j), 9) ref = fft.FFTDF(cell1).get_mo_eri([numpy.eye(cell1.nao_nr())]*4, (kpts[0],kpts[1],kpts[1],kpts[0])) eri0110 = odf.get_eri((kpts[0],kpts[1],kpts[1],kpts[0])) self.assertTrue(np.allclose(eri0110, ref, atol=1e-9, rtol=1e-9)) self.assertAlmostEqual(finger(eri0110), (1.2928399254827956-0.011820590601969154j), 9) eri0110 = odf.get_eri((kpts[0]+1e-8,kpts[1]+1e-8,kpts[1],kpts[0])) self.assertTrue(np.allclose(eri0110, ref, atol=1e-9, rtol=1e-9)) self.assertAlmostEqual(finger(eri0110), (1.2928399254827956-0.011820590601969154j), 9) def test_get_eri_0123(self): odf = aft.AFTDF(cell1) ref = kdf0.get_eri(kpts) eri1111 = odf.get_eri(kpts) self.assertAlmostEqual(abs(eri1111-ref).max(), 0, 9) self.assertAlmostEqual(finger(eri1111), (1.2917759427391706-0.013340252488069412j), 9) ref = fft.FFTDF(cell1).get_mo_eri([numpy.eye(cell1.nao_nr())]*4, kpts) self.assertAlmostEqual(abs(eri1111-ref).max(), 0, 9) def test_get_mo_eri(self): df0 = fft.FFTDF(cell1) odf = aft.AFTDF(cell1) nao = cell1.nao_nr() numpy.random.seed(5) mo =(numpy.random.random((nao,nao)) + numpy.random.random((nao,nao))*1j) eri_mo0 = df0.get_mo_eri((mo,)*4, kpts) eri_mo1 = odf.get_mo_eri((mo,)*4, kpts) self.assertTrue(np.allclose(eri_mo1, eri_mo0, atol=1e-7, rtol=1e-7)) kpts_t = (kpts[2],kpts[3],kpts[0],kpts[1]) eri_mo2 = df0.get_mo_eri((mo,)*4, kpts_t) eri_mo2 = eri_mo2.reshape((nao,)*4).transpose(2,3,0,1).reshape(nao**2,-1) self.assertTrue(np.allclose(eri_mo2, eri_mo0, atol=1e-7, rtol=1e-7)) eri_mo0 = df0.get_mo_eri((mo,)*4, (kpts[0],)*4) eri_mo1 = odf.get_mo_eri((mo,)*4, (kpts[0],)*4) self.assertTrue(np.allclose(eri_mo1, eri_mo0, atol=1e-7, rtol=1e-7)) eri_mo0 = df0.get_mo_eri((mo,)*4, (kpts[0],kpts[1],kpts[1],kpts[0],)) eri_mo1 = odf.get_mo_eri((mo,)*4, (kpts[0],kpts[1],kpts[1],kpts[0],)) self.assertTrue(np.allclose(eri_mo1, eri_mo0, atol=1e-7, rtol=1e-7)) eri_mo0 = df0.get_mo_eri((mo,)*4, (kpt0,kpt0,kpts[0],kpts[0],)) eri_mo1 = odf.get_mo_eri((mo,)*4, (kpt0,kpt0,kpts[0],kpts[0],)) self.assertTrue(np.allclose(eri_mo1, eri_mo0, atol=1e-7, rtol=1e-7)) eri_mo0 = df0.get_mo_eri((mo,)*4, (kpts[0],kpts[0],kpt0,kpt0,)) eri_mo1 = odf.get_mo_eri((mo,)*4, (kpts[0],kpts[0],kpt0,kpt0,)) self.assertTrue(np.allclose(eri_mo1, eri_mo0, atol=1e-7, rtol=1e-7)) mo1 = mo[:,:nao//2+1] eri_mo0 = df0.get_mo_eri((mo1,mo,mo,mo1), (kpts[0],)*4) eri_mo1 = odf.get_mo_eri((mo1,mo,mo,mo1), (kpts[0],)*4) self.assertTrue(np.allclose(eri_mo1, eri_mo0, atol=1e-7, rtol=1e-7)) eri_mo0 = df0.get_mo_eri((mo1,mo,mo1,mo), (kpts[0],kpts[1],kpts[1],kpts[0],)) eri_mo1 = odf.get_mo_eri((mo1,mo,mo1,mo), (kpts[0],kpts[1],kpts[1],kpts[0],)) self.assertTrue(np.allclose(eri_mo1, eri_mo0, atol=1e-7, rtol=1e-7)) def test_init_aft_1d(self): cell = pgto.Cell() cell.atom = 'He 1. .5 .5; He .1 1.3 2.1' cell.basis = {'He': [(0, (2.5, 1)), (0, (1., 1))]} cell.a = np.eye(3) * 2.5 cell.dimension = 1 cell.mesh = [3, 3, 3] cell.build() f = aft.AFTDF(cell) np.random.seed(1) f.kpts = np.random.random((4,3)) f.check_sanity() if __name__ == '__main__': print("Full Tests for aft") unittest.main()
{"hexsha": "fe20da7339f967e84b6a3503e7d1766950edec7a", "size": 18895, "ext": "py", "lang": "Python", "max_stars_repo_path": "pyscf/pbc/df/test/test_aft.py", "max_stars_repo_name": "shufay/pyscf", "max_stars_repo_head_hexsha": "c7ea840b012a59fce5fa4114ef3274a7cf00165e", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2021-01-07T15:26:49.000Z", "max_stars_repo_stars_event_max_datetime": "2021-01-07T15:26:49.000Z", "max_issues_repo_path": "pyscf/pbc/df/test/test_aft.py", "max_issues_repo_name": "shufay/pyscf", "max_issues_repo_head_hexsha": "c7ea840b012a59fce5fa4114ef3274a7cf00165e", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "pyscf/pbc/df/test/test_aft.py", "max_forks_repo_name": "shufay/pyscf", "max_forks_repo_head_hexsha": "c7ea840b012a59fce5fa4114ef3274a7cf00165e", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2020-07-09T20:34:10.000Z", "max_forks_repo_forks_event_max_datetime": "2020-07-09T20:34:10.000Z", "avg_line_length": 37.0490196078, "max_line_length": 107, "alphanum_fraction": 0.5961894681, "include": true, "reason": "import numpy", "num_tokens": 6747}
[STATEMENT] lemma T_A'_eq_lem: "(\<Sum>i=0..<length qs. t_A' i) = T (s_A' 0) (drop 0 qs) (drop 0 acts)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. sum t_A' {0..<length qs} = int (T (s_A' 0) (drop 0 qs) (drop 0 acts)) [PROOF STEP] proof(induction rule: zero_induct[of _ "size qs"]) [PROOF STATE] proof (state) goal (2 subgoals): 1. sum t_A' {length qs..<length qs} = int (T (s_A' (length qs)) (drop (length qs) qs) (drop (length qs) acts)) 2. \<And>n. sum t_A' {Suc n..<length qs} = int (T (s_A' (Suc n)) (drop (Suc n) qs) (drop (Suc n) acts)) \<Longrightarrow> sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) [PROOF STEP] case 1 [PROOF STATE] proof (state) this: goal (2 subgoals): 1. sum t_A' {length qs..<length qs} = int (T (s_A' (length qs)) (drop (length qs) qs) (drop (length qs) acts)) 2. \<And>n. sum t_A' {Suc n..<length qs} = int (T (s_A' (Suc n)) (drop (Suc n) qs) (drop (Suc n) acts)) \<Longrightarrow> sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) [PROOF STEP] thus ?case [PROOF STATE] proof (prove) goal (1 subgoal): 1. sum t_A' {length qs..<length qs} = int (T (s_A' (length qs)) (drop (length qs) qs) (drop (length qs) acts)) [PROOF STEP] by (simp add: len_acts) [PROOF STATE] proof (state) this: sum t_A' {length qs..<length qs} = int (T (s_A' (length qs)) (drop (length qs) qs) (drop (length qs) acts)) goal (1 subgoal): 1. \<And>n. sum t_A' {Suc n..<length qs} = int (T (s_A' (Suc n)) (drop (Suc n) qs) (drop (Suc n) acts)) \<Longrightarrow> sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) [PROOF STEP] next [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>n. sum t_A' {Suc n..<length qs} = int (T (s_A' (Suc n)) (drop (Suc n) qs) (drop (Suc n) acts)) \<Longrightarrow> sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) [PROOF STEP] case (2 n) [PROOF STATE] proof (state) this: sum t_A' {Suc n..<length qs} = int (T (s_A' (Suc n)) (drop (Suc n) qs) (drop (Suc n) acts)) goal (1 subgoal): 1. \<And>n. sum t_A' {Suc n..<length qs} = int (T (s_A' (Suc n)) (drop (Suc n) qs) (drop (Suc n) acts)) \<Longrightarrow> sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) [PROOF STEP] show ?case [PROOF STATE] proof (prove) goal (1 subgoal): 1. sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) [PROOF STEP] proof cases [PROOF STATE] proof (state) goal (2 subgoals): 1. ?P \<Longrightarrow> sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) 2. \<not> ?P \<Longrightarrow> sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) [PROOF STEP] assume "n < length qs" [PROOF STATE] proof (state) this: n < length qs goal (2 subgoals): 1. ?P \<Longrightarrow> sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) 2. \<not> ?P \<Longrightarrow> sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) [PROOF STEP] thus ?case [PROOF STATE] proof (prove) using this: n < length qs goal (1 subgoal): 1. sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) [PROOF STEP] using 2 [PROOF STATE] proof (prove) using this: n < length qs sum t_A' {Suc n..<length qs} = int (T (s_A' (Suc n)) (drop (Suc n) qs) (drop (Suc n) acts)) goal (1 subgoal): 1. sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) [PROOF STEP] by(simp add: Cons_nth_drop_Suc[symmetric,where i=n] len_acts sum.atLeast_Suc_lessThan t_A'_t free_A_def paid_A'_def) [PROOF STATE] proof (state) this: sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) goal (1 subgoal): 1. \<not> n < length qs \<Longrightarrow> sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) [PROOF STEP] next [PROOF STATE] proof (state) goal (1 subgoal): 1. \<not> n < length qs \<Longrightarrow> sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) [PROOF STEP] assume "\<not> n < length qs" [PROOF STATE] proof (state) this: \<not> n < length qs goal (1 subgoal): 1. \<not> n < length qs \<Longrightarrow> sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) [PROOF STEP] thus ?case [PROOF STATE] proof (prove) using this: \<not> n < length qs goal (1 subgoal): 1. sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) [PROOF STEP] by (simp add: len_acts) [PROOF STATE] proof (state) this: sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: sum t_A' {n..<length qs} = int (T (s_A' n) (drop n qs) (drop n acts)) goal: No subgoals! [PROOF STEP] qed
{"llama_tokens": 2225, "file": "List_Update_BIT", "length": 18}
import numpy as np import matplotlib.pyplot as plt x = np.arange(-3, 3, 0.1) y = np.sin(x) plt.plot(x, y) plt.show()
{"hexsha": "43d88e9a27c4ed344285efa1a69b441be6f802dc", "size": 118, "ext": "py", "lang": "Python", "max_stars_repo_path": "test.py", "max_stars_repo_name": "hyoiutu/PRMLPractice", "max_stars_repo_head_hexsha": "d303d2783dc06136eb61da7aa2630bb64d6c6ee9", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "test.py", "max_issues_repo_name": "hyoiutu/PRMLPractice", "max_issues_repo_head_hexsha": "d303d2783dc06136eb61da7aa2630bb64d6c6ee9", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "test.py", "max_forks_repo_name": "hyoiutu/PRMLPractice", "max_forks_repo_head_hexsha": "d303d2783dc06136eb61da7aa2630bb64d6c6ee9", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 14.75, "max_line_length": 31, "alphanum_fraction": 0.6610169492, "include": true, "reason": "import numpy", "num_tokens": 41}
# Copyright 2017 Abien Fred Agarap # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ========================================================================= """Implementation of the Multilayer Perceptron using TensorFlow""" from __future__ import absolute_import from __future__ import division from __future__ import print_function __version__ = '0.1.0' __author__ = 'Abien Fred Agarap' import numpy as np import os import sys import time import tensorflow as tf class MLP: """Implementation of the Multilayer Perceptron using TensorFlow""" def __init__(self, alpha, batch_size, node_size, num_classes, num_features): """Initialize the MLP model Parameter --------- alpha : float The learning rate to be used by the neural network. batch_size : int The number of batches to use for training/validation/testing. node_size : int The number of neurons in the neural network. num_classes : int The number of classes in a dataset. num_features : int The number of features in a dataset. """ self.alpha = alpha self.batch_size = batch_size self.node_size = node_size self.num_classes = num_classes self.num_features = num_features def __graph__(): """Build the inference graph""" with tf.name_scope('input'): # [BATCH_SIZE, NUM_FEATURES] x_input = tf.placeholder(dtype=tf.float32, shape=[None, self.num_features], name='x_input') # [BATCH_SIZE] y_input = tf.placeholder(dtype=tf.uint8, shape=[None], name='y_input') # [BATCH_SIZE, NUM_CLASSES] y_onehot = tf.one_hot(indices=y_input, depth=self.num_classes, on_value=1, off_value=0, name='y_onehot') learning_rate = tf.placeholder(dtype=tf.float32, name='learning_rate') first_hidden_layer = {'weights': self.weight_variable('h1_w_layer', [self.num_features, self.node_size[0]]), 'biases': self.bias_variable('h1_b_layer', [self.node_size[0]])} second_hidden_layer = {'weights': self.weight_variable('h2_w_layer', [self.node_size[0], self.node_size[1]]), 'biases': self.bias_variable('h2_b_layer', [self.node_size[1]])} third_hidden_layer = {'weights': self.weight_variable('h3_w_layer', [self.node_size[1], self.node_size[2]]), 'biases': self.bias_variable('h3_b_layer', [self.node_size[2]])} output_layer = {'weights': self.weight_variable('output_w_layer', [self.node_size[2], self.num_classes]), 'biases': self.bias_variable('output_b_layer', [self.num_classes])} first_layer = tf.matmul(x_input, first_hidden_layer['weights']) + first_hidden_layer['biases'] first_layer = tf.nn.relu(first_layer) second_layer = tf.matmul(first_layer, second_hidden_layer['weights']) + second_hidden_layer['biases'] second_layer = tf.nn.relu(second_layer) third_layer = tf.matmul(second_layer, third_hidden_layer['weights']) + third_hidden_layer['biases'] third_layer = tf.nn.relu(third_layer) output_layer = tf.matmul(third_layer, output_layer['weights']) + output_layer['biases'] tf.summary.histogram('pre-activations', output_layer) with tf.name_scope('loss'): loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output_layer, labels=y_onehot)) tf.summary.scalar('loss', loss) optimizer_op = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(loss) with tf.name_scope('accuracy'): predicted_class = tf.nn.softmax(output_layer) with tf.name_scope('correct_prediction'): correct_prediction = tf.equal(tf.argmax(predicted_class, 1), tf.argmax(y_onehot, 1)) with tf.name_scope('accuracy'): accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float')) tf.summary.scalar('accuracy', accuracy) merged = tf.summary.merge_all() self.x_input = x_input self.y_input = y_input self.y_onehot = y_onehot self.learning_rate = learning_rate self.loss = loss self.optimizer_op = optimizer_op self.predicted_class = predicted_class self.accuracy = accuracy self.merged = merged sys.stdout.write('\n<log> Building Graph...') __graph__() sys.stdout.write('</log>\n') def train(self, num_epochs, log_path, train_data, train_size, test_data, test_size, result_path): """Trains the MLP model Parameter --------- num_epochs : int The number of passes over the entire dataset. log_path : str The path where to save the TensorBoard logs. train_data : numpy.ndarray The NumPy array to be used as training dataset. train_size : int The size of the `train_data`. test_data : numpy.ndarray The NumPy array to be used as testing dataset. test_size : int The size of the `test_data`. """ # initialize the variables init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) timestamp = str(time.asctime()) train_writer = tf.summary.FileWriter(log_path + timestamp + '-training', graph=tf.get_default_graph()) test_writer = tf.summary.FileWriter(log_path + timestamp + '-test', graph=tf.get_default_graph()) with tf.Session() as sess: sess.run(init_op) try: for step in range(num_epochs * train_size // self.batch_size): offset = (step * self.batch_size) % train_size train_data_batch = train_data[0][offset:(offset + self.batch_size)] train_label_batch = train_data[1][offset:(offset + self.batch_size)] feed_dict = {self.x_input: train_data_batch, self.y_input: train_label_batch, self.learning_rate: self.alpha} train_summary, _, step_loss = sess.run([self.merged, self.optimizer_op, self.loss], feed_dict=feed_dict) if step % 100 == 0 and step > 0: train_accuracy = sess.run(self.accuracy, feed_dict=feed_dict) print('step [{}] train -- loss : {}, accuracy : {}'.format(step, step_loss, train_accuracy)) train_writer.add_summary(train_summary, global_step=step) except KeyboardInterrupt: print('KeyboardInterrupt at step {}'.format(step)) os._exit(1) finally: print('EOF -- Training done at step {}'.format(step)) for step in range(num_epochs * test_size // self.batch_size): offset = (step * self.batch_size) % test_size test_data_batch = test_data[0][offset:(offset + self.batch_size)] test_label_batch = test_data[1][offset:(offset + self.batch_size)] feed_dict = {self.x_input: test_data_batch, self.y_input: test_label_batch} test_summary, test_accuracy, test_loss, predictions, actual =\ sess.run([self.merged, self.accuracy, self.loss, self.predicted_class, self.y_onehot], feed_dict=feed_dict) if step % 100 == 0 and step > 0: print('step [{}] test -- loss : {}, accuracy : {}'.format(step, test_loss, test_accuracy)) test_writer.add_summary(test_summary, step) self.save_labels(predictions=predictions, actual=actual, result_path=result_path, phase='testing', step=step) print('EOF -- Testing done at step {}'.format(step)) @staticmethod def weight_variable(name, shape): """Initialize weight variable Parameter --------- shape : list The shape of the initialized value. Returns ------- The created `tf.get_variable` for weights. """ initial_value = tf.random_normal(shape=shape, stddev=0.01) return tf.get_variable(name=name, initializer=initial_value) @staticmethod def bias_variable(name, shape): """Initialize bias variable Parameter --------- shape : list The shape of the initialized value. Returns ------- The created `tf.get_variable` for biases. """ initial_value = tf.constant([0.1], shape=shape) return tf.get_variable(name=name, initializer=initial_value) @staticmethod def variable_summaries(var): with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var) @staticmethod def save_labels(predictions, actual, result_path, phase, step): """Saves the actual and predicted labels to a NPY file Parameter --------- predictions : numpy.ndarray The NumPy array containing the predicted labels. actual : numpy.ndarray The NumPy array containing the actual labels. result_path : str The path where to save the concatenated actual and predicted labels. step : int The time step for the NumPy arrays. phase : str The phase for which the predictions is, i.e. training/validation/testing. """ if not os.path.exists(path=result_path): os.mkdir(result_path) # Concatenate the predicted and actual labels labels = np.concatenate((predictions, actual), axis=1) # save every labels array to NPY file np.save(file=os.path.join(result_path, '{}-mlp-{}.npy'.format(phase, step)), arr=labels)
{"hexsha": "6aa241ad753743224a19af45b1f408efa16b8f60", "size": 11178, "ext": "py", "lang": "Python", "max_stars_repo_path": "MLP.py", "max_stars_repo_name": "modi975/multilayer-perceptron", "max_stars_repo_head_hexsha": "4cfc9bd79ec145f6ecd2c5f1c12e9df7156e5e70", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "MLP.py", "max_issues_repo_name": "modi975/multilayer-perceptron", "max_issues_repo_head_hexsha": "4cfc9bd79ec145f6ecd2c5f1c12e9df7156e5e70", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "MLP.py", "max_forks_repo_name": "modi975/multilayer-perceptron", "max_forks_repo_head_hexsha": "4cfc9bd79ec145f6ecd2c5f1c12e9df7156e5e70", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 41.4, "max_line_length": 120, "alphanum_fraction": 0.5966183575, "include": true, "reason": "import numpy", "num_tokens": 2269}
""" Created on 2019-02-01 22:11:43 @author: George Kyriakides ge.kyriakides@gmail.com """ import copy from typing import List import numpy as np from .genome import Genome def get_distance(g1: Genome, g2: Genome): c_1 = 1 c_2 = 1 N = 1 innovations_1, innovations_2 = [], [] innovations_1.extend(g1.connections.index) innovations_1.extend(g1.nodes.index) innovations_2.extend(g2.connections.index) innovations_2.extend(g2.nodes.index) # Get the max innovation of the two genomes max_innovation_1 = max(innovations_1) max_innovation_2 = max(innovations_2) # Get the minimum of the above min_innovation = min(max_innovation_1, max_innovation_2) total_1 = len(innovations_1) total_2 = len(innovations_2) # Swap so innovations_1 has min_innovation if min_innovation == max_innovation_2: tmp = innovations_1 innovations_1 = innovations_2 innovations_2 = tmp tmp = total_1 total_1 = total_2 total_2 = tmp # Excess and disjoint E = 0 D = 0 for i in innovations_1: # Homologous if i in innovations_2: innovations_2.remove(i) total_2 -= 1 else: D += 1 total_1 -= 1 for i in sorted(innovations_2): if i < min_innovation: D += 1 total_2 -= 1 else: break E = total_2 delta = (c_1*E + c_2*D) / N return delta def sharing_f(delta: float): threshold = 4 if delta > threshold: return 0 return 1 def get_distance_matrix(pop: List[Genome]): pop_size = len(pop) matrix = np.zeros((pop_size, pop_size)) for i in range(pop_size): for j in range(i+1, pop_size): d = get_distance(pop[i], pop[j]) matrix[i][j] = d matrix[j][i] = d return matrix class SpeciesPopulations(object): def __init__(self, population_size: int, crossover_rate: float): self.species = list() self.population_size = population_size self.reproduction_sizes = [] self.crossover_rate = crossover_rate def update_species(self, pop: List[Genome]): for s in self.species: s.population = [] # count = 0 for g in pop: # print(count) # count += 1 found = False for i in range(len(self.species)): species = self.species[i] if species.attempt_append(g): found = True break if not found: s = Species(g) self.species.append(s) for s in self.species: s.share_fitness() self.reproduction_sizes = self.__get_reproduction_sizes() for i in range(len(self.species)): # print('species', i, len(self.species)) self.species[i].reproduce(self.reproduction_sizes[i], self.crossover_rate) def get_all_individuals(self): individuals = [] for s in self.species: individuals.extend(s.population) return individuals def __get_reproduction_sizes(self): fitness_sum = sum([s.total_fitness for s in self.species]) reproduction_sizes = [ int(np.floor(self.population_size*s.total_fitness/fitness_sum)) for s in self.species] return reproduction_sizes class Species(object): def __init__(self, g: Genome): self.representative = g self.population = [g] self.total_fitness = 0 def attempt_append(self, g: Genome): if sharing_f(get_distance(g, self.representative)) == 1: self.population.append(g) return True return False def share_fitness(self): self.total_fitness = 0 sz = len(self.population) # count = 0 for g in self.population: # print('share', count) # count += 1 g.connections.fitness = g.connections.fitness/sz g.nodes.fitness = g.nodes.fitness/sz self.total_fitness += (g.connections.fitness + g.nodes.fitness) if len(self.population) > 0: self.representative = np.random.choice(self.population) def reproduce(self, new_size: int, crossover_rate: float): if len(self.population) > 0: # Crossover - Mutate new_genomes = [] for j in range(new_size): # print(j, 'size:', new_size) a = self.tournament_selection() if np.random.uniform() < crossover_rate: # print('Crossover') b = self.tournament_selection() g = a.crossover(b) else: # print('Mutate') g = copy.deepcopy(a) # print('Done') # print(g) g.mutate() # print('Append') new_genomes.append(g) self.population = new_genomes def tournament_selection(self): tournament_pc = 0.5 pressure = 0.8 tournament_sz = max( int(np.floor(len(self.population) * tournament_pc)), 1) t = np.random.choice(self.population, size=tournament_sz) fs = [p.connections.fitness for p in t] ranks = np.argsort(fs) place = np.random.uniform() cumm_p = 0 for i in range(tournament_sz): cumm_p += pressure * ((1-pressure)**i) if place < cumm_p: return t[ranks[i]] return t[ranks[0]]
{"hexsha": "18cd280104416c3b260d802e6c2cb6dd765fbaee", "size": 5906, "ext": "py", "lang": "Python", "max_stars_repo_path": "nord/design/metaheuristics/genetics/neat/speciation.py", "max_stars_repo_name": "GeorgeKyriakides/nord", "max_stars_repo_head_hexsha": "94f4d6503dfe2ed9aaebc9e02d55aaba81c02994", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 15, "max_stars_repo_stars_event_min_datetime": "2018-10-23T05:48:56.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-20T18:34:21.000Z", "max_issues_repo_path": "nord/design/metaheuristics/genetics/neat/speciation.py", "max_issues_repo_name": "SoftwareImpacts/SIMPAC-2020-55", "max_issues_repo_head_hexsha": "c200dddf21cb830ec980ade213ce1b9d9add6cc5", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 3, "max_issues_repo_issues_event_min_datetime": "2020-10-27T15:59:30.000Z", "max_issues_repo_issues_event_max_datetime": "2022-02-09T23:49:12.000Z", "max_forks_repo_path": "nord/design/metaheuristics/genetics/neat/speciation.py", "max_forks_repo_name": "GeorgeKyriakides/nord", "max_forks_repo_head_hexsha": "94f4d6503dfe2ed9aaebc9e02d55aaba81c02994", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2020-10-28T09:03:03.000Z", "max_forks_repo_forks_event_max_datetime": "2021-04-16T21:35:08.000Z", "avg_line_length": 26.9680365297, "max_line_length": 99, "alphanum_fraction": 0.5386048087, "include": true, "reason": "import numpy", "num_tokens": 1346}
data = split( """ .#..##.###...####### ##.############..##. .#.######.########.# .###.#######.####.#. #####.##.#.##.###.## ..#####..#.######### #################### #.####....###.#.#.## ##.################# #####.##.###..####.. ..######..##.####### ####.##.####...##..# .#####..#.######.### ##...#.##########... #.##########.####### .####.#.###.###.#.## ....##.##.###..##### .#.#.###########.### #.#.#.#####.####.### ###.##.####.##.#..## """, "\n") data = split( """ ......#.#. #..#.#.... ..#######. .#.#.###.. .#..#..... ..#....#.# #..#....#. .##.#..### ##...#..#. .#....#### """, "\n") function maketuples(data) a = Vector{Tuple{Int, Int}}() for (i, line) in enumerate(data) for j in findall(==("#"), split(line, "")) push!(a, (i,j)) end end a end function countseen(a::Vector, i) seen = Set{Tuple{Float64, Float64}}() for asts in a asts == i && continue dir = asts .- i dirp = dir[1] == 0 ? dir ./ abs(dir[2]) : dir ./ abs(dir[1]) push!(seen, dirp) end length(seen) end data = readlines("data/Dec10_data.txt") a = maketuples(data) t = countseen(a, a[1]) findmax(map(i->countseen(a, i), a)) using DataStructures function seenDict(a::Vector, i) seen = MultiDict{Tuple{Float64, Float64}, Tuple{Int, Int}}() for asts in a asts == i && continue dir = asts .- i dirp = dir[1] == 0 ? dir ./ abs(dir[2]) : dir ./ abs(dir[1]) insert!(seen, dirp, dir) end seen end function shootstars(myast, a) ret = Tuple{Int, Int}[] sd = seenDict(a, myast) for (k,v) in sd sort!(v, by = x->sum((x .- myast).^2), rev = true) end sortedkeys = sort(collect(keys(sd)), by = x->atan(x[2], x[1]), rev = true) counter = 0 for key in sortedkeys if !isempty(sd[key]) p = pop!(sd[key]) push!(ret, p .+ myast) (counter += 1) == 200 && return p .+ myast .- (1,1) end end end res = shootstars(a[353], a) res[2]*100 + res[1]
{"hexsha": "a719ce5e82513b7e7181636187a12fb753256e96", "size": 2029, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/Dec10.jl", "max_stars_repo_name": "mkborregaard/AdventOfCode2019", "max_stars_repo_head_hexsha": "189c8fa58b76c50923d9ebc8fd5e8949f6caa92a", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/Dec10.jl", "max_issues_repo_name": "mkborregaard/AdventOfCode2019", "max_issues_repo_head_hexsha": "189c8fa58b76c50923d9ebc8fd5e8949f6caa92a", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/Dec10.jl", "max_forks_repo_name": "mkborregaard/AdventOfCode2019", "max_forks_repo_head_hexsha": "189c8fa58b76c50923d9ebc8fd5e8949f6caa92a", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 21.1354166667, "max_line_length": 78, "alphanum_fraction": 0.382454411, "num_tokens": 693}
import os import os.path import sys import collections import copy import numpy as np import pylab as pl import collections import numbers try: # py2.x from urllib import pathname2url from urllib import url2pathname from urllib import quote from urllib import unquote from urlparse import urlparse from urlparse import urlunparse from urlparse import urljoin pass except ImportError: # py3.x from urllib.request import pathname2url from urllib.request import url2pathname from urllib.parse import quote from urllib.parse import unquote from urllib.parse import urlparse from urllib.parse import urlunparse from urllib.parse import urljoin pass import greensconvolution from .sourcevecs import build_flash_source from .sourcevecs import definereflectors from .sourcevecs import NaN_in_sourcevecs from .sourcevecs import build_all_source_vecs from .regularization import apply_tikhonov_regularization #from .regularization import apply_regularizer from .tile_rectangle import build_tiled_rectangle from .fillholes import fillholes_flat from .grid import build_gi_grid try: import pyopencl as cl pass except: cl=None pass class NotANumberError(Exception): pass def timelimitmatrix(mtx,ny,nx,trange,timelimit): nt=trange.shape[0] # full array WAS indexed by y,x,and time # NOW indexed by time,y,x #mtxfull=mtx.reshape(ny,nx,nt,mtx.shape[1]); mtxfull=mtx.reshape(nt,ny,nx,mtx.shape[1]); timeselect=trange < timelimit if np.count_nonzero(timeselect) == 0: raise ValueError("Did not find any frames suitable for performing inversion of layer. Perhaps you should eliminate your shallowest layer and/or discard fewer frames after the initial flash") #mtxreduced=mtxfull[:,:,timeselect,:] mtxreduced=mtxfull[timeselect,:,:,:] #timeselectmtx=np.ones((ny,nx,1),dtype='d')*timeselect.reshape(1,1,nt) timeselectmtx=np.ones((1,ny,nx),dtype='d')*timeselect.reshape(nt,1,1) newlength=ny*nx*np.count_nonzero(timeselect) t_amount = (trange[timeselect][-1]-trange[timeselect][0]) * timeselect.shape[0]*1.0/(timeselect.shape[0]-1) # print newlength # print mtxreduced.shape # print mtx.shape # print timeselectmtx.shape return (mtxreduced.reshape(newlength,mtx.shape[1]),timeselectmtx.reshape(mtx.shape[0]).astype(np.bool_),t_amount) def generateinversionsteps(rowscaling,flashsourcecolumnscaling,flashsourcevecs,reflectorcolumnscaling,reflectorsourcevecs,tstars,ny,nx,trange,depths): rowselects=[] inversions=[] inversionsfull=[] inverses=[] nresults=[] # We go from the shallowest (last) entry to the first (deepest) depth prevsourcevecs=flashsourcevecs prevcolumnscaling = flashsourcecolumnscaling # NOTE: reflector source vectors and column scaling are bottom (farthest) up. # ... we will construct our matrix from top (nearest) down # hence iterating backwards through reflectorsourcevecs and reflectorcolumnscaling for cnt in range(len(depths)): reflectorcnt=len(depths)-cnt-1 thesesourcevecs=reflectorsourcevecs[reflectorcnt] thesecolumnscaling=reflectorcolumnscaling[reflectorcnt] tstar=tstars[reflectorcnt] if reflectorcnt==0: # last entry... nresult covers both prev and current nresult=prevsourcevecs.shape[1]+thesesourcevecs.shape[1] pass else: # regular entry... nresult covers only prev nresult=prevsourcevecs.shape[1] pass fullmatrix=np.concatenate((prevsourcevecs,thesesourcevecs),axis=1) fullcolumnscaling=np.concatenate((prevcolumnscaling,thesecolumnscaling)) (inversion,rowselect,t_amount)=timelimitmatrix(fullmatrix,ny,nx,trange,tstar*2.0) # see also greensinversionstep definition of endframe # (no longer) scale rows by t_amount to represent that # s*V*x = U'*b where LHS is an integral # over space (layer by layer) # and RHS is an integral over space and time # but we want to normalize the integration per # unit length in x and t so as to make # tikhonov parameter invariant. # The row_scaling represents the dx*dy*dt # of the time integral, but we (no longer) also need # then to divide by total time of this particular # calculation, which is t_amount sys.stderr.write("Entering SVD; shape=%s\n" % (str(inversion.shape))) (u,s,v)=np.linalg.svd(inversion,full_matrices=False) # inversion/t_amount # note v here is already transposed so u*s*v = inversion sys.stderr.write("Finished SVD; shape=%s\n" % (str(inversion.shape))) # Scale u and v according to row scaling and column scaling # sourcevecs were multiplied by row_scaling/column_scaling # so that A_scaled (column_scaling*x) = b*row_scaling # or A_scaled = A*row_scaling/column_scaling # dividing u by row scaling # and multiplying columns of v by column scaling # Would make u*s*v the equivalent of the unscaled matrix. # But that is not what we will use u and v for... # Instead ut s, and vt form the inverse: # vt * sinv * ut: where x = vt * sinv * ut * b # We want this to apply to an unscaled vector b # and give an unscaled result x # So we need to scale the columns of ut (rows of u) # by multiplying by row_scaling # and scale the rows of vt (columns of v) # by dividing by column_scalng # note that u_scaled and v_scaled are no longer orthogonal matrices u_scaled = u*rowscaling #/t_amount v_scaled = v / fullcolumnscaling[np.newaxis,:] #filter_factors = tikhonov_regularization(u, s, v, tikparam) #inverse = apply_regularizer(u, s, v, filter_factors) #inverse=np.dot(v.T*(1.0/s.reshape(1,s.shape[0])),u.T) rowselects.append(rowselect) inversions.append(inversion*(fullcolumnscaling[np.newaxis,:]/rowscaling)) # *t_amount inversionsfull.append(fullmatrix*(fullcolumnscaling[np.newaxis,:]/rowscaling)) # *t_amount inverses.append([u_scaled, s, v_scaled]) nresults.append(nresult) prevsourcevecs=thesesourcevecs prevcolumnscaling=thesecolumnscaling pass return (rowselects,inversions,inversionsfull,inverses,nresults) r""" def Get_OpenCL_Context(): OpenCL_CTX=None if cl is None: raise ValueError("Exception importing pyopencl (pyopencl is required for OpenCL support)") # First search for first GPU platform platforms = cl.get_platforms() for platform in platforms: platform_devices=platform.get_devices() has_double_gpu=[bool(device.type & cl.device_type.GPU) and device.preferred_vector_width_double > 0 for device in platform_devices] if np.any(has_double_gpu): OpenCL_CTX = cl.Context( #dev_type=cl.device_type.GPU, devices=np.array(platform_devices,dtype='O')[np.array(has_double_gpu,dtype=np.bool)]) # properties=[(cl.context_properties.PLATFORM, platform)] #self.OpenCL_Platform=platform #self.figure_out_version() pass pass if OpenCL_CTX is None: # fall back to a CPU platform for platform in platforms: platform_devices=platform.get_devices() has_double_cpu=[bool(device.type & cl.device_type.CPU) and device.preferred_vector_width_double > 0 for device in platform_devices] if np.any(has_double_cpu): OpenCL_CTX = cl.Context( dev_type=cl.device_type.CPU, devices=platform_devices[np.where(has_double_gpu)]) #OpenCL_Platform=platform #self.figure_out_version() pass pass pass return OpenCL_CTX """ performinversionkernel=r""" typedef unsigned long uint64_t; typedef long int64_t; __kernel void dodot(__global const double *matrix, __global const double *vector, __global double *outvec, uint64_t firstvecrow, uint64_t sumsize, uint64_t matrix_ncols) { size_t gid=get_global_id(0); /* gid is which row of the matrix/outvec we are operating on */ size_t start_of_row = matrix_ncols*gid; size_t cnt; double result=0.0; for (cnt=0; cnt < sumsize; cnt++) { result += matrix[ start_of_row + cnt ]*vector[firstvecrow+cnt]; } outvec[gid]=result; } __kernel void dodot_extrafactor(__global const double *matrix, __global const double *vector, __global double *outvec, __global const double *extrafactor, uint64_t firstvecrow, uint64_t sumsize, uint64_t matrix_ncols) /* multply matrix*vector -> outvec, with an element-by-element multiply of outvec by an extra factor */ { size_t gid=get_global_id(0); /* gid is which row of the matrix/outvec we are operating on */ size_t start_of_row = matrix_ncols*gid; size_t cnt; double result=0.0; for (cnt=0; cnt < sumsize; cnt++) { result += matrix[ start_of_row + cnt ]*vector[firstvecrow+cnt]; } outvec[gid]=result*extrafactor[gid]; //outvec[gid]=matrix[matrix_ncols*gid]; } __kernel void dodot_subtractfrom(__global const double *matrix, __global const double *vector, __global double *outvec, uint64_t firstvecrow, uint64_t sumsize, uint64_t matrix_ncols) { /* dot matrix*vector, subtract from outvec */ size_t gid=get_global_id(0); /* gid is which row of the matrix/outvec we are operating on */ size_t start_of_row = matrix_ncols*gid; size_t cnt; double result=0.0; for (cnt=0; cnt < sumsize; cnt++) { result += matrix[ start_of_row + cnt ]*vector[firstvecrow+cnt]; } outvec[gid]-=result; /* WARNING: Non-atomic... make sure nothing else might be messing with this entry!!! */ } """ class queuelist(list): def __init__(self,simplelist): super(queuelist,self).__init__(simplelist) pass def __enter__(self): for element in self: element.__enter__() return self def __exit__(self,type,value,traceback): for element in self: element.__exit__(type,value,traceback) pass pass pass def parallelperforminversionsteps(OpenCL_CTX,rowselects,inversions,inversionsfull,inverses,nresults,inputmats, tikparams,GPU_Full_Inverse=False): if cl is None: raise ValueError("greensinversion.parallelperforminversionsteps: Failed to import PyOpenCL") n_inputs = len(inputmats) if not isinstance(tikparams,collections.Sequence) and not isinstance(tikparams,np.ndarray): # single tikparam... broadcast it over all steps tikparams = [ tikparams ]*len(rowselects) pass tikparams_list = [ copy.copy(tikparams) for inpcnt in range(n_inputs) ] inversioncoeffs_list=[ [] for inpcnt in range(n_inputs) ] errs_list=[ [] for inpcnt in range(n_inputs) ] opencl_dodot = cl.Program(OpenCL_CTX,performinversionkernel).build() opencl_dodot_function=opencl_dodot.dodot opencl_dodot_function.set_scalar_arg_dtypes([ None, None, None, np.uint64, np.uint64, np.uint64 ]) opencl_dodot_subtractfrom_function=opencl_dodot.dodot_subtractfrom opencl_dodot_subtractfrom_function.set_scalar_arg_dtypes([ None, None, None, np.uint64, np.uint64, np.uint64 ]) opencl_dodot_extrafactor_function=opencl_dodot.dodot_extrafactor opencl_dodot_extrafactor_function.set_scalar_arg_dtypes([ None, None, None, None, np.uint64, np.uint64, np.uint64 ]) residuals = [ np.array(inputmat.reshape(np.prod(inputmat.shape)),dtype='d',order="C") for inputmat in inputmats ] res_buffers = [ cl.Buffer(OpenCL_CTX,cl.mem_flags.READ_WRITE | cl.mem_flags.COPY_HOST_PTR,hostbuf=residual) for residual in residuals ] with queuelist([ cl.CommandQueue(OpenCL_CTX,properties=greensconvolution.greensconvolution_calc.OpenCL_GetOutOfOrderDeviceQueueProperties(OpenCL_CTX)) for inpcnt in range(n_inputs) ]) as queue: lastiter_wait_events=[()]*n_inputs for cnt in range(len(rowselects)): rowselect=rowselects[cnt] # assume row selection is contiguous (it is) rowselectstart=np.where(rowselect)[0][0] rowselectnum=np.where(rowselect)[0][-1]+1-rowselectstart inversion=inversions[cnt] inversionfull=inversionsfull[cnt] (ui, si, vi) = inverses[cnt] # WARNING: ui, vi have been scaled (see generateinversionsteps()) so they are no longer orthogonal matrices!!! # better not to form the inverse just once here, # because regularization could be different in each case # (should it be???) uitranspose_contiguous = np.ascontiguousarray(ui.T,dtype='d') uitranspose_buffer = cl.Buffer(OpenCL_CTX,cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR,hostbuf=uitranspose_contiguous) vitranspose_contiguous = np.ascontiguousarray(vi.T,dtype='d') vitranspose_buffer = cl.Buffer(OpenCL_CTX,cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR,hostbuf=vitranspose_contiguous) # storage for residual[rowselect] that we extract to determine err residualrowselects = [ np.empty(rowselectnum,dtype='d',order="C") for inpcnt in range(n_inputs) ] inverse_sis = [] inverse_si_buffers = [] for inpcnt in range(n_inputs): tikparam=tikparams_list[inpcnt][cnt] if tikparam is None: # tikhonov regularization disabled #inverse=np.dot(vi.T*(1.0/si.reshape(1,si.shape[0])),ui.T) inverse_sis.append(np.array(1.0/si,dtype='d',order='C')) inverse_si_buffers.append(cl.Buffer(OpenCL_CTX,cl.mem_flags.READ_ONLY|cl.mem_flags.COPY_HOST_PTR,hostbuf=inverse_sis[inpcnt])) pass else: assert(isinstance(tikparam,numbers.Number)) usetikparam=tikparam tikparams_list[inpcnt][cnt]=usetikparam # inverse = apply_tikhonov_regularization(ui, si, vi, usetikparam) d = si/(si**2+(usetikparam)**2) # Tikhonov parameter interpreted deg K NETD * m^2 of depth / J/m^2 of source intensity inverse_sis.append(np.array(d,dtype='d',order='C')) inverse_si_buffers.append(cl.Buffer(OpenCL_CTX,cl.mem_flags.READ_ONLY|cl.mem_flags.COPY_HOST_PTR,hostbuf=inverse_sis[inpcnt])) # inverse = np.dot(v.T*(d.reshape(1,d.shape[0])),u.T) pass pass nresult=nresults[cnt] # Could probably optimize here a bit by using EnqueueCopyBuffer() rather than COPY_HOST_PTR... #inverse_contiguous = np.ascontiguousarray(inverse) #inverse_buffer = cl.Buffer(OpenCL_CTX,cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR,hostbuf=inverse_contiguous) # buffer to hold sinverse * utranspose sut_buffers = [ cl.Buffer(OpenCL_CTX,cl.mem_flags.READ_WRITE,size=inverse_sis[inpcnt].nbytes) for inpcnt in range(n_inputs) ] inversion_contiguous = np.ascontiguousarray(inversion) inversion_buffer = cl.Buffer(OpenCL_CTX,cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR,hostbuf=inversion_contiguous) if GPU_Full_Inverse: inversionfull_contiguous = np.ascontiguousarray(inversionfull) inversionfull_buffer = cl.Buffer(OpenCL_CTX,cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR,hostbuf=inversionfull_contiguous) pass bestfits = [ np.empty(vitranspose_contiguous.shape[0],dtype='d',order="C") for inpcnt in range(n_inputs) ] bestfit_buffers = [ cl.Buffer(OpenCL_CTX,cl.mem_flags.WRITE_ONLY,size=bestfits[inpcnt].nbytes) for inpcnt in range(n_inputs) ] reconstructeds = [ np.empty(inversion.shape[0],dtype='d',order="C") for inpcnt in range(n_inputs) ] reconstructed_buffers = [ cl.Buffer(OpenCL_CTX,cl.mem_flags.WRITE_ONLY,size=reconstructeds[inpcnt].nbytes) for inpcnt in range(n_inputs) ] #bestfit=np.dot(inverse,residuals[inpcnt][rowselect]) # multiply utranspose by vector, multiply result by inverse_si ut_events= [ opencl_dodot_extrafactor_function(queue[inpcnt],(uitranspose_contiguous.shape[0],),None, uitranspose_buffer, res_buffers[inpcnt], sut_buffers[inpcnt], inverse_si_buffers[inpcnt], rowselectstart, rowselectnum, uitranspose_contiguous.shape[1], wait_for=lastiter_wait_events[inpcnt]) for inpcnt in range(n_inputs) ] [ queue[inpcnt].flush() for inpcnt in range(n_inputs) ] # Get computation going bestfit_events= [ opencl_dodot_function(queue[inpcnt],(vitranspose_contiguous.shape[0],),None, vitranspose_buffer, sut_buffers[inpcnt], bestfit_buffers[inpcnt], 0, vitranspose_contiguous.shape[1], vitranspose_contiguous.shape[1], wait_for=(ut_events[inpcnt],)) for inpcnt in range(n_inputs) ] [ queue[inpcnt].flush() for inpcnt in range(n_inputs) ] # Get computation going # get result copying bestfit_enqueue_events=[ cl.enqueue_copy(queue[inpcnt],bestfits[inpcnt],bestfit_buffers[inpcnt],wait_for=(bestfit_events[inpcnt],),is_blocking=False) for inpcnt in range(n_inputs) ] # reconstructed=np.dot(inversion,bestfit) reconstructed_events= [ opencl_dodot_function(queue[inpcnt],(inversion.shape[0],),None, inversion_buffer, bestfit_buffers[inpcnt], reconstructed_buffers[inpcnt], 0, inversion.shape[1], inversion.shape[1], wait_for=(bestfit_events[inpcnt],)) for inpcnt in range(n_inputs) ] [ queue[inpcnt].flush() for inpcnt in range(n_inputs) ] # Get computation going # get result copying reconstructed_enqueue_events=[ cl.enqueue_copy(queue[inpcnt],reconstructeds[inpcnt],reconstructed_buffers[inpcnt],wait_for=(reconstructed_events[inpcnt],),is_blocking=False) for inpcnt in range(n_inputs) ] # get residuals[inpcnt][rowselect] also copying so we can look at the residual # Is it worth using an OpenCL kernel to subtract the two? residualrowselect_enqueue_events=[ cl.enqueue_copy(queue[inpcnt],residualrowselects[inpcnt],res_buffers[inpcnt],wait_for=lastiter_wait_events[inpcnt],device_offset=rowselectstart*residualrowselects[inpcnt].dtype.itemsize,is_blocking=False) for inpcnt in range(n_inputs) ] # observe change in residual #residual=residual-np.dot(inversionfull[:,:nresult],bestfit[:nresult]) if GPU_Full_Inverse: residual_events= [ opencl_dodot_subtractfrom_function(queue[inpcnt],(inversionfull.shape[0],),None, inversionfull_buffer, bestfit_buffers[inpcnt], res_buffers[inpcnt], 0, nresult, inversionfull.shape[1], wait_for=(bestfit_events[inpcnt],)) for inpcnt in range(n_inputs) ] lastiter_wait_events = [ (residual_event,) for residual_event in residual_events ] # list of events to wait for at start of next iteration pass else: # Do the full inverse with the CPU, presumably because the GPU doesn't have enough memory to store it # Wait for our bestfit data to be copied into place [ event.wait() for event in bestfit_enqueue_events ] if np.isnan(bestfits[inpcnt][:nresult]).any(): raise ValueError("Got NAN!") residual_update_copy_enqueue_events=[] for inpcnt in range(n_inputs): residuals[inpcnt] -= np.dot(inversionfull[:,:nresult],bestfits[inpcnt][:nresult]) residual_update_copy_enqueue_events.append((cl.enqueue_copy(queue[inpcnt],res_buffers[inpcnt],residuals[inpcnt],wait_for=(residualrowselect_enqueue_events[inpcnt],),is_blocking=False),)) pass lastiter_wait_events=[] lastiter_wait_events.extend(residual_update_copy_enqueue_events) pass # Wait for our bestfit data to be copied into place [ event.wait() for event in bestfit_enqueue_events ] # bestfits numpy arrays are now legitimate # print nresults,bestfit.shape # print " " # print " " # inversioncoeffs.extend(list(bestfit[:nresult])) [ inversioncoeffs_list[inpcnt].extend(list(bestfits[inpcnt][:nresult])) for inpcnt in range(n_inputs) ] # wait for reconstruction to become available, so we can evaluate the error [ event.wait() for event in reconstructed_enqueue_events ] [ event.wait() for event in residualrowselect_enqueue_events ] # reconstructed and residualrowselect arrays are now available # err=np.linalg.norm(reconstructed-residual[rowselect]) [ errs_list[inpcnt].append(np.linalg.norm(reconstructeds[inpcnt]-residualrowselects[inpcnt])) for inpcnt in range(n_inputs) ] #print inversion.shape #print bestfit.shape #print nresult #print residual.shape [ reconstructed_buffer.release() for reconstructed_buffer in reconstructed_buffers ] [ bestfit_buffer.release() for bestfit_buffer in bestfit_buffers ] if GPU_Full_Inverse: inversionfull_buffer.release() pass inversion_buffer.release() #inverse_buffer.release() [ sut_buffer.release() for sut_buffer in sut_buffers ] [ inverse_si_buffer.release() for inverse_si_buffer in inverse_si_buffers ] pass [ queue[inpcnt].finish() for inpcnt in range(n_inputs) ] pass # convert elements in inversion_coeffs_list to arrays inversioncoeffs_list=[ np.array(invcoeffs,dtype='d') for invcoeffs in inversioncoeffs_list ] return (inversioncoeffs_list,errs_list,tikparams_list) def performinversionsteps(rowselects,inversions,inversionsfull,inverses,nresults,inputmat, tikparam): # tikparam: if None, disable regularization # if a list, use values according to step # if a number, use that value inputmat=inputmat.reshape(np.prod(inputmat.shape)) # assert(inputmat.shape[0]=inverses.shape inversioncoeffs=[] errs=[] tikparams=[] residual=inputmat for cnt in range(len(rowselects)): rowselect=rowselects[cnt] inversion=inversions[cnt] inversionfull=inversionsfull[cnt] (ui, si, vi) = inverses[cnt] if tikparam is None: # tikhonov regularization disabled # NOTE: This next line is probably the slow computaton part # We should just multiply by the inverse components # rather than doing an (expensive) matrix multiply #inverse=np.dot(vi.T*(1.0/si.reshape(1,si.shape[0])),ui.T) # bestfit=np.dot(inverse,residual[rowselect]) # Faster: bestfit = np.dot(vi.T,np.dot(ui.T,residual[rowselect])*(1.0/si)) pass else: if isinstance(tikparam,collections.Sequence) or isinstance(tikparam,np.ndarray): # a list or similar usetikparam=tikparam[cnt] pass else: assert(isinstance(tikparam,numbers.Number)) usetikparam=tikparam pass tikparams.append(usetikparam) # NOTE: This next line is probably the slow computaton part bestfit = apply_tikhonov_regularization(ui, si, vi, usetikparam,residual[rowselect]) pass nresult=nresults[cnt] reconstructed=np.dot(inversion,bestfit) err=np.linalg.norm(reconstructed-residual[rowselect]) # print nresults,bestfit.shape # print " " # print " " inversioncoeffs.extend(list(bestfit[:nresult])) #print inversion.shape #print bestfit.shape #print nresult #print residual.shape residual=residual-np.dot(inversionfull[:,:nresult],bestfit[:nresult]) errs.append(err) pass return (np.array(inversioncoeffs,dtype='d'),residual,errs,tikparams) def serialperforminversionsteps(OpenCL_CTX,rowselects,inversions,inversionsfull,inverses,nresults,inputmats, tikparams,GPU_Full_Inverse=False): # Does not use OpenCL_CTX or GPU_Full_Inverse n_inputs=len(inputmats) inversioncoeffs_list=[] errs_list=[] tikparams_list=[] for inpcnt in range(n_inputs): (inversioncoeffs,residual,errs,tikparams_out)=performinversionsteps(rowselects,inversions,inversionsfull,inverses,nresults,inputmats[inpcnt],tikparams) inversioncoeffs_list.append(inversioncoeffs) errs_list.append(errs) tikparams_list.append(tikparams_out) pass return (inversioncoeffs_list,errs_list,tikparams_list) def generatesinglestepinversion(rowscaling,flashsourcecolumnscaling,flashsourcevecs,reflectorcolumnscaling,reflectorsourcevecs,tstars,ny,nx,trange,depths): # *** NOTE: Should we use timelimitmatrix to use only a limited range of time for our deepest layer rather than using all frames? # See generateinversionsteps() for more details # NOTE: reflector source vectors and column scaling are bottom (farthest) up. # ... we will construct our matrix from top (nearest) down toconcat=[flashsourcevecs] toconcat.extend(reflectorsourcevecs[::-1]) columnscaling_toconcat=[flashsourcecolumnscaling] columnscaling_toconcat.extend(reflectorcolumnscaling[::-1]) inversionall=np.concatenate(toconcat,axis=1) columnscalingall=np.concatenate(columnscaling_toconcat) t_amount=(trange[-1]-trange[0])*trange.shape[0]*1.0/(trange.shape[0]-1) sys.stderr.write("Entering single step SVD; shape=%s\n" % (str(inversionall.shape))) (uiall,siall,viall)=np.linalg.svd(inversionall,full_matrices=False) # inversionall/t_amount sys.stderr.write("Completed single step SVD; shape=%s\n" % (str(inversionall.shape))) uiall_scaled=uiall*rowscaling # /t_amount viall_scaled=viall / columnscalingall[np.newaxis,:] # if tikparam is None: # # tikhonov regularization disabled # inverseall=np.dot(viall.T*(1.0/siall.reshape(1,siall.shape[0])),uiall.T) # pass #else: # if tikparam==-1: # usetikparam=generate_tikhonov_parameter() #filter_factors = tikhonov_regularization(uiall, siall, viall, tikparam) #inverseall = apply_regularizer(uiall, siall, viall, filter_factors) # rowselects=[np.ones(ny*nx*trange.shape[0],dtype=np.bool_)] # all True inversions=[inversionall*(columnscalingall[np.newaxis,:]/rowscaling)] # t_amount inversionsfull=[inversions[0]] inverses=[ [uiall_scaled, siall, viall_scaled], ] nresults=[inversionall.shape[1]] return (rowselects,inversions,inversionsfull,inverses,nresults) def plotabstractinverse(fignum,numplotrows,numplotcols,inversioncoeffs,reflectors,vmin,vmax,y_bnd,x_bnd,num_sources_y,num_sources_x): fig=pl.figure(fignum) pl.clf() inversioncoeffspos=0 subplots=[] images=[] for subplotnum in range(1,len(reflectors)+2): if subplotnum==1: depth=0.0 ny=num_sources_y nx=num_sources_x pass else: (depth,ny,nx)=reflectors[len(reflectors)-subplotnum+1] pass numampls=ny*nx subplotcoeffs=inversioncoeffs[inversioncoeffspos:(inversioncoeffspos+numampls)] # print subplotcoeffs.shape # print ny,nx # print inversioncoeffs.shape subplot=pl.subplot(numplotrows,numplotcols,subplotnum) image=pl.imshow(subplotcoeffs.reshape(ny,nx),vmin=vmin,vmax=vmax,extent=(x_bnd[0]*1.e3,x_bnd[-1]*1.e3,y_bnd[-1]*1.e3,y_bnd[0]*1.e3)) pl.title('Depth=%f mm' % (depth*1e3)) pl.grid(True) pl.colorbar() subplots.append(subplot) images.append(image) inversioncoeffspos+=numampls pass return (fig,subplots,images) def savetiledconcreteinverse(filename,fullinverse,reflectors,yvec,xvec,zthick,zequalszero_on_back_surface=False): # Save thermal data as a netcdf (.nc) file from netCDF4 import Dataset rootgrp=Dataset(filename,"w",format="NETCDF4") ydim=rootgrp.createDimension("z",fullinverse.shape[0]) ydim=rootgrp.createDimension("y",fullinverse.shape[1]) xdim=rootgrp.createDimension("x",fullinverse.shape[2]) zvals=rootgrp.createVariable("z","f8",("z",)) for zcnt in range(len(reflectors)): # reflectors is depth-first # first element in each reflectors tuple is z-position, measured from the front surface, positive deep if zequalszero_on_back_surface: zvals[zcnt]=zthick-reflectors[len(reflectors)-1-zcnt][0] pass else: zvals[zcnt]=reflectors[len(reflectors)-1-zcnt][0] pass pass yvals=rootgrp.createVariable("y","f8",("y",)) yvals[:]=yvec xvals=rootgrp.createVariable("x","f8",("x",)) xvals[:]=xvec intensityvals=rootgrp.createVariable("sourceintensity","f8",("z","y","x")) intensityvals[::]=fullinverse rootgrp.close() pass def buildconcreteinverse(inversioncoeffs,reflectors,ygrid,xgrid,y_bnd,x_bnd,ny,nx,num_sources_y,num_sources_x): inversioncoeffspos=0 res=np.zeros((len(reflectors)+1,ny,nx),dtype='d') for layercnt in range(len(reflectors)+1): if layercnt==0: depth=0.0 # front surface: flash_source_vecs #reflector_ny=2 #reflector_nx=2 # Use flashsourcevecs! # !!!*** ... Do we need flashsourcecolumn scaling? (Don't think so) #numampls=flashsourcevecs.shape[1] numampls=num_sources_y*num_sources_x pass else: (depth,reflector_ny,reflector_nx)=reflectors[len(reflectors)-layercnt] numampls=reflector_ny*reflector_nx pass coeffs=inversioncoeffs[inversioncoeffspos:(inversioncoeffspos+numampls)] #coeffsshaped=coeffs.reshape(reflector_ny,reflector_nx) # now expand coeffsshaped into the full (ny,nx) grid # need to be consistent with build_reflector_source_vecs if layercnt==0: # flash_source_vecs naturally overlap flash_source=build_flash_source(ygrid,xgrid,y_bnd,x_bnd,num_sources_y,num_sources_x) assert(num_sources_y*num_sources_x == numampls) # flash_source was (4,ny,nx) (now can be more than 4) # multiply it by source intensity coefficients #print coeffs.shape #print flash_source.shape res[layercnt,:,:]=np.tensordot(coeffs,flash_source,((0,),(0,))) pass else: # define geometries of each reflector at this depth (reflector_widthy, reflector_widthx, reflector_posy, reflector_posx, reflector_ygrid, reflector_xgrid, reflector_bndy, reflector_bndx)=definereflectors(y_bnd,x_bnd,reflector_ny,reflector_nx) # Iterate over which reflector... for refl_yidx in range(reflector_ny): for refl_xidx in range(reflector_nx): coeffidx=reflector_nx*refl_yidx + refl_xidx # Determine range of xy points corresponding to this reflector refl_xygrid=((ygrid[:,:] >= reflector_bndy[refl_yidx]) & (ygrid[:,:] < reflector_bndy[refl_yidx+1]) & (xgrid[:,:] >= reflector_bndx[refl_xidx]) & (xgrid[:,:] < reflector_bndx[refl_xidx+1])) #print(res.shape) #print(refl_xygrid.shape) res[layercnt,refl_xygrid]=coeffs[coeffidx] pass # end loop reflector_nx pass # end loop reflector_ny pass # end layercnt != 0 inversioncoeffspos+=numampls pass # end loop layercnt return res # (len(reflectors)+1,ny,nx)... first layer is surface def plotconcreteinverse(fignum,numplotrows,numplotcols,saturation_map,concreteinverse,reflectors,vmin,vmax,y_bnd,x_bnd,num_sources_y,num_sources_x): fig=pl.figure(fignum) pl.clf() subplots=[] images=[] for subplotnum in range(1,concreteinverse.shape[0]+2): if subplotnum <= 2: depth=0.0 ny=num_sources_y nx=num_sources_x pass else: (depth,ny,nx)=reflectors[len(reflectors)-(subplotnum-2)] pass subplot=pl.subplot(numplotrows,numplotcols,subplotnum) if subplotnum==1: # Show saturation map image=pl.imshow(saturation_map,extent=(x_bnd[0]*1.e3,x_bnd[-1]*1.e3,y_bnd[-1]*1.e3,y_bnd[0]*1.e3)) pl.title('Saturation map') pass else: image=pl.imshow(concreteinverse[subplotnum-2,:,:]/1.e3,vmin=vmin/1.e3,vmax=vmax/1.e3,extent=(x_bnd[0]*1.e3,x_bnd[-1]*1.e3,y_bnd[-1]*1.e3,y_bnd[0]*1.e3)) pl.title('Depth=%.2f mm' % (depth*1e3)) pass pl.grid(True) pl.colorbar() subplots.append(subplot) images.append(image) pass return (fig,subplots,images) def plotconcreteinversemovie(startfignum,outdirhref,outfilenametemplate,saturation_map,concreteinverse,reflectors,vmin,vmax,y_bnd,x_bnd,num_sources_y,num_sources_x,**savefigkwargs): if outdirhref is not None: from limatix import dc_value pass if outdirhref is not None and not os.path.exists(outdirhref.getpath()): os.mkdir(outdirhref.getpath()) pass plots=[] images=[] plothrefs=[] depths=[] for plotnum in range(concreteinverse.shape[0]+1): fig=pl.figure(startfignum+plotnum) pl.clf() if plotnum <= 1: depth=0.0 ny=num_sources_y nx=num_sources_x pass else: (depth,ny,nx)=reflectors[len(reflectors)-(plotnum-1)] pass #subplot=pl.subplot(numplotrows,numplotcols,subplotnum) if plotnum==0: # Show saturation map image=pl.imshow(saturation_map,extent=(x_bnd[0]*1.e3,x_bnd[-1]*1.e3,y_bnd[-1]*1.e3,y_bnd[0]*1.e3)) pl.title('Saturation map') pass else: image=pl.imshow(concreteinverse[plotnum-1,:,:]/1.e3,vmin=vmin/1.e3,vmax=vmax/1.e3,extent=(x_bnd[0]*1.e3,x_bnd[-1]*1.e3,y_bnd[-1]*1.e3,y_bnd[0]*1.e3)) pl.title('Depth=%.2f mm' % (depth*1e3)) pass pl.grid(True) pl.colorbar() pl.xlabel('Position (mm)') pl.ylabel('Position (mm)') if outdirhref is not None: outfilename=outfilenametemplate % (depth*1e3) outfilehref=dc_value.hrefvalue(quote(outfilename),contexthref=outdirhref) outfilepath=outfilehref.getpath() pl.savefig(outfilepath,**savefigkwargs) plothrefs.append(outfilehref) pass plots.append(fig) images.append(image) depths.append(depth) pass return (startfignum+concreteinverse.shape[0],plots,images,plothrefs,depths) def define_curved_inversion(gi_params,gi_grid,obj,curvmat_tile,stepsizemat_tile,curvmat_hires,stepsizemat_hires,curvmat_sizeu,curvmat_sizev,num_sources_y,num_sources_x,singlestep=False): (rho,c,alphaz,alphaxy,dy,dx,maxy,maxx,t0,dt,nt,reflectors, trange,greensconvolution_params) = gi_params (ny,nx,y,x,ygrid,xgrid,y_bnd,x_bnd) = gi_grid kz=alphaz*rho*c kx=alphaxy*rho*c ky=alphaxy*rho*c #eval_linelength_avgcurvature = lambda u1,v1,u2,v2: obj.implpart.surfaces[0].intrinsicparameterization.linelength_avgcurvature(obj.implpart.surfaces[0],dx,dy,u1,v1,u2,v2) # eval_linelength_avgcurvature = lambda u1,v1,u2,v2: obj.implpart.surfaces[0].intrinsicparameterization.linelength_avgcurvature_meshbased(obj.implpart.surfaces[0],curvmat_hires,stepsizemat_hires,dx,dy,u1,v1,u2,v2) eval_linelength_avgcurvature_mirroredbox = lambda boxu1,boxv1,boxu2,boxv2,u1,v1,u2,v2: obj.implpart.surfaces[0].intrinsicparameterization.linelength_avgcurvature_mirroredbox_meshbased(obj.implpart.surfaces[0],curvmat_hires,stepsizemat_hires,obj.implpart.surfaces[0].intrinsicparameterization.lowerleft_meaningfulunits[0],obj.implpart.surfaces[0].intrinsicparameterization.lowerleft_meaningfulunits[1],curvmat_sizeu*1.0/curvmat_hires.shape[1],curvmat_sizev*1.0/curvmat_hires.shape[0],boxu1,boxv1,boxu2,boxv2,dx,dy,u1,v1,u2,v2) print("Building curved sourcevecs") (rowscaling,flashsourcecolumnscaling,flashsourcevecs,reflectorcolumnscaling,reflectorsourcevecs,depths,tstars,conditions,prevconditions,prevscaledconditions)=build_all_source_vecs(greensconvolution_params,dy,dx,ygrid,xgrid,y_bnd,x_bnd,rho,c,kz,ky,kx,dt,trange,reflectors,gc_kernel="opencl_interpolator_curved",eval_linelength_avgcurvature_mirroredbox=eval_linelength_avgcurvature_mirroredbox,curvmat_tile=curvmat_tile,stepsizemat_tile=stepsizemat_tile,num_sources_y=num_sources_y,num_sources_x=num_sources_x) if NaN_in_sourcevecs([ flashsourcevecs ]): raise NotANumberError("NaN found in flashsourcevecs") if NaN_in_sourcevecs(reflectorsourcevecs): raise NotANumberError("NaN found in reflectorsourcevecs") if singlestep: print("Generating single-step curved inversion") (rowselects,inversions,inversionsfull,inverses,nresults)=generatesinglestepinversion(rowscaling,flashsourcecolumnscaling,flashsourcevecs,reflectorcolumnscaling,reflectorsourcevecs,tstars,ny,nx,trange,depths) pass else: print("Generating curved inversion steps") (rowselects,inversions,inversionsfull,inverses,nresults)=generateinversionsteps(rowscaling,flashsourcecolumnscaling,flashsourcevecs,reflectorcolumnscaling,reflectorsourcevecs,tstars,ny,nx,trange,depths) pass return (rowscaling,flashsourcecolumnscaling,flashsourcevecs,reflectorcolumnscaling,reflectorsourcevecs,depths,tstars,conditions,prevconditions,prevscaledconditions,rowselects,inversions,inversionsfull,inverses,nresults) def define_flat_inversion(gi_params,gi_grid,num_sources_y,num_sources_x,singlestep=False): (rho,c,alphaz,alphaxy,dy,dx,maxy,maxx,t0,dt,nt,reflectors, trange,greensconvolution_params) = gi_params (ny,nx,y,x,ygrid,xgrid,y_bnd,x_bnd) = gi_grid kz=alphaz*rho*c kx=alphaxy*rho*c ky=alphaxy*rho*c print("Building flat sourcevecs") (rowscaling,flashsourcecolumnscaling,flashsourcevecs,reflectorcolumnscaling,reflectorsourcevecs,depths,tstars,conditions,prevconditions,prevscaledconditions)=build_all_source_vecs(greensconvolution_params,dy,dx,ygrid,xgrid,y_bnd,x_bnd,rho,c,kz,ky,kx,dt,trange,reflectors,num_sources_y=num_sources_y,num_sources_x=num_sources_x) if singlestep: print("Generating single-step flat inversion") (rowselects,inversions,inversionsfull,inverses,nresults)=generatesinglestepinversion(rowscaling,flashsourcecolumnscaling,flashsourcevecs,reflectorcolumnscaling,reflectorsourcevecs,tstars,ny,nx,trange,depths) pass else: print("Generating flat inversion steps") (rowselects,inversions,inversionsfull,inverses,nresults)=generateinversionsteps(rowscaling,flashsourcecolumnscaling,flashsourcevecs,reflectorcolumnscaling,reflectorsourcevecs,tstars,ny,nx,trange,depths) pass return (rowscaling,flashsourcecolumnscaling,flashsourcevecs,reflectorcolumnscaling,reflectorsourcevecs,depths,tstars,conditions,prevconditions,prevscaledconditions,rowselects,inversions,inversionsfull,inverses,nresults) def saturationcheck(thermal_data,startframe,sat_threshold=0.9): """ Determine the fraction of thermal_data that is saturated on or after startframe (0 based). It is assumed the highest temperature recorded in thermal_data for a particular pixel is the saturation value and that the thermal data has already been background-subtracted. A pixel is defined as saturated is defined as exceeding sat_threshold*max_for_that_pixel(thermal_data) Returns a tuple containing a number between 0 and 1 representing the fraction of valid pixels (not identically 0, not infinite, not NaN) that are saturated, followed by a saturation map """ saturation_levels = np.max(thermal_data,axis=0) saturated = np.sum(thermal_data[startframe:,:,:] > sat_threshold*saturation_levels[np.newaxis,:,:],axis=0) > 0 valid = np.isfinite(saturation_levels) & (saturation_levels != 0.0) fraction_saturated = np.count_nonzero(saturated)*1.0/np.count_nonzero(valid) return (fraction_saturated,(saturated & valid)) def num_sources(y,x,y_bnd,x_bnd,source_approx_dy,source_approx_dx): # num_sources_y should approximately match # (y_bnd[-1]-y_bnd[0])/source_approx_dy, BUT # ... it should be an integer AND # ... not larger than y.shape[0] i.e. at least 1 pixel/source num_sources_y = int(round((y_bnd[-1]-y_bnd[0])/source_approx_dy)) if num_sources_y > y.shape[0]: num_sources_y=y.shape[0] pass # num_sources_x should approximately match # (x_bnd[-1]-x_bnd[0])/source_approx_dx, BUT # ... it should be an integer AND # ... not larger than x.shape[0] i.e. at least 1 pixel/source num_sources_x = int(round((x_bnd[-1]-x_bnd[0])/source_approx_dx)) if num_sources_x > x.shape[0]: num_sources_x=x.shape[0] pass return (num_sources_y,num_sources_x) def setupinversionprob(rho,c,alphaz,alphaxy,dy,dx,maxy,maxx,t0,dt,nt,reflectors,source_approx_dy=None,source_approx_dx=None,singlestep=False): kx=alphaxy*rho*c ky=alphaxy*rho*c kz=alphaz*rho*c trange=t0+np.arange(nt,dtype='d')*dt greensconvolution_params=greensconvolution.greensconvolution_calc.read_greensconvolution() gi_params=(rho,c,alphaz,alphaxy,dy,dx,maxy,maxx,t0,dt,nt,reflectors, trange,greensconvolution_params) gi_grid = build_gi_grid(dy,maxy, dx,maxx) (ny,nx, y,x, ygrid,xgrid, y_bnd,x_bnd) = gi_grid num_sources_y=2 num_sources_x=2 if source_approx_dy is not None or source_approx_dx is not None: (num_sources_y,num_sources_x) = num_sources(y,x,y_bnd,x_bnd,source_approx_dy,source_approx_dx) pass #print("Building source vecs") (rowscaling,flashsourcecolumnscaling,flashsourcevecs,reflectorcolumnscaling,reflectorsourcevecs,depths,tstars,conditions,prevconditions,prevscaledconditions,rowselects,inversions,inversionsfull,inverses,nresults)=define_flat_inversion(gi_params,gi_grid,num_sources_y,num_sources_x,singlestep=singlestep) inversionprob=(kx,ky,kz, ny,nx, y,x, ygrid,xgrid, y_bnd,x_bnd, num_sources_y,num_sources_x, trange, rowscaling, flashsourcecolumnscaling,flashsourcevecs, reflectorcolumnscaling,reflectorsourcevecs, depths,tstars, conditions,prevconditions,prevscaledconditions, rowselects,inversions,inversionsfull,inverses,nresults) return inversionprob def perform_flat_inversion(rho,c,alphaz,alphaxy,y0,x0,dy,dx,tile_size_y,tile_size_x,xydownsample,reflectors,source_approx_dy,source_approx_dx,tikparam,data_t0,dt,flashframe,flashtime,frames_to_discard,frames_to_discard_prior,data,singlestep,parallelevaluate,OpenCL_Device_Type,OpenCL_Device_Name,numplotrows,numplotcols,plot_min_power_per_area,plot_max_power_per_area,nextfignum): # Perform background subtraction bkgnd_frames = flashframe-frames_to_discard_prior background=np.mean(data[:bkgnd_frames,:,:],axis=0) startframe = flashframe + frames_to_discard-1 data_timebase=data_t0+np.arange(data.shape[0],dtype='d')*dt t0=data_timebase[startframe] - flashtime diff = data-background[np.newaxis,:,:] (saturation_fraction,saturation_map)=saturationcheck(diff,startframe) if saturation_fraction > .2: raise ValueError("TWIRAW_greensinversion: ERROR: %.1f%% of pixels are saturated at least once beyond start frame!" % (saturation_fraction*100.0)) if saturation_fraction > .02: sys.stderr.write("TWIRAW_greensinversion: WARNING: %.1f%% of pixels are saturated at least once beyond start frame!\n" % (saturation_fraction*100.0)) pass deepest_tstar = reflectors[0][0]**2.0/(np.pi*alphaz) endframe = np.argmin(np.abs(data_timebase-data_timebase[flashframe]-flashtime-deepest_tstar*2.0)) # see also generateinversionsteps() call to timelimitmatrix() nt=data_timebase[startframe:endframe].shape[0] inversionprob = setupinversionprob(rho,c,alphaz,alphaxy,dy,dx,tile_size_y,tile_size_x,t0,dt,nt,reflectors,source_approx_dy=source_approx_dy,source_approx_dx=source_approx_dx,singlestep=singlestep) (kx,ky,kz, ny,nx, y,x, ygrid,xgrid, y_bnd,x_bnd, num_sources_y,num_sources_x, trange, rowscaling, flashsourcecolumnscaling,flashsourcevecs, reflectorcolumnscaling,reflectorsourcevecs, depths,tstars, conditions,prevconditions,prevscaledconditions, rowselects,inversions,inversionsfull,inverses,nresults) = inversionprob (minyminx_corners,yranges,xranges,contributionprofiles)=build_tiled_rectangle(ny,nx,dy,dx,reflectors,diff,xydownsample) inputmats = [ diff[startframe:endframe,(yidx*xydownsample):((yidx+ny)*xydownsample):xydownsample,(xidx*xydownsample):((xidx+nx)*xydownsample):xydownsample] for (yidx,xidx) in minyminx_corners ] print("Filling holes...") inputmats_holesfilled = [ fillholes_flat(inputmat) for inputmat in inputmats ] print("Done filling holes.") if parallelevaluate: inversionevalfunc=parallelperforminversionsteps OpenCL_CTX=greensconvolution_params.get_opencl_context() #greensinversion.inversion.Get_OpenCL_Context() pass else: inversionevalfunc=serialperforminversionsteps OpenCL_CTX=None pass if nextfignum is not None: from matplotlib import pyplot as pl # tikparam diagnostic plots pl.figure(nextfignum) pl.clf() for inversioncnt in range(len(inversions)): pl.plot(inverses[inversioncnt][1]) pass pl.xlabel('Singular value index') pl.ylabel('Magnitude') nextfignum+=1 pass # evaluate inversion (inversioncoeffs_list,errs_list,tikparams_list) = inversionevalfunc(OpenCL_CTX, rowselects, inversions, inversionsfull, inverses, nresults, inputmats_holesfilled, tikparam) # Generate concrete representation of inversion fullinverse=np.zeros((len(reflectors)+1,diff.shape[1]//xydownsample,diff.shape[2]//xydownsample),dtype='d') fullinverse_x_bnd=x0-dx*xydownsample/2.0 + np.arange(diff.shape[2]//xydownsample+1,dtype='d')*dx*xydownsample fullinverse_y_bnd=y0-dy*xydownsample/2.0 + np.arange(diff.shape[1]//xydownsample+1,dtype='d')*dy*xydownsample for tile_idx in range(len(minyminx_corners)): (yidx,xidx)=minyminx_corners[tile_idx] fullinverse[:,yidx:(yidx+ny),xidx:(xidx+nx)] += buildconcreteinverse(inversioncoeffs_list[tile_idx],reflectors,ygrid,xgrid,y_bnd,x_bnd,ny,nx,num_sources_y,num_sources_x)*contributionprofiles[tile_idx] pass # Plot concrete inverse as a bunch of subplots if nextfignum is not None: (fig,subplots,images)=plotconcreteinverse(nextfignum,numplotrows,numplotcols,saturation_map,fullinverse,reflectors,plot_min_power_per_area,plot_max_power_per_area,fullinverse_y_bnd,fullinverse_x_bnd,num_sources_y,num_sources_x) nextfignum+=1 pass # Plot separate plots with concrete inverse if nextfignum is not None: (nextfignum,plots,images,plothrefs,depths) = plotconcreteinversemovie(nextfignum,None,None,saturation_map,fullinverse,reflectors,plot_min_power_per_area,plot_max_power_per_area,fullinverse_y_bnd,fullinverse_x_bnd,num_sources_y,num_sources_x,dpi=300) pass inversion_info=(minyminx_corners, yranges, xranges, contributionprofiles, inversioncoeffs_list, errs_list, tikparams_list, fullinverse_y_bnd, fullinverse_x_bnd) return (inversionprob,saturation_map, inversion_info, fullinverse, nextfignum)
{"hexsha": "89904b38b63e62d1830b645efed8af35adcb7426", "size": 52891, "ext": "py", "lang": "Python", "max_stars_repo_path": "greensinversion/inversion.py", "max_stars_repo_name": "isuthermography/greensinversion", "max_stars_repo_head_hexsha": "92f272a3649bb2f6b132f8cd239edd68dd2a6a62", "max_stars_repo_licenses": ["Unlicense"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2020-07-25T23:23:04.000Z", "max_stars_repo_stars_event_max_datetime": "2020-07-25T23:23:04.000Z", "max_issues_repo_path": "greensinversion/inversion.py", "max_issues_repo_name": "isuthermography/greensinversion", "max_issues_repo_head_hexsha": "92f272a3649bb2f6b132f8cd239edd68dd2a6a62", "max_issues_repo_licenses": ["Unlicense"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2018-10-04T01:43:25.000Z", "max_issues_repo_issues_event_max_datetime": "2018-11-28T17:59:12.000Z", "max_forks_repo_path": "greensinversion/inversion.py", "max_forks_repo_name": "isuthermography/greensinversion", "max_forks_repo_head_hexsha": "92f272a3649bb2f6b132f8cd239edd68dd2a6a62", "max_forks_repo_licenses": ["Unlicense"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2020-07-25T23:23:06.000Z", "max_forks_repo_forks_event_max_datetime": "2020-07-25T23:23:06.000Z", "avg_line_length": 42.4145950281, "max_line_length": 529, "alphanum_fraction": 0.6396740466, "include": true, "reason": "import numpy", "num_tokens": 12751}
import plotly py = plotly.plotly("iancze", "0ttojbuvyj") import StellarSpectra from StellarSpectra import spectrum from StellarSpectra import constants as C from spectrum import DataSpectrum import numpy as np import sys from astropy.io import ascii myspec = DataSpectrum.open("/home/ian/Grad/Research/Disks/StellarSpectra/tests/WASP14/WASP-14_2009-06-15_04h13m57s_cb.spec.flux", orders=np.array([22])) #Shift wl as close to 0. vz = -15 myspec.wls = myspec.wls * np.sqrt((C.c_kms + vz) / (C.c_kms - vz)) def return_line_labels(wl, tol=1): '''Given a wl array, return the nearest n line labels next to the line, that are within tolerance = 1 Ang of each point.''' #for linelist_air.dat, col_starts=[3, 20], col_ends=[17, 28] #for linelist_kurucz.dat, col_starts=[3, 13], col_ends=[10, 20] lines = ascii.read("linelist_kurucz.dat", Reader=ascii.FixedWidth, col_starts=[3, 13], col_ends=[10, 20], converters={'line': [ascii.convert_numpy(np.float)], 'element': [ascii.convert_numpy(np.str)]}, guess=False) lines['line'] = 10 * lines['line'] #Convert from nanometers to AA #truncate list to speed execution ind = (lines['line'] >= np.min(wl) - tol) & (lines['line'] <= np.max(wl) + tol) lines = lines[ind] #for each wl, query all known lines that are within tol, add these to the set of known lines line_labels = [] for w in wl: #Find nearby wl lines within tol ind = (w - tol <= lines['line']) & (lines['line'] <= w + tol) #Truncated lines lines_trunc = lines[ind] #Sort them by closeness to current pixel distances = np.abs(w - lines_trunc['line']) distance_ind = np.argsort(distances) #Sort lines by closest label lines_sort = lines_trunc[distance_ind] #Take only 6 lines lines_clip = lines_sort[:6] #Create a new set labels = "\n".join(["{} {:.2f}".format(label,line) for line, label in lines_clip]) line_labels.append(labels) return line_labels line_list = return_line_labels(myspec.wls[0], tol=0.3) data = {'name': 'WASP-14', 'x': myspec.wls[0], 'y': myspec.fls[0], 'text': line_list, 'type': 'scatter', 'mode': 'lines+markers' } layout = { 'xaxis': {'title': 'Wavelength (AA)'}, 'yaxis': {'title': 'Flux (ergs/s/AA/cm^2)'}, 'title': 'WASP-14' } response = py.plot(data, layout=layout, filename='Spectra/WASP-14', fileopt='overwrite', world_readable=True) url = response['url']
{"hexsha": "63ca23ea84bba11db92fce14d8690c242a5c9b59", "size": 2635, "ext": "py", "lang": "Python", "max_stars_repo_path": "attic/plotly_line_label.py", "max_stars_repo_name": "jason-neal/Starfish", "max_stars_repo_head_hexsha": "4ffa45e0190fb6f3262511d57d1a563e5ee711de", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2017-07-10T00:06:36.000Z", "max_stars_repo_stars_event_max_datetime": "2017-07-10T00:06:36.000Z", "max_issues_repo_path": "attic/plotly_line_label.py", "max_issues_repo_name": "jason-neal/Starfish", "max_issues_repo_head_hexsha": "4ffa45e0190fb6f3262511d57d1a563e5ee711de", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "attic/plotly_line_label.py", "max_forks_repo_name": "jason-neal/Starfish", "max_forks_repo_head_hexsha": "4ffa45e0190fb6f3262511d57d1a563e5ee711de", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": 5, "max_forks_repo_forks_event_min_datetime": "2016-06-11T09:48:16.000Z", "max_forks_repo_forks_event_max_datetime": "2019-08-07T19:52:41.000Z", "avg_line_length": 32.1341463415, "max_line_length": 129, "alphanum_fraction": 0.6178368121, "include": true, "reason": "import numpy,from astropy", "num_tokens": 751}
#include <boost/python/class.hpp> #include <boost/python/enum.hpp> #include <boost/python/args.hpp> #include <boost/python/return_value_policy.hpp> #include <boost/python/return_by_value.hpp> #include <boost/python/return_internal_reference.hpp> #include <scitbx/array_family/boost_python/shared_wrapper.h> #include <cctbx/miller/amplitude_normalisation.h> namespace cctbx { namespace miller { namespace boost_python { template <typename FloatType> struct amplitude_normalisation_wrapper { typedef amplitude_normalisation<FloatType> wt; typedef typename wt::float_type float_type; static void wrap() { using namespace boost::python; return_value_policy<return_by_value> rbv; typedef return_internal_reference<> rir; af::boost_python::shared_wrapper< typename wt::form_factor_t, rir>::wrap( "shared_gaussian_form_factors"); class_<wt>("amplitude_normalisation", no_init) .def(init<af::const_ref<typename wt::form_factor_t> const &, af::const_ref<float_type> const &, float_type, float_type, uctbx::unit_cell const &, sgtbx::space_group const &, af::const_ref<index<> > const &>( (arg("form_factors"), arg("multiplicities"), arg("wilson_intensity_scale_factor"), arg("wilson_b"), arg("unit_cell"), arg("space_group"), arg("indices")))) .add_property("normalisations", make_getter(&wt::normalisations, rbv)) ; } }; void wrap_amplitude_normalisation() { amplitude_normalisation_wrapper<double>::wrap(); } }}} // cctbx::miller::boostpython
{"hexsha": "86f1078b1451a6770cf0e6c23692417b6f63687f", "size": 1758, "ext": "cpp", "lang": "C++", "max_stars_repo_path": "cctbx/miller/boost_python/amplitude_normalisation.cpp", "max_stars_repo_name": "rimmartin/cctbx_project", "max_stars_repo_head_hexsha": "644090f9432d9afc22cfb542fc3ab78ca8e15e5d", "max_stars_repo_licenses": ["BSD-3-Clause-LBNL"], "max_stars_count": 155.0, "max_stars_repo_stars_event_min_datetime": "2016-11-23T12:52:16.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-31T15:35:44.000Z", "max_issues_repo_path": "cctbx/miller/boost_python/amplitude_normalisation.cpp", "max_issues_repo_name": "rimmartin/cctbx_project", "max_issues_repo_head_hexsha": "644090f9432d9afc22cfb542fc3ab78ca8e15e5d", "max_issues_repo_licenses": ["BSD-3-Clause-LBNL"], "max_issues_count": 590.0, "max_issues_repo_issues_event_min_datetime": "2016-12-10T11:31:18.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-30T23:10:09.000Z", "max_forks_repo_path": "cctbx/miller/boost_python/amplitude_normalisation.cpp", "max_forks_repo_name": "rimmartin/cctbx_project", "max_forks_repo_head_hexsha": "644090f9432d9afc22cfb542fc3ab78ca8e15e5d", "max_forks_repo_licenses": ["BSD-3-Clause-LBNL"], "max_forks_count": 115.0, "max_forks_repo_forks_event_min_datetime": "2016-11-15T08:17:28.000Z", "max_forks_repo_forks_event_max_datetime": "2022-02-09T15:30:14.000Z", "avg_line_length": 32.5555555556, "max_line_length": 78, "alphanum_fraction": 0.6439135381, "num_tokens": 381}
from torch_rl.training.core import HorizonTrainer, mse_loss from torch_rl.memory import GeneralisedMemory from torch.optim import Adam from torch_rl.utils import to_tensor as tt import torch as tor from collections import deque from torch_rl.utils import prGreen import time import sys from torch_rl.utils import * import numpy as np def queue_to_array(q): q.put(False) arr = [] while True: item = q.get() if item: arr.append(item) else: break return np.asarray(arr) class AdvantageEstimator(object): def __init__(self, env, policy_network, critic_network, nsteps, gamma, lam, replay_memory, hindsight_points=None): self.env = env self.policy_network = policy_network self.critic_network = critic_network nenv = 1 self.obs = env.reset() self.gamma = gamma self.lam = lam self.nsteps = nsteps self.state = None self.done = False self.global_step = 0 self.episodes = 0 self.replay_memory = replay_memory def run(self): mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_logpacs = [], [], [], [], [], [] mb_state = self.state epinfos = [] self.critic_network.cpu() # for _ in range(self.nsteps): actions, values = self.policy_network(tt(self.obs, cuda=False).view(1,-1)) logpacs = self.policy_network.logprob(actions) mb_obs.append(self.obs.copy().flatten()) mb_actions.append(actions.data.numpy().flatten()) mb_values.append(values.detach().data.numpy().flatten()) mb_logpacs.append(logpacs.data.numpy().flatten()) mb_dones.append(self.done) a = actions.data.numpy().flatten() obs, reward, self.done, infos = self.env.step(a) q = self.critic_network(tt(self.obs.reshape(1,-1), cuda=False), actions) #Additional step in comparison to PPO self.replay_memory.append(obs, a, reward, self.done, extra_info=np.hstack((mb_logpacs[-1],q.cpu().data.numpy().flatten()))) self.obs = obs self.global_step += 1 mb_rewards.append(reward) if self.done: self.episodes+=1 logger.logkv("episodes", self.episodes) self.obs = self.env.reset() self.critic_network.cuda() # batch of steps to batch of rollouts mb_obs = np.asarray(mb_obs, dtype=np.float32).reshape(self.nsteps, -1) mb_rewards = np.asarray(mb_rewards, dtype=np.float32).reshape(self.nsteps, -1) mb_actions = np.asarray(mb_actions, dtype=np.float32).reshape(self.nsteps,self.env.action_space.shape[0]) mb_values = np.asarray(mb_values, dtype=np.float32).reshape(self.nsteps, -1) mb_logpacs = np.asarray(mb_logpacs, dtype=np.float32).reshape(self.nsteps, self.env.action_space.shape[0]) mb_dones = np.asarray(mb_dones, dtype=np.bool).reshape(self.nsteps, -1) action, last_values = self.policy_network(tt(self.obs.reshape(1,-1), cuda=False)) action, last_values = action.data.numpy().reshape(-1), last_values.data.numpy().reshape(-1) # discount/bootstrap off value fn mb_returns = np.zeros_like(mb_rewards) mb_advs = np.zeros_like(mb_rewards) lastgaelam = 0 for t in reversed(range(self.nsteps)): if t == self.nsteps - 1: nextnonterminal = 1.0 - self.done nextvalues = last_values else: nextnonterminal = 1.0 - mb_dones[t + 1] nextvalues = mb_values[t + 1] delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_values[t] mb_advs[t] = lastgaelam = delta + self.gamma * self.lam * nextnonterminal * lastgaelam mb_returns = mb_advs + mb_values return mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_logpacs, mb_state # obs, returns, masks, actions, values, neglogpacs, states = runner.run() def constfn(val): def f(_): return val return f import copy from torch_rl.memory import GeneralisedHindsightMemory class HERIPGGPUPPOTrainer(HorizonTrainer): """ Implementation of interpolated policy gradient for PPO """ mvavg_reward = deque(maxlen=100) def __init__(self, env, policy_network, critic_network, replay_memory, max_episode_len=500, gamma=.99, lr=3e-4, n_steps=40, epsilon=0.2, optimizer=None, lmda=0.95, ent_coef=0., n_update_steps=10, n_minibatches=1, v=0.5, tau=1e-3): super(HERIPGGPUPPOTrainer, self).__init__(env) self.n_minibatches = n_minibatches self.lr = lr # Replay memory for calculating the online policy gradient self.replay_memory = replay_memory self.max_episode_len = max_episode_len self.epsilon = epsilon self.gamma = gamma self.lmda = lmda self.optimizer = Adam(policy_network.parameters(), lr=lr, weight_decay=0.001) if optimizer is None else optimizer self.goal_based = hasattr(env, "goal") self.policy_network = policy_network self.ent_coef = ent_coef self.n_update_steps = n_update_steps self.n_steps = n_steps self.advantage_estimator = AdvantageEstimator(env, self.policy_network, critic_network, n_steps, self.gamma, self.lmda, self.replay_memory) self.v = v self.tau = tau self.critic_network = critic_network self.target_critic_network = cuda_if_available(copy.deepcopy(self.critic_network)) self.target_policy_network = cuda_if_available(copy.deepcopy(self.policy_network)) self.critic_optimizer = Adam(critic_network.parameters(), lr=3e-4, weight_decay=0.001) def _off_policy_loss(self, batch_size): s1, a1, r, s2, terminal, goal, add_info = self.replay_memory.sample_and_split(batch_size) s1 = tt(s1).cuda() a1 = tt(a1).cuda() r = tt(r).cuda() s2 = tt(s2).cuda() oldlogpac = tt(add_info[:, :-1]) oldq = tt(add_info[:, -1]) #import pdb; pdb.set_trace() a2, v_pred = self.target_policy_network(s2) # Take deterministic step by taking the mean of the distribution a2 = self.target_policy_network.mu() q = self.critic_network(s1, a1) #q_clipped = oldq + tor.clamp(q - oldq, -self.epsilon, self.epsilon) q_target = r + self.gamma*(self.target_critic_network(s2,a2)) critloss1 = (q_target - q)**2 # critloss2 = (q_target - q_clipped)**2 # critloss = .5 * tor.mean(tor.max(critloss1, critloss2)) critloss = .5 * tor.mean(critloss1) a, v = self.policy_network(s1) a = self.policy_network.mu() ratio = tor.exp(self.policy_network.logprob(a) - oldlogpac) qestimate = self.critic_network(s1, a) #pgloss1 = -qestimate * ratio #pgloss2 = -qestimate * tor.clamp(ratio, 1. - self.epsilon, 1. + self.epsilon) #pgloss = -tor.mean(tor.max(pgloss1, pgloss2)) pgloss = -tor.mean(qestimate) mean_q_estimate = tor.mean(qestimate) mean_ratio = tor.mean(ratio) logger.logkv("erpgloss", pgloss.cpu().data.numpy()) logger.logkv("qloss", critloss.cpu().data.numpy()) logger.logkv("meanq", mean_q_estimate.cpu().data.numpy()) logger.logkv("ratio", mean_ratio.cpu().data.numpy()) logger.logkv("reward_mean", r.cpu().data.numpy().mean()) return pgloss + critloss def _ppo_loss(self, bobs, bactions, badvs, breturns, blogpacs, bvalues): OBS = tt(bobs) A = tt(bactions) ADV = tt(badvs) R = tt(breturns) OLDLOGPAC = tt(blogpacs) OLDVPRED = tt(bvalues) self.policy_network(OBS) logpac = self.policy_network.logprob(A) entropy = tor.mean(self.policy_network.entropy()) #### Value function loss #### #print(bobs) actions_new, v_pred = self.policy_network(tt(bobs)) v_pred_clipped = OLDVPRED + tor.clamp(v_pred - OLDVPRED, -self.epsilon, self.epsilon) v_loss1 = (v_pred - R)**2 v_loss2 = (v_pred_clipped - R)**2 v_loss = .5 * tor.mean(tor.max(v_loss1, v_loss2)) ### Ratio calculation #### # In the baselines implementation these are negative logits, then it is flipped ratio = tor.exp(logpac - OLDLOGPAC) ### Policy gradient calculation ### pg_loss1 = -ADV * ratio pg_loss2 = -ADV * tor.clamp(ratio, 1. - self.epsilon, 1. + self.epsilon) pg_loss = tor.mean(tor.max(pg_loss1, pg_loss2)) approxkl = .5 * tor.mean((logpac - OLDLOGPAC)**2) ppo_loss = v_loss + pg_loss + self.ent_coef*entropy logger.logkv("siglog", self.policy_network.siglog.cpu().data.numpy()[0]) logger.logkv("pgloss", pg_loss.cpu().data.numpy()) logger.logkv("vfloss", v_loss.cpu().data.numpy()) logger.logkv("vfloss", v_loss.cpu().data.numpy()) logger.logkv("approxkl", approxkl.cpu().data.numpy()) logger.logkv("pentropy", entropy.cpu().data.numpy()) return ppo_loss def _horizon_step(self): obs, returns, masks, actions, values, logpacs, states = self.advantage_estimator.run() #pylint: disable=E0632 # Normalize advantages over episodes advs = returns - values prev_ind = 0 for ind in np.argwhere(masks == True)[:, 0]: episode_advs = advs[prev_ind:ind+1] advs[prev_ind:ind+1] = (episode_advs - episode_advs.mean())/(episode_advs.std() + 1e-8) prev_ind = ind+1 episode_advs = advs[prev_ind:-1] advs[prev_ind:-1] = (episode_advs - episode_advs.mean())/(episode_advs.std() + 1e-8) nbatch_train = self.n_steps // self.n_minibatches self.policy_network.cuda() #self.optimizer = Adam(self.policy_network.parameters(), lr=self.lr) if states is None: # nonrecurrent version inds = np.arange(self.n_steps) for _ in range(self.n_update_steps): np.random.shuffle(inds) for start in range(0, self.n_steps, nbatch_train): end = start + nbatch_train mbinds = inds[start:end] bobs, breturns, bmasks, bactions, bvalues, blogpacs, badvs = map(lambda arr: arr[mbinds], (obs, returns, masks, actions, values, logpacs, advs)) # This introduces bias since the advantages can be normalized over more episodes #advs = (advs - advs.mean()) / (advs.std() + 1e-8) ppo_loss = self._ppo_loss(bobs, bactions, badvs, breturns, blogpacs, bvalues) off_loss = self._off_policy_loss(nbatch_train) loss = self.v*ppo_loss + (1-self.v) * off_loss self.optimizer.zero_grad() self.critic_optimizer.zero_grad() loss.backward() self.optimizer.step() self.critic_optimizer.step() # Soft updates for target policies and critic # Soft updates of critic don't help soft_update(self.target_policy_network, self.policy_network, self.tau) soft_update(self.target_critic_network, self.critic_network, self.tau) #Push to CPU self.policy_network.cpu() logger.dumpkvs() if __name__ == '__main__': from torch_rl.envs.wrappers import * import gym from gym.wrappers import Monitor from torch_rl.models.ppo import ActorCriticPPO from torch_rl.utils import * from torch_rl.utils import logger from torch_rl.envs import EnvLogger import sys logger.configure(clear=False) monitor = Monitor(EnvLogger(NormalisedActionsWrapper(gym.make("Pendulum-v0"))), directory="./stats", force=True, video_callable=False, write_upon_reset=True) env = RunningMeanStdNormalize(monitor) print(env.observation_space.shape) with tor.cuda.device(1): policy_network = ActorCriticPPO([env.observation_space.shape[0], 64, 64, env.action_space.shape[0]]) policy_network.apply(gauss_init(0, np.sqrt(2))) trainer = GPUPPO(policy_network=policy_network, env=env, n_update_steps=4, n_steps=40) trainer.train(horizon=100000, max_episode_len=500)
{"hexsha": "fe23bbb1a2f7e5bf658c6f210280092a7bbb5ca7", "size": 12599, "ext": "py", "lang": "Python", "max_stars_repo_path": "torch_rl/training/her_ipgppo.py", "max_stars_repo_name": "JimmyMVP/plain_rl", "max_stars_repo_head_hexsha": "4780f05fffb62533a339197b49de487cdc9d9954", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 10, "max_stars_repo_stars_event_min_datetime": "2018-03-18T21:27:59.000Z", "max_stars_repo_stars_event_max_datetime": "2020-08-13T20:15:05.000Z", "max_issues_repo_path": "torch_rl/training/her_ipgppo.py", "max_issues_repo_name": "JimmyMVP/plain_rl", "max_issues_repo_head_hexsha": "4780f05fffb62533a339197b49de487cdc9d9954", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2018-03-19T09:51:04.000Z", "max_issues_repo_issues_event_max_datetime": "2018-03-19T10:11:02.000Z", "max_forks_repo_path": "torch_rl/training/her_ipgppo.py", "max_forks_repo_name": "JimmyMVP/plain_rl", "max_forks_repo_head_hexsha": "4780f05fffb62533a339197b49de487cdc9d9954", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 3, "max_forks_repo_forks_event_min_datetime": "2018-03-10T09:17:10.000Z", "max_forks_repo_forks_event_max_datetime": "2019-12-17T20:19:56.000Z", "avg_line_length": 36.4132947977, "max_line_length": 147, "alphanum_fraction": 0.6210810382, "include": true, "reason": "import numpy", "num_tokens": 3137}
section \<open>Preliminaries\<close> theory Prelim imports "Fresh_Identifiers.Fresh_String" "Bounded_Deducibility_Security.Trivia" begin subsection \<open>The basic types\<close> (* This version of string is needed for code generation: *) definition "emptyStr = STR ''''" (* The users of the system: *) datatype name = Nam String.literal definition "emptyName \<equiv> Nam emptyStr" datatype inform = Info String.literal definition "emptyInfo \<equiv> Info emptyStr" datatype user = Usr name inform fun nameUser where "nameUser (Usr name info) = name" fun infoUser where "infoUser (Usr name info) = info" definition "emptyUser \<equiv> Usr emptyName emptyInfo" typedecl raw_data code_printing type_constructor raw_data \<rightharpoonup> (Scala) "java.io.File" (* Images (currently, pdf, to be changed): *) datatype img = emptyImg | Imag raw_data (* Visibility outside the current api: either friends-only or public (i.e., exportable outside to the other apis): *) datatype vis = Vsb String.literal (* Accepted values: friend and public *) abbreviation "FriendV \<equiv> Vsb (STR ''friend'')" (* abbreviation "InternalV \<equiv> Vsb (STR ''internal'')" *) abbreviation "PublicV \<equiv> Vsb (STR ''public'')" fun stringOfVis where "stringOfVis (Vsb str) = str" (* A post consists of a string for title, a string for its text, a (possibly empty) image and a visibility specification: *) datatype title = Tit String.literal definition "emptyTitle \<equiv> Tit emptyStr" datatype "text" = Txt String.literal definition "emptyText \<equiv> Txt emptyStr" datatype post = Pst title "text" img (* vis *) (* Getters: *) fun titlePost where "titlePost (Pst title text img) = title" fun textPost where "textPost (Pst title text img) = text" fun imgPost where "imgPost (Pst title text img) = img" (* fun visPost where "visPost (Pst title text img vis) = vis" *) (* Setters: *) fun setTitlePost where "setTitlePost (Pst title text img) title' = Pst title' text img" fun setTextPost where "setTextPost(Pst title text img) text' = Pst title text' img" fun setImgPost where "setImgPost (Pst title text img) img' = Pst title text img'" (* fun setVisPost where "setVisPost (Pst title text img vis) vis' = Pst title text img vis'" *) (* *) definition emptyPost :: post where "emptyPost \<equiv> Pst emptyTitle emptyText emptyImg" (* FriendV" *) (* initially set to the lowest visibility: friend *) lemma titlePost_emptyPost[simp]: "titlePost emptyPost = emptyTitle" and textPost_emptyPost[simp]: "textPost emptyPost = emptyText" and imgPost_emptyPost[simp]: "imgPost emptyPost = emptyImg" (* and visPost_emptyPost[simp]: "visPost emptyPost = FriendV" *) unfolding emptyPost_def by simp_all lemma set_get_post[simp]: "titlePost (setTitlePost ntc title) = title" "titlePost (setTextPost ntc text) = titlePost ntc" "titlePost (setImgPost ntc img) = titlePost ntc" (* "titlePost (setVisPost ntc vis) = titlePost ntc" *) (* *) "textPost (setTitlePost ntc title) = textPost ntc" "textPost (setTextPost ntc text) = text" "textPost (setImgPost ntc img) = textPost ntc" (* "textPost (setVisPost ntc vis) = textPost ntc" *) (* *) "imgPost (setTitlePost ntc title) = imgPost ntc" "imgPost (setTextPost ntc text) = imgPost ntc" "imgPost (setImgPost ntc img) = img" (* "imgPost (setVisPost ntc vis) = imgPost ntc" *) (* *) (* "visPost (setTitlePost ntc title) = visPost ntc" "visPost (setTextPost ntc text) = visPost ntc" "visPost (setImgPost ntc img) = visPost ntc" "visPost (setVisPost ntc vis) = vis" *) (* *) by(cases ntc, auto)+ lemma setTextPost_absorb[simp]: "setTitlePost (setTitlePost pst tit) tit1 = setTitlePost pst tit1" "setTextPost (setTextPost pst txt) txt1 = setTextPost pst txt1" "setImgPost (setImgPost pst img) img1 = setImgPost pst img1" (* "setVisPost (setVisPost pst vis) vis1 = setVisPost pst vis1" *) by (cases pst, auto)+ datatype password = Psw String.literal definition "emptyPass \<equiv> Psw emptyStr" datatype salt = Slt String.literal definition "emptySalt \<equiv> Slt emptyStr" (* Information associated to requests for registration: both for users and apis *) datatype requestInfo = ReqInfo String.literal definition "emptyRequestInfo \<equiv> ReqInfo emptyStr" subsection \<open>Identifiers\<close> datatype apiID = Aid String.literal datatype userID = Uid String.literal datatype postID = Pid String.literal definition "emptyApiID \<equiv> Aid emptyStr" definition "emptyUserID \<equiv> Uid emptyStr" definition "emptyPostID \<equiv> Pid emptyStr" (* *) fun apiIDAsStr where "apiIDAsStr (Aid str) = str" definition "getFreshApiID apiIDs \<equiv> Aid (fresh (set (map apiIDAsStr apiIDs)) (STR ''1''))" lemma ApiID_apiIDAsStr[simp]: "Aid (apiIDAsStr apiID) = apiID" by (cases apiID) auto lemma member_apiIDAsStr_iff[simp]: "str \<in> apiIDAsStr ` apiIDs \<longleftrightarrow> Aid str \<in> apiIDs" by (metis ApiID_apiIDAsStr image_iff apiIDAsStr.simps) lemma getFreshApiID: "\<not> getFreshApiID apiIDs \<in>\<in> apiIDs" using fresh_notIn[of "set (map apiIDAsStr apiIDs)"] unfolding getFreshApiID_def by auto (* *) fun userIDAsStr where "userIDAsStr (Uid str) = str" definition "getFreshUserID userIDs \<equiv> Uid (fresh (set (map userIDAsStr userIDs)) (STR ''2''))" lemma UserID_userIDAsStr[simp]: "Uid (userIDAsStr userID) = userID" by (cases userID) auto lemma member_userIDAsStr_iff[simp]: "str \<in> userIDAsStr ` (set userIDs) \<longleftrightarrow> Uid str \<in>\<in> userIDs" by (metis UserID_userIDAsStr image_iff userIDAsStr.simps) lemma getFreshUserID: "\<not> getFreshUserID userIDs \<in>\<in> userIDs" using fresh_notIn[of "set (map userIDAsStr userIDs)"] unfolding getFreshUserID_def by auto (* *) fun postIDAsStr where "postIDAsStr (Pid str) = str" definition "getFreshPostID postIDs \<equiv> Pid (fresh (set (map postIDAsStr postIDs)) (STR ''3''))" lemma PostID_postIDAsStr[simp]: "Pid (postIDAsStr postID) = postID" by (cases postID) auto lemma member_postIDAsStr_iff[simp]: "str \<in> postIDAsStr ` (set postIDs) \<longleftrightarrow> Pid str \<in>\<in> postIDs" by (metis PostID_postIDAsStr image_iff postIDAsStr.simps) lemma getFreshPostID: "\<not> getFreshPostID postIDs \<in>\<in> postIDs" using fresh_notIn[of "set (map postIDAsStr postIDs)"] unfolding getFreshPostID_def by auto end
{"author": "isabelle-prover", "repo": "mirror-afp-devel", "sha": "c84055551f07621736c3eb6a1ef4fb7e8cc57dd1", "save_path": "github-repos/isabelle/isabelle-prover-mirror-afp-devel", "path": "github-repos/isabelle/isabelle-prover-mirror-afp-devel/mirror-afp-devel-c84055551f07621736c3eb6a1ef4fb7e8cc57dd1/thys/CoSMeDis/Prelim.thy"}
# Created by Qingzhi Ma at 2019-07-23 # All right reserved # Department of Computer Science # the University of Warwick # Q.Ma.2@warwick.ac.uk import os import os.path import warnings from datetime import datetime from multiprocessing import set_start_method as set_start_method_cpu import dill import numpy as np import torch from torch.multiprocessing import set_start_method as set_start_method_torch from dbestclient.catalog.catalog import DBEstModelCatalog from dbestclient.executor.queryengine import QueryEngine from dbestclient.executor.queryenginemdn import ( MdnQueryEngine, MdnQueryEngineGoGs, MdnQueryEngineXCategorical, MdnQueryEngineXCategoricalOneModel) from dbestclient.io.sampling import DBEstSampling from dbestclient.ml.modeltrainer import (GroupByModelTrainer, KdeModelTrainer, SimpleModelTrainer) from dbestclient.ml.modelwraper import (GroupByModelWrapper, get_pickle_file_name) from dbestclient.parser.parser import DBEstParser from dbestclient.tools.dftools import (get_group_count_from_df, get_group_count_from_summary_file, get_group_count_from_table) from dbestclient.tools.running_parameters import RUNTIME_CONF, DbestConfig from dbestclient.tools.variables import Slave, UseCols class SqlExecutor: """ This is the executor for the SQL query. """ def __init__(self): self.parser = None self.config = DbestConfig() # model-related configuration self.runtime_config = RUNTIME_CONF self.last_config = None self.model_catalog = DBEstModelCatalog() self.init_slaves() self.init_model_catalog() self.save_sample = False # self.table_header = None self.n_total_records = None self.use_kde = True def init_model_catalog(self): # search the warehouse, and add all available models. n_model = 0 t1 = datetime.now() for file_name in os.listdir(self.config.get_config()['warehousedir']): # load simple models if file_name.endswith(self.runtime_config["model_suffix"]): if n_model == 0: print("start loading pre-existing models.") with open(self.config.get_config()['warehousedir'] + "/" + file_name, 'rb') as f: model = dill.load(f) self.model_catalog.model_catalog[model.init_pickle_file_name( self.runtime_config)] = model n_model += 1 # # load group by models # if os.path.isdir(self.config.get_config()['warehousedir'] + "/" + file_name): # n_models_in_groupby = 0 # if n_model == 0: # print("start loading pre-existing models.") # for model_name in os.listdir(self.config.get_config()['warehousedir'] + "/" + file_name): # if model_name.endswith(self.runtime_config["model_suffix"]): # with open(self.config.get_config()['warehousedir'] + "/" + file_name + "/" + model_name, 'rb') as f: # model = dill.load(f) # n_models_in_groupby += 1 # if n_models_in_groupby == 1: # groupby_model_wrapper = GroupByModelWrapper(model.mdl, model.tbl, model.x, model.y, # model.groupby_attribute, # x_min_value=model.x_min_value, # x_max_value=model.x_max_value) # groupby_model_wrapper.add_simple_model(model) # self.model_catalog.model_catalog[file_name] = groupby_model_wrapper.models # n_model += 1 if n_model > 0: print("Loaded " + str(n_model) + " models.", end=" ") if self.runtime_config["b_show_latency"]: t2 = datetime.now() print("time cost ", (t2-t1).total_seconds(), "s") else: print() def init_slaves(self): file_name = os.path.join(self.config.config["warehousedir"], "slaves") if os.path.exists(file_name) and os.path.getsize(file_name) > 0: with open(file_name, "r") as f: for line in f: if "#" not in line: self.runtime_config["slaves"].add(Slave(line)) if self.runtime_config['v']: print("Cluster mode is on, slaves are " + self.runtime_config["slaves"].to_string()) else: if self.runtime_config['v']: print("Local mode is on, as no slaves are provided.") def execute(self, sql): # b_use_gg=False, n_per_gg=10, result2file=None,n_mdn_layer_node = 10, encoding = "onehot",n_jobs = 4, b_grid_search = True,device = "cpu", n_division = 20 # prepare the parser if type(sql) == str: self.parser = DBEstParser() self.parser.parse(sql) elif type(sql) == DBEstParser: self.parser = sql else: print("Unrecognized SQL! Please check it!") exit(-1) # execute the query if self.parser.if_nested_query(): warnings.warn("Nested query is currently not supported!") else: sql_type = self.parser.get_query_type() if sql_type == "create": # process create query # initialize the configure for each model creation. if self.last_config: self.config = self.last_config else: self.config = DbestConfig() # DDL, create the model as requested mdl = self.parser.get_ddl_model_name() tbl = self.parser.get_from_name() if self.parser.if_model_need_filter(): self.config.set_parameter("accept_filter", True) # remove unnecessary charactor ' tbl = tbl.replace("'", "") if os.path.isfile(tbl): # the absolute path is provided original_data_file = tbl else: # the file is in the warehouse direcotry original_data_file = self.config.get_config()[ 'warehousedir'] + "/" + tbl yheader = self.parser.get_y() xheader_continous, xheader_categorical = self.parser.get_x() ratio = self.parser.get_sampling_ratio() method = self.parser.get_sampling_method() table_header = self.config.get_config()['table_header'] # print("table_header", table_header) if table_header is not None: table_header = table_header.split( self.config.get_config()['csv_split_char']) # make samples if not self.parser.if_contain_groupby(): # if group by is not involved sampler = DBEstSampling( headers=table_header, usecols={"y": yheader, "x_continous": xheader_continous, "x_categorical": xheader_categorical, "gb": None}) else: groupby_attribute = self.parser.get_groupby_value() sampler = DBEstSampling(headers=table_header, usecols={ "y": yheader, "x_continous": xheader_continous, "x_categorical": xheader_categorical, "gb": groupby_attribute}) # print(self.config) if os.path.exists(os.path.join(self.config.get_config()['warehousedir'], mdl + self.runtime_config["model_suffix"])): print( "Model {0} exists in the warehouse, please use" " another model name to train it.".format(mdl)) return # if self.parser.if_contain_groupby(): # groupby_attribute = self.parser.get_groupby_value() # if os.path.exists(self.config['warehousedir'] + "/" + mdl + "_groupby_" + groupby_attribute): # print( # "Model {0} exists in the warehouse, please use" # " another model name to train it.".format(mdl)) # return print("Start creating model " + mdl) time1 = datetime.now() if self.save_sample: sampler.make_sample( original_data_file, ratio, method, split_char=self.config.get_config()[ 'csv_split_char'], file2save=self.config.get_config()['warehousedir'] + "/" + mdl + '.csv', num_total_records=self.n_total_records) else: sampler.make_sample( original_data_file, ratio, method, split_char=self.config.get_config()[ 'csv_split_char'], num_total_records=self.n_total_records) # set the n_total_point and scaling factor for each model. # self.config.set_parameter( # "n_total_point", sampler.n_total_point) # self.config.set_parameter( # "scaling_factor", sampler.scaling_factor) # print("scaling_factor is ", sampler.scaling_factor) if not self.parser.if_contain_groupby(): # if group by is not involved # n_total_point = sampler.n_total_point # xys = sampler.getyx(yheader, xheader_continous) # simple_model_wrapper = SimpleModelTrainer(mdl, tbl, xheader_continous, yheader, # n_total_point, ratio, config=self.config.copy()).fit_from_df( # xys, self.runtime_config) # reg = simple_model_wrapper.reg # density = simple_model_wrapper.density # n_sample_point = int(simple_model_wrapper.n_sample_point) # n_total_point = int(simple_model_wrapper.n_total_point) # x_min_value = float(simple_model_wrapper.x_min_value) # x_max_value = float(simple_model_wrapper.x_max_value) # query_engine = QueryEngine(mdl, reg, density, n_sample_point, # n_total_point, x_min_value, x_max_value, xheader_continous[ # 0], # self.config) sampler.sample.sampledf["dummy_gb"] = "dummy" sampler.sample.usecols = {"y": yheader, "x_continous": xheader_continous, "x_categorical": xheader_categorical, "gb": "dummy_gb"} n_total_point, xys = sampler.get_groupby_frequency_data() # if not n_total_point['if_contain_x_categorical']: n_total_point.pop("if_contain_x_categorical") kdeModelWrapper = KdeModelTrainer( mdl, tbl, xheader_continous[0], yheader, groupby_attribute=["dummy_gb"], groupby_values=list( n_total_point.keys()), n_total_point=n_total_point, x_min_value=-np.inf, x_max_value=np.inf, config=self.config.copy()).fit_from_df( xys["data"], self.runtime_config, network_size="large") qe_mdn = MdnQueryEngine( kdeModelWrapper, config=self.config.copy()) qe_mdn.serialize2warehouse( self.config.get_config()['warehousedir'], self.runtime_config) self.model_catalog.add_model_wrapper( qe_mdn, self.runtime_config) else: # if group by is involved in the query if self.config.get_config()['reg_type'] == "qreg": xys = sampler.getyx(yheader, xheader_continous) n_total_point = get_group_count_from_table( original_data_file, groupby_attribute, sep=self.config.get_config()[ 'csv_split_char'], headers=table_header) n_sample_point = get_group_count_from_df( xys, groupby_attribute) groupby_model_wrapper = GroupByModelTrainer(mdl, tbl, xheader_continous, yheader, groupby_attribute, n_total_point, n_sample_point, x_min_value=-np.inf, x_max_value=np.inf, config=self.config.copy()).fit_from_df( xys, self.runtime_config) groupby_model_wrapper.serialize2warehouse( self.config.get_config()['warehousedir'] + "/" + groupby_model_wrapper.dir) self.model_catalog.model_catalog[groupby_model_wrapper.dir] = groupby_model_wrapper.models else: # "mdn" xys = sampler.getyx( yheader, xheader_continous, groupby=groupby_attribute) # xys[groupby_attribute] = pd.to_numeric(xys[groupby_attribute], errors='coerce') # xys=xys.dropna(subset=[yheader, xheader,groupby_attribute]) # n_total_point = get_group_count_from_table( # original_data_file, groupby_attribute, sep=',',#self.config['csv_split_char'], # headers=self.table_header) if isinstance(ratio, str): frequency_file = self.config.get_config()[ 'warehousedir'] + "/" + ratio # "/num_of_points.csv" if os.path.exists(frequency_file): n_total_point = get_group_count_from_summary_file( frequency_file, sep=',') n_total_point_sample, xys = sampler.get_groupby_frequency_data() n_total_point["if_contain_x_categorical"] = n_total_point_sample["if_contain_x_categorical"] else: raise FileNotFoundError( "scaling factor should come from the " + ratio + " in the warehouse folder, as" " stated in the SQL. However, the file is not found.") else: n_total_point, xys = sampler.get_groupby_frequency_data() # print(n_total_point) # for cases when the data file is treated as a sample, we need to scale up the frequency for each group. if ratio > 1: file_size = sampler.n_total_point ratio = float(ratio)/file_size # if 0 < ratio < 1: scaled_n_total_point = {} if "if_contain_x_categorical" in n_total_point: scaled_n_total_point["if_contain_x_categorical"] = n_total_point.pop( "if_contain_x_categorical") if "categorical_distinct_values" in n_total_point: scaled_n_total_point["categorical_distinct_values"] = n_total_point.pop( "categorical_distinct_values") if "x_categorical_columns" in n_total_point: scaled_n_total_point["x_categorical_columns"] = n_total_point.pop( "x_categorical_columns") for key in n_total_point: # print("key", key, n_total_point[key]) if not isinstance(n_total_point[key], dict): scaled_n_total_point[key] = n_total_point[key]/ratio else: scaled_n_total_point[key] = {} for sub_key in n_total_point[key]: scaled_n_total_point[key][sub_key] = n_total_point[key][sub_key]/ratio n_total_point = scaled_n_total_point # print("scaled_n_total_point", scaled_n_total_point) # no categorical x attributes if not n_total_point['if_contain_x_categorical']: if not self.config.get_config()["b_use_gg"]: n_total_point.pop( "if_contain_x_categorical") # xys.pop("if_contain_x_categorical") kdeModelWrapper = KdeModelTrainer( mdl, tbl, xheader_continous[0], yheader, groupby_attribute=groupby_attribute, groupby_values=list( n_total_point.keys()), n_total_point=n_total_point, x_min_value=-np.inf, x_max_value=np.inf, config=self.config.copy()).fit_from_df( xys["data"], self.runtime_config, network_size=None) qe_mdn = MdnQueryEngine( kdeModelWrapper, config=self.config.copy()) qe_mdn.serialize2warehouse( self.config.get_config()['warehousedir'], self.runtime_config) # kdeModelWrapper.serialize2warehouse() self.model_catalog.add_model_wrapper( qe_mdn, self.runtime_config) else: # print("n_total_point ", n_total_point) queryEngineBundle = MdnQueryEngineGoGs( config=self.config.copy()).fit(xys["data"], groupby_attribute, n_total_point, mdl, tbl, xheader_continous[0], yheader, self.runtime_config) # n_per_group=n_per_gg,n_mdn_layer_node = n_mdn_layer_node,encoding = encoding,b_grid_search = b_grid_search self.model_catalog.add_model_wrapper( queryEngineBundle, self.runtime_config) queryEngineBundle.serialize2warehouse( self.config.get_config()['warehousedir'], self.runtime_config) else: # x has categorical attributes # if not self.config.get_config()["b_use_gg"]: # use a single model to support categorical conditions. if self.config.config["one_model"]: qe = MdnQueryEngineXCategoricalOneModel( self.config.copy()) usecols = { "y": yheader, "x_continous": xheader_continous, "x_categorical": xheader_categorical, "gb": groupby_attribute} useCols = UseCols(usecols) # get the training data from samples. gbs, xs, ys = useCols.get_gb_x_y_cols_for_one_model() gbs_data, xs_data, ys_data = sampler.sample.get_columns_from_original_sample( gbs, xs, ys) n_total_point = sampler.sample.get_frequency_of_categorical_columns_for_gbs( groupby_attribute, xheader_categorical) # print("n_total_point-----------before", # n_total_point) # print("ratio is ", ratio) scaled_n_total_point = {} for key in n_total_point: scaled_n_total_point[key] = {} for sub_key in n_total_point[key]: scaled_n_total_point[key][sub_key] = n_total_point[key][sub_key]/ratio n_total_point = scaled_n_total_point # print("n_total_point-----------after", # n_total_point) # raise qe.fit(mdl, tbl, gbs_data, xs_data, ys_data, n_total_point, usecols=usecols, runtime_config=self.runtime_config) else: qe = MdnQueryEngineXCategorical( self.config.copy()) qe.fit(mdl, tbl, xys, n_total_point, usecols={ "y": yheader, "x_continous": xheader_continous, "x_categorical": xheader_categorical, "gb": groupby_attribute}, runtime_config=self.runtime_config ) # device=device, encoding=encoding, b_grid_search=b_grid_search qe.serialize2warehouse( self.config.get_config()['warehousedir'], self.runtime_config) self.model_catalog.add_model_wrapper( qe, self.runtime_config) # else: # raise ValueError( # "GoG support for categorical attributes is not supported.") qe.serialize2warehouse( self.config.get_config()['warehousedir'], self.runtime_config) self.model_catalog.add_model_wrapper( qe, self.runtime_config) time2 = datetime.now() t = (time2 - time1).seconds if self.runtime_config['b_show_latency']: print("time cost: " + str(t) + "s.") print("------------------------") # rest config self.last_config = None return elif sql_type == "select": # process SELECT query start_time = datetime.now() predictions = None # DML, provide the prediction using models mdl = self.parser.get_from_name() gb_to_print, [ func, yheader, distinct_condition] = self.parser.get_dml_aggregate_function_and_variable() if self.parser.if_where_exists(): print("OK") where_conditions = self.parser.get_dml_where_categorical_equal_and_range() # xheader, x_lb, x_ub = self.parser.get_dml_where_categorical_equal_and_range() model = self.model_catalog.model_catalog[mdl + self.runtime_config["model_suffix"]] x_header_density = model.density_column # print("where_conditions", where_conditions) [x_lb, x_ub] = [where_conditions[2][x_header_density][i] for i in [0, 1]] filter_dbest = dict(where_conditions[2]) filter_dbest = [filter_dbest[next(iter(filter_dbest))][i] for i in [0, 1]] # print("where_conditions",where_conditions) # print("filter_dbest",filter_dbest) predictions = model.predicts(func, x_lb, x_ub, where_conditions, self.runtime_config, groups=None, filter_dbest=filter_dbest) # predictions = model.predict_one_pass( # func, x_lb, x_ub, n_jobs=n_jobs) elif func == "var": print("var!!") model = self.model_catalog.model_catalog[mdl + self.runtime_config["model_suffix"]] x_header_density = model.density_column # print(x_header_density) predictions = model.predicts("var",runtime_config=self.runtime_config) # return predictions else: print( "support for query without where clause is not implemented yet! abort!") return # if not self.parser.if_contain_groupby(): # if group by is not involved in the query # simple_model_wrapper = self.model_catalog.model_catalog[get_pickle_file_name( # mdl)] # reg = simple_model_wrapper.reg # density = simple_model_wrapper.density # n_sample_point = int(simple_model_wrapper.n_sample_point) # n_total_point = int(simple_model_wrapper.n_total_point) # x_min_value = float(simple_model_wrapper.x_min_value) # x_max_value = float(simple_model_wrapper.x_max_value) # query_engine = QueryEngine(reg, density, n_sample_point, # n_total_point, x_min_value, x_max_value, # self.config) # p, t = query_engine.predict(func, x_lb=x_lb, x_ub=x_ub) # print("OK") # print(p) # if self.config.get_config()['verbose']: # print("time cost: " + str(t)) # print("------------------------") # return p, t # else: # if group by is involved in the query # if self.config.get_config()['reg_type'] == "qreg": # start = datetime.now() # predictions = {} # groupby_attribute = self.parser.get_groupby_value() # groupby_key = mdl + "_groupby_" + groupby_attribute # for group_value, model_wrapper in self.model_catalog.model_catalog[groupby_key].items(): # reg = model_wrapper.reg # density = model_wrapper.density # n_sample_point = int(model_wrapper.n_sample_point) # n_total_point = int(model_wrapper.n_total_point) # x_min_value = float(model_wrapper.x_min_value) # x_max_value = float(model_wrapper.x_max_value) # query_engine = QueryEngine(reg, density, n_sample_point, n_total_point, x_min_value, # x_max_value, # self.config) # predictions[model_wrapper.groupby_value] = query_engine.predict( # func, x_lb=x_lb, x_ub=x_ub)[0] # print("OK") # for key, item in predictions.items(): # print(key, item) # else: # use mdn models to give the predictions. # start = datetime.now() # # predictions = {} # groupby_attribute = self.parser.get_groupby_value() # # no categorical x attributes # # x_categorical_attributes, x_categorical_values, x_categorical_conditions = self.parser.get_dml_where_categorical_equal_and_range() # x_categorical_conditions = self.parser.get_dml_where_categorical_equal_and_range() # # no x categrical attributes, use a single model to predict. # if not x_categorical_conditions[0]: # if not self.config.get_config()["b_use_gg"]: # # qe_mdn = MdnQueryEngine(self.model_catalog.model_catalog[mdl + ".pkl"], # # self.config) # where_conditions = self.parser.get_dml_where_categorical_equal_and_range() # # xheader, x_lb, x_ub = self.parser.get_dml_where_categorical_equal_and_range() # qe_mdn = self.model_catalog.model_catalog[mdl + ".pkl"] # x_header_density = qe_mdn.density_column # [x_lb, x_ub] = [where_conditions[2][x_header_density][i] # for i in [0, 1]] # print("OK") # predictions = qe_mdn.predict_one_pass(func, x_lb=x_lb, x_ub=x_ub, # n_jobs=n_jobs, ) # result2file=result2file,n_division=n_division # else: # qe_mdn = self.model_catalog.model_catalog[mdl + ".pkl"] # # qe_mdn = MdnQueryEngine(qe_mdn, self.config) # print("OK") # predictions = qe_mdn.predicts(func, x_lb=x_lb, x_ub=x_ub, # n_jobs=n_jobs, ) # else: # pass # # print("OK") # # if not self.config.get_config()["b_use_gg"]: # # # print("x_categorical_values", # # # x_categorical_values) # # # print(",".join(x_categorical_values)) # # filter_dbest = self.parser.get_filter() # # self.model_catalog.model_catalog[mdl + '.pkl'].predicts( # # func, x_lb, x_ub, x_categorical_conditions, n_jobs=1, filter_dbest=filter_dbest) # ",".join(x_categorical_values) # # else: # # pass if self.runtime_config['b_show_latency']: end_time = datetime.now() time_cost = (end_time - start_time).total_seconds() print("Time cost: %.4fs." % time_cost) print("------------------------") return predictions elif sql_type == "set": # process SET query if self.last_config: self.config = self.last_config else: self.config = DbestConfig() try: key, value = self.parser.get_set_variable_value() if key in self.config.get_config(): # check variable value before assignment if key.lower() == "encoder": value = value.lower() if value not in ["onehot", "binary", "embedding"]: value = "binary" print( "encoder is not set to a proper value, use default encoding type: binary.") self.config.get_config()[key] = value print("OK, " + key + " is updated.") else: # if variable is within runtime_config # check if "device" is set. we need to make usre when GPU is not availabe, cpu is used instead. if key.lower() == "device": value = value.lower() if value in ["cpu", "gpu"]: if torch.cuda.is_available(): if value == "gpu": value = "cuda:0" try: set_start_method_torch('spawn') except RuntimeError: print("Fail to set start method as spawn for pytorch multiprocessing, " + "use default in advance. (see queryenginemdn " "for more info.)") else: set_start_method_cpu("spawn") if self.runtime_config["v"]: print("device is set to " + value) else: if value == "gpu": print( "GPU is not available, use CPU instead") value = "cpu" if value == "cpu": if self.runtime_config["v"]: print("device is set to " + value) else: print("Only GPU or CPU is supported.") return self.runtime_config[key] = value if key in self.runtime_config: print("OK, " + key + " is updated.") else: print("OK, local variable "+key+" is defined.") except TypeError: # self.parser.get_set_variable_value() does not return correctly print("Parameter is not changed. Please check your SQL!") # save the config self.last_config = self.config return elif sql_type == "drop": # process DROP query model_name = self.parser.drop_get_model() model_path = os.path.join(self.config.get_config( )["warehousedir"], model_name+self.runtime_config["model_suffix"]) if os.path.isfile(model_path): os.remove(model_path) print("OK. model is dropped.") return True else: print("Model does not exist!") return False elif sql_type == "show": print("OK") t_start = datetime.now() if self.runtime_config['b_print_to_screen']: for key in self.model_catalog.model_catalog: print(key.replace( self.runtime_config["model_suffix"], '')) if self.runtime_config["v"]: t_end = datetime.now() time_cost = (t_end - t_start).total_seconds() print("Time cost: %.4fs." % time_cost) else: print("Unsupported query type, please check your SQL.") return def set_table_counts(self, dic): self.n_total_records = dic
{"hexsha": "304baccbdd51d088b1fb4c7c1121c5354a95daa9", "size": 36864, "ext": "py", "lang": "Python", "max_stars_repo_path": "dbestclient/executor/executor.py", "max_stars_repo_name": "qingzma/DBEst_MDN", "max_stars_repo_head_hexsha": "3a3e26bede308b70abfad07032dc16a07a170f34", "max_stars_repo_licenses": ["BSD-2-Clause"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2022-02-23T08:01:08.000Z", "max_stars_repo_stars_event_max_datetime": "2022-02-23T08:01:08.000Z", "max_issues_repo_path": "dbestclient/executor/executor.py", "max_issues_repo_name": "qingzma/DBEst_MDN", "max_issues_repo_head_hexsha": "3a3e26bede308b70abfad07032dc16a07a170f34", "max_issues_repo_licenses": ["BSD-2-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "dbestclient/executor/executor.py", "max_forks_repo_name": "qingzma/DBEst_MDN", "max_forks_repo_head_hexsha": "3a3e26bede308b70abfad07032dc16a07a170f34", "max_forks_repo_licenses": ["BSD-2-Clause"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2020-09-28T15:39:12.000Z", "max_forks_repo_forks_event_max_datetime": "2021-05-11T11:07:54.000Z", "avg_line_length": 56.7138461538, "max_line_length": 197, "alphanum_fraction": 0.4759657118, "include": true, "reason": "import numpy", "num_tokens": 6459}
[STATEMENT] lemma [code]: \<open>unset_bit 0 m = 2 * (m div 2)\<close> \<open>unset_bit (Suc n) m = m mod 2 + 2 * unset_bit n (m div 2)\<close> for m :: natural [PROOF STATE] proof (prove) goal (1 subgoal): 1. unset_bit 0 m = 2 * (m div 2) &&& unset_bit (Suc n) m = m mod 2 + 2 * unset_bit n (m div 2) [PROOF STEP] by (transfer; simp add: unset_bit_Suc)+
{"llama_tokens": 174, "file": null, "length": 1}
# Author: sihan # Date: 2018-10-26 import os # dealing with directories from random import shuffle # mixing up or currently ordered data that might lead our network astray in training. import cv2 # working with, mainly resizing, images import numpy as np # dealing with arrays from tqdm import tqdm # a nice pretty percentage bar for tasks. Thanks to viewer Daniel BA1/4hler for this suggestion # TRAIN_DIR = 'E:\Project\Ai_Club\dataSets\\train' TEST_DIR = 'E:\Project\Ai_Club\dataSets\\test' TRAIN_DIR = r'E:\Project\dataSet\all\train' # TEST_DIR = r'E:\Project\dataSet\all\test' IMG_SIZE = 64 def label_img(img): word_label = img.split('.')[-3] # conversion to one-hot array [cat,dog] # [much cat, no dog] if word_label == 'cat': return [1, 0] # [no cat, very doggo] elif word_label == 'dog': return [0, 1] def create_train_data(numFile): training_data = [] for img in tqdm(os.listdir(TRAIN_DIR)): label = label_img(img) path = os.path.join(TRAIN_DIR, img) img = cv2.imread(path, cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, (IMG_SIZE, IMG_SIZE)) training_data.append([np.array(img), np.array(label)]) shuffle(training_data) fileName = './data/train_data_' + str(IMG_SIZE) + "_" + str(numFile) + '.npy' np.save(fileName, training_data) return training_data def create_test_data(numFile): test_data = [] for img in tqdm(os.listdir(TEST_DIR)): label = label_img(img) path = os.path.join(TEST_DIR, img) img = cv2.imread(path, cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, (IMG_SIZE, IMG_SIZE)) test_data.append([np.array(img), np.array(label)]) shuffle(test_data) fileName = './data/test_data_' + str(IMG_SIZE) + "_" + str(numFile) + '.npy' np.save(fileName, test_data) return test_data def process_test_data(numFile): testing_data = [] for img in tqdm(os.listdir(TEST_DIR)): path = os.path.join(TEST_DIR, img) img_num = img.split('.')[0] img = cv2.imread(path, cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, (IMG_SIZE, IMG_SIZE)) testing_data.append([np.array(img), img_num]) shuffle(testing_data) np.save('./data/test_data_proc_' + str(numFile) + "_" + str(IMG_SIZE) + '.npy', testing_data) return testing_data # test_data = process_test_data(12500) # train_data = create_train_data(25000) test_data2 = create_test_data(2000)
{"hexsha": "6a30a7c073fb978f3088295714f65c1fa179738d", "size": 2525, "ext": "py", "lang": "Python", "max_stars_repo_path": "classification/make_test_set.py", "max_stars_repo_name": "Sihan-Son/animal_classification", "max_stars_repo_head_hexsha": "e0fcee46c2a31ef35dfd6f84849259474a92101b", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2018-09-04T04:03:41.000Z", "max_stars_repo_stars_event_max_datetime": "2018-09-04T04:03:41.000Z", "max_issues_repo_path": "classification/make_test_set.py", "max_issues_repo_name": "Sihan-Son/animal_classification", "max_issues_repo_head_hexsha": "e0fcee46c2a31ef35dfd6f84849259474a92101b", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 13, "max_issues_repo_issues_event_min_datetime": "2018-09-03T00:10:56.000Z", "max_issues_repo_issues_event_max_datetime": "2022-02-09T23:56:14.000Z", "max_forks_repo_path": "classification/make_test_set.py", "max_forks_repo_name": "Sihan-Son/animal_classification", "max_forks_repo_head_hexsha": "e0fcee46c2a31ef35dfd6f84849259474a92101b", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2018-09-04T04:03:42.000Z", "max_forks_repo_forks_event_max_datetime": "2018-09-04T04:03:42.000Z", "avg_line_length": 33.2236842105, "max_line_length": 118, "alphanum_fraction": 0.6499009901, "include": true, "reason": "import numpy", "num_tokens": 660}
action(::Type{PointerMovesEvent}) = PointerMoves action(::Type{PointerLeavesWindowEvent}) = PointerLeavesWindow action(::Type{PointerEntersWindowEvent}) = PointerEntersWindow action(::Type{ExposeEvent}) = Expose action(::Type{ResizeEvent}) = Resize action(::Type{<:MouseEvent{A}}) where {A} = A action(::Type{<:KeyEvent{A}}) where {A} = A action(::Type{<:EventDetails{T}}) where {T} = action(T) action(ed::EventDetails) = action(typeof(ed)) action(ed::EventData) = action(typeof(ed)) callback_symbol(::Type{Resize}) = :on_resize callback_symbol(::Type{ButtonPressed}) = :on_mouse_button_pressed callback_symbol(::Type{ButtonReleased}) = :on_mouse_button_released callback_symbol(::Type{KeyPressed}) = :on_key_pressed callback_symbol(::Type{KeyReleased}) = :on_key_released callback_symbol(::Type{Expose}) = :on_expose callback_symbol(::Type{PointerEntersWindow}) = :on_pointer_enter callback_symbol(::Type{PointerLeavesWindow}) = :on_pointer_leave callback_symbol(::Type{PointerMoves}) = :on_pointer_move callback(callbacks::Callbacks, T) = getproperty(callbacks, callback_symbol(action(T))) function execute_callback(wm::AbstractWindowManager, ed::EventDetails) execute_callback(callback(callbacks(wm, ed.win), typeof(ed)), (ed,)) end function execute_callback(cb::Function, args::Tuple) cb(args...) end execute_callback(cb::Nothing, args::Tuple) = nothing """ run(window_manager, mode; kwargs...) Run an event loop associated with the `window_manager` in a synchronous or asynchronous fashion. """ Base.run(W::AbstractWindowManager, ::ExecutionMode) = not_implemented_for(W)
{"hexsha": "846885f21dd540464ccc596278fbf0ea7e78a1bb", "size": 1596, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/events.jl", "max_stars_repo_name": "serenity4/WindowAbstractions.jl", "max_stars_repo_head_hexsha": "d6547be67c820315d44315efaa673849e3dc2afa", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/events.jl", "max_issues_repo_name": "serenity4/WindowAbstractions.jl", "max_issues_repo_head_hexsha": "d6547be67c820315d44315efaa673849e3dc2afa", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 5, "max_issues_repo_issues_event_min_datetime": "2020-10-25T15:58:12.000Z", "max_issues_repo_issues_event_max_datetime": "2021-07-11T20:43:03.000Z", "max_forks_repo_path": "src/events.jl", "max_forks_repo_name": "serenity4/WindowAbstractions.jl", "max_forks_repo_head_hexsha": "d6547be67c820315d44315efaa673849e3dc2afa", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 39.9, "max_line_length": 96, "alphanum_fraction": 0.765037594, "num_tokens": 403}
# --- # jupyter: # jupytext: # formats: ipynb,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.13.7 # kernelspec: # display_name: Python [conda env:bandit_38] # language: python # name: conda-env-bandit_38-py # --- # %% language="javascript" # IPython.notebook.kernel.restart() # %% import datetime import numpy as np import xarray as xr from Bandit.model_output import ModelOutput # %% workdir = '/Users/pnorton/tmp' filename = f'{workdir}/seg_gwflow.nc' filename_rain = f'{workdir}/hru_rain.nc' st_date = datetime.datetime(1980, 10, 1) en_date = datetime.datetime(1980, 10, 31) # the_segs = [49153, 49154, 49155, 49156, 49157] the_segs = [49153] # %% modout = ModelOutput(filename=filename, varname='seg_gwflow', startdate=st_date, enddate=en_date, nhm_segs=the_segs) # %% modout.get_var('seg_gwflow').head() # %% modout.dataset['seg_gwflow'].to_pandas().head() # %% # aa = xr.open_dataset(filename, decode_coords=True, chunks={'nsegment': 1000}) aa = xr.open_dataset(filename_rain, decode_coords=True, chunks={'nhru': 1000}) # %% aa # %% # da.sel(a=da.c.to_index().get_indexer(['x', 'y'])) # aa[seg_gwflow].sel(nsegment=) a = aa['seg_gwflow'] # a.sel(country=a.currency == 'EUR') a.sel(nsegment=a.seg_id == 49154).to_pandas() # %% # In [63]: da = xr.DataArray(np.random.rand(3,2), dims=list('ab'), coords={'c':(('a',),list('xyz'))}) # In [64]: da.sel(a=(np.isin(da.c, list('xy')))) a.sel(nsegment=(np.isin(a.seg_id, [49157, 49154]))).to_pandas() # %% # %% # %% a # %% b = aa['seg_id'] # b.sel(nsegment=b.seg_id in [49154, 49157]).to_pandas() # data = self.__dataset[varname].loc[:, self.__nhm_hrus].to_pandas() b.loc[[49154, 49157]].to_pandas() # %% # Get the indices for the NHM (global) ids cc = b.to_index().get_indexer([49157, 49154]) # %% dd = a.loc[:, cc].to_pandas() # %% dd # %% ee = a.loc[:, cc] # %% ee # %% # da.assign_coords(lon=(((da.lon + 180) % 360) - 180)) # aa = xr.open_dataset(filename, decode_coords=True, chunks={'nsegment': 1000}) # aa = xr.open_dataset(filename, chunks={'nsegment': 1000}) aa = xr.open_dataset(filename_rain, decode_coords=True, chunks={'nhru': 1000}) aa # %% ba = aa.assign_coords(nhru=(aa.nhm_id)) # %% dd = ba['hru_rain'].loc[:, [101, 102]].to_pandas() # %% dd # %% ba # %% list(range(1,11)) # %%
{"hexsha": "0d0570e41bef2b304b4330aca95f2516a55a4668", "size": 2394, "ext": "py", "lang": "Python", "max_stars_repo_path": "04_Bandit/subset_model_output_work.py", "max_stars_repo_name": "pnorton-usgs/notebooks", "max_stars_repo_head_hexsha": "17a38ecd3f3c052b9bd785c2e53e16a9082d1e71", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "04_Bandit/subset_model_output_work.py", "max_issues_repo_name": "pnorton-usgs/notebooks", "max_issues_repo_head_hexsha": "17a38ecd3f3c052b9bd785c2e53e16a9082d1e71", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "04_Bandit/subset_model_output_work.py", "max_forks_repo_name": "pnorton-usgs/notebooks", "max_forks_repo_head_hexsha": "17a38ecd3f3c052b9bd785c2e53e16a9082d1e71", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 19.95, "max_line_length": 116, "alphanum_fraction": 0.6399331662, "include": true, "reason": "import numpy", "num_tokens": 807}
handle("gotosymbol") do data @destruct [ word, path || nothing, # local context column || 1, row || 1, startRow || 0, context || "", onlyGlobal || true, # module context mod || "Main", text || "", ] = data gotosymbol( word, path, column, row, startRow, context, onlyGlobal, mod, text, ) end function gotosymbol( word, path = nothing, # local context column = 1, row = 1, startrow = 0, context = "", onlyglobal = false, # module context mod = "Main", text = "" ) try # local goto if !onlyglobal localitems = localgotoitem(word, path, column, row, startrow, context) isempty(localitems) || return Dict( :error => false, :items => todict.(localitems) ) end # global goto globalitems = globalgotoitems(word, getmodule(mod), path, text) isempty(globalitems) || return Dict( :error => false, :items => todict.(globalitems), ) catch err return Dict(:error => true) end return Dict(:error => true) # nothing hits end struct GotoItem text::String file::String line::Int secondary::String GotoItem(text, file, line = 0, secondary = "") = new(text, normpath(file), line, secondary) end todict(gotoitem::GotoItem) = Dict( :text => gotoitem.text, :file => gotoitem.file, :line => gotoitem.line, :secondary => gotoitem.secondary, ) ### local goto function localgotoitem(word, path, column, row, startrow, context) word = first(split(word, '.')) # always ignore dot accessors position = row - startrow ls = locals(context, position, column) filter!(ls) do l l[:name] == word && l[:line] < position end map(ls) do l # there should be zero or one element in `ls` text = l[:name] line = startrow + l[:line] - 1 GotoItem(text, path, line) end end localgotoitem(word, ::Nothing, column, row, startrow, context) = [] # when called from docpane/workspace ### global goto - bundles toplevel gotos & method gotos function globalgotoitems(word, mod, path, text) # strip a dot-accessed module if exists identifiers = split(word, '.') head = string(identifiers[1]) if head ≠ word && (nextmod = getfield′(mod, head)) isa Module # if `head` is a module, update `word` and `mod` nextword = join(identifiers[2:end], '.') return globalgotoitems(nextword, nextmod, text, path) end val = getfield′(mod, word) val isa Module && return [GotoItem(val)] # module goto items = toplevelgotoitems(word, mod, path, text) # append method gotos that are not caught by `toplevelgotoitems` ml = methods(val) files = map(item -> item.file, items) methoditems = filter!(item -> item.file ∉ files, methodgotoitems(ml)) append!(items, methoditems) end ## module goto function GotoItem(mod::Module) file, line = mod == Main ? MAIN_MODULE_LOCATION[] : moduledefinition(mod) GotoItem(string(mod), file, line - 1) end ## toplevel goto const PathItemsMaps = Dict{String, Vector{ToplevelItem}} """ Atom.SYMBOLSCACHE "module" (`String`) ⟶ "path" (`String`) ⟶ "symbols" (`Vector{ToplevelItem}`) map. !!! note "module" should be canonical, i.e.: should be identical to names that are constructed from `string(mod::Module)`. """ const SYMBOLSCACHE = Dict{String, PathItemsMaps}() function toplevelgotoitems(word, mod, path, text) key = string(mod) pathitemsmaps = if haskey(SYMBOLSCACHE, key) SYMBOLSCACHE[key] else SYMBOLSCACHE[key] = collecttoplevelitems(mod, path, text) # caching end ismacro(word) && (word = lstrip(word, '@')) ret = [] for (path, items) in pathitemsmaps for item in filter(item -> filtertoplevelitem(word, item), items) push!(ret, GotoItem(path, item)) end end return ret end # entry methods function collecttoplevelitems(mod::Module, path::String, text::String) return if mod == Main || isuntitled(path) # for `Main` module and unsaved editors, always use CSTPraser-based approach # with a given buffer text, and don't check module validity __collecttoplevelitems(nothing, path, text) else _collecttoplevelitems(mod) end end # when `path === nothing`, e.g.: called from docpane/workspace collecttoplevelitems(mod::Module, path::Nothing, text::String) = _collecttoplevelitems(mod) function _collecttoplevelitems(mod::Module) entrypath, paths = modulefiles(mod) return if entrypath !== nothing # Revise-like approach __collecttoplevelitems(stripdotprefixes(string(mod)), [entrypath; paths]) else # if Revise-like approach fails, fallback to CSTParser-based approach entrypath, line = moduledefinition(mod) __collecttoplevelitems(stripdotprefixes(string(mod)), entrypath) end end # module-walk via Revise-like approach function __collecttoplevelitems(mod::Union{Nothing, String}, paths::Vector{String}) pathitemsmaps = PathItemsMaps() entrypath, paths = paths[1], paths[2:end] # ignore toplevel items outside of `mod` items = toplevelitems(read(entrypath, String); mod = mod) push!(pathitemsmaps, entrypath => items) # collect symbols in included files (always in `mod`) for path in paths items = toplevelitems(read(path, String); mod = mod, inmod = true) push!(pathitemsmaps, path => items) end pathitemsmaps end # module-walk based on CSTParser, looking for toplevel `included` calls function __collecttoplevelitems(mod::Union{Nothing, String}, entrypath::String, pathitemsmaps::PathItemsMaps = PathItemsMaps(); inmod = false) isfile′(entrypath) || return text = read(entrypath, String) __collecttoplevelitems(mod, entrypath, text, pathitemsmaps; inmod = inmod) end function __collecttoplevelitems(mod::Union{Nothing, String}, entrypath::String, text::String, pathitemsmaps::PathItemsMaps = PathItemsMaps(); inmod = false) items = toplevelitems(text; mod = mod, inmod = inmod) push!(pathitemsmaps, entrypath => items) # looking for toplevel `include` calls for item in items if item isa ToplevelCall expr = item.expr if isinclude(expr) nextfile = expr.args[3].val nextentrypath = joinpath(dirname(entrypath), nextfile) isfile′(nextentrypath) || continue # `nextentrypath` is always in `mod` __collecttoplevelitems(mod, nextentrypath, pathitemsmaps; inmod = true) end end end pathitemsmaps end filtertoplevelitem(word, item::ToplevelItem) = false function filtertoplevelitem(word, bind::ToplevelBinding) bind = bind.bind bind === nothing ? false : word == bind.name end function filtertoplevelitem(word, tupleh::ToplevelTupleH) expr = tupleh.expr for arg in expr.args if str_value(arg) == word return true end end return false end function GotoItem(path::String, bind::ToplevelBinding) expr = bind.expr text = bind.bind.name if CSTParser.has_sig(expr) sig = CSTParser.get_sig(expr) text = str_value(sig) end line = bind.lines.start - 1 secondary = string(path, ":", line + 1) GotoItem(text, path, line, secondary) end function GotoItem(path::String, tupleh::ToplevelTupleH) expr = tupleh.expr text = str_value(expr) line = tupleh.lines.start - 1 secondary = string(path, ":", line + 1) GotoItem(text, path, line, secondary) end ## update toplevel symbols cache # NOTE: handled by the `updateeditor` handler in outline.jl function updatesymbols(mod, path::Nothing, text) end # fallback case function updatesymbols(mod, path::String, text) m = getmodule(mod) # initialize the cache if there is no previous one if !haskey(SYMBOLSCACHE, mod) SYMBOLSCACHE[mod] = collecttoplevelitems(m, path, text) end # ignore toplevel items outside of `mod` when `path` is an entry file entrypath, _ = moduledefinition(m) inmod = path != entrypath items = toplevelitems(text; mod = stripdotprefixes(mod), inmod = inmod) push!(SYMBOLSCACHE[mod], path => items) end ## generate toplevel symbols cache handle("regeneratesymbols") do with_logger(JunoProgressLogger()) do regeneratesymbols() end nothing end function regeneratesymbols() id = "regenerate_symbols_progress" @info "Generating symbols cache in loaded modules" progress=0 _id=id loaded = Set(string.(Base.loaded_modules_array())) pkgs = if isdefined(Pkg, :dependencies) getfield.(values(Pkg.dependencies()), :name) else collect(keys(Pkg.installed())) end unloaded = filter(pkg -> pkg ∉ loaded, pkgs) loadedlen = length(loaded) unloadedlen = length(unloaded) total = loadedlen + unloadedlen for (i, mod) in enumerate(Base.loaded_modules_array()) try key = string(mod) key == "__PackagePrecompilationStatementModule" && continue # will cause error @logmsg -1 "Symbols: $key ($i / $total)" progress=i/total _id=id SYMBOLSCACHE[key] = _collecttoplevelitems(mod) catch err @error err end end for (i, pkg) in enumerate(unloaded) try @logmsg -1 "Symbols: $pkg ($(i + loadedlen) / $total)" progress=(i+loadedlen)/total _id=id path = Base.find_package(pkg) SYMBOLSCACHE[pkg] = __collecttoplevelitems(pkg, path) catch err @error err end end @info "Finished generating the symbols cache" progress=1 _id=id end ## clear toplevel symbols cache handle("clearsymbols") do clearsymbols() nothing end function clearsymbols() for key in keys(SYMBOLSCACHE) delete!(SYMBOLSCACHE, key) end end ## method goto methodgotoitems(ml) = map(GotoItem, aggregatemethods(ml)) # aggregate methods with default arguments to the ones with full arguments function aggregatemethods(ml) ms = collect(ml) sort!(ms, by = m -> m.nargs, rev = true) unique(m -> (m.file, m.line), ms) end function GotoItem(m::Method) _, link = view(m) sig = sprint(show, m) text = replace(sig, methodloc_regex => s"\g<sig>") file = link.file line = link.line - 1 secondary = join(link.contents) GotoItem(text, file, line, secondary) end
{"hexsha": "3c37ded889bc0be01578ebb43f67a406c5f37a34", "size": 9943, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/goto.jl", "max_stars_repo_name": "UnofficialJuliaMirror/Atom.jl-c52e3926-4ff0-5f6e-af25-54175e0327b1", "max_stars_repo_head_hexsha": "85c218fae87ae4352f47b0be28366c2daa6b9a5a", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/goto.jl", "max_issues_repo_name": "UnofficialJuliaMirror/Atom.jl-c52e3926-4ff0-5f6e-af25-54175e0327b1", "max_issues_repo_head_hexsha": "85c218fae87ae4352f47b0be28366c2daa6b9a5a", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/goto.jl", "max_forks_repo_name": "UnofficialJuliaMirror/Atom.jl-c52e3926-4ff0-5f6e-af25-54175e0327b1", "max_forks_repo_head_hexsha": "85c218fae87ae4352f47b0be28366c2daa6b9a5a", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 28.1671388102, "max_line_length": 156, "alphanum_fraction": 0.6880217238, "num_tokens": 2784}
import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import Compose, ToTensor, Normalize from tqdm import tqdm from ignite.engine import Engine, create_supervised_evaluator, create_supervised_trainer, Events from ignite.metrics import Accuracy, Loss import numpy as np def get_data_loaders(train_batch_size, val_batch_size): data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))]) train_loader = DataLoader(MNIST(download=True, root=".", transform=data_transform, train=True), batch_size=train_batch_size, shuffle=True) val_loader = DataLoader(MNIST(download=False, root=".", transform=data_transform, train=False), batch_size=val_batch_size, shuffle=False) return train_loader, val_loader class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) self.fc1 = nn.Linear(7*7*64, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(-1, 7*7*64) x = self.fc1(x) return F.log_softmax(x, dim=-1) batch_size = 64 lr = 1e-3 train_loader, val_loader = get_data_loaders(batch_size, batch_size) model = ConvNet() device = 'cuda' optimizer = optim.Adam(model.parameters(), lr=lr) trainer = create_supervised_trainer(model, optimizer, F.nll_loss, device=device) evaluator = create_supervised_evaluator( model=model, metrics={'accuracy': Accuracy(), 'nll': Loss(F.nll_loss)}, device=device ) desc = "ITERATION - loss: {:.2f}" pbar = tqdm( initial=0, leave=False, total=len(train_loader), desc=desc.format(0) ) @trainer.on(Events.ITERATION_COMPLETED) def log_training_loss(engine): iter = (engine.state.iteration - 1) % len(train_loader) + 1 pbar.desc = desc.format(engine.state.output) pbar.update(1) @trainer.on(Events.EPOCH_COMPLETED) def log_train_metrics(engine): pbar.refresh() evaluator.run(train_loader) metrics = evaluator.state.metrics avg_accuracy = metrics['accuracy'] avg_nll = metrics['nll'] tqdm.write( "Training Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}" .format(engine.state.epoch, avg_accuracy, avg_nll)) @trainer.on(Events.EPOCH_COMPLETED) def log_val_metrics(engine): evaluator.run(val_loader) metrics = evaluator.state.metrics tqdm.write( "Validation Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}" .format(engine.state.epoch, metrics['accuracy'], metrics['nll'])) pbar.n = pbar.last_print_n = 0 trainer.run(train_loader, max_epochs=10) pbar.close()
{"hexsha": "dc282927aaf512293a67f61b3c0f2ab7d036ac8d", "size": 2964, "ext": "py", "lang": "Python", "max_stars_repo_path": "ignite_examples/mnits_ignite.py", "max_stars_repo_name": "Daiver/Depth-regression", "max_stars_repo_head_hexsha": "cbc2a119915b4c350f0ad0b0a269aab520c03304", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "ignite_examples/mnits_ignite.py", "max_issues_repo_name": "Daiver/Depth-regression", "max_issues_repo_head_hexsha": "cbc2a119915b4c350f0ad0b0a269aab520c03304", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "ignite_examples/mnits_ignite.py", "max_forks_repo_name": "Daiver/Depth-regression", "max_forks_repo_head_hexsha": "cbc2a119915b4c350f0ad0b0a269aab520c03304", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 29.64, "max_line_length": 99, "alphanum_fraction": 0.6811740891, "include": true, "reason": "import numpy", "num_tokens": 756}
import random import numpy as np import tensorflow as tf from data_predication import features def create_feature_sets_and_labels(features, test_size=0.3): # shuffle out features and turn into np.array random.shuffle(features) features = np.array(features) # split a portion of the features into tests testing_size = int(test_size * len(features)) # create train and test lists train_x = list(features[:, 0][:-testing_size]) train_y = list(features[:, 1][:-testing_size]) test_x = list(features[:, 0][-testing_size:]) test_y = list(features[:, 1][-testing_size:]) return train_x, train_y, test_x, test_y train_x, train_y, test_x, test_y = create_feature_sets_and_labels(features) # hidden layers and their nodes n_nodes_hl1 = 20 n_nodes_hl2 = 20 # classes in our output n_classes = 2 # iterations and batch-size to build out model learning_times = 3000 learning_rate = 1 batch_size = 4 inputs = tf.placeholder(tf.float32) outputs = tf.placeholder(tf.float32) # random weights and bias for our layers hidden_1_layer = {'f_fum': n_nodes_hl1, 'weight': tf.Variable(tf.random_normal([len(train_x[0]), n_nodes_hl1])), 'bias': tf.Variable(tf.random_normal([n_nodes_hl1]))} hidden_2_layer = {'f_fum': n_nodes_hl2, 'weight': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])), 'bias': tf.Variable(tf.random_normal([n_nodes_hl2]))} output_layer = {'f_fum': None, 'weight': tf.Variable(tf.random_normal([n_nodes_hl2, n_classes])), 'bias': tf.Variable(tf.random_normal([n_classes])), } # our predictive model's definition def neural_network_model(input_data): # hidden layer 1: (data * W) + b l1 = tf.add(tf.matmul(input_data, hidden_1_layer['weight']), hidden_1_layer['bias']) l1 = tf.sigmoid(l1) # hidden layer 2: (hidden_layer_1 * W) + b l2 = tf.add(tf.matmul(l1, hidden_2_layer['weight']), hidden_2_layer['bias']) l2 = tf.sigmoid(l2) # output: (hidden_layer_2 * W) + b output_data = tf.matmul(l2, output_layer['weight']) + output_layer['bias'] return output_data # training our model def train_neural_network(): # use the model definition prediction = neural_network_model(inputs) # formula for cost (error) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=outputs)) # optimize for cost using GradientDescent optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) # Tensorflow session with tf.Session() as sess: tf.summary.FileWriter('log_ANN_graph', sess.graph) # initialize our variables sess.run(tf.global_variables_initializer()) # loop through specified number of iterations for epoch in range(learning_times): i = 0 # handle batch sized chunks of training data for _ in train_x: start = i end = i + batch_size batch_x = np.array(train_x[start:end]) batch_y = np.array(train_y[start:end]) _, c = sess.run([optimizer, loss], feed_dict={inputs: batch_x, outputs: batch_y}) i += batch_size last_cost = c if i >= len(train_x): break # print cost updates along the way if (epoch % (learning_times / 5)) == 0: print('Epoch', epoch, 'completed out of', learning_times, 'cost:', last_cost) # print accuracy of our model correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(outputs, 1)) accuracy = tf.reduce_mean(tf.cast(correct, 'float')) print('Accuracy:', accuracy.eval({inputs: test_x, outputs: test_y})) output_weight = sess.run(output_layer['weight']) output_bias = sess.run(output_layer['bias']) # print predictions using our model for i, t in enumerate(test_x): print ('prediction for:', test_x[i]) output = prediction.eval(feed_dict={inputs: [test_x[i]]}) # normalize the prediction values print(tf.sigmoid(output[0][0]).eval(), tf.sigmoid(output[0][1]).eval()) return output_weight, output_bias output_weight, output_bias = train_neural_network() print("final output_weight:\n{}".format(output_weight)) print("final output_bias: {}".format(batch_size))
{"hexsha": "c7bc1e2db54716a428165b516020eea2adabd3dc", "size": 4444, "ext": "py", "lang": "Python", "max_stars_repo_path": "tf_predication.py", "max_stars_repo_name": "XinyueZ/tf", "max_stars_repo_head_hexsha": "c4e2492bbb27abc44db34521626fb27b199cd240", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "tf_predication.py", "max_issues_repo_name": "XinyueZ/tf", "max_issues_repo_head_hexsha": "c4e2492bbb27abc44db34521626fb27b199cd240", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "tf_predication.py", "max_forks_repo_name": "XinyueZ/tf", "max_forks_repo_head_hexsha": "c4e2492bbb27abc44db34521626fb27b199cd240", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 34.1846153846, "max_line_length": 97, "alphanum_fraction": 0.650540054, "include": true, "reason": "import numpy", "num_tokens": 1064}
import unittest from nextnanopy.shapes import GdsPolygonsRaw, units_factor, validate_unit import numpy as np import os np_equal = np.testing.assert_almost_equal folder = os.path.join('tests', 'gds') class TestShapes(unittest.TestCase): def test_unit(self): self.assertEqual(units_factor['nm'], 1e-9) self.assertEqual(units_factor['um'], 1e-6) self.assertEqual(units_factor['mm'], 1e-3) self.assertEqual(units_factor['m'], 1) self.assertEqual(units_factor['si'], 1) self.assertRaises(KeyError, validate_unit, 'none') self.assertTrue(validate_unit('NM')) def test_example0(self): fullpath = os.path.join(folder, 'example0.gds') gpols = GdsPolygonsRaw(fullpath, unit='nm') self.assertEqual(gpols.fullpath, fullpath) np_equal(gpols.labels, [0]) self.assertEqual(gpols.unit, 'nm') self.assertEqual(gpols.nb_polygons, 1) np_equal(gpols.xy[0][0], np.array([-500, -500, 500, 500])) np_equal(gpols.xy[0][1], np.array([-500, 500, 500, -500])) gpols.unit = 'm' self.assertEqual(gpols.unit, 'm') self.assertEqual(gpols.nb_polygons, 1) np_equal(gpols.xy[0][0], np.array([-500, -500, 500, 500]) * 1e-9) np_equal(gpols.xy[0][1], np.array([-500, 500, 500, -500]) * 1e-9) gpols.labels = [2] np_equal(gpols.labels, [2]) gpols.labels = ['2'] self.assertEqual(gpols.labels, ['2']) def test_example1(self): fullpath = os.path.join(folder, 'example1.gds') gpols = GdsPolygonsRaw(fullpath, unit='nm') np_equal(gpols.labels, [0, 1, 2, 3]) self.assertEqual(gpols.nb_polygons, 4) self.assertEqual(len(gpols.slices[0].slices), 2) np_equal(gpols.xy[0][0], np.array([1500., 1500., 1975., 1975., 2025., 2025., 2500., 2500.])) def test_example2(self): fullpath = os.path.join(folder, 'example2.gds') gpols = GdsPolygonsRaw(fullpath, unit='nm') np_equal(gpols.labels, [0, 1]) self.assertEqual(gpols.nb_polygons, 2) self.assertEqual(len(gpols.slices[0].slices), 3) self.assertEqual(len(gpols.slices[1].slices), 17) if __name__ == '__main__': unittest.main()
{"hexsha": "723acd1258c9b0bdd9b0c6bed693a4cd4c7e76bf", "size": 2245, "ext": "py", "lang": "Python", "max_stars_repo_path": "tests/test_shapes.py", "max_stars_repo_name": "nextnanopy/nextnanopy", "max_stars_repo_head_hexsha": "f28266d444f488726f16c9a4eb08e98720f5f683", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 9, "max_stars_repo_stars_event_min_datetime": "2020-12-01T15:32:40.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-12T06:36:12.000Z", "max_issues_repo_path": "tests/test_shapes.py", "max_issues_repo_name": "nextnanopy/nextnanopy", "max_issues_repo_head_hexsha": "f28266d444f488726f16c9a4eb08e98720f5f683", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2022-03-16T14:46:06.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-22T14:13:32.000Z", "max_forks_repo_path": "tests/test_shapes.py", "max_forks_repo_name": "nextnanopy/nextnanopy", "max_forks_repo_head_hexsha": "f28266d444f488726f16c9a4eb08e98720f5f683", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": 4, "max_forks_repo_forks_event_min_datetime": "2021-07-06T07:25:47.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-12T06:36:18.000Z", "avg_line_length": 36.2096774194, "max_line_length": 100, "alphanum_fraction": 0.6262806236, "include": true, "reason": "import numpy", "num_tokens": 648}
#include <fast_asio/fast_asio.hpp> #include <boost/asio/ssl.hpp> #include <iostream> #include <memory> #include "root_certificates.hpp" using namespace boost::asio; using namespace boost::asio::ip; // socket type typedef ssl::stream<tcp::socket> ssl_socket; typedef fast_asio::packet_stream<ssl_socket> socket_t; typedef std::shared_ptr<socket_t> socket_ptr; ssl::context ctx{ssl::context::sslv23_client}; void onReceive(socket_ptr socket, boost::system::error_code ec, const_buffer* buf_begin, const_buffer* buf_end) { if (ec) { std::cout << "disconnected, reason:" << ec.message() << std::endl; return ; } for (const_buffer* it = buf_begin; it != buf_end; ++it) { const_buffer body = fast_asio::default_packet_policy::get_body(*it); std::cout << "onReceive:" << std::string((const char*)body.data(), body.size()) << std::endl; } // 关闭连接 // boost::system::error_code ignore_ec; // socket->shutdown(ignore_ec); } int main() { load_root_certificates(ctx); ctx.set_verify_mode(ssl::verify_none); io_context ioc; socket_ptr socket(new socket_t(ioc, ctx)); // 1.设置拆包函数 (默认函数就是这个, 可以不写这一行) socket->set_packet_splitter(&fast_asio::default_packet_policy::split); // 2.连接 tcp::endpoint addr(address::from_string("127.0.0.1"), 1234); socket->next_layer().next_layer().async_connect(addr, [socket](boost::system::error_code ec) { if (ec) { std::cout << "connect error:" << ec.message() << std::endl; return ; } std::cout << "connect success" << std::endl; // 握手(为了方便写个同步的) socket->next_layer().handshake(boost::asio::ssl::stream_base::handshake_type::client, ec); if (ec) { std::cout << "handshake error:" << ec.message() << std::endl; return ; } // 3.连接成功, 发起读操作 socket->async_read_some(std::bind(&onReceive, socket, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3)); // 4.发一个包 char buf[] = "Hello fast_asio!"; std::string packet = fast_asio::default_packet_policy::serialize_to_string(buffer(buf, sizeof(buf))); socket->async_write_some(buffer(packet), [](boost::system::error_code ec, size_t){ std::cout << "ping " << ec.message() << std::endl; }); }); ioc.run(); std::cout << socket.use_count() << std::endl; }
{"hexsha": "9ce221fe5647587ee10dbad7d756aee9c9638dfe", "size": 2694, "ext": "cc", "lang": "C++", "max_stars_repo_path": "thirdparty/fast_asio/examples/ssl_client.cc", "max_stars_repo_name": "brinkqiang/dmlibgo", "max_stars_repo_head_hexsha": "f0bf5b1312f852fddab2050f58830bcc16dea03b", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "thirdparty/fast_asio/examples/ssl_client.cc", "max_issues_repo_name": "brinkqiang/dmlibgo", "max_issues_repo_head_hexsha": "f0bf5b1312f852fddab2050f58830bcc16dea03b", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "thirdparty/fast_asio/examples/ssl_client.cc", "max_forks_repo_name": "brinkqiang/dmlibgo", "max_forks_repo_head_hexsha": "f0bf5b1312f852fddab2050f58830bcc16dea03b", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 32.8536585366, "max_line_length": 117, "alphanum_fraction": 0.5631031923, "num_tokens": 666}
#!/usr/bin/python3 # -*- coding: utf-8 -*- import cv2 as cv import numpy as np import matplotlib.pyplot as plt import sys filename = sys.argv[1] #print(filename) img = cv.imread(filename,0) block_size = 9 constant = 2 k = np.ones((5,5),np.uint8) blur = cv.GaussianBlur(img,(7,7),0) fnoise=cv.medianBlur(blur,3) th1 = cv.adaptiveThreshold(fnoise, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, block_size, constant) th2 = cv.adaptiveThreshold (fnoise, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, block_size, constant) blu = cv.GaussianBlur(th2,(5,5),0) fnois=cv.medianBlur(blu,3) #erosion=cv.erode(fnois, k, iterations=1) #dilation=cv.dilate(fnois, k, iterations=10) #cv.imshow('img',dilation) #cv.waitKey(0) #cv.destroyAllWindows( cv.imwrite('clearimage.png',fnois) #plt.imshow(th2) #plt.title('image') #plt.show()
{"hexsha": "247c76e76932e56a63cf97c5c82f20e8fb163d23", "size": 865, "ext": "py", "lang": "Python", "max_stars_repo_path": "src/adaptive.py", "max_stars_repo_name": "SJSU272Spring2019/Project-Group-14", "max_stars_repo_head_hexsha": "10d1f3272ce6e9022b1843cf998f49fd02f18068", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2019-05-04T08:14:32.000Z", "max_stars_repo_stars_event_max_datetime": "2019-05-04T08:14:32.000Z", "max_issues_repo_path": "src/adaptive.py", "max_issues_repo_name": "SJSU272Spring2019/Project-Group-14", "max_issues_repo_head_hexsha": "10d1f3272ce6e9022b1843cf998f49fd02f18068", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/adaptive.py", "max_forks_repo_name": "SJSU272Spring2019/Project-Group-14", "max_forks_repo_head_hexsha": "10d1f3272ce6e9022b1843cf998f49fd02f18068", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 5, "max_forks_repo_forks_event_min_datetime": "2019-05-04T08:16:33.000Z", "max_forks_repo_forks_event_max_datetime": "2021-02-27T05:40:09.000Z", "avg_line_length": 28.8333333333, "max_line_length": 112, "alphanum_fraction": 0.710982659, "include": true, "reason": "import numpy", "num_tokens": 273}
''' Example implementations of HARK.ConsumptionSaving.ConsPortfolioModel ''' from HARK.ConsumptionSaving.ConsPortfolioModel import PortfolioConsumerType, init_portfolio from HARK.ConsumptionSaving.ConsIndShockModel import init_lifecycle from HARK.utilities import plotFuncs from copy import copy from time import time import numpy as np import matplotlib.pyplot as plt # Make and solve an example portfolio choice consumer type print('Now solving an example portfolio choice problem; this might take a moment...') MyType = PortfolioConsumerType() MyType.cycles = 0 t0 = time() MyType.solve() t1 = time() MyType.cFunc = [MyType.solution[t].cFuncAdj for t in range(MyType.T_cycle)] MyType.ShareFunc = [MyType.solution[t].ShareFuncAdj for t in range(MyType.T_cycle)] print('Solving an infinite horizon portfolio choice problem took ' + str(t1-t0) + ' seconds.') # Compute the Merton-Samuelson limiting portfolio share when returns are lognormal MyType.RiskyVar = MyType.RiskyStd**2 MyType.RiskPrem = MyType.RiskyAvg - MyType.Rfree def RiskyShareMertSamLogNormal(RiskPrem,CRRA,RiskyVar): return RiskPrem/(CRRA*RiskyVar) # Plot the consumption and risky-share functions print('Consumption function over market resources:') plotFuncs(MyType.cFunc[0], 0., 20.) print('Risky asset share as a function of market resources:') print('Optimal (blue) versus Theoretical Limit (orange)') plt.xlabel('Normalized Market Resources') plt.ylabel('Portfolio Share') plt.ylim(0.0,1.0) # Since we are using a discretization of the lognormal distribution, # the limit is numerically computed and slightly different from # the analytical limit obtained by Merton and Samuelson for infinite wealth plotFuncs([MyType.ShareFunc[0] # ,lambda m: RiskyShareMertSamLogNormal(MyType.RiskPrem,MyType.CRRA,MyType.RiskyVar)*np.ones_like(m) ,lambda m: MyType.ShareLimit*np.ones_like(m) ] , 0., 200.) # Now simulate this consumer type MyType.track_vars = ['cNrmNow', 'ShareNow', 'aNrmNow', 't_age'] MyType.T_sim = 100 MyType.initializeSim() MyType.simulate() print('\n\n\n') print('For derivation of the numerical limiting portfolio share') print('as market resources approach infinity, see') print('http://www.econ2.jhu.edu/people/ccarroll/public/lecturenotes/AssetPricing/Portfolio-CRRA/') "" # Make another example type, but this one optimizes risky portfolio share only # on the discrete grid of values implicitly chosen by RiskyCount, using explicit # value maximization. init_discrete_share = init_portfolio.copy() init_discrete_share['DiscreteShareBool'] = True init_discrete_share['vFuncBool'] = True # Have to actually construct value function for this to work # Make and solve a discrete portfolio choice consumer type print('Now solving a discrete choice portfolio problem; this might take a minute...') DiscreteType = PortfolioConsumerType(**init_discrete_share) DiscreteType.cycles = 0 t0 = time() DiscreteType.solve() t1 = time() DiscreteType.cFunc = [DiscreteType.solution[t].cFuncAdj for t in range(DiscreteType.T_cycle)] DiscreteType.ShareFunc = [DiscreteType.solution[t].ShareFuncAdj for t in range(DiscreteType.T_cycle)] print('Solving an infinite horizon discrete portfolio choice problem took ' + str(t1-t0) + ' seconds.') # Plot the consumption and risky-share functions print('Consumption function over market resources:') plotFuncs(DiscreteType.cFunc[0], 0., 50.) print('Risky asset share as a function of market resources:') print('Optimal (blue) versus Theoretical Limit (orange)') plt.xlabel('Normalized Market Resources') plt.ylabel('Portfolio Share') plt.ylim(0.0,1.0) # Since we are using a discretization of the lognormal distribution, # the limit is numerically computed and slightly different from # the analytical limit obtained by Merton and Samuelson for infinite wealth plotFuncs([DiscreteType.ShareFunc[0] ,lambda m: DiscreteType.ShareLimit*np.ones_like(m) ] , 0., 200.) print('\n\n\n') "" # Make another example type, but this one can only update their risky portfolio # share in any particular period with 15% probability. init_sticky_share = init_portfolio.copy() init_sticky_share['AdjustPrb'] = 0.15 # Make and solve a discrete portfolio choice consumer type print('Now solving a portfolio choice problem with "sticky" portfolio shares; this might take a moment...') StickyType = PortfolioConsumerType(**init_sticky_share) StickyType.cycles = 0 t0 = time() StickyType.solve() t1 = time() StickyType.cFuncAdj = [StickyType.solution[t].cFuncAdj for t in range(StickyType.T_cycle)] StickyType.cFuncFxd = [StickyType.solution[t].cFuncFxd for t in range(StickyType.T_cycle)] StickyType.ShareFunc = [StickyType.solution[t].ShareFuncAdj for t in range(StickyType.T_cycle)] print('Solving an infinite horizon sticky portfolio choice problem took ' + str(t1-t0) + ' seconds.') # Plot the consumption and risky-share functions print('Consumption function over market resources when the agent can adjust his portfolio:') plotFuncs(StickyType.cFuncAdj[0], 0., 50.) print("Consumption function over market resources when the agent CAN'T adjust, by current share:") M = np.linspace(0., 50., 200) for s in np.linspace(0.,1.,21): C = StickyType.cFuncFxd[0](M, s*np.ones_like(M)) plt.plot(M,C) plt.xlim(0.,50.) plt.ylim(0.,None) plt.show() print('Risky asset share function over market resources (when possible to adjust):') print('Optimal (blue) versus Theoretical Limit (orange)') plt.xlabel('Normalized Market Resources') plt.ylabel('Portfolio Share') plt.ylim(0.0,1.0) plotFuncs([StickyType.ShareFunc[0] ,lambda m: StickyType.ShareLimit*np.ones_like(m) ] , 0., 200.) "" # Make another example type, but this one has *age-varying* perceptions of risky asset returns. # Begin by making a lifecycle dictionary, but adjusted for the portfolio choice model. init_age_varying_risk_perceptions = copy(init_lifecycle) init_age_varying_risk_perceptions['RiskyCount'] = init_portfolio['RiskyCount'] init_age_varying_risk_perceptions['ShareCount'] = init_portfolio['ShareCount'] init_age_varying_risk_perceptions['aXtraMax'] = init_portfolio['aXtraMax'] init_age_varying_risk_perceptions['aXtraCount'] = init_portfolio['aXtraCount'] init_age_varying_risk_perceptions['aXtraNestFac'] = init_portfolio['aXtraNestFac'] init_age_varying_risk_perceptions['BoroCnstArt'] = init_portfolio['BoroCnstArt'] init_age_varying_risk_perceptions['CRRA'] = init_portfolio['CRRA'] init_age_varying_risk_perceptions['DiscFac'] = init_portfolio['DiscFac'] init_age_varying_risk_perceptions['RiskyAvg'] = 10*[1.08] init_age_varying_risk_perceptions['RiskyStd'] = [0.20,0.21,0.22,0.23,0.24,0.25,0.26,0.27,0.28,0.29] init_age_varying_risk_perceptions['RiskyAvgTrue'] = 1.08 init_age_varying_risk_perceptions['RiskyStdTrue'] = 0.20 AgeVaryingRiskPercType = PortfolioConsumerType(**init_age_varying_risk_perceptions) AgeVaryingRiskPercType.cycles = 1 # Solve the agent type with age-varying risk perceptions print('Now solving a portfolio choice problem with age-varying risk perceptions...') t0 = time() AgeVaryingRiskPercType.solve() AgeVaryingRiskPercType.cFunc = [AgeVaryingRiskPercType.solution[t].cFuncAdj for t in range(AgeVaryingRiskPercType.T_cycle)] AgeVaryingRiskPercType.ShareFunc = [AgeVaryingRiskPercType.solution[t].ShareFuncAdj for t in range(AgeVaryingRiskPercType.T_cycle)] t1 = time() print('Solving a ' + str(AgeVaryingRiskPercType.T_cycle) + ' period portfolio choice problem with age-varying risk perceptions took ' + str(t1-t0) + ' seconds.') # Plot the consumption and risky-share functions print('Consumption function over market resources in each lifecycle period:') plotFuncs(AgeVaryingRiskPercType.cFunc, 0., 20.) print('Risky asset share function over market resources in each lifecycle period:') plotFuncs(AgeVaryingRiskPercType.ShareFunc, 0., 200.)
{"hexsha": "635632d28443aa886e80df53f670653028161849", "size": 7915, "ext": "py", "lang": "Python", "max_stars_repo_path": "examples/ConsumptionSaving/example_ConsPortfolioModel.py", "max_stars_repo_name": "fangli-DX3906/HARK", "max_stars_repo_head_hexsha": "a55d06f4e47e9564b3bcc2250c8d8012cc758761", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "examples/ConsumptionSaving/example_ConsPortfolioModel.py", "max_issues_repo_name": "fangli-DX3906/HARK", "max_issues_repo_head_hexsha": "a55d06f4e47e9564b3bcc2250c8d8012cc758761", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "examples/ConsumptionSaving/example_ConsPortfolioModel.py", "max_forks_repo_name": "fangli-DX3906/HARK", "max_forks_repo_head_hexsha": "a55d06f4e47e9564b3bcc2250c8d8012cc758761", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 46.5588235294, "max_line_length": 161, "alphanum_fraction": 0.7748578648, "include": true, "reason": "import numpy", "num_tokens": 2111}
""" Copyright 2015, Ilya Kuzovkin Copyright 2021-2022, Buran Consulting, LLC Licensed under MIT Builds on example code by Jack Keegan https://batchloaf.wordpress.com/2014/01/17/real-time-analysis-of-data-from-biosemi-activetwo-via-tcpip-using-python/ """ import logging log = logging.getLogger(__name__) import socket import numpy as np SPEED_MODE = { 0: 2048, 1: 4096, 2: 8192, 3: 16384, 4: 2048, 5: 4096, 6: 8192, 7: 16384, } def is_set(x, bit): # Parentheses are not needed because of operator precedence rules, but help # make the code more readable. return bool((x & (1 << bit)) != 0) def decode_trigger(x): ''' Details ------- Bit 00 (LSB) through 15: Trigger input 1 through 16. Note that function keys F1 through F6 can embed trigger bits in bits 8-15 if desired. Bit 16 High when new Epoch is started Bit 17 Speed bit 0 Bit 18 Speed bit 1 Bit 19 Speed bit 2 Bit 20 High when CMS is within range Bit 21 Speed bit 3 Bit 22 High when battery is low Bit 23 (MSB) High if ActiveTwo MK2 ''' speed_mode = \ (int(is_set(x, 17)) << 0) + \ (int(is_set(x, 18)) << 1) + \ (int(is_set(x, 19)) << 2) + \ (int(is_set(x, 21)) << 3) trigger = 0b1111111111111111 return { 'trigger': int(x & trigger), 'cms_in_range': is_set(x, 20), 'low_battery': is_set(x, 22), 'ActiveMK2': is_set(x, 23), 'speed_mode': speed_mode, 'new_epoch': is_set(x, 16), #'fs': SPEED_MODE[speed_mode], } class ActiveTwoClient: """ Client for communicating with Biosemi ActiveTwo """ #: Host where ActiView acquisition software is running #: This is the port ActiView listens on #: Number of channles #: Data packet size (default: 32 channels @ 512Hz) def __init__(self, host='127.0.0.1', port=8888, eeg_channels=32, ex_included=False, sensors_included=False, jazz_included=False, aib_included=False, trigger_included=False, socket_timeout=0.25, fs=512, combine_eeg_exg=True): """ Initialize connection and parameters of the signal Parameters ---------- host : string IP address of ActiView server port : int Port number ActiView server is listening on eeg_channels : float Number of EEG channels included combine_eeg_exg : bool If true, the EEG and EXG channels are combined into a single 2D array (with EXG stacked at the end). """ self.__dict__.update(locals()) # Calculate number of TCP samples in array. if not (256 <= fs <= 16384): raise ValueError('Invalid sampling rate supplied') decimation_factor = 16384 / fs if int(decimation_factor) != decimation_factor: raise ValueError('Invalid sampling rate supplied') self.tcp_samples = int(128 / decimation_factor) # Build a mapping of channel type to a Numpy slice that can be used to # segment the data that we read in. I use a little trick to enable # n_channel to track the "offset" as we build the slices. At the end, # n_channels will tell us how many channels are being read in. slices = {} n_channels = 0 # Since the EXG channels come immediately after the EEG channels, we # can easily treat them as a single set of channels that are merged. if combine_eeg_exg and ex_included: eeg_channels = eeg_channels + 8 ex_included = False if eeg_channels != 0: slices['eeg'] = np.s_[n_channels:eeg_channels] n_channels += eeg_channels if ex_included: slices['ex'] = np.s_[n_channels:n_channels+8] n_channels += 8 if sensors_included: slices['sensors'] = np.s_[n_channels:n_channels+7] n_channels += 7 if jazz_included: slices['jazz'] = np.s_[n_channels:n_channels+9] n_channels += 9 if aib_included: slices['aib'] = np.s_[n_channels:n_channels+32] n_channels += 32 if trigger_included: slices['trigger'] = np.s_[-1] n_channels += 1 self.slices = slices self.n_channels = n_channels self.buffer_size = self.n_channels * self.tcp_samples * 3 m = 'ActiveTwoClient configured with %d channels at %f Hz' log.info(m, self.n_channels, self.fs) log.info('Expecting %d samples/chan', self.tcp_samples) self._scale = np.array([256**1, 256**2, 256**3]) self._read = self._read_scale def _read_scale(self, samples): # This implements the approach used in the Matlab TCP example data = self.sock.recv(self.buffer_size) data = np.frombuffer(data, dtype='uint8').reshape((self.tcp_samples, self.n_channels, 3)) return np.sum(data * self._scale, axis=-1).T.astype('int32') def _read_bitshift(self, samples): # This is a tad bit slower in testing signal_buffer = np.zeros((self.n_channels, self.tcp_samples), dtype='uint32') data = self.sock.recv(self.buffer_size) for m in range(self.tcp_samples): # extract samples for each channel for channel in range(self.n_channels): offset = m * 3 * self.n_channels + (channel * 3) # The 3 bytes of each sample arrive in reverse order sample = \ (data[offset+2] << 24) + \ (data[offset+1] << 16) + \ (data[offset] << 8) # Store sample to signal buffer signal_buffer[channel, m] = sample return signal_buffer def _read_bitshift(self, samples): signal_buffer = np.zeros((self.n_channels, self.tcp_samples), dtype='uint32') data = self.sock.recv(self.buffer_size) for m in range(self.tcp_samples): # extract samples for each channel for channel in range(self.n_channels): offset = m * 3 * self.n_channels + (channel * 3) # The 3 bytes of each sample arrive in reverse order sample = \ (data[offset+2] << 16) + \ (data[offset+1] << 8) + \ (data[offset]) # Store sample to signal buffer signal_buffer[channel, m] = sample return signal_buffer def read(self, duration): """ Read signal from EEG Parameters ---------- duration : float Duration, in seconds, to read. If duration is too long, then it seems the ActiView client will disconnect. Returns ------- signal : 2D array (channel x time) Signal. """ total_samples = int(round(duration * self.fs)) # The reader process will run until requested amount of data is collected samples = 0 data = [] while samples < total_samples: try: data.append(self._read(samples)) samples += self.tcp_samples except Exception as e: log.exception(e) break if data: data = np.concatenate(data, axis=-1) else: data = np.empty((self.n_channels, 0), dtype='int32') result = {} for name, s in self.slices.items(): if name != 'trigger': # Convert to microvolts result[name] = data[s] * 31.25e-9 / 256 else: result[name] = data[s] return result def connect(self): # Open connection. Be sure to set a timeout to make sure that the # program does not become unresponsive (on Windows even Ctrl+C can't # break a socket that's hung waiting for data). self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.connect((self.host, self.port)) self.sock.settimeout(self.socket_timeout) def disconnect(self): # Important! Be sure this is called to properly shut down sockets. self.sock.shutdown(socket.SHUT_RDWR) self.sock.close()
{"hexsha": "0c7fde2528e3c1a7c8cb65fa903f94126240dca7", "size": 8409, "ext": "py", "lang": "Python", "max_stars_repo_path": "pyactivetwo/client.py", "max_stars_repo_name": "NCRAR/pyactivetwo", "max_stars_repo_head_hexsha": "01cbfb2f1fdfd7bdfa28fd656a7b6d5ea61ad0aa", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "pyactivetwo/client.py", "max_issues_repo_name": "NCRAR/pyactivetwo", "max_issues_repo_head_hexsha": "01cbfb2f1fdfd7bdfa28fd656a7b6d5ea61ad0aa", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "pyactivetwo/client.py", "max_forks_repo_name": "NCRAR/pyactivetwo", "max_forks_repo_head_hexsha": "01cbfb2f1fdfd7bdfa28fd656a7b6d5ea61ad0aa", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 33.2371541502, "max_line_length": 116, "alphanum_fraction": 0.5797359971, "include": true, "reason": "import numpy", "num_tokens": 2052}
% \documentclass{article} % \usepackage{graphicx} % \usepackage[a4paper, margin=0.4in]{geometry} % \usepackage{subcaption} % \usepackage{printlen} % \uselengthunit{cm} % \newlength\imageheight % \newlength\imagewidth % \begin{document} \section{Partial TRP TX5 MSP\_A RX5 Minipod Loopback}\label{sec:PartialTRPTX5MSPARX5MinipodLoopback9.6-optimized} \begin{figure}[h] % "[t!]" placement specifier just for this example \centering \begin{subfigure}{0.5\textwidth} \hyperref[sec:TRPFPGATX500RX500MSPAFPGA9.6-optimized]{\includegraphicsmaybe{../scans/pdf/9.6-optimized/TRP_FPGA-TX5-00--RX5-00-MSP_A_FPGA.pdf}} \end{subfigure}\hspace*{\fill} \begin{subfigure}{0.5\textwidth} \hyperref[sec:TRPFPGATX501RX501MSPAFPGA9.6-optimized]{\includegraphicsmaybe{../scans/pdf/9.6-optimized/TRP_FPGA-TX5-01--RX5-01-MSP_A_FPGA.pdf}} \end{subfigure} \begin{subfigure}{0.5\textwidth} \hyperref[sec:TRPFPGATX502RX502MSPAFPGA9.6-optimized]{\includegraphicsmaybe{../scans/pdf/9.6-optimized/TRP_FPGA-TX5-02--RX5-02-MSP_A_FPGA.pdf}} \end{subfigure}\hspace*{\fill} \begin{subfigure}{0.4\textwidth} \hyperref[sec:TRPFPGATX503RX503MSPAFPGA9.6-optimized]{\includegraphicsmaybe{../scans/pdf/9.6-optimized/TRP_FPGA-TX5-03--RX5-03-MSP_A_FPGA.pdf}} \end{subfigure} \begin{subfigure}{0.5\textwidth} \hyperref[sec:TRPFPGATX504RX504MSPAFPGA9.6-optimized]{\includegraphicsmaybe{../scans/pdf/9.6-optimized/TRP_FPGA-TX5-04--RX5-04-MSP_A_FPGA.pdf}} \end{subfigure}\hspace*{\fill} \begin{subfigure}{0.4\textwidth} \hyperref[sec:TRPFPGATX505RX505MSPAFPGA9.6-optimized]{\includegraphicsmaybe{../scans/pdf/9.6-optimized/TRP_FPGA-TX5-05--RX5-05-MSP_A_FPGA.pdf}} \end{subfigure} \begin{subfigure}{0.5\textwidth} \hyperref[sec:TRPFPGATX506RX506MSPAFPGA9.6-optimized]{\includegraphicsmaybe{../scans/pdf/9.6-optimized/TRP_FPGA-TX5-06--RX5-06-MSP_A_FPGA.pdf}} \end{subfigure}\hspace*{\fill} \begin{subfigure}{0.5\textwidth} \hyperref[sec:TRPFPGATX507RX507MSPAFPGA9.6-optimized]{\includegraphicsmaybe{../scans/pdf/9.6-optimized/TRP_FPGA-TX5-07--RX5-07-MSP_A_FPGA.pdf}} \end{subfigure} \caption{Partial TRP TX5 MSP\_A RX5 Minipod Loopback} \label{fig:PartialTRPTX5MSPARX5MinipodLoopback9.6-optimized} \end{figure} A cross-reference to Figure~\ref{fig:PartialTRPTX5MSPARX5MinipodLoopback9.6-optimized}. Sibling eye diagrams: \hyperref[sec:PartialTRPTX5MSPARX5MinipodLoopback6.4-optimized]{6.4-optimized}, \hyperref[sec:PartialTRPTX5MSPARX5MinipodLoopback12.8-optimized]{12.8-optimized}. \\ Next summary Figure~\ref{fig:TRPJ1QSFPLoopback9.6-optimized}. \clearpage % \end{document} \subsection{TRP\_FPGA-TX5-00--RX5-00-MSP\_A\_FPGA}\label{sec:TRPFPGATX500RX500MSPAFPGA9.6-optimized} % Please add the following required packages to your document preamble: % \usepackage{booktabs} \begin{table}[h] \centering \caption{TRP\_FPGA-TX5-00--RX5-00-MSP\_A\_FPGA} \label{tab:TRPFPGATX500RX500MSPAFPGA9.6-optimized} \begin{tabular}{@{}|l|l|l|l|l|l|@{}} \toprule \textbf{SW Version} & \textbf{GT Type} & \multicolumn{2}{l|}{\textbf{Date and Time Started}} & \multicolumn{2}{l|}{\textbf{Date and Time Ended}} \\ \midrule 2017.2 & UltraScale GTY & \multicolumn{2}{l|}{2018-Jan-24 19:35:48} & \multicolumn{2}{l|}{2018-Jan-24 19:36:17} \\ \midrule \textbf{Reset RX} & \textbf{OA} & \textbf{HO} & \textbf{HO (\%)} & \textbf{VO} & \textbf{VO (\%)} \\ \midrule true & 7803 & 41 & 63.08\% & 255 & 100.00\% \\ \midrule \textbf{Dwell Type} & \textbf{Dwell BER} & \textbf{Horizontal Increment} & \textbf{Vertical Increment} & \multicolumn{2}{l|}{\textbf{Misc Info}} \\ \midrule BER & 1e-7 & 1 & 1 & \multicolumn{2}{l|}{ELF Version: 0x4002 SVN: 0} \\ \bottomrule \end{tabular} \end{table} \begin{figure}[h] \includegraphicsmaybe{../scans/pdf/9.6-optimized/TRP_FPGA-TX5-00--RX5-00-MSP_A_FPGA.pdf} \caption{TRP\_FPGA-TX5-00--RX5-00-MSP\_A\_FPGA} \label{fig:TRPFPGATX500RX500MSPAFPGA9.6-optimized} \end{figure} Call back to summary Figure~\ref{fig:PartialTRPTX5MSPARX5MinipodLoopback9.6-optimized}. Sibling eye diagrams: \hyperref[sec:TRPFPGATX500RX500MSPAFPGA6.4-optimized]{6.4-optimized}, \hyperref[sec:TRPFPGATX500RX500MSPAFPGA12.8-optimized]{12.8-optimized}. \clearpage \newpage \subsection{TRP\_FPGA-TX5-01--RX5-01-MSP\_A\_FPGA}\label{sec:TRPFPGATX501RX501MSPAFPGA9.6-optimized} % Please add the following required packages to your document preamble: % \usepackage{booktabs} \begin{table}[h] \centering \caption{TRP\_FPGA-TX5-01--RX5-01-MSP\_A\_FPGA} \label{tab:TRPFPGATX501RX501MSPAFPGA9.6-optimized} \begin{tabular}{@{}|l|l|l|l|l|l|@{}} \toprule \textbf{SW Version} & \textbf{GT Type} & \multicolumn{2}{l|}{\textbf{Date and Time Started}} & \multicolumn{2}{l|}{\textbf{Date and Time Ended}} \\ \midrule 2017.2 & UltraScale GTY & \multicolumn{2}{l|}{2018-Jan-24 19:34:50} & \multicolumn{2}{l|}{2018-Jan-24 19:35:19} \\ \midrule \textbf{Reset RX} & \textbf{OA} & \textbf{HO} & \textbf{HO (\%)} & \textbf{VO} & \textbf{VO (\%)} \\ \midrule true & 6996 & 37 & 56.92\% & 255 & 100.00\% \\ \midrule \textbf{Dwell Type} & \textbf{Dwell BER} & \textbf{Horizontal Increment} & \textbf{Vertical Increment} & \multicolumn{2}{l|}{\textbf{Misc Info}} \\ \midrule BER & 1e-7 & 1 & 1 & \multicolumn{2}{l|}{ELF Version: 0x4002 SVN: 0} \\ \bottomrule \end{tabular} \end{table} \begin{figure}[h] \includegraphicsmaybe{../scans/pdf/9.6-optimized/TRP_FPGA-TX5-01--RX5-01-MSP_A_FPGA.pdf} \caption{TRP\_FPGA-TX5-01--RX5-01-MSP\_A\_FPGA} \label{fig:TRPFPGATX501RX501MSPAFPGA9.6-optimized} \end{figure} Call back to summary Figure~\ref{fig:PartialTRPTX5MSPARX5MinipodLoopback9.6-optimized}. Sibling eye diagrams: \hyperref[sec:TRPFPGATX501RX501MSPAFPGA6.4-optimized]{6.4-optimized}, \hyperref[sec:TRPFPGATX501RX501MSPAFPGA12.8-optimized]{12.8-optimized}. \clearpage \newpage \subsection{TRP\_FPGA-TX5-02--RX5-02-MSP\_A\_FPGA}\label{sec:TRPFPGATX502RX502MSPAFPGA9.6-optimized} % Please add the following required packages to your document preamble: % \usepackage{booktabs} \begin{table}[h] \centering \caption{TRP\_FPGA-TX5-02--RX5-02-MSP\_A\_FPGA} \label{tab:TRPFPGATX502RX502MSPAFPGA9.6-optimized} \begin{tabular}{@{}|l|l|l|l|l|l|@{}} \toprule \textbf{SW Version} & \textbf{GT Type} & \multicolumn{2}{l|}{\textbf{Date and Time Started}} & \multicolumn{2}{l|}{\textbf{Date and Time Ended}} \\ \midrule 2017.2 & UltraScale GTH & \multicolumn{2}{l|}{2018-Jan-24 19:36:47} & \multicolumn{2}{l|}{2018-Jan-24 19:37:16} \\ \midrule \textbf{Reset RX} & \textbf{OA} & \textbf{HO} & \textbf{HO (\%)} & \textbf{VO} & \textbf{VO (\%)} \\ \midrule true & 9629 & 44 & 67.69\% & 255 & 100.00\% \\ \midrule \textbf{Dwell Type} & \textbf{Dwell BER} & \textbf{Horizontal Increment} & \textbf{Vertical Increment} & \multicolumn{2}{l|}{\textbf{Misc Info}} \\ \midrule BER & 1e-7 & 1 & 1 & \multicolumn{2}{l|}{ELF Version: 0xC002 SVN: 0} \\ \bottomrule \end{tabular} \end{table} \begin{figure}[h] \includegraphicsmaybe{../scans/pdf/9.6-optimized/TRP_FPGA-TX5-02--RX5-02-MSP_A_FPGA.pdf} \caption{TRP\_FPGA-TX5-02--RX5-02-MSP\_A\_FPGA} \label{fig:TRPFPGATX502RX502MSPAFPGA9.6-optimized} \end{figure} Call back to summary Figure~\ref{fig:PartialTRPTX5MSPARX5MinipodLoopback9.6-optimized}. Sibling eye diagrams: \hyperref[sec:TRPFPGATX502RX502MSPAFPGA6.4-optimized]{6.4-optimized}, \hyperref[sec:TRPFPGATX502RX502MSPAFPGA12.8-optimized]{12.8-optimized}. \clearpage \newpage \subsection{TRP\_FPGA-TX5-03--RX5-03-MSP\_A\_FPGA}\label{sec:TRPFPGATX503RX503MSPAFPGA9.6-optimized} % Please add the following required packages to your document preamble: % \usepackage{booktabs} \begin{table}[h] \centering \caption{TRP\_FPGA-TX5-03--RX5-03-MSP\_A\_FPGA} \label{tab:TRPFPGATX503RX503MSPAFPGA9.6-optimized} \begin{tabular}{@{}|l|l|l|l|l|l|@{}} \toprule \textbf{SW Version} & \textbf{GT Type} & \multicolumn{2}{l|}{\textbf{Date and Time Started}} & \multicolumn{2}{l|}{\textbf{Date and Time Ended}} \\ \midrule 2017.2 & UltraScale GTY & \multicolumn{2}{l|}{2018-Jan-24 19:35:19} & \multicolumn{2}{l|}{2018-Jan-24 19:35:47} \\ \midrule \textbf{Reset RX} & \textbf{OA} & \textbf{HO} & \textbf{HO (\%)} & \textbf{VO} & \textbf{VO (\%)} \\ \midrule true & 7247 & 37 & 56.92\% & 255 & 100.00\% \\ \midrule \textbf{Dwell Type} & \textbf{Dwell BER} & \textbf{Horizontal Increment} & \textbf{Vertical Increment} & \multicolumn{2}{l|}{\textbf{Misc Info}} \\ \midrule BER & 1e-7 & 1 & 1 & \multicolumn{2}{l|}{ELF Version: 0x4002 SVN: 0} \\ \bottomrule \end{tabular} \end{table} \begin{figure}[h] \includegraphicsmaybe{../scans/pdf/9.6-optimized/TRP_FPGA-TX5-03--RX5-03-MSP_A_FPGA.pdf} \caption{TRP\_FPGA-TX5-03--RX5-03-MSP\_A\_FPGA} \label{fig:TRPFPGATX503RX503MSPAFPGA9.6-optimized} \end{figure} Call back to summary Figure~\ref{fig:PartialTRPTX5MSPARX5MinipodLoopback9.6-optimized}. Sibling eye diagrams: \hyperref[sec:TRPFPGATX503RX503MSPAFPGA6.4-optimized]{6.4-optimized}, \hyperref[sec:TRPFPGATX503RX503MSPAFPGA12.8-optimized]{12.8-optimized}. \clearpage \newpage \subsection{TRP\_FPGA-TX5-04--RX5-04-MSP\_A\_FPGA}\label{sec:TRPFPGATX504RX504MSPAFPGA9.6-optimized} % Please add the following required packages to your document preamble: % \usepackage{booktabs} \begin{table}[h] \centering \caption{TRP\_FPGA-TX5-04--RX5-04-MSP\_A\_FPGA} \label{tab:TRPFPGATX504RX504MSPAFPGA9.6-optimized} \begin{tabular}{@{}|l|l|l|l|l|l|@{}} \toprule \textbf{SW Version} & \textbf{GT Type} & \multicolumn{2}{l|}{\textbf{Date and Time Started}} & \multicolumn{2}{l|}{\textbf{Date and Time Ended}} \\ \midrule 2017.2 & UltraScale GTH & \multicolumn{2}{l|}{2018-Jan-24 19:37:46} & \multicolumn{2}{l|}{2018-Jan-24 19:38:14} \\ \midrule \textbf{Reset RX} & \textbf{OA} & \textbf{HO} & \textbf{HO (\%)} & \textbf{VO} & \textbf{VO (\%)} \\ \midrule true & 8886 & 44 & 67.69\% & 255 & 100.00\% \\ \midrule \textbf{Dwell Type} & \textbf{Dwell BER} & \textbf{Horizontal Increment} & \textbf{Vertical Increment} & \multicolumn{2}{l|}{\textbf{Misc Info}} \\ \midrule BER & 1e-7 & 1 & 1 & \multicolumn{2}{l|}{ELF Version: 0xC002 SVN: 0} \\ \bottomrule \end{tabular} \end{table} \begin{figure}[h] \includegraphicsmaybe{../scans/pdf/9.6-optimized/TRP_FPGA-TX5-04--RX5-04-MSP_A_FPGA.pdf} \caption{TRP\_FPGA-TX5-04--RX5-04-MSP\_A\_FPGA} \label{fig:TRPFPGATX504RX504MSPAFPGA9.6-optimized} \end{figure} Call back to summary Figure~\ref{fig:PartialTRPTX5MSPARX5MinipodLoopback9.6-optimized}. Sibling eye diagrams: \hyperref[sec:TRPFPGATX504RX504MSPAFPGA6.4-optimized]{6.4-optimized}, \hyperref[sec:TRPFPGATX504RX504MSPAFPGA12.8-optimized]{12.8-optimized}. \clearpage \newpage \subsection{TRP\_FPGA-TX5-05--RX5-05-MSP\_A\_FPGA}\label{sec:TRPFPGATX505RX505MSPAFPGA9.6-optimized} % Please add the following required packages to your document preamble: % \usepackage{booktabs} \begin{table}[h] \centering \caption{TRP\_FPGA-TX5-05--RX5-05-MSP\_A\_FPGA} \label{tab:TRPFPGATX505RX505MSPAFPGA9.6-optimized} \begin{tabular}{@{}|l|l|l|l|l|l|@{}} \toprule \textbf{SW Version} & \textbf{GT Type} & \multicolumn{2}{l|}{\textbf{Date and Time Started}} & \multicolumn{2}{l|}{\textbf{Date and Time Ended}} \\ \midrule 2017.2 & UltraScale GTY & \multicolumn{2}{l|}{2018-Jan-24 19:34:20} & \multicolumn{2}{l|}{2018-Jan-24 19:34:49} \\ \midrule \textbf{Reset RX} & \textbf{OA} & \textbf{HO} & \textbf{HO (\%)} & \textbf{VO} & \textbf{VO (\%)} \\ \midrule true & 7050 & 36 & 55.38\% & 255 & 100.00\% \\ \midrule \textbf{Dwell Type} & \textbf{Dwell BER} & \textbf{Horizontal Increment} & \textbf{Vertical Increment} & \multicolumn{2}{l|}{\textbf{Misc Info}} \\ \midrule BER & 1e-7 & 1 & 1 & \multicolumn{2}{l|}{ELF Version: 0x4002 SVN: 0} \\ \bottomrule \end{tabular} \end{table} \begin{figure}[h] \includegraphicsmaybe{../scans/pdf/9.6-optimized/TRP_FPGA-TX5-05--RX5-05-MSP_A_FPGA.pdf} \caption{TRP\_FPGA-TX5-05--RX5-05-MSP\_A\_FPGA} \label{fig:TRPFPGATX505RX505MSPAFPGA9.6-optimized} \end{figure} Call back to summary Figure~\ref{fig:PartialTRPTX5MSPARX5MinipodLoopback9.6-optimized}. Sibling eye diagrams: \hyperref[sec:TRPFPGATX505RX505MSPAFPGA6.4-optimized]{6.4-optimized}, \hyperref[sec:TRPFPGATX505RX505MSPAFPGA12.8-optimized]{12.8-optimized}. \clearpage \newpage \subsection{TRP\_FPGA-TX5-06--RX5-06-MSP\_A\_FPGA}\label{sec:TRPFPGATX506RX506MSPAFPGA9.6-optimized} % Please add the following required packages to your document preamble: % \usepackage{booktabs} \begin{table}[h] \centering \caption{TRP\_FPGA-TX5-06--RX5-06-MSP\_A\_FPGA} \label{tab:TRPFPGATX506RX506MSPAFPGA9.6-optimized} \begin{tabular}{@{}|l|l|l|l|l|l|@{}} \toprule \textbf{SW Version} & \textbf{GT Type} & \multicolumn{2}{l|}{\textbf{Date and Time Started}} & \multicolumn{2}{l|}{\textbf{Date and Time Ended}} \\ \midrule 2017.2 & UltraScale GTH & \multicolumn{2}{l|}{2018-Jan-24 19:36:17} & \multicolumn{2}{l|}{2018-Jan-24 19:36:47} \\ \midrule \textbf{Reset RX} & \textbf{OA} & \textbf{HO} & \textbf{HO (\%)} & \textbf{VO} & \textbf{VO (\%)} \\ \midrule true & 9514 & 43 & 66.15\% & 255 & 100.00\% \\ \midrule \textbf{Dwell Type} & \textbf{Dwell BER} & \textbf{Horizontal Increment} & \textbf{Vertical Increment} & \multicolumn{2}{l|}{\textbf{Misc Info}} \\ \midrule BER & 1e-7 & 1 & 1 & \multicolumn{2}{l|}{ELF Version: 0xC002 SVN: 0} \\ \bottomrule \end{tabular} \end{table} \begin{figure}[h] \includegraphicsmaybe{../scans/pdf/9.6-optimized/TRP_FPGA-TX5-06--RX5-06-MSP_A_FPGA.pdf} \caption{TRP\_FPGA-TX5-06--RX5-06-MSP\_A\_FPGA} \label{fig:TRPFPGATX506RX506MSPAFPGA9.6-optimized} \end{figure} Call back to summary Figure~\ref{fig:PartialTRPTX5MSPARX5MinipodLoopback9.6-optimized}. Sibling eye diagrams: \hyperref[sec:TRPFPGATX506RX506MSPAFPGA6.4-optimized]{6.4-optimized}, \hyperref[sec:TRPFPGATX506RX506MSPAFPGA12.8-optimized]{12.8-optimized}. \clearpage \newpage \subsection{TRP\_FPGA-TX5-07--RX5-07-MSP\_A\_FPGA}\label{sec:TRPFPGATX507RX507MSPAFPGA9.6-optimized} % Please add the following required packages to your document preamble: % \usepackage{booktabs} \begin{table}[h] \centering \caption{TRP\_FPGA-TX5-07--RX5-07-MSP\_A\_FPGA} \label{tab:TRPFPGATX507RX507MSPAFPGA9.6-optimized} \begin{tabular}{@{}|l|l|l|l|l|l|@{}} \toprule \textbf{SW Version} & \textbf{GT Type} & \multicolumn{2}{l|}{\textbf{Date and Time Started}} & \multicolumn{2}{l|}{\textbf{Date and Time Ended}} \\ \midrule 2017.2 & UltraScale GTH & \multicolumn{2}{l|}{2018-Jan-24 19:37:16} & \multicolumn{2}{l|}{2018-Jan-24 19:37:46} \\ \midrule \textbf{Reset RX} & \textbf{OA} & \textbf{HO} & \textbf{HO (\%)} & \textbf{VO} & \textbf{VO (\%)} \\ \midrule true & 8915 & 43 & 66.15\% & 255 & 100.00\% \\ \midrule \textbf{Dwell Type} & \textbf{Dwell BER} & \textbf{Horizontal Increment} & \textbf{Vertical Increment} & \multicolumn{2}{l|}{\textbf{Misc Info}} \\ \midrule BER & 1e-7 & 1 & 1 & \multicolumn{2}{l|}{ELF Version: 0xC002 SVN: 0} \\ \bottomrule \end{tabular} \end{table} \begin{figure}[h] \includegraphicsmaybe{../scans/pdf/9.6-optimized/TRP_FPGA-TX5-07--RX5-07-MSP_A_FPGA.pdf} \caption{TRP\_FPGA-TX5-07--RX5-07-MSP\_A\_FPGA} \label{fig:TRPFPGATX507RX507MSPAFPGA9.6-optimized} \end{figure} Call back to summary Figure~\ref{fig:PartialTRPTX5MSPARX5MinipodLoopback9.6-optimized}. Sibling eye diagrams: \hyperref[sec:TRPFPGATX507RX507MSPAFPGA6.4-optimized]{6.4-optimized}, \hyperref[sec:TRPFPGATX507RX507MSPAFPGA12.8-optimized]{12.8-optimized}. \clearpage \newpage
{"hexsha": "5b93f6702cc07b614d7ad20de95e4dccc81c0744", "size": 17287, "ext": "tex", "lang": "TeX", "max_stars_repo_path": "out/tex/Partial_TRP_TX5_MSP_A_RX5_Minipod_Loopback_9.6-optimized.tex", "max_stars_repo_name": "mvsoliveira/IBERTpy", "max_stars_repo_head_hexsha": "7d702ed87f0c8fbe90f4ef0445e2d4f77a79ec02", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 7, "max_stars_repo_stars_event_min_datetime": "2019-04-22T14:22:42.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-04T17:49:39.000Z", "max_issues_repo_path": "out/tex/Partial_TRP_TX5_MSP_A_RX5_Minipod_Loopback_9.6-optimized.tex", "max_issues_repo_name": "mvsoliveira/IBERTpy", "max_issues_repo_head_hexsha": "7d702ed87f0c8fbe90f4ef0445e2d4f77a79ec02", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "out/tex/Partial_TRP_TX5_MSP_A_RX5_Minipod_Loopback_9.6-optimized.tex", "max_forks_repo_name": "mvsoliveira/IBERTpy", "max_forks_repo_head_hexsha": "7d702ed87f0c8fbe90f4ef0445e2d4f77a79ec02", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2020-05-16T03:47:42.000Z", "max_forks_repo_forks_event_max_datetime": "2020-12-04T21:03:53.000Z", "avg_line_length": 57.6233333333, "max_line_length": 191, "alphanum_fraction": 0.6421588477, "num_tokens": 6520}
import tensorflow as tf import numpy as np crf_eval_module = tf.load_op_library('/home/wfx/parsing/tensorflow_op_proj_uas/CRFEval.so') def crf_cost(arc_probs,rel_probs, targets, sen_len): out1 = crf_eval_module.cost_out(arc_probs,rel_probs,targets,sen_len) return tf.stop_gradient(out1) def crf_decode(arc_probs,rel_probs, sen_len): arc_r,rel_r = crf_eval_module.decode_out(arc_probs,rel_probs,sen_len) return tf.stop_gradient(arc_r),tf.stop_gradient(rel_r) if True: rnidx = 1 x1 = np.random.uniform(-10,0, size=(2,3,3)).astype(np.float32) x2 = np.random.uniform(-10,0, size=(2,3,3,7)).astype(np.float32) len1 = np.random.randint(1,6,size = [2]).astype(np.int32) len1[0]=3 len1[1]=3 gold_conll = np.random.randint(0,3,size = [2,3,5]).astype(np.int32) tf_x1 = tf.get_variable('Weights1_%d' % rnidx, [2, 3,3], initializer=tf.constant_initializer(x1)) tf_x2 = tf.get_variable('Weights2_%d' % rnidx, [2, 3,3,7], initializer=tf.constant_initializer(x2)) tf_len1 = tf.get_variable('len1_%d'% rnidx, [2],dtype=tf.int32, initializer=tf.constant_initializer(len1)) tf_gold_conll = tf.get_variable('gold_conll_%d' % rnidx, [2, 3,5],dtype=tf.int32, initializer=tf.constant_initializer(gold_conll)) #tf_w = tf.constant(w_prob) #tf_arc = tf.expand_dims(tf_x1,3) #tf_res = (tf_arc+tf_x2) out1 = crf_cost(tf_x1,tf_x2,tf_gold_conll,tf_len1) #- tf_res cost = tf.reduce_sum(tf.reshape(out1,[-1])) tf_pred,tf_rel=crf_decode(tf_x1,tf_x2,tf_len1) with tf.Session('') as sess: sess.run(tf.initialize_all_variables()) ar,o1,pred,rel=sess.run([cost,out1,tf_pred,tf_rel]) print("cost=",ar) print(o1) print(pred) print(rel)
{"hexsha": "7c60ff818550298ab106574a511d07b8cbd69f27", "size": 1723, "ext": "py", "lang": "Python", "max_stars_repo_path": "tensorflow_op_proj_uas/test.py", "max_stars_repo_name": "wfxedu/CRFBiaffineParser", "max_stars_repo_head_hexsha": "763368fb8890877694caf0281805da5351d57ef0", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2017-08-27T18:26:21.000Z", "max_stars_repo_stars_event_max_datetime": "2017-09-01T01:41:15.000Z", "max_issues_repo_path": "tensorflow_op_proj_uas/test.py", "max_issues_repo_name": "wfxedu/CRFBiaffineParser", "max_issues_repo_head_hexsha": "763368fb8890877694caf0281805da5351d57ef0", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "tensorflow_op_proj_uas/test.py", "max_forks_repo_name": "wfxedu/CRFBiaffineParser", "max_forks_repo_head_hexsha": "763368fb8890877694caf0281805da5351d57ef0", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 38.2888888889, "max_line_length": 133, "alphanum_fraction": 0.7040046431, "include": true, "reason": "import numpy", "num_tokens": 562}
# export fit_cubic_spline, # sample_spline, # sample_spline_derivative, # sample_spline_derivative2, # sample_spline_speed, # sample_spline_theta, # sample_spline_curvature, # sample_spline_derivative_of_curvature, # calc_curve_length, # arclength, # calc_curve_param_given_arclen function _integrate_simpsons(f::Function, a::Real, b::Real, n::Int) # integrate using Composite Simpson's rule # reference: https://en.wikipedia.org/wiki/Simpson%27s_rule @assert(n > 0) # number of intervals @assert(mod(n,2) == 0) # n must be even h = (b-a)/n retval = f(a) + f(b) flip = true for i = 1 : n-1 retval += f(a+i*h) * (flip ? 4 : 2) flip = !flip end return h/3*retval end function _fit_open(pts::AbstractVector{Float64} ) # fits the 1-D spline such that: # spline goes through each point # first and second derivatives match at each inner point # the second derivative at the ends is zero # see: http://mathworld.wolfram.com/CubicSpline.html # this function returns a 4×(n-1) spline coefficient matrix, where n = |pts| n = length(pts)-1 @assert(n > 0) M = spzeros(n+1,n+1) for i = 1 : n M[i,i] = 4 M[i,i+1] = 1 M[i+1,i] = 1 end M[n+1,n+1] = 2 M[1,1] = 2 Y = Array{Float64}(n+1) for i = 1 : n+1 ind_hi = min(i+1,n) ind_lo = max(1,i-1) Y[i] = 3*(pts[ind_hi] - pts[ind_lo]) end D = M\Y spline_coeffs = Array{Float64}(4, n) # col is <a,b,c,d> spline_coeffs[1,:] = pts[1:n] spline_coeffs[2,:] = D[1:n] spline_coeffs[3,:] = 3*(pts[2:n+1] - pts[1:n]) -2*D[1:n]-D[2:n+1] spline_coeffs[4,:] = 2*(pts[1:n] - pts[2:n+1]) + D[1:n] + D[2:n+1] spline_coeffs end function _fit_closed(pts::AbstractVector{Float64} ) # fits the 1-D spline such that: # spline goes through each point # first and second derivatives match at each inner point # first the second derivative at the ends match # see: http://mathworld.wolfram.com/CubicSpline.html # this function returns a 4×n spline coefficient matrix, where n = |pts| n = length(pts)-1 @assert(n > 0) M = spzeros(n+1,n+1) for i = 1 : n M[i,i] = 4 M[i,i+1] = 1 M[i+1,i] = 1 end M[n+1,n+1] = 4 M[1,n+1] = 1 M[n+1,1] = 1 Y = Array{Float64}(n+1) Y[1] = 3*(pts[2] - pts[n+1]) for i = 2 : n Y[i] = 3*(pts[i+1] - pts[i-1]) end Y[end] = 3*(pts[1] - pts[n]) D = M\Y spline_coeffs = Array{Float64}(4, n+1) # col is <a,b,c,d> spline_coeffs[1,:] = pts spline_coeffs[2,:] = D spline_coeffs[3,1:n] = 3*(pts[2:n+1] - pts[1:n]) -2*D[1:n]-D[2:n+1] spline_coeffs[4,1:n] = 2*(pts[1:n] - pts[2:n+1]) + D[1:n] + D[2:n+1] spline_coeffs[3,n+1] = 3*(pts[1] - pts[n+1]) -2*D[n+1]-D[1] spline_coeffs[4,n+1] = 2*(pts[n+1] - pts[1]) + D[n+1] + D[1] spline_coeffs end function _fit_open(pts::Matrix{Float64}) # 2×n {x,y} # see http://mathworld.wolfram.com/CubicSpline.html d,n = size(pts) n -= 1 Y = Array{Float64}(n+1) M = sparse(Int[], Int[], Float64[], n+1,n+1) for i in 1 : n M[i,i] = 4.0 M[i,i+1] = 1.0 M[i+1,i] = 1.0 end M[n+1,n+1] = 2.0 M[1,1] = 2.0 retval = Array{Matrix{Float64}}(d) for k in 1 : d for i in 1 : n+1 ind_hi = min(i+1,n) ind_lo = max(1,i-1) Y[i] = 3*(pts[k,ind_hi] - pts[k,ind_lo]) end D = M \ Y spline_coeffs = Array{Float64}(4, n) # col is <a,b,c,d> for a + b⋅t + c⋅t² + d⋅t³ spline_coeffs[1,:] = pts[k,1:n] # x₀ spline_coeffs[2,:] = D[1:n] # x'₀ spline_coeffs[3,:] = 3*(pts[k,2:n+1]' - pts[k,1:n]') -2*D[1:n] - D[2:n+1] # -3x₀ + 3x₁ - 2x'₀ - x'₁ spline_coeffs[4,:] = 2*(pts[k,1:n]' - pts[k,2:n+1]') + D[1:n] + D[2:n+1] # 2x₀ - 2x₁ + x'₀ + x'₁ retval[k] = spline_coeffs end retval end function _fit_closed(pts::AbstractMatrix{Float64}) d = size(pts,1) retval = Array{Matrix{Float64}}(d) for i = 1 : d retval[i] = _fit_closed(vec(pts[i,:])) end retval end function fit_cubic_spline(pts::AbstractArray{Float64}; open::Bool=true) if open return _fit_open(pts) else return _fit_closed(pts) end end function sample_spline(spline_coeffs::AbstractVector{Float64}, t::Float64) # here t is generally expected to be t ∈ [0,1] return spline_coeffs[1] + t*(spline_coeffs[2] + t*(spline_coeffs[3] + t*spline_coeffs[4])) end function sample_spline(spline_coeffs::AbstractMatrix{Float64}, t::Float64) # for t ∈ (-∞,1] we use spline_coeffs[:,1] # for t ∈ [1,2] we use spline_coeffs[:,2] # etc. @assert(size(spline_coeffs, 1) == 4) col_ind = clamp(ceil(Int, t), 1, size(spline_coeffs,2)) sample_spline(spline_coeffs[:,col_ind], t-col_ind+1) end function sample_spline(spline_coeffs::AbstractVector{Float64}, t_arr::AbstractVector{Float64}) # here t is generally expected to be t ∈ [0,1] a = spline_coeffs[1] b = spline_coeffs[2] c = spline_coeffs[3] d = spline_coeffs[4] retval = Array{Float64}(length(t_arr)) for (i,t) in enumerate(t_arr) retval[i] = a + t*(b + t*(c + t*d)) end retval end function sample_spline(spline_coeffs::AbstractMatrix{Float64}, t_arr::AbstractVector{Float64}) # for t ∈ (-∞,1] we use spline_coeffs[:,1] # for t ∈ [1,2] we use spline_coeffs[:,2] # etc. @assert(size(spline_coeffs, 1) == 4) retval = Array{Float64}(length(t_arr)) for (i,t) in enumerate(t_arr) col_ind = clamp(ceil(Int, t), 1, size(spline_coeffs,2)) retval[i] = sample_spline(spline_coeffs[:,col_ind], t-col_ind+1) end retval end function sample_spline_derivative(spline_coeffs::AbstractVector{Float64}, t::Float64) # here t is generally expected to be t ∈ [0,1] return spline_coeffs[2] + t*(2spline_coeffs[3] + t*3spline_coeffs[4]) end function sample_spline_derivative(spline_coeffs::AbstractMatrix{Float64}, t::Float64) # for t ∈ (-∞,1] we use spline_coeffs[:,1] # for t ∈ [1,2] we use spline_coeffs[:,2] # etc. @assert(size(spline_coeffs, 1) == 4) col_ind = clamp(ceil(Int, t), 1, size(spline_coeffs,2)) sample_spline_derivative(spline_coeffs[:,col_ind], t-col_ind+1) end function sample_spline_derivative(spline_coeffs::AbstractVector{Float64}, t_arr::AbstractVector{Float64}) # here t is generally expected to be t ∈ [0,1] b = spline_coeffs[2] c = spline_coeffs[3] d = spline_coeffs[4] retval = Array{Float64}(length(t_arr)) for (i,t) in enumerate(t_arr) retval[i] = b + t*(2c + t*3d) end retval end function sample_spline_derivative(spline_coeffs::AbstractMatrix{Float64}, t_arr::AbstractVector{Float64}) # for t ∈ (-∞,1] we use spline_coeffs[:,1] # for t ∈ [1,2] we use spline_coeffs[:,2] # etc. @assert(size(spline_coeffs, 1) == 4) retval = Array{Float64}(length(t_arr)) for (i,t) in enumerate(t_arr) col_ind = clamp(ceil(Int, t), 1, size(spline_coeffs,2)) retval[i] = sample_spline_derivative(spline_coeffs[:,col_ind], t-col_ind+1) end retval end function sample_spline_derivative2(spline_coeffs::AbstractVector{Float64}, t::Float64) # here t is generally expected to be t ∈ [0,1] return 2spline_coeffs[3] + t*6spline_coeffs[4] end function sample_spline_derivative2(spline_coeffs::AbstractMatrix{Float64}, t::Float64) # for t ∈ (-∞,1] we use spline_coeffs[:,1] # for t ∈ [1,2] we use spline_coeffs[:,2] # etc. @assert(size(spline_coeffs, 1) == 4) col_ind = clamp(ceil(Int, t), 1, size(spline_coeffs,2)) sample_spline_derivative2(spline_coeffs[:,col_ind], t-col_ind+1) end function sample_spline_derivative2(spline_coeffs::AbstractVector{Float64}, t_arr::AbstractVector{Float64}) # here t is generally expected to be t ∈ [0,1] b = spline_coeffs[2] c = spline_coeffs[3] d = spline_coeffs[4] retval = Array{Float64}(length(t_arr)) for (i,t) in enumerate(t_arr) retval[i] = 2c + t*6d end retval end function sample_spline_derivative2(spline_coeffs::AbstractMatrix{Float64}, t_arr::AbstractVector{Float64}) # for t ∈ (-∞,1] we use spline_coeffs[:,1] # for t ∈ [1,2] we use spline_coeffs[:,2] # etc. @assert(size(spline_coeffs, 1) == 4) retval = Array{Float64}(length(t_arr)) for (i,t) in enumerate(t_arr) col_ind = clamp(ceil(Int, t), 1, size(spline_coeffs,2)) retval[i] = sample_spline_derivative2(spline_coeffs[:,col_ind], t-col_ind+1) end retval end function sample_spline_speed(spline_coeffs_x::AbstractVector{Float64}, spline_coeffs_y::AbstractVector{Float64}, t::Float64) dxdt = sample_spline_derivative(spline_coeffs_x, t) dydt = sample_spline_derivative(spline_coeffs_y, t) hypot(dxdt, dydt) end function sample_spline_speed(spline_coeffs_x::AbstractMatrix{Float64}, spline_coeffs_y::AbstractMatrix{Float64}, t::Float64) # for t ∈ (-∞,1] we use spline_coeffs[:,1] # for t ∈ [1,2] we use spline_coeffs[:,2] # etc. n = size(spline_coeffs_x, 2) @assert(size(spline_coeffs_x, 1) == 4) @assert(size(spline_coeffs_y, 1) == 4) @assert(n == size(spline_coeffs_y, 2)) col_ind = clamp(ceil(Int, t), 1, n)::Int sample_spline_speed(spline_coeffs_x[:,col_ind], spline_coeffs_y[:,col_ind], t-col_ind+1) end function sample_spline_speed(spline_coeffs_x::AbstractVector{Float64}, spline_coeffs_y::AbstractVector{Float64}, t_arr::AbstractVector{Float64}) # here t is generally expected to be t ∈ [0,1] bx = spline_coeffs_x[2] cx = spline_coeffs_x[3] dx = spline_coeffs_x[4] by = spline_coeffs_y[2] cy = spline_coeffs_y[3] dy = spline_coeffs_y[4] retval = Array{Float64}(length(t_arr)) for (i,t) in enumerate(t_arr) dxdt = bx + t*(2cx + t*3dx) dydt = by + t*(2cy + t*3dy) retval[i] = hypot(dxdt, dydt) end retval end function sample_spline_speed(spline_coeffs_x::AbstractMatrix{Float64}, spline_coeffs_y::AbstractMatrix{Float64}, t_arr::AbstractVector{Float64}) # for t ∈ (-∞,1] we use spline_coeffs[:,1] # for t ∈ [1,2] we use spline_coeffs[:,2] # etc. n = size(spline_coeffs_x, 2) @assert(size(spline_coeffs_x, 1) == 4) @assert(size(spline_coeffs_y, 1) == 4) @assert(n == size(spline_coeffs_y, 2)) retval = Array{Float64}(length(t_arr)) for (i,t) in enumerate(t_arr) col_ind = clamp(ceil(Int, t), 1, n) retval[i] = sample_spline_speed(spline_coeffs_x[:,col_ind], spline_coeffs_y[:,col_ind], t-col_ind+1) end retval end function sample_spline_theta(spline_coeffs_x::AbstractVector{Float64}, spline_coeffs_y::AbstractVector{Float64}, t::Float64; stepsize=1e-4 ) # compute the angle from positive x-axis (counter-clockwise positive) of the curve in the positive t direction at t # uses an approximation via small step size instead of derivative due to zero-derivative issues # uses the forward derivative approximation unless it would put it out of range # result returned is in radians t_lo, t_hi = t, t+stepsize if t_hi > 1.0 t_lo, t_hi = t-min(1000stepsize,0.1), t end x1 = sample_spline(spline_coeffs_x, t_lo) x2 = sample_spline(spline_coeffs_x, t_hi) y1 = sample_spline(spline_coeffs_y, t_lo) y2 = sample_spline(spline_coeffs_y, t_hi) # println("(t, lo, hi) $t $t_lo $t_hi, ($(atan2(y2-y1, x2-x1)))") atan2(y2-y1, x2-x1) end function sample_spline_theta(spline_coeffs_x::AbstractMatrix{Float64}, spline_coeffs_y::AbstractMatrix{Float64}, t::Float64) # for t ∈ (-∞,1] we use spline_coeffs[:,1] # for t ∈ [1,2] we use spline_coeffs[:,2] # etc. n = size(spline_coeffs_x, 2) @assert(size(spline_coeffs_x, 1) == 4) @assert(size(spline_coeffs_y, 1) == 4) @assert(n == size(spline_coeffs_y, 2)) col_ind = clamp(ceil(Int, t), 1, n) sample_spline_theta(spline_coeffs_x[:,col_ind], spline_coeffs_y[:,col_ind], t-col_ind+1) end function sample_spline_theta(spline_coeffs_x::AbstractVector{Float64}, spline_coeffs_y::AbstractVector{Float64}, t_arr::AbstractVector{Float64}) # here t is generally expected to be t ∈ [0,1] retval = Array{Float64}(length(t_arr)) for (i,t) in enumerate(t_arr) retval[i] = sample_spline_theta(spline_coeffs_x, spline_coeffs_y, t) end retval end function sample_spline_theta(spline_coeffs_x::AbstractMatrix{Float64}, spline_coeffs_y::AbstractMatrix{Float64}, t_arr::AbstractVector{Float64}) # for t ∈ (-∞,1] we use spline_coeffs[:,1] # for t ∈ [1,2] we use spline_coeffs[:,2] # etc. n = size(spline_coeffs_x, 2) @assert(size(spline_coeffs_x, 1) == 4) @assert(size(spline_coeffs_y, 1) == 4) @assert(n == size(spline_coeffs_y, 2)) retval = Array{Float64}(length(t_arr)) for (i,t) in enumerate(t_arr) col_ind = clamp(ceil(Int, t), 1, n) retval[i] = sample_spline_theta(spline_coeffs_x[:,col_ind], spline_coeffs_y[:,col_ind], t-col_ind+1) end retval end function sample_spline_curvature(spline_coeffs_x::AbstractVector{Float64}, spline_coeffs_y::AbstractVector{Float64}, t::Float64) # computes the signed curvature dx = sample_spline_derivative( spline_coeffs_x, t) dy = sample_spline_derivative( spline_coeffs_y, t) ddx = sample_spline_derivative2(spline_coeffs_x, t) ddy = sample_spline_derivative2(spline_coeffs_y, t) (dx*ddy - dy*ddx)/(dx*dx + dy*dy)^1.5 end function sample_spline_curvature(spline_coeffs_x::AbstractMatrix{Float64}, spline_coeffs_y::AbstractMatrix{Float64}, t::Float64) # for t ∈ (-∞,1] we use spline_coeffs[:,1] # for t ∈ [1,2] we use spline_coeffs[:,2] # etc. n = size(spline_coeffs_x, 2) @assert(size(spline_coeffs_x, 1) == 4) @assert(size(spline_coeffs_y, 1) == 4) @assert(n == size(spline_coeffs_y, 2)) col_ind = clamp(ceil(Int, t), 1, n) sample_spline_curvature(spline_coeffs_x[:,col_ind], spline_coeffs_y[:,col_ind], t-col_ind+1) end function sample_spline_curvature(spline_coeffs_x::AbstractVector{Float64}, spline_coeffs_y::AbstractVector{Float64}, t_arr::AbstractVector{Float64}) # here t is generally expected to be t ∈ [0,1] retval = Array{Float64}(length(t_arr)) for (i,t) in enumerate(t_arr) retval[i] = sample_spline_curvature(spline_coeffs_x, spline_coeffs_y, t) end retval end function sample_spline_curvature(spline_coeffs_x::AbstractMatrix{Float64}, spline_coeffs_y::AbstractMatrix{Float64}, t_arr::AbstractVector{Float64}) # for t ∈ (-∞,1] we use spline_coeffs[:,1] # for t ∈ [1,2] we use spline_coeffs[:,2] # etc. n = size(spline_coeffs_x, 2) @assert(size(spline_coeffs_x, 1) == 4) @assert(size(spline_coeffs_y, 1) == 4) @assert(n == size(spline_coeffs_y, 2)) retval = Array{Float64}(length(t_arr)) for (i,t) in enumerate(t_arr) col_ind = clamp(ceil(Int, t), 1, n) retval[i] = sample_spline_curvature(spline_coeffs_x[:,col_ind], spline_coeffs_y[:,col_ind], t-col_ind+1) end retval end function sample_spline_derivative_of_curvature(spline_coeffs_x::AbstractVector{Float64}, spline_coeffs_y::AbstractVector{Float64}, t::Float64; stepsize=1e-4 ) # computes the derivative of the signed curvature t_lo, t_hi = t, t+stepsize if t_hi > 1.0 t_lo, t_hi = t-stepsize, t end κ_hi = sample_spline_curvature(spline_coeffs_x, spline_coeffs_y, t_hi) κ_lo = sample_spline_curvature(spline_coeffs_x, spline_coeffs_y, t_lo) (κ_hi - κ_lo) / stepsize end function sample_spline_derivative_of_curvature(spline_coeffs_x::AbstractMatrix{Float64}, spline_coeffs_y::AbstractMatrix{Float64}, t::Float64; stepsize=1e-4 ) # for t ∈ (-∞,1] we use spline_coeffs[:,1] # for t ∈ [1,2] we use spline_coeffs[:,2] # etc. n = size(spline_coeffs_x, 2) @assert(size(spline_coeffs_x, 1) == 4) @assert(size(spline_coeffs_y, 1) == 4) @assert(n == size(spline_coeffs_y, 2)) col_ind = clamp(ceil(Int, t), 1, n) sample_spline_derivative_of_curvature(spline_coeffs_x[:,col_ind], spline_coeffs_y[:,col_ind], t-col_ind+1, stepsize=stepsize) end function sample_spline_derivative_of_curvature(spline_coeffs_x::AbstractVector{Float64}, spline_coeffs_y::AbstractVector{Float64}, t_arr::AbstractVector{Float64}; stepsize=1e-4 ) # here t is generally expected to be t ∈ [0,1] retval = Array{Float64}(length(t_arr)) for (i,t) in enumerate(t_arr) retval[i] = sample_spline_derivative_of_curvature(spline_coeffs_x, spline_coeffs_y, t, stepsize=stepsize) end retval end function sample_spline_derivative_of_curvature(spline_coeffs_x::AbstractMatrix{Float64}, spline_coeffs_y::AbstractMatrix{Float64}, t_arr::AbstractVector{Float64}; stepsize=1e-4 ) # for t ∈ (-∞,1] we use spline_coeffs[:,1] # for t ∈ [1,2] we use spline_coeffs[:,2] # etc. n = size(spline_coeffs_x, 2) @assert(size(spline_coeffs_x, 1) == 4) @assert(size(spline_coeffs_y, 1) == 4) @assert(n == size(spline_coeffs_y, 2)) retval = Array{Float64}(length(t_arr)) for (i,t) in enumerate(t_arr) col_ind = clamp(ceil(Int, t), 1, n) retval[i] = sample_spline_derivative_of_curvature(spline_coeffs_x[:,col_ind], spline_coeffs_y[:,col_ind], t-col_ind+1, stepsize=stepsize) end retval end function calc_curve_length(spline_coeffs_x::AbstractVector{Float64}, spline_coeffs_y::AbstractVector{Float64}; n_intervals::Int = 100 ) # integrate using Simpson's rule # _integrate_simpsons(t->sample_spline_speed(spline_coeffs_x, spline_coeffs_y, t), 0.0, 1.0, n_intervals) a = 0.0 b = 1.0 n = n_intervals h = (b-a)/n retval = sample_spline_speed(spline_coeffs_x, spline_coeffs_y, a) + sample_spline_speed(spline_coeffs_x, spline_coeffs_y, b) flip = true for i = 1 : n-1 retval += sample_spline_speed(spline_coeffs_x, spline_coeffs_y, a+i*h) * (flip ? 4 : 2) flip = !flip end return h/3*retval end function calc_curve_length( spline_coeffs_x::AbstractMatrix{Float64}, spline_coeffs_y::AbstractMatrix{Float64}; n_intervals_per_segment::Int = 100 ) n = size(spline_coeffs_x, 2) @assert(size(spline_coeffs_y, 2) == n) @assert(size(spline_coeffs_x, 1) == size(spline_coeffs_y, 1) == 4) len = 0.0 for i = 1 : n len += calc_curve_length(spline_coeffs_x[:,i], spline_coeffs_y[:,i], n_intervals = n_intervals_per_segment) end len end function arclength( spline_coeffs_x::AbstractVector{Float64}, spline_coeffs_y::AbstractVector{Float64}, t_min::Real = 0.0, t_max::Real = 1.0, n_intervals::Int = 100 ) if isapprox(t_min, t_max) return 0.0 end # _integrate_simpsons(t->sample_spline_speed(spline_coeffs_x, spline_coeffs_y, t), t_min, t_max, n_intervals) a = t_min b = t_max n = n_intervals h = (b-a)/n retval = sample_spline_speed(spline_coeffs_x, spline_coeffs_y, a) + sample_spline_speed(spline_coeffs_x, spline_coeffs_y, b) flip = true for i = 1 : n-1 retval += sample_spline_speed(spline_coeffs_x, spline_coeffs_y, a+i*h) * (flip ? 4 : 2) flip = !flip end return h/3*retval end function arclength( spline_coeffs_x::AbstractMatrix{Float64}, spline_coeffs_y::AbstractMatrix{Float64}, t_min::Real = 0.0, t_max::Real = size(spline_coeffs_x, 2), n_intervals_per_segment::Int = 100 ) n = size(spline_coeffs_x, 2) @assert(size(spline_coeffs_y, 2) == n) @assert(size(spline_coeffs_x, 1) == size(spline_coeffs_y, 1) == 4) if isapprox(t_min, t_max) return 0.0 end # println("tmin/tmax: $t_min / $t_max") len = 0.0 for i = floor(Int, t_min) : min(floor(Int, t_max), n-1) t_lo, t_hi = float(i), i+1.0 spline_ind = i+1 t_in_min = max(t_lo, t_min) - t_lo t_in_max = min(t_hi, t_max) - t_lo # println("($i) t_lo: $t_lo, t_hi: $t_hi, : $t_in_min → $t_in_max") len += arclength(spline_coeffs_x[:,spline_ind], spline_coeffs_y[:,spline_ind], t_in_min, t_in_max, n_intervals_per_segment) end # println("len: ", len) len end function calc_curve_param_given_arclen( spline_coeffs_x :: AbstractVector{Float64}, spline_coeffs_y :: AbstractVector{Float64}, s :: Float64; max_iterations :: Int=100, curve_length :: Float64 = calc_curve_length(spline_coeffs_x, spline_coeffs_y), epsilon::Float64 = 1e-4 # tolerance required before termination ) # finds t such that p(t) is a distance s from start of curve # returns t=0 if s ≤ 0.0 and t=1 if s > L if s ≤ 0.0 return 0.0 elseif s ≥ curve_length return 1.0 end t = s/curve_length lo, hi = 0.0, 1.0 # @printf("%10s %10s %10s %10s %10s %10s\n", "iter", "lo", "hi", "t", "s", "F") # println("-"^65) for iter = 1 : max_iterations F = arclength(spline_coeffs_x, spline_coeffs_y, 0.0, t) - s # @printf("%10d %10.5f %10.5f %10.5f %10.5f %10.5f\n", iter-1, lo, hi, t, s, F) if abs(F) < epsilon # |F(t)| is close enough to zero, report it return t end DF = sample_spline_speed(spline_coeffs_x, spline_coeffs_y, t) tCandidate = t - F/DF if F > 0 hi = t t = tCandidate ≤ lo ? 0.5*(lo+hi) : tCandidate else lo = t t = tCandidate ≥ hi ? 0.5*(lo+hi) : tCandidate end end # @printf("%10d %10.5f %10.5f %10.5f %10.5f %10s\n", max_iterations, lo, hi, t, s, "-") t end function calc_curve_param_given_arclen( spline_coeffs_x :: AbstractMatrix{Float64}, spline_coeffs_y :: AbstractMatrix{Float64}, s :: Float64; max_iterations :: Int=100, n_integration_intervals :: Int=100, # must be multiple of 2 curve_length :: Float64 = calc_curve_length(spline_coeffs_x, spline_coeffs_y), epsilon::Float64 = 1e-4 # tolerance required before termination ) # finds t such that p(t) is a distance s from start of curve # returns t=0 if s ≤ 0.0 and t=t_max if s > L n_segments = size(spline_coeffs_x, 2) @assert(size(spline_coeffs_x,1) == size(spline_coeffs_y,1) == 4) @assert(size(spline_coeffs_y,2) == n_segments) if s ≤ 0.0 return 0.0 elseif s ≥ curve_length return float(n_segments) end t = s/curve_length lo, hi = 0.0, float(n_segments) # @printf("%10s %10s %10s %10s %10s %10s\n", "iter", "lo", "hi", "t", "s", "F") # println("-"^65) for iter = 1 : max_iterations F = arclength(spline_coeffs_x, spline_coeffs_y, 0.0, t, n_integration_intervals) - s # @printf("%10d %10.5f %10.5f %10.5f %10.5f %10.5f\n", iter-1, lo, hi, t, s, F) if abs(F) < epsilon return t end DF = sample_spline_speed(spline_coeffs_x, spline_coeffs_y, t) tCandidate = t - F/DF if F > 0 hi = t t = tCandidate ≤ lo ? 0.5*(lo+hi) : tCandidate else lo = t t = tCandidate ≥ hi ? 0.5*(lo+hi) : tCandidate end end # @printf("%10d %10.5f %10.5f %10.5f %10.5f %10s\n", max_iterations, lo, hi, t, s, "-") t end function calc_curve_param_given_arclen( spline_coeffs_x :: AbstractVector{Float64}, spline_coeffs_y :: AbstractVector{Float64}, s_arr :: AbstractVector{Float64}; # assumes s_arr is sorted max_iterations :: Int=100, curve_length :: Float64 = calc_curve_length(spline_coeffs_x, spline_coeffs_y), epsilon::Float64 = 1e-4 # tolerance required before termination ) n = length(s_arr) t_arr = Array{Float64}(n) s = s_arr[1] t = s/curve_length if s ≤ 0.0 t = 0.0 elseif s ≥ curve_length t = 1.0 end lo = 0.0 for (i,s) in enumerate(s_arr) if s ≤ 0.0 t = 0.0 t_arr[i], lo = t, t continue elseif s ≥ curve_length t = 1.0 t_arr[i], lo = t, t continue end hi = 1.0 for iter = 1 : max_iterations F = arclength(spline_coeffs_x, spline_coeffs_y, 0.0, t) - s if abs(F) < epsilon t_arr[i], lo = t, t continue end DF = sample_spline_speed(spline_coeffs_x, spline_coeffs_y, t) tCandidate = t - F/DF if F > 0 hi = t t = tCandidate ≤ lo ? 0.5*(lo+hi) : tCandidate else lo = t t = tCandidate ≥ hi ? 0.5*(lo+hi) : tCandidate end end t_arr[i], lo = t, t end t_arr end function calc_curve_param_given_arclen( spline_coeffs_x :: AbstractMatrix{Float64}, spline_coeffs_y :: AbstractMatrix{Float64}, s_arr :: AbstractVector{Float64}; # assumes s_arr is sorted max_iterations :: Int = 50, curve_length :: Float64 = calc_curve_length(spline_coeffs_x, spline_coeffs_y), epsilon::Float64 = 1e-4, # tolerance required before termination n_intervals_in_arclen::Int = 100 ) n_segments = size(spline_coeffs_x, 2) @assert(size(spline_coeffs_x,1) == size(spline_coeffs_y,1) == 4) @assert(size(spline_coeffs_y,2) == n_segments) n = length(s_arr) t_arr = Array{Float64}(n) s = s_arr[1] t = s/curve_length if s ≤ 0.0 t = 0.0 elseif s ≥ curve_length return float(n_segments) end lo = 0.0 # println("L: ", curve_length) # println("s_max: ", s_arr[end]) for (i,s) in enumerate(s_arr) # println("\ns: ", s) if s ≤ 0.0 t = 0.0 t_arr[i] = lo = t continue elseif s ≥ curve_length t = float(n_segments) t_arr[i] = lo = t continue end hi = float(n_segments) for iter = 1 : max_iterations F = arclength(spline_coeffs_x, spline_coeffs_y, 0.0, t, n_intervals_in_arclen) - s if abs(F) < epsilon break end DF = sample_spline_speed(spline_coeffs_x, spline_coeffs_y, t) tCandidate = t - F/DF if F > 0 hi = t t = tCandidate ≤ lo ? 0.5*(lo+hi) : tCandidate else lo = t t = tCandidate ≥ hi ? 0.5*(lo+hi) : tCandidate end end t_arr[i] = lo = t end t_arr end
{"hexsha": "1f8b1d3c4cb01d8adf731050bdd4d93e9db7e079", "size": 26712, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/core/splines.jl", "max_stars_repo_name": "Sawato/AutomotiveDrivingModels.jl", "max_stars_repo_head_hexsha": "3fbf6a4a53ebedd710d3dfd9f8440ce87b0573d5", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/core/splines.jl", "max_issues_repo_name": "Sawato/AutomotiveDrivingModels.jl", "max_issues_repo_head_hexsha": "3fbf6a4a53ebedd710d3dfd9f8440ce87b0573d5", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/core/splines.jl", "max_forks_repo_name": "Sawato/AutomotiveDrivingModels.jl", "max_forks_repo_head_hexsha": "3fbf6a4a53ebedd710d3dfd9f8440ce87b0573d5", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 32.4174757282, "max_line_length": 162, "alphanum_fraction": 0.6273959269, "num_tokens": 8629}
import re import numpy as np import matplotlib.pyplot as plt from polynomial import polynomial from approximation import calc_approx from print_polynomial import print_polynomial def get_exp_data(): with open("example_data_files\\housing.data", "r") as file: lines = file.readlines() for i in range(len(lines)): if lines[i][0] == " ": lines[i] = lines[i][1:] lines[i] = re.sub("\n", "", lines[i]) lines[i] = re.sub(" +", " ", lines[i]) lines[i] = re.split(" ", lines[i]) exp_data = [] for line in lines: curr_set = [] for curr_var in line: curr_set.append(float(curr_var)) exp_data.append(curr_set) return exp_data def root_mean_square_error_calc(exp_data, polynomial_extent, c): error = 0.0 for curr_data in exp_data: error += (polynomial(polynomial_extent, curr_data[:-1], c) - curr_data[-1]) ** 2 error = np.sqrt(error / len(exp_data)) return error def is_float(str_read): try: float(str_read) return True except ValueError: return False def set_vars(l_lim, h_lim, str_read): is_ok = True value = None is_right = is_float(str_read) if is_right is True: val = float(str_read) if (val >= l_lim) and (val <= h_lim): value = val ret_str = "ok" else: is_ok = False ret_str = "Error: value is not in valid range" else: is_ok = False ret_str = "Error: Invalid input format " return ret_str, is_ok, value def calc_mode(exp_data, polynomial_extent, c): print("Test mode. To exit enter - stop.") print("The input format is dotted. Example: 0.456") print("Enter characteristics:") characteristic_list = ["crime: crime rate per person by city. ", "zn: proportion of residential land zoned for lots over 25,000 sq.ft.. ", "indus: proportion of non-retail business acres per town. ", "chas: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise). ", "nox: nitrogen oxides concentration (parts per 10 million). ", "rm: average number of rooms per dwelling. ", "age: proportion of owner-occupied units built prior to 1940. ", "dis: weighted mean of distances to five Boston employment centres. ", "rad: index of accessibility to radial highways. ", "tax: full-value property-tax rate per $10,000. ", "pt_ratio: pupil-teacher ratio by town. ", "black: 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town. ", "l_stat: lower status of the population (percent). "] lim_list = [] for i in range(len(exp_data[0]) - 1): lim_list.append([min([curr_data[i] for curr_data in exp_data]), max([curr_data[i] for curr_data in exp_data])]) while True: test_list = [] for i in range(len(exp_data[0]) - 1): while True: enter_str = input(characteristic_list[i] + "limits(" + str(lim_list[i][0]) + "___" + str(lim_list[i][1]) + ") = ") if enter_str == "stop": return None ret_str, is_ok, value = set_vars(lim_list[i][0], lim_list[i][1], enter_str) if is_ok: test_list.append(value) break else: print(ret_str) print("RESULT:") print("med_v: median value of owner-occupied homes in $1000s. = " + str(polynomial(polynomial_extent, test_list, c)) + "\n") def main(): exp_data = get_exp_data() polynomial_extent = 1 num_variables = 13 use_test_percent = 90.0 c = calc_approx(exp_data[:int(len(exp_data) * use_test_percent / 100.0)], polynomial_extent, num_variables) print_polynomial(c, polynomial_extent, num_variables) error = root_mean_square_error_calc(exp_data[int(len(exp_data) * use_test_percent / 100.0):], polynomial_extent, c) print("root_mean_square_error = ", error) calc_mode(exp_data[:int(len(exp_data) * use_test_percent / 100.0)], polynomial_extent, c) if __name__ == "__main__": main()
{"hexsha": "9e81d2e0ffd61eeb5b378b51dd6770434c600503", "size": 4547, "ext": "py", "lang": "Python", "max_stars_repo_path": "example_003.py", "max_stars_repo_name": "DmitriyKhudiakov/MSE_approximation", "max_stars_repo_head_hexsha": "6d25711c14a27301335fe211bff9305ea2ad88d8", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "example_003.py", "max_issues_repo_name": "DmitriyKhudiakov/MSE_approximation", "max_issues_repo_head_hexsha": "6d25711c14a27301335fe211bff9305ea2ad88d8", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "example_003.py", "max_forks_repo_name": "DmitriyKhudiakov/MSE_approximation", "max_forks_repo_head_hexsha": "6d25711c14a27301335fe211bff9305ea2ad88d8", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 39.8859649123, "max_line_length": 120, "alphanum_fraction": 0.5597096987, "include": true, "reason": "import numpy", "num_tokens": 1048}
abstract SVM{TSpec <: SVMSpec} <: RegressionModel # ========================================================================== svmModel(spec::SVMSpec, solution::PrimalSolution, predmodel::Predictor, X::AbstractMatrix, Y::AbstractArray) = primalSVMModel(spec, solution, predmodel, X, Y) svmModel(spec::SVMSpec, solution::DualSolution, predmodel::Predictor, X::AbstractMatrix, Y::AbstractArray) = dualSVMModel(spec, solution, predmodel, X, Y) # ========================================================================== """ `PrimalSVM <: SVM` Description ============ The result to the primal problem of a support vector machine. It is the return value of the `svm` function if the parameter `dual = false` Fields ======= - **`params(this)`** : The structure and parameters of the utilized support vector machine - **`nsv(this)`** : The number of support vectors - **`svindex(this)`** : The indicies (i) of the support vectors within the training set - **`features(this)`** : The full training set observations - **`targets(this)`** : The full training set targets - **`predmodel(this)`** : The underlying prediction model. It defines if the intercept is present, as well as the input and output dimensions (univariate vs multivariate prediction) - **`iterations(this)`** : Number of iterations used to fit the model. - **`isconverged(this)`** : true, if the algorithm converged during training. - **`fval(this)`** : The final objective value achieved during training. - **`coef(this)`** : The fitted coefficients w⃗. - **`details(this)`** : The training information returned by the solver itself. It stores the final objective value, the number of used iterations, the fitted coefficients w⃗, and a boolean that states if the algorithm was able to converge. Methods ======== - **`predict(this, X)`** : predicts the response for the given observations in `X`. Note that `X` should be of the same type as the data used for training the SVM. - **`classify(this, X)`** : predicts the response for the given observations in `X` and performs the decision function on the result. Note that `X` should be of the same type as the data used for training the SVM. - **`accuracy(this, X, y)`** : computes the accuracy by calculating the predictions of `X` and comparing the results to `y`. Note that `X` and `y` should have the same number of observations. See also ========= `svm`, `DualSVM`, `CSVM` """ abstract PrimalSVM{TSpec<:SVMSpec} <: SVM{TSpec} """ `DensePrimalSVM <: PrimalSVM` See `PrimalSVM` """ type DensePrimalSVM{TSpec<:SVMSpec, TDetails<:PrimalSolution, TPred<:Predictor, XT<:DenseMatrix, YT<:AbstractVector} <: PrimalSVM{TSpec} params::TSpec details::TDetails predmodel::TPred nsv::Int svindex::Vector{Int} Xtrain::XT Ytrain::YT end """ `SparsePrimalSVM <: PrimalSVM` See `PrimalSVM` """ type SparsePrimalSVM{TSpec<:SVMSpec, TDetails<:PrimalSolution, TPred<:Predictor, XT<:AbstractSparseMatrix, YT<:AbstractVector} <: PrimalSVM{TSpec} params::TSpec details::TDetails predmodel::TPred nsv::Int svindex::Vector{Int} Xtrain::XT Ytrain::YT end # ========================================================================== """ `DualSVM <: SVM` Description ============ The result to the dual problem of a support vector machine. It is the return value of the `svm` function if the parameter `dual = true` Fields ======= - **`params(this)`** : The structure and parameters of the utilized support vector machine - **`nsv(this)`** : The number of support vectors - **`svindex(this)`** : The indicies (i) of the support vectors within the training set - **`features(this)`** : The full training set observations to which the model was fit - **`targets(this)`** : The full training set targets to which the model was fit - **`predmodel(this)`** : The underlying prediction model. It defines if the intercept is present, as well as the input and output dimensions (univariate vs multivariate prediction) - **`iterations(this)`** : Number of iterations used to fit the model. - **`isconverged(this)`** : true, if the algorithm converged during training. - **`fval(this)`** : The final objective value achieved during training. - **`coef(this)`** : The coefficients (α) of the support vectors - **`xsv(this)`** : The support vectors (if dense), or the training set observations (if sparse) - **`ysv(this)`** : The targets of the support vectors - **`details(this)`** : The training information returned by the solver itself. It includes the final objective value, the number of used iterations, the full coefficient vector α, the bias if present, and a boolean that states if the algorithm was able to converge. Methods ======== - **`predict(this, X)`** : predicts the response for the given observations in `X`. Note that `X` should be of the same form as the data used for training the SVM. - **`classify(this, X)`** : predicts the response for the given observations in `X` and performs the decision function on the result. Note that `X` should be of the same type as the data used for training the SVM. - **`accuracy(this, X, y)`** : computes the accuracy by calculating the predictions of `X` and comparing the results to `y`. Note that `X` and `y` should have the same number of observations. See also ========= `svm`, `PrimalSVM`, `CSVM` """ abstract DualSVM{TSpec<:SVMSpec} <: SVM{TSpec} """ `DenseDualSVM <: DualSVM` See `DualSVM` """ type DenseDualSVM{TSpec<:SVMSpec, TPred<:Predictor, XT<:DenseMatrix, YT<:AbstractVector} <: DualSVM{TSpec} params::TSpec details::DualSolution predmodel::TPred nsv::Int alpha::Vector{Float64} svindex::Vector{Int} Xsv::Vector{ContiguousView{Float64,1,Array{Float64,2}}} Ysv::Vector{Float64} Xtrain::XT Ytrain::YT end """ `SparseDualSVM <: DualSVM` See `DualSVM` """ type SparseDualSVM{TSpec<:SVMSpec, TPred<:Predictor, XT<:AbstractSparseMatrix, YT<:AbstractVector} <: DualSVM{TSpec} params::TSpec details::DualSolution predmodel::TPred nsv::Int alpha::Vector{Float64} svindex::Vector{Int} Xsv::XT Ysv::Vector{Float64} Xtrain::XT Ytrain::YT end # ========================================================================== function primalSVMModel{TSpec<:SVMSpec, TPred<:Predictor, TReal<:Real}( params::TSpec, s::PrimalSolution, predmodel::TPred, Xtrain::StridedMatrix, Ytrain::AbstractVector{TReal}) n = size(Xtrain, 2) p = value(predmodel, Xtrain, minimizer(s)) l = zeros(n) @inbounds for i = 1:n lc = value(params.loss, Float64(Ytrain[i]), p[i] - sign(p[i]) * 0.0005) lr = value(params.loss, Float64(Ytrain[i]), p[i] + sign(p[i]) * 0.0005) l[i] = lc != 0 || lr != 0 end svindex = find(l) nsv = length(svindex) DensePrimalSVM{TSpec, typeof(s), TPred, typeof(Xtrain), typeof(Ytrain)}(params, s, predmodel, nsv, svindex, Xtrain, Ytrain) end function primalSVMModel{TSpec<:SVMSpec, TPred<:Predictor, TReal<:Real}( params::TSpec, s::PrimalSolution, predmodel::TPred, Xtrain::AbstractSparseMatrix, Ytrain::AbstractVector{TReal}) n = size(Xtrain, 2) w = minimizer(s) p = if typeof(predmodel) <: LinearPredictor{true} fill(w[end] * predmodel.bias, size(Ytrain)) else zeros(size(Ytrain)) end @inbounds for i = 1:n tstart = Xtrain.colptr[i] tstop = Xtrain.colptr[i+1] - 1 for j = tstart:tstop k = Xtrain.rowval[j] p[i] += Xtrain.nzval[j] * w[k] end end l = zeros(n) @inbounds for i = 1:n lc = value(params.loss, Float64(Ytrain[i]), p[i] - sign(p[i]) * 0.0005,) lr = value(params.loss, Float64(Ytrain[i]), p[i] + sign(p[i]) * 0.0005) l[i] = lc != 0 || lr != 0 end svindex = find(l) nsv = length(svindex) SparsePrimalSVM{TSpec, typeof(s), TPred, typeof(Xtrain), typeof(Ytrain)}(params, s, predmodel, nsv, svindex, Xtrain, Ytrain) end function dualSVMModel{TSpec<:SVMSpec, TPred<:Predictor, TReal<:Real}( params::TSpec, s::DualSolution, p::TPred, Xtrain::StridedMatrix, Ytrain::AbstractVector{TReal}) svindex = find(minimizer(s)) alpha = minimizer(s)[svindex] nsv = length(alpha) Xsv = Array(ContiguousView{Float64,1,Array{Float64,2}}, nsv) @inbounds for i in 1:nsv Xsv[i] = view(Xtrain, :, svindex[i]) end Ysv = Ytrain[svindex] DenseDualSVM{TSpec, TPred, typeof(Xtrain), typeof(Ytrain)}(params, s, p, nsv, alpha, svindex, Xsv, Ysv, Xtrain, Ytrain) end function dualSVMModel{TSpec<:SVMSpec, TPred<:Predictor, TReal<:Real}( params::TSpec, s::DualSolution, p::TPred, Xtrain::AbstractSparseMatrix, Ytrain::AbstractVector{TReal}) svindex = find(minimizer(s)) alpha = minimizer(s)[svindex] nsv = length(alpha) Xsv = Xtrain Ysv = Ytrain[svindex] SparseDualSVM{TSpec, TPred, typeof(Xtrain), typeof(Ytrain)}(params, s, p, nsv, alpha, svindex, Xsv, Ysv, Xtrain, Ytrain) end # ========================================================================== @inline labels{TSpec<:SVCSpec}(svm::SVM{TSpec}) = [-1., 1] @inline nobs(fit::SVM) = length(fit.Ytrain) @inline features(fit::SVM) = fit.Xtrain @inline targets(fit::SVM) = fit.Ytrain @inline model_response(fit::SVM) = fit.Ytrain @inline details(fit::SVM) = fit.details @inline isconverged(fit::SVM) = isconverged(details(fit)) @inline iterations(fit::SVM) = iterations(details(fit)) @inline params(fit::SVM) = fit.params @inline minimum(fit::SVM) = minimum(details(fit)) @inline minimizer(fit::SVM) = minimizer(details(fit)) @inline nsv(fit::SVM) = fit.nsv @inline svindex(fit::SVM) = fit.svindex @inline intercept(fit::SVM) = typeof(predmodel(fit)) <: LinearPredictor{true} @inline predmodel(fit::SVM) = fit.predmodel @inline coef(fit::PrimalSVM) = coef(details(fit)) @inline coef(fit::DualSVM) = fit.alpha @inline bias(fit::DualSVM) = bias(details(fit)) @inline xsv(fit::DualSVM) = fit.Xsv @inline ysv(fit::DualSVM) = fit.Ysv @inline predict(fit::SVM) = predict(fit, features(fit)) @inline classify{TSpec<:SVCSpec}(svm::SVM{TSpec}) = classify(svm, features(svm)) @inline accuracy{TSpec<:SVCSpec}(svm::SVM{TSpec}) = accuracy(svm, features(svm), targets(svm)) function classify{TSpec<:SVCSpec}(svm::SVM{TSpec}, X) ŷ = predict(svm, X) t = ndims(ŷ) == 1 ? sign(ŷ) : vec(mapslices(indmax, ŷ, 1)) t end function accuracy{TSpec<:SVCSpec}(svm::SVM{TSpec}, X, y) n = size(X,2) n == length(y) || throw(DimensionMismatch("X and y have to have the same number of observations")) ȳ = classify(svm, X) countnz(ȳ .== y) / n end function predict(fit::PrimalSVM, X::DenseMatrix) p = value(predmodel(fit), X, minimizer(details(fit))) size(p, 1) == 1 ? vec(p) : p end function predict(fit::PrimalSVM, X::AbstractSparseMatrix) n = size(X,2) w = minimizer(details(fit)) p = if typeof(predmodel(fit)) <: LinearPredictor{true} fill(w[end] * predmodel(fit).bias, size(targets(fit))) else zeros(size(targets(fit))) end @inbounds for i = 1:n tstart = X.colptr[i] tstop = X.colptr[i+1] - 1 for j = tstart:tstop k = X.rowval[j] p[i] += X.nzval[j] * w[k] end end p end function predict(fit::DenseDualSVM, X::AbstractMatrix) n = size(X,2) result = zeros(n) @inbounds for i in 1:n for j in 1:nsv(fit) result[i] += coef(fit)[j] * ysv(fit)[j] * dot(xsv(fit)[j], view(X,:,i)) end result[i] += bias(fit) end result end function predict(fit::SparseDualSVM, X::AbstractMatrix) n = size(X,2) result = zeros(n) tmp = 0. @inbounds for i in 1:n for j in 1:nsv(fit) tstart = xsv(fit).colptr[svindex(fit)[j]] tstop = xsv(fit).colptr[svindex(fit)[j]+1] - 1 tmp = 0. for k = tstart:tstop tmp += X[xsv(fit).rowval[k],i] * xsv(fit).nzval[k] end tmp *= ysv(fit)[j] tmp *= coef(fit)[j] result[i] += tmp end result[i] += bias(fit) end result end # ========================================================================== # convert function convert{TSpec <: SVMSpec{ScalarProductKernel{Float64}}}( ::Type{PrimalSVM}, dual::DualSVM{TSpec}) l = length(xsv(dual)) d = length(xsv(dual)[1]) # w = ∑ yᵢαᵢxᵢ w = zeros(d+1) for j = 1:d for i = 1:l @inbounds w[j] += ysv(dual)[i] * coef(dual)[i] * xsv(dual)[i][j] end end sol = if typeof(predmodel(dual)) <: LinearPredictor{true} w[end] = bias(dual) PrimalSolution(w, minimum(dual), iterations(dual), isconverged(dual)) else PrimalSolution(w[1:d], minimum(dual), iterations(dual), isconverged(dual)) end svmModel(params(dual), sol, predmodel(dual), features(dual), targets(dual)) end function convert{TSpec <: SVMSpec{ScalarProductKernel{Float64}}}( ::Type{DualSVM}, primal::PrimalSVM{TSpec}) k = size(features(primal), 1) n = size(features(primal), 2) nsv = nsv(primal) svindex = svindex(primal) nsv <= k || throw(DimensionMismatch("Converting to dual solution is only possible if there are less (or equal) support vectors than there are features")) Q = zeros(k, nsv) for i = 1:nsv for j = 1:k @inbounds Q[j, i] = targets(primal)[svindex[i]] * features(primal)[j, svindex[i]] end end # DOESN'T WORK FOR NO BIAS w = minimizer(details(primal))[1:k] α = Q \ w alpha = zeros(n) alpha[svindex] = α sol = DualSolution(alpha, minimizer(details(primal))[end], minimum(primal), iterations(primal), isconverged(primal)) svmModel(params(primal), sol, predmodel(primal), features(primal), targets(primal)) end # ========================================================================== # Plotting function scatterplot{TSpec<:SVCSpec}( fit::PrimalSVM{TSpec}; title::AbstractString = "Primal SVM Classification Plot", xlim = [0.,0.], ylim = [0.,0.], lbl = map(string, labels(fit)), nargs...) size(features(fit),1) == 2 || throw(DimensionMismatch("Can only plot the SVM classification for a two-dimensional featurespace (i.e. size(X,1) == 2)")) intercept_fit = typeof(predmodel(fit)) <: LinearPredictor{true} offset = intercept_fit ? -(minimizer(details(fit))[3] * predmodel(fit).bias) / minimizer(details(fit))[2] : 0. slope = -minimizer(details(fit))[1] / minimizer(details(fit))[2] x1 = vec(view(features(fit), 1, :)) x2 = vec(view(features(fit), 2, :)) x1sv = x1[svindex(fit)] x2sv = x2[svindex(fit)] xmin = minimum(x1); xmax = maximum(x1) ymin = minimum(x2); ymax = maximum(x2) xlim = xlim == [0.,0.] ? [xmin, xmax] : xlim ylim = ylim == [0.,0.] ? [ymin, ymax] : ylim notalphaindex = setdiff(1:size(features(fit),2), svindex(fit)) x1 = x1[notalphaindex] x2 = x2[notalphaindex] y = targets(fit)[notalphaindex] fig = scatterplot(x1[y.<0], x2[y.<0]; title = title, xlim = xlim, ylim = ylim, name = lbl[1], nargs...) scatterplot!(fig, x1[y.>0], x2[y.>0], name = lbl[2]) scatterplot!(fig, x1sv, x2sv, color = :yellow, name = "support vectors") lineplot!(fig, offset, slope, color = :white) xlabel!(fig, "X₁") ylabel!(fig, "X₂") fig end function scatterplot{TSpec<:SVCSpec}( fit::DualSVM{TSpec}; title::AbstractString = "Dual SVM Classification Plot", xlim = [0.,0.], ylim = [0.,0.], lbl = map(string, labels(fit)), nargs...) size(features(fit),1) == 2 || throw(DimensionMismatch("Can only plot the SVM classification for a two-dimensional featurespace (i.e. size(X,1) == 2)")) x1 = vec(view(features(fit), 1, :)) x2 = vec(view(features(fit), 2, :)) x1sv = x1[svindex(fit)] x2sv = x2[svindex(fit)] xmin = minimum(x1); xmax = maximum(x1) ymin = minimum(x2); ymax = maximum(x2) xlim = xlim == [0.,0.] ? [xmin, xmax] : xlim ylim = ylim == [0.,0.] ? [ymin, ymax] : ylim notalphaindex = setdiff(1:size(features(fit),2), svindex(fit)) x1 = x1[notalphaindex] x2 = x2[notalphaindex] y = targets(fit)[notalphaindex] fig = scatterplot(x1[y.<0], x2[y.<0]; title = title, xlim = xlim, ylim = ylim, name = lbl[1], nargs...) scatterplot!(fig, x1[y.>0], x2[y.>0], name = lbl[2]) scatterplot!(fig, x1sv, x2sv, color = :yellow, name = "support vectors") xlabel!(fig, "X₁") ylabel!(fig, "X₂") fig end # ========================================================================== # Base.show function _showprimal(io::IO, fit) _printconverged(io, isconverged(fit), iterations(fit)) _printvariable(io, 19, "details()", typeof(details(fit))) _printvariable(io, 19, "isconverged()", isconverged(fit)) _printvariable(io, 19, "iterations()", iterations(fit)) println(io, "\n ◦ support vector machine:") _printvariable(io, 14, "params()", params(fit)) println(io, "\n ◦ objective value (f):") _printvariable(io, 17, "minimum()", minimum(fit)) println(io, "\n ◦ fitted coefficients (w⃗):") _printvariable(io, 17, "coef()", coef(fit)) _printvariable(io, 17, "intercept()", intercept(fit)) _printvariable(io, 17, "predmodel()", predmodel(fit)) println(io, "\n ◦ support vectors (estimated):") _printvariable(io, 17, "nsv()", nsv(fit)) _printvariable(io, 17, "svindex()", svindex(fit)) if size(features(fit),1) == 2 && size(features(fit),2) < 500 println(io, "\n ◦ classification plot (UnicodePlots.scatterplot(..)):") fig = scatterplot(fit, margin = 5, width = 30, height = 10, title = "") print(io, fig) end end function _showdual(io::IO, fit) _printconverged(io, isconverged(fit), iterations(fit)) _printvariable(io, 19, "details()", typeof(details(fit))) _printvariable(io, 19, "isconverged()", isconverged(fit)) _printvariable(io, 19, "iterations()", iterations(fit)) println(io, "\n ◦ support vector machine:") _printvariable(io, 14, "params()", params(fit)) println(io, "\n ◦ objective value (f):") _printvariable(io, 17, "minimum()", minimum(fit)) println(io, "\n ◦ fitted coefficients (α):") _printvariable(io, 17, "coef()", coef(fit)) intercept(fit) && _printvariable(io, 17, "bias()", bias(fit)) _printvariable(io, 17, "intercept()", intercept(fit)) _printvariable(io, 17, "predmodel()", predmodel(fit)) println(io, "\n ◦ support vectors:") _printvariable(io, 17, "nsv()", nsv(fit)) _printvariable(io, 17, "svindex()", svindex(fit)) _printvariable(io, 17, "xsv()", typeof(xsv(fit))) _printvariable(io, 17, "ysv()", ysv(fit)) if size(features(fit),1) == 2 && size(features(fit),2) < 500 println(io, "\n ◦ classification plot (UnicodePlots.scatterplot(..)):") fig = scatterplot(fit, margin = 5, width = 30, height = 10, title = "") print(io, fig) end end function show(io::IO, fit::PrimalSVM) println(io, typeof(fit), "\n") _showprimal(io, fit) end function show(io::IO, fit::DualSVM) println(io, typeof(fit), "\n") _showdual(io, fit) end
{"hexsha": "9ad680ff5cb6f44aa2b360a37996ede54ccc827f", "size": 18586, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/svm_model.jl", "max_stars_repo_name": "Evizero/KSVM.jl", "max_stars_repo_head_hexsha": "1fec5d43f615fcf3964f96ca27dd7ad32325bd55", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 35, "max_stars_repo_stars_event_min_datetime": "2015-09-24T23:58:15.000Z", "max_stars_repo_stars_event_max_datetime": "2022-02-24T23:29:15.000Z", "max_issues_repo_path": "src/svm_model.jl", "max_issues_repo_name": "Evizero/KSVM.jl", "max_issues_repo_head_hexsha": "1fec5d43f615fcf3964f96ca27dd7ad32325bd55", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 3, "max_issues_repo_issues_event_min_datetime": "2015-09-11T09:05:57.000Z", "max_issues_repo_issues_event_max_datetime": "2019-09-30T18:24:53.000Z", "max_forks_repo_path": "src/svm_model.jl", "max_forks_repo_name": "Evizero/KSVM.jl", "max_forks_repo_head_hexsha": "1fec5d43f615fcf3964f96ca27dd7ad32325bd55", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 4, "max_forks_repo_forks_event_min_datetime": "2017-03-21T12:46:48.000Z", "max_forks_repo_forks_event_max_datetime": "2019-09-18T15:11:38.000Z", "avg_line_length": 33.368043088, "max_line_length": 155, "alphanum_fraction": 0.6446249865, "num_tokens": 5875}
# audio-offset-finder # # Copyright (c) 2014 British Broadcasting Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from subprocess import Popen, PIPE from scipy.io import wavfile from scikits.talkbox.features.mfcc import mfcc import os, tempfile, warnings import numpy as np def find_offset(file1, file2, fs=8000, trim=60*15, correl_nframes=1000): tmp1 = convert_and_trim(file1, fs, trim) tmp2 = convert_and_trim(file2, fs, trim) # Removing warnings because of 18 bits block size # outputted by ffmpeg # https://trac.ffmpeg.org/ticket/1843 warnings.simplefilter("ignore", wavfile.WavFileWarning) a1 = wavfile.read(tmp1, mmap=True)[1] / (2.0 ** 15) a2 = wavfile.read(tmp2, mmap=True)[1] / (2.0 ** 15) # We truncate zeroes off the beginning of each signals # (only seems to happen in ffmpeg, not in sox) a1 = ensure_non_zero(a1) a2 = ensure_non_zero(a2) mfcc1 = mfcc(a1, nwin=256, nfft=512, fs=fs, nceps=13)[0] mfcc2 = mfcc(a2, nwin=256, nfft=512, fs=fs, nceps=13)[0] mfcc1 = std_mfcc(mfcc1) mfcc2 = std_mfcc(mfcc2) c = cross_correlation(mfcc1, mfcc2, nframes=correl_nframes) max_k_index = np.argmax(c) # The MFCC window overlap is hardcoded in scikits.talkbox offset = max_k_index * 160.0 / float(fs) # * over / sample rate score = (c[max_k_index] - np.mean(c)) / np.std(c) # standard score of peak os.remove(tmp1) os.remove(tmp2) return offset, score def ensure_non_zero(signal): # We add a little bit of static to avoid # 'divide by zero encountered in log' # during MFCC computation signal += np.random.random(len(signal)) * 10**-10 return signal def cross_correlation(mfcc1, mfcc2, nframes): n1, mdim1 = mfcc1.shape n2, mdim2 = mfcc2.shape n = n1 - nframes + 1 c = np.zeros(n) for k in range(n): cc = np.sum(np.multiply(mfcc1[k:k+nframes], mfcc2[:nframes]), axis=0) c[k] = np.linalg.norm(cc) return c def std_mfcc(mfcc): return (mfcc - np.mean(mfcc, axis=0)) / np.std(mfcc, axis=0) def convert_and_trim(afile, fs, trim): tmp = tempfile.NamedTemporaryFile(mode='r+b', prefix='offset_', suffix='.wav') tmp_name = tmp.name tmp.close() psox = Popen([ 'ffmpeg', '-loglevel', 'panic', '-i', afile, '-ac', '1', '-ar', str(fs), '-ss', '0', '-t', str(trim), '-acodec', 'pcm_s16le', tmp_name ], stderr=PIPE) psox.communicate() if not psox.returncode == 0: raise Exception("FFMpeg failed") return tmp_name class OffsetFinder: def __init__(self, source_filename, fs=8000, trim=60*15, correl_nframes=1000): self.source_filename = source_filename self.fs = fs self.trim = trim self.correl_nframes = correl_nframes self.large_audio_path = "" def __del__(self): if self.large_audio_path != "": os.remove(self.large_audio_path) def init(self): tmp, mfcc_out = self.get_mfcc(self.source_filename, fs=self.fs, trim=self.trim, correl_nframes=self.correl_nframes) self.large_audio_path = tmp self.large_mfcc = mfcc_out @staticmethod def get_mfcc(filename, fs=8000, trim=60*15, correl_nframes=1000): tmp = convert_and_trim(filename, fs, trim) # Removing warnings because of 18 bits block size # outputted by ffmpeg # https://trac.ffmpeg.org/ticket/1843 warnings.simplefilter("ignore", wavfile.WavFileWarning) a = wavfile.read(tmp, mmap=True)[1] / (2.0 ** 15) # We truncate zeroes off the beginning of each signals # (only seems to happen in ffmpeg, not in sox) a = ensure_non_zero(a) mfcc_out = mfcc(a, nwin=256, nfft=512, fs=fs, nceps=13)[0] mfcc_out = std_mfcc(mfcc_out) return tmp, mfcc_out def find_offset(self, filename, fs=8000, trim=60*15, correl_nframes=1000): tmp, mfcc_out = self.get_mfcc(filename) c = cross_correlation(self.large_mfcc, mfcc_out, nframes=correl_nframes) max_k_index = np.argmax(c) # The MFCC window overlap is hardcoded in scikits.talkbox offset = max_k_index * 160.0 / float(fs) # * over / sample rate score = (c[max_k_index] - np.mean(c)) / np.std(c) # standard score of peak # remove the temp converted audio file os.remove(tmp) return offset, score
{"hexsha": "33b7af1ac4bdace212f4045ed6740fbee57bb1fe", "size": 4935, "ext": "py", "lang": "Python", "max_stars_repo_path": "audio_offset_finder/audio_offset_finder.py", "max_stars_repo_name": "CalderWhite/audio-offset-finder", "max_stars_repo_head_hexsha": "83708a6f40a0a3cde347b87ecc25ff06fa0743db", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "audio_offset_finder/audio_offset_finder.py", "max_issues_repo_name": "CalderWhite/audio-offset-finder", "max_issues_repo_head_hexsha": "83708a6f40a0a3cde347b87ecc25ff06fa0743db", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "audio_offset_finder/audio_offset_finder.py", "max_forks_repo_name": "CalderWhite/audio-offset-finder", "max_forks_repo_head_hexsha": "83708a6f40a0a3cde347b87ecc25ff06fa0743db", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 34.5104895105, "max_line_length": 87, "alphanum_fraction": 0.6559270517, "include": true, "reason": "import numpy,from scipy", "num_tokens": 1422}
import numpy as np import unittest
{"hexsha": "7f6498b686ca2f35694ea194e5b4ccbeaf232ac6", "size": 34, "ext": "py", "lang": "Python", "max_stars_repo_path": "MCMC/test/test_00.py", "max_stars_repo_name": "Evanzai/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers", "max_stars_repo_head_hexsha": "051477a7f36090ec5c9cb9941afa1a81c761dd27", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "MCMC/test/test_00.py", "max_issues_repo_name": "Evanzai/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers", "max_issues_repo_head_hexsha": "051477a7f36090ec5c9cb9941afa1a81c761dd27", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "MCMC/test/test_00.py", "max_forks_repo_name": "Evanzai/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers", "max_forks_repo_head_hexsha": "051477a7f36090ec5c9cb9941afa1a81c761dd27", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 17.0, "max_line_length": 18, "alphanum_fraction": 0.8529411765, "include": true, "reason": "import numpy", "num_tokens": 7}
@symbol_func function P_E(cur_reactor::AbstractReactor) cur_P = P_T(cur_reactor) cur_P *= cur_reactor.eta_T cur_P end
{"hexsha": "81aa1eb7cec36f526e9a0f279768d6cafcc8a263", "size": 126, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/methods/reactors/powers/p_e.jl", "max_stars_repo_name": "djsegal/Fusion.jl", "max_stars_repo_head_hexsha": "a0540fbf3345a778965fa092e9e56907a44c6521", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 5, "max_stars_repo_stars_event_min_datetime": "2017-12-31T10:16:41.000Z", "max_stars_repo_stars_event_max_datetime": "2018-03-13T22:41:17.000Z", "max_issues_repo_path": "src/methods/reactors/powers/p_e.jl", "max_issues_repo_name": "djsegal/Fusion.jl", "max_issues_repo_head_hexsha": "a0540fbf3345a778965fa092e9e56907a44c6521", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 21, "max_issues_repo_issues_event_min_datetime": "2017-04-11T05:06:15.000Z", "max_issues_repo_issues_event_max_datetime": "2017-11-23T05:06:33.000Z", "max_forks_repo_path": "src/methods/reactors/powers/p_e.jl", "max_forks_repo_name": "djsegal/Fussy.jl", "max_forks_repo_head_hexsha": "a0540fbf3345a778965fa092e9e56907a44c6521", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2017-04-26T16:58:21.000Z", "max_forks_repo_forks_event_max_datetime": "2017-04-27T15:25:51.000Z", "avg_line_length": 15.75, "max_line_length": 55, "alphanum_fraction": 0.7619047619, "num_tokens": 41}
abstract type ShepardType <: InterpolationMethod end export Shepard """ Shepard(P = 2) Standard Shepard interpolation with power parameter `P`. """ struct Shepard{T} <: ShepardType where T <: Real P::T end Shepard() = Shepard(2) struct ShepardInterpolant{T1, T2, F, M} <: ScatteredInterpolant where {T1 <: AbstractArray, T2 <: AbstractMatrix{<:Real}} data::T1 points::T2 idw::F metric::M end # No need to compute anything here, everything is done in the evaluation step. function interpolate(idw::ShepardType, points::AbstractArray{<:Real,2}, samples::AbstractArray{<:Number,N}; metric = Euclidean()) where {N} return ShepardInterpolant(samples, points, idw, metric) end function evaluate(itp::ShepardInterpolant, points::AbstractArray{<:Real,2}) # Compute distances between sample points and interpolation points d = pairwise(itp.metric, itp.points, points;dims=2) # Evaluate point by point m = size(points, 2) n = size(itp.data, 2) values = zeros(eltype(itp.data), m, n) for i = 1:m d_col = d[:,i] # If an interpolation point coincide with a sampling point, just return the # original data. Otherwise, compute distance-weighted sum if !all(r > 0 for r in d_col) ind = findfirst(x -> x ≈ 0.0, d_col) values[i,:] = itp.data[ind, :] else values[i,:] = evaluatePoint(itp.idw, itp.points, itp.data, d_col) end end return values end # Original Shepard function evaluatePoint(idw::Shepard, dataPoints::AbstractArray{<:Real,2}, data::AbstractArray{<:Number,N}, d::AbstractVector) where {N} # Compute weigths and return the weighted sum w = 1.0./(d.^idw.P) value = sum(w.*data, dims = 1)./sum(w) end
{"hexsha": "2d959caa8476eb7df4d496555c48bd86658abd70", "size": 1900, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/idw.jl", "max_stars_repo_name": "UnofficialJuliaMirrorSnapshots/ScatteredInterpolation.jl-3f865c0f-6dca-5f4d-999b-29fe1e7e3c92", "max_stars_repo_head_hexsha": "c3c107fe7255c8967f6a1111b48f8a8a921a0dcf", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 10, "max_stars_repo_stars_event_min_datetime": "2019-03-19T09:22:24.000Z", "max_stars_repo_stars_event_max_datetime": "2021-10-06T12:20:02.000Z", "max_issues_repo_path": "src/idw.jl", "max_issues_repo_name": "UnofficialJuliaMirrorSnapshots/ScatteredInterpolation.jl-3f865c0f-6dca-5f4d-999b-29fe1e7e3c92", "max_issues_repo_head_hexsha": "c3c107fe7255c8967f6a1111b48f8a8a921a0dcf", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 19, "max_issues_repo_issues_event_min_datetime": "2018-04-13T10:43:24.000Z", "max_issues_repo_issues_event_max_datetime": "2022-01-08T13:11:57.000Z", "max_forks_repo_path": "src/idw.jl", "max_forks_repo_name": "UnofficialJuliaMirrorSnapshots/ScatteredInterpolation.jl-3f865c0f-6dca-5f4d-999b-29fe1e7e3c92", "max_forks_repo_head_hexsha": "c3c107fe7255c8967f6a1111b48f8a8a921a0dcf", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 7, "max_forks_repo_forks_event_min_datetime": "2018-05-07T16:02:04.000Z", "max_forks_repo_forks_event_max_datetime": "2022-01-23T17:16:28.000Z", "avg_line_length": 28.3582089552, "max_line_length": 121, "alphanum_fraction": 0.6147368421, "num_tokens": 505}
\subsection{SSNIP test} Small but significant and non-transitory increase in price Would this cause customers to move elsewhere? If we have demand at different prices we can estimate whether it is worth monopolising the market. Because this lack of motivation may be because of competitor goods, we can include these to see if that market is worth monopolising. For example: hiking up the price of one good may not be profitable. Therefore that is not a relevant market (though it could be!). Then we can see if hiking up the price of that good, and others, is profitable. If so, then it is a relevant market. Note: High elasticity may be because monopoly power is already being exerted Identify smallest market where a monopolist could increas price profitably How to do test? interview customers about whether increase in price would negatively affect them. want to know if they could switch. If could switch at price rise of say 5%, then market is too small to "be worth monopolising". choose larger Can be used to estimate elasticity of demand We can also look at the cost impact from cutting units. if high variable, then more appealing We can expand to include substitutes. if substitutes make worth monopolisign, then merger can be concerning.
{"hexsha": "e2bf06e08d06ef574bc0b79c63d7da4d8f6e2726", "size": 1266, "ext": "tex", "lang": "TeX", "max_stars_repo_path": "src/pug/theory/economics/competitionPolicy/04-01-SSNIP.tex", "max_stars_repo_name": "adamdboult/nodeHomePage", "max_stars_repo_head_hexsha": "266bfc6865bb8f6b1530499dde3aa6206bb09b93", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/pug/theory/economics/competitionPolicy/04-01-SSNIP.tex", "max_issues_repo_name": "adamdboult/nodeHomePage", "max_issues_repo_head_hexsha": "266bfc6865bb8f6b1530499dde3aa6206bb09b93", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 6, "max_issues_repo_issues_event_min_datetime": "2021-03-03T12:36:56.000Z", "max_issues_repo_issues_event_max_datetime": "2022-01-01T22:16:09.000Z", "max_forks_repo_path": "src/pug/theory/economics/competitionPolicy/04-01-SSNIP.tex", "max_forks_repo_name": "adamdboult/nodeHomePage", "max_forks_repo_head_hexsha": "266bfc6865bb8f6b1530499dde3aa6206bb09b93", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 42.2, "max_line_length": 247, "alphanum_fraction": 0.7962085308, "num_tokens": 261}
module PrintFileTree export printfiletree """ printfiletree() printfiletree(root) Like the unix utility `tree` (https://linux.die.net/man/1/tree). Prints complete recursive directory structure of root and all its contents. """ function printfiletree(root=".") println(root); d,f = printfiletree_helper(root) println("\n$d directories, $f files") end function printfiletree_helper(root, depth=0, opendirs=[true], dirscount=fill(0), filescount=fill(0)) files = readdir(root) for (i,f) in enumerate(files) startswith(f, ".") && continue lastitem = (i == length(files)) lastitem && (opendirs[end] = false) for p in opendirs[1:end-1] print(p ? "│ " : " ") end println("$(lastitem ? "└" : "├")── " * f) # path path = joinpath(root, f) if isdir(path) dirscount[] += 1 push!(opendirs, true) printfiletree_helper(path, depth+1, opendirs, dirscount, filescount) pop!(opendirs) else filescount[] += 1 end end dirscount[], filescount[] end end # module
{"hexsha": "cf6b73d5bedb9468c6ce507683cb7f0d79f054d5", "size": 1140, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/PrintFileTree.jl", "max_stars_repo_name": "UnofficialJuliaMirror/PrintFileTree.jl-083f6447-9a71-585a-bc2e-c0ad124fd6e4", "max_stars_repo_head_hexsha": "a8c54b150ed7aedcc2f0a0fdd4a38da9dc00eec5", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2018-07-21T04:51:21.000Z", "max_stars_repo_stars_event_max_datetime": "2021-08-31T05:24:52.000Z", "max_issues_repo_path": "src/PrintFileTree.jl", "max_issues_repo_name": "UnofficialJuliaMirror/PrintFileTree.jl-083f6447-9a71-585a-bc2e-c0ad124fd6e4", "max_issues_repo_head_hexsha": "a8c54b150ed7aedcc2f0a0fdd4a38da9dc00eec5", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2019-04-16T06:02:31.000Z", "max_issues_repo_issues_event_max_datetime": "2019-08-14T19:35:46.000Z", "max_forks_repo_path": "src/PrintFileTree.jl", "max_forks_repo_name": "UnofficialJuliaMirror/PrintFileTree.jl-083f6447-9a71-585a-bc2e-c0ad124fd6e4", "max_forks_repo_head_hexsha": "a8c54b150ed7aedcc2f0a0fdd4a38da9dc00eec5", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 3, "max_forks_repo_forks_event_min_datetime": "2020-02-08T11:35:52.000Z", "max_forks_repo_forks_event_max_datetime": "2021-08-31T05:25:06.000Z", "avg_line_length": 26.511627907, "max_line_length": 100, "alphanum_fraction": 0.5877192982, "num_tokens": 311}
/- Copyright (c) 2021 Yakov Pechersky. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yakov Pechersky -/ import data.equiv.basic import data.set.finite import group_theory.perm.sign /-! # Equivalence between fintypes This file contains some basic results on equivalences where one or both sides of the equivalence are `fintype`s. # Main definitions - `function.embedding.to_equiv_range`: computably turn an embedding of a fintype into an `equiv` of the domain to its range - `equiv.perm.via_fintype_embedding : perm α → (α ↪ β) → perm β` extends the domain of a permutation, fixing everything outside the range of the embedding # Implementation details - `function.embedding.to_equiv_range` uses a computable inverse, but one that has poor computational performance, since it operates by exhaustive search over the input `fintype`s. -/ variables {α β : Type*} [fintype α] [decidable_eq β] (e : equiv.perm α) (f : α ↪ β) /-- Computably turn an embedding `f : α ↪ β` into an equiv `α ≃ set.range f`, if `α` is a `fintype`. Has poor computational performance, due to exhaustive searching in constructed inverse. When a better inverse is known, use `equiv.of_left_inverse'` or `equiv.of_left_inverse` instead. This is the computable version of `equiv.of_injective`. -/ def function.embedding.to_equiv_range : α ≃ set.range f := ⟨λ a, ⟨f a, set.mem_range_self a⟩, f.inv_of_mem_range, λ _, by simp, λ _, by simp⟩ @[simp] lemma function.embedding.to_equiv_range_apply (a : α) : f.to_equiv_range a = ⟨f a, set.mem_range_self a⟩ := rfl @[simp] lemma function.embedding.to_equiv_range_symm_apply_self (a : α) : f.to_equiv_range.symm ⟨f a, set.mem_range_self a⟩ = a := by simp [equiv.symm_apply_eq] lemma function.embedding.to_equiv_range_eq_of_injective : f.to_equiv_range = equiv.of_injective f f.injective := by { ext, simp } /-- Extend the domain of `e : equiv.perm α`, mapping it through `f : α ↪ β`. Everything outside of `set.range f` is kept fixed. Has poor computational performance, due to exhaustive searching in constructed inverse due to using `function.embedding.to_equiv_range`. When a better `α ≃ set.range f` is known, use `equiv.perm.via_set_range`. When `[fintype α]` is not available, a noncomputable version is available as `equiv.perm.via_embedding`. -/ def equiv.perm.via_fintype_embedding : equiv.perm β := e.extend_domain f.to_equiv_range @[simp] lemma equiv.perm.via_fintype_embedding_apply_image (a : α) : e.via_fintype_embedding f (f a) = f (e a) := begin rw equiv.perm.via_fintype_embedding, convert equiv.perm.extend_domain_apply_image e _ _ end lemma equiv.perm.via_fintype_embedding_apply_mem_range {b : β} (h : b ∈ set.range f) : e.via_fintype_embedding f b = f (e (f.inv_of_mem_range ⟨b, h⟩)) := by simpa [equiv.perm.via_fintype_embedding, equiv.perm.extend_domain_apply_subtype, h] lemma equiv.perm.via_fintype_embedding_apply_not_mem_range {b : β} (h : b ∉ set.range f) : e.via_fintype_embedding f b = b := by rwa [equiv.perm.via_fintype_embedding, equiv.perm.extend_domain_apply_not_subtype] @[simp] lemma equiv.perm.via_fintype_embedding_sign [decidable_eq α] [fintype β] : equiv.perm.sign (e.via_fintype_embedding f) = equiv.perm.sign e := by simp [equiv.perm.via_fintype_embedding] namespace equiv variables {p q : α → Prop} [decidable_pred p] [decidable_pred q] /-- If `e` is an equivalence between two subtypes of a fintype `α`, `e.to_compl` is an equivalence between the complement of those subtypes. See also `equiv.compl`, for a computable version when a term of type `{e' : α ≃ α // ∀ x : {x // p x}, e' x = e x}` is known. -/ noncomputable def to_compl (e : {x // p x} ≃ {x // q x}) : {x // ¬ p x} ≃ {x // ¬ q x} := classical.choice (fintype.card_eq.mp (fintype.card_compl_eq_card_compl (fintype.card_congr e))) /-- If `e` is an equivalence between two subtypes of a fintype `α`, `e.extend_subtype` is a permutation of `α` acting like `e` on the subtypes and doing something arbitrary outside. Note that when `p = q`, `equiv.perm.subtype_congr e (equiv.refl _)` can be used instead. -/ noncomputable abbreviation extend_subtype (e : {x // p x} ≃ {x // q x}) : perm α := subtype_congr e e.to_compl lemma extend_subtype_apply_of_mem (e : {x // p x} ≃ {x // q x}) (x) (hx : p x) : e.extend_subtype x = e ⟨x, hx⟩ := by { dunfold extend_subtype, simp only [subtype_congr, equiv.trans_apply, equiv.sum_congr_apply], rw [sum_compl_apply_symm_of_pos _ _ hx, sum.map_inl, sum_compl_apply_inl] } lemma extend_subtype_mem (e : {x // p x} ≃ {x // q x}) (x) (hx : p x) : q (e.extend_subtype x) := by { convert (e ⟨x, hx⟩).2, rw [e.extend_subtype_apply_of_mem _ hx, subtype.val_eq_coe] } lemma extend_subtype_apply_of_not_mem (e : {x // p x} ≃ {x // q x}) (x) (hx : ¬ p x) : e.extend_subtype x = e.to_compl ⟨x, hx⟩ := by { dunfold extend_subtype, simp only [subtype_congr, equiv.trans_apply, equiv.sum_congr_apply], rw [sum_compl_apply_symm_of_neg _ _ hx, sum.map_inr, sum_compl_apply_inr] } lemma extend_subtype_not_mem (e : {x // p x} ≃ {x // q x}) (x) (hx : ¬ p x) : ¬ q (e.extend_subtype x) := by { convert (e.to_compl ⟨x, hx⟩).2, rw [e.extend_subtype_apply_of_not_mem _ hx, subtype.val_eq_coe] } end equiv
{"author": "jjaassoonn", "repo": "projective_space", "sha": "11fe19fe9d7991a272e7a40be4b6ad9b0c10c7ce", "save_path": "github-repos/lean/jjaassoonn-projective_space", "path": "github-repos/lean/jjaassoonn-projective_space/projective_space-11fe19fe9d7991a272e7a40be4b6ad9b0c10c7ce/src/data/equiv/fintype.lean"}
# -*- coding: utf-8 -*- """ Created on Mon May 17 13:00:45 2021 @author: ben-o_000 """ import numpy as np import pysatellite.config as cfg def AERtoECI(posAER, stepLength, stepNum, OriECEF, latOri, lonOri): """ Function for converting Az/Elev/Range to Latitude/Longitude/Altitude ~~~~~~~~~~~~~~~~~INPUTS~~~~~~~~~~~~ posAER: A 1x3 or 3x1 vector containing the Azimuth, Elevation, and Range positions in radians and metres, respectively. OriECEF: A 1x3 or 3x1 vector containing the origin of the local NED frame as xECEF, yECEF, and zECEF respectively. latOri: The latitude of the origin of the local NED frame in radians. lonOri: The longitude of the origin of the local NED frame in radians. WGS: The WGS84 reference ellipsoid ~~~~~~~~~~~~~~~OUTPUTS~~~~~~~~~~~~ posLLA: A 3x1 vector containing the latitude, longitude, and altitude positions in radians and metres, respectively. """ omega = np.float64(7.2921158553e-5) # Earth rotation rate (radians/sec) ~SIDEREAL sin = np.sin cos = np.cos az = posAER[0] elev = posAER[1] ran = posAER[2] zUp = ran * sin(elev) r = ran * cos(elev) yEast = r * sin(az) xNorth = r * cos(az) posNED = np.array([[xNorth, yEast, -zUp]], dtype='float64').T # rotMatrix = [[(-sin(latOri)*cos(lonOri)), -sin(lonOri), (-cos(latOri) * cos(lonOri))], [(-sin(latOri) * sin(lonOri)), cos(lonOri), (-cos(latOri) * sin(lonOri))], [cos(latOri), 0, (-sin(lonOri))]] # rotMatrix = np.array(rotMatrix) rotMatrix = np.array([[(-sin(latOri)*cos(lonOri)), -sin(lonOri), (-cos(latOri) * cos(lonOri))], [(-sin(latOri) * sin(lonOri)), cos(lonOri), (-cos(latOri) * sin(lonOri))], [cos(latOri), 0.0, (-sin(latOri))]], dtype='float64') posECEFDelta = rotMatrix @ posNED posECEF = posECEFDelta + OriECEF # Generate matrices for multiplication rotationMatrix = np.array([[cos(stepNum*stepLength*omega), -sin(stepNum*stepLength*omega), 0.0], [sin(stepNum*stepLength*omega), cos(stepNum*stepLength*omega), 0.0], [0.0, 0.0, 1.0]], dtype='float64') posECI = rotationMatrix @ posECEF return posECI def AERtoLLA(posAER, OriECEF, latOri, lonOri): ''' Function for converting Az/Elev/Range to Latitude/Longitude/Altitude ~~~~~~~~~~~~~~~~~INPUTS~~~~~~~~~~~~ posAER: A 1x3 or 3x1 vector containing the Azimuth, Elevation, and Range positions in radians and metres, respectively. OriECEF: A 1x3 or 3x1 vector containing the origin of the local NED frame as xECEF, yECEF, and zECEF respectively. latOri: The latitude of the origin of the local NED frame in radians. lonOri: The longitude of the origin of the local NED frame in radians. WGS: The WGS84 reference ellipsoid ~~~~~~~~~~~~~~~OUTPUTS~~~~~~~~~~~~ posLLA: A 3x1 vector containing the latitude, longitude, and altitude positions in radians and metres, respectively. ''' sin = np.sin cos = np.cos WGS = cfg.WGS az = posAER[0] elev = posAER[1] ran = posAER[2] zUp = ran * sin(elev) r = ran * cos(elev) yEast = r * sin(az) xNorth = r * cos(az) cosPhi = cos(latOri) sinPhi = sin(latOri) cosLambda = cos(lonOri) sinLambda = sin(lonOri) zDown = -zUp t = cosPhi * -zDown - sinPhi * xNorth dz = sinPhi * -zDown + cosPhi * xNorth dx = cosLambda * t - sinLambda * yEast dy = sinLambda * t + cosLambda * yEast xECEF = OriECEF[0] + dx yECEF = OriECEF[1] + dy zECEF = OriECEF[2] + dz # Ellipsoid properties a = WGS["SemimajorAxis"] # Semimajor axis b = WGS["SemiminorAxis"] # Semiminor axis f = WGS["Flattening"] # Flattening e2 = f * (2 - f) # Square of (first) eccentricity ep2 = e2 / (1 - e2) # Square of second eccentricity e = np.sqrt((a**2 - b**2) / a**2) ePrime = np.sqrt((a**2 - b**2) / b**2) #Closed formula set p = np.sqrt(xECEF**2+yECEF**2) theta = np.arctan2((zECEF * a), (p * b)) lon = np.arctan2(yECEF,xECEF) #lon = mod(lon,2*pi) lat = np.arctan2((zECEF + (ePrime**2 * b * (sin(theta))**3)), (p - (e**2 * a * (cos(theta))**3))) N = a / (np.sqrt(1 - e**2 * (sin(lat))**2)) alt = (p / cos(lat)) - N posLLA = [lat], [lon], [alt] return posLLA def AERtoNED(posAER): ''' Function for converting Az/Elev/Range to local North/East/Down ~~~~~~~~~~~~~~~~~INPUTS~~~~~~~~~~~~ posAER: A 1x3 or 3x1 vector containing the Azimuth, Elevation, and Range positions in radians and metres, respectively. ~~~~~~~~~~~~~~~OUTPUTS~~~~~~~~~~~~ posNED: A 3x1 vector containing the north, east, and down positions, respectively. ''' sin = np.sin cos = np.cos az = posAER[0] elev = posAER[1] ran = posAER[2] zUp = ran * sin(elev) r = ran * cos(elev) yEast = r * sin(az) xNorth = r * cos(az) posNED = [xNorth], [yEast], [-zUp] return posNED def ECEFtoECI(posECEF, stepLength, stepNum): ''' Function for converting ECEF coordinates to ECI coordinates ~~~~~~~~~~~~~~~~~INPUTS~~~~~~~~~~~~ posECEF: A 3x1 vector containing the x, y, and z ECEF positions, respectively. stepLength: The length of each time step of the simulation. stepNum: The current step number of the simulation. This works with step length to convert increasing steps through the simulation. ~~~~~~~~~~~~~~~OUTPUTS~~~~~~~~~~~~ posECI: A 3x1 vector containing the x, y, and z ECI positions, respectively. ''' sin = np.sin cos = np.cos omega = np.float64(7.2921158553e-5) #Earth rotation rate (radians/sec) ~SIDEREAL #omega = 2*pi / (24*60*60) T = np.array( [[cos(omega*stepLength*stepNum), -(sin(omega*stepLength*stepNum)), 0.0], [sin(omega*stepLength*stepNum), cos(omega*stepLength*stepNum), 0.0], [0.0, 0.0, 1.0]], dtype='float64' ) posECI = T @ posECEF return posECI def ECEFtoLLA(posECEF): ''' Function for converting ECEF coordinates to latitude/longitude/altitude, using a closed formula set. ~~~~~~~~~~~~~~~~~INPUTS~~~~~~~~~~~~ posECEF: A 1x3 or 3x1 vector containing the x, y, and z ECEF positions, respectively. WGS: The WGS84 reference ellipsoid ~~~~~~~~~~~~~~~OUTPUTS~~~~~~~~~~~~ posLLA: A 3x1 vector containing the latitude, longitude, and altitude positions in radians, respectively. ''' sin = np.sin cos = np.cos WGS = cfg.WGS # Ellipsoid properties a = WGS["SemimajorAxis"] # Semimajor axis b = WGS["SemiminorAxis"] # Semiminor axis e = np.sqrt((a**2 - b**2) / a**2) # Square of (first) eccentricity ePrime = np.sqrt((a**2 - b**2) / b**2) # Square of second eccentricity xECEF = posECEF[0] yECEF = posECEF[1] zECEF = posECEF[2] #Closed formula set p = np.sqrt(xECEF**2+yECEF**2) theta = np.arctan2((zECEF * a), (p * b)) lon = np.arctan2(yECEF,xECEF) #lon = mod(lon,2*pi) lat = np.arctan2((zECEF + (ePrime**2 * b * (sin(theta))**3)), (p - (e**2 * a * (cos(theta))**3))) N = a / (np.sqrt(1 - e**2 * (sin(lat))**2)) alt = (p / cos(lat)) - N posLLA = [lat], [lon], [alt] return posLLA def ECEFtoNED(posECEF, OriECEF, latOri, lonOri): ''' Function for converting ECEF coordinates to local NED coordinates ~~~~~~~~~~~~~~~~~INPUTS~~~~~~~~~~~~ posECEF: A 1x3 or 3x1 vector containing the x, y, and z ECEF positions, respectively. OriECEF: A 1x3 or 3x1 vector containing the origin of the local NED frame as xECEF, yECEF, and zECEF respectively. latOri: The latitude of the origin of the local NED frame in radians. lonOri: The longitude of the origin of the local NED frame in radians. ~~~~~~~~~~~~~~~OUTPUTS~~~~~~~~~~~~ posNED: A 3x1 vector containing the north, east, and down positions, respectively. ''' sin = np.sin cos = np.cos xObj = posECEF[0] yObj = posECEF[1] zObj = posECEF[2] #Generate matrices for multiplication rotationMatrix = np.array( [[-(sin(lonOri)), cos(lonOri), 0.0], [(-(sin(latOri))*cos(lonOri)), (-(sin(latOri))*sin(lonOri)), cos(latOri)], [(cos(latOri)*cos(lonOri)), (cos(latOri)*sin(lonOri)), sin(latOri)]], dtype='float64' ) coordMatrix = [xObj - OriECEF[0]], [yObj - OriECEF[1]], [zObj - OriECEF[2]] #Find ENU vector ENU = rotationMatrix @ coordMatrix #Convert ENU vector to NED vector xNorth = ENU[1] yEast = ENU[0] zDown = -ENU[2] posNED = [xNorth], [yEast], [zDown] return posNED def ECItoAER(posECI, stepLength, stepNum, OriECEF, latOri, lonOri): ''' Function for converting ECI position to Azimuth/Elevation/Range ~~~~~~~~~~~~~~~~~INPUTS~~~~~~~~~~~~ posECI: A 3x1 vector containing the x, y, and z ECI positions, respectively. stepLength: The length of each time step of the simulation. stepNum: The current step number of the simulation. This works with step length to convert increasing steps through the simulation. OriECEF: A 1x3 or 3x1 vector containing the origin of the local NED frame as xECEF, yECEF, and zECEF respectively. latOri: The latitude of the origin of the local NED frame in radians. lonOri: The longitude of the origin of the local NED frame in radians. ~~~~~~~~~~~~~~~OUTPUTS~~~~~~~~~~~~ posAER: A 3x1 vector containing the azimuth, elevation, and range positions in radians, respectively. ''' sin = np.sin cos = np.cos omega = np.float64(7.2921158553e-5) #Earth rotation rate (radians/sec) SIDEREAL #omega = 2*pi / (24*60*60) rotationMatrix = np.array( [[cos(stepNum*stepLength*omega), sin(stepNum*stepLength*omega), 0.0], [-(sin(stepNum*stepLength*omega)), cos(stepNum*stepLength*omega), 0.0], [0.0, 0.0, 1.0]], dtype='float64' ) posECI = np.reshape(posECI, (3,1)) #posECEF = np.matmul(rotationMatrix, posECI) posECEF = rotationMatrix @ posECI transformMatrix = np.array( [[(-sin(latOri)*cos(lonOri)), (-sin(latOri)*sin(lonOri)), cos(latOri)], [(-sin(lonOri)), cos(lonOri), 0.0], [(-cos(latOri)*cos(lonOri)), (-cos(latOri)*sin(lonOri)), (-sin(latOri))]], dtype='float64' ) # transformMatrix = [(-sin(latOri)*cos(lonOri)), (-sin(latOri)*sin(lonOri)), cos(latOri)], [(-sin(lonOri)), cos(lonOri), 0.0], [(-cos(latOri)*cos(lonOri)), (-cos(latOri)*sin(lonOri)), (-sin(latOri))] posDelta = posECEF - OriECEF # posNED = np.matmul(transformMatrix, posDelta) posNED = transformMatrix @ posDelta #Convert ENU vector to NED vector xNorth = np.float64(posNED[0]) yEast = np.float64(posNED[1]) zDown = np.float64(posNED[2]) r1 = np.hypot(xNorth, yEast) ran = np.hypot(r1,zDown) elevation = np.arctan2(-zDown,r1) azimuth = np.mod(np.arctan2(yEast, xNorth),2*np.float64(np.pi)) posAER = np.array([[azimuth], [elevation], [ran]]) return posAER def ECItoECEF(posECI, stepLength, stepNum): ''' Function for converting ECI coordinates to ECEF coordinates ~~~~~~~~~~~~~~~~~INPUTS~~~~~~~~~~~~ posECI: A 3x1 vector containing the x, y, and z ECI positions, respectively. stepLength: The length of each time step of the simulation. stepNum: The current step number of the simulation. This works with step length to convert increasing steps through the simulation. ~~~~~~~~~~~~~~~OUTPUTS~~~~~~~~~~~~ posECEF: A 3x1 vector containing the x, y, and z ECEF positions, respectively. ''' sin = np.sin cos = np.cos omega = np.float64(7.2921158553e-5) #Earth rotation rate (radians/sec) ~SIDEREAL #omega = 2*pi / (24*60*60) T = np.array( [[cos(omega*stepLength*stepNum), sin(omega*stepLength*stepNum), 0.0], [-(sin(omega*stepLength*stepNum)), cos(omega*stepLength*stepNum), 0.0], [0.0, 0.0, 1.0]], dtype='float64' ) posECEF = np.matmul(T, posECI) return posECEF def ECItoLLA(posECI, stepLength, stepNum): ''' Function for converting ECI coordinates to latitude/longitude/altitude, using a closed formula set. ~~~~~~~~~~~~~~~~~INPUTS~~~~~~~~~~~~ posECI: A 1x3 or 3x1 vector containing the x, y, and z ECEF positions, respectively. stepLength: The length of each time step of the simulation. stepNum: The current step number of the simulation. This works with step length to convert increasing steps through the simulation. WGS: The WGS84 reference ellipsoid ~~~~~~~~~~~~~~~OUTPUTS~~~~~~~~~~~~ posLLA: A 3x1 vector containing the latitude, longitude, and altitude positions in radians, respectively. ''' sin = np.sin cos = np.cos WGS = cfg.WGS omega = np.float64(7.2921158553e-5) #Earth rotation rate (radians/sec) ~SIDEREAL #omega = 2*pi / (24*60*60) # Ellipsoid properties a = WGS["SemimajorAxis"] # Semimajor axis b = WGS["SemiminorAxis"] # Semiminor axis e = np.sqrt((a**2 - b**2) / a**2) # Square of (first) eccentricity ePrime = np.sqrt((a**2 - b**2) / b**2) # Square of second eccentricity rotationMatrix = np.array( [[cos(stepNum*stepLength*omega), sin(stepNum*stepLength*omega), 0.0], [-sin(stepNum*stepLength*omega), cos(stepNum*stepLength*omega), 0.0], [0.0, 0.0, 1.0]], dtype='float64' ) posECEF = rotationMatrix @ posECI xECEF = posECEF[1] yECEF = posECEF[2] zECEF = posECEF(3) #Closed formula set p = np.sqrt(xECEF**2+yECEF**2) theta = np.arctan2((zECEF * a), (p * b)) lon = np.arctan2(yECEF,xECEF) #lon = mod(lon,2*pi) lat = np.arctan2((zECEF + (ePrime**2 * b * (sin(theta))**3)), (p - (e**2 * a * (cos(theta))**3))) N = a / (np.sqrt(1 - e**2 * (sin(lat))**2)) alt = (p / cos(lat)) - N posLLA = [lat], [lon], [alt] return posLLA def LLAtoAER(posLLA, OriECEF, latOri, lonOri): ''' Function for converting Az/Elev/Range to Latitude/Longitude/Altitude ~~~~~~~~~~~~~~~~~INPUTS~~~~~~~~~~~~ posLLA: A 3x1 vector containing the latitude, longitude, and altitude positions in radians, respectively. OriECEF: A 1x3 or 3x1 vector containing the origin of the local NED frame as xECEF, yECEF, and zECEF respectively. latOri: The latitude of the origin of the local NED frame in radians. lonOri: The longitude of the origin of the local NED frame in radians. WGS: The WGS84 reference ellipsoid ~~~~~~~~~~~~~~~OUTPUTS~~~~~~~~~~~~ posAER: A 1x3 or 3x1 vector containing the Azimuth, Elevation, and Range positions in radians, respectively. ''' sin = np.sin cos = np.cos WGS = cfg.WGS #Ellipsoid parameters a = WGS["SemimajorAxis"] b = WGS["SemiminorAxis"] e = WGS["Eccentricity"] lat = posLLA[0] lon = posLLA[1] alt = posLLA[2] #Prime vertical radius of curvature N(phi) #Formula if eccentricty not defined: NPhi = a**2 / (sqrt((a**2*(cos(lat)**2))+(b**2*(sin(lat)**2)))) NPhi = a / (np.sqrt(1 - (e**2*(sin(lat))**2))) xECEF = (NPhi + alt) * cos(lat) * cos(lon) yECEF = (NPhi + alt) * cos(lat) * sin(lon) zECEF = (((b**2/a**2)*NPhi) + alt)*sin(lat) #Generate matrices for multiplication rotationMatrix = np.array( [[-sin(lonOri), cos(lonOri), 0], [(-sin(latOri)*cos(lonOri)), (-sin(latOri)*sin(lonOri)), cos(latOri)], [(cos(latOri)*cos(lonOri)), (cos(latOri)*sin(lonOri)), sin(latOri)]], dtype='float64' ) coordMatrix = np.array( [[xECEF - OriECEF[0]], [yECEF - OriECEF[1]], [zECEF - OriECEF[2]]], dtype='float64' ) #Find ENU vector ENU = rotationMatrix @ coordMatrix #Convert ENU vector to NED vector xNorth = ENU[1] yEast = ENU[0] zDown = -ENU[2] r1 = np.hypot(xNorth, yEast) ran = np.hypot(r1,zDown) elevation = np.arctan2(-zDown,r1) azimuth = np.mod(np.arctan2(yEast, xNorth),2*np.pi) posAER = [azimuth], [elevation], [ran] return posAER def LLAtoECEF(posLLA): ''' Function for converting ECEF coordinates to latitude/longitude/altitude. ~~~~~~~~~~~~~~~~~INPUTS~~~~~~~~~~~~ posLLA: A 1x3 or 3x1 vector containing the latitude, longitude, and altitude positions in radians, respectively. WGS: The WGS84 reference ellipsoid ~~~~~~~~~~~~~~~OUTPUTS~~~~~~~~~~~~ posECEF: A 3x1 vector containing the x, y, and z ECEF positions, respectively. ''' sin = np.sin cos = np.cos WGS = cfg.WGS #Ellipsoid parameters a = WGS["SemimajorAxis"] b = WGS["SemiminorAxis"] e = WGS["Eccentricity"] lat = posLLA[0] lon = posLLA[1] alt = posLLA[2] #Prime vertical radius of curvature N(phi) #Formula if eccentricty not defined: NPhi = a**2 / (sqrt((a**2*(cos(lat)**2))+(b**2*(sin(lat)**2)))) NPhi = a / (np.sqrt(1 - (e**2*(sin(lat))**2))) xECEF = (NPhi + alt) * cos(lat) * cos(lon) yECEF = (NPhi + alt) * cos(lat) * sin(lon) zECEF = (((b**2/a**2)*NPhi) + alt)*sin(lat) posECEF = np.array([[xECEF], [yECEF], [zECEF]]) return posECEF def LLAtoECI(posLLA, stepLength, stepNum): ''' Function for converting latitude/longitude/altitude to ECI coordinates. ~~~~~~~~~~~~~~~~~INPUTS~~~~~~~~~~~~ posLLA: A 1x3 or 3x1 vector containing the latitude, longitude, and altitude positions in radians, respectively. stepLength: The length of each time step of the simulation. stepNum: The current step number of the simulation. This works with step length to convert increasing steps through the simulation. WGS: The WGS84 reference ellipsoid ~~~~~~~~~~~~~~~OUTPUTS~~~~~~~~~~~~ posECI: A 3x1 vector containing the x, y, and z ECI positions, respectively. ''' sin = np.sin cos = np.cos WGS = cfg.WGS omega = np.float64(7.2921158553e-5) #Earth rotation rate (radians/sec) ~SIDEREAL #Ellipsoid parameters a = WGS["SemimajorAxis"] b = WGS["SemiminorAxis"] e = WGS["Eccentricity"] lat = posLLA[0] lon = posLLA[1] alt = posLLA[2] #Prime vertical radius of curvature N(phi) #Formula if eccentricty not defined: NPhi = a**2 / (sqrt((a**2*(cos(lat)**2))+(b**2*(sin(lat)**2)))) NPhi = a / (np.sqrt(1 - (e**2*(sin(lat))**2))) xECEF = (NPhi + alt) * cos(lat) * cos(lon) yECEF = (NPhi + alt) * cos(lat) * sin(lon) zECEF = (((b**2/a**2)*NPhi) + alt)*sin(lat) posECEF = [xECEF], [yECEF], [zECEF] #Generate matrices for multiplication rotationMatrix = np.array( [[cos(stepNum*stepLength*omega), -sin(stepNum*stepLength*omega), 0.0], [sin(stepNum*stepLength*omega), cos(stepNum*stepLength*omega), 0.0], [0.0, 0.0, 1.0]], dtype='float64' ) posECI = rotationMatrix @ posECEF return posECI def NEDtoAER(posNED): ''' Function for converting local North/East/Down to Az/Elev/Range ~~~~~~~~~~~~~~~~~INPUTS~~~~~~~~~~~~ posNED: A 1x3 or 3x1 vector containing the north, east, and down positions, respectively. ~~~~~~~~~~~~~~~OUTPUTS~~~~~~~~~~~~ posAER: A 3x1 vector containing the Azimuth, Elevation, and Range positions in radians, respectively. ''' xNorth = posNED[0] yEast = posNED[1] zDown = posNED[2] r1 = np.hypot(xNorth, yEast) ran = np.hypot(r1,zDown) elevation = np.arctan2(-zDown,r1) azimuth = np.mod(np.arctan2(yEast, xNorth),2*np.pi) posAER = [azimuth], [elevation], [ran] return posAER def NEDtoECEF(posNED, OriECEF, latOri, lonOri): ''' Function for converting ECEF coordinates to local NED coordinates ~~~~~~~~~~~~~~~~~INPUTS~~~~~~~~~~~~ posNED: A 1x3 or 3x1 vector containing the north, east, and down positions, respectively. OriECEF: A 1x3 or 3x1 vector containing the origin of the local NED frame as xECEF, yECEF, and zECEF respectively. latOri: The latitude of the origin of the local NED frame in radians. lonOri: The longitude of the origin of the local NED frame in radians. ~~~~~~~~~~~~~~~OUTPUTS~~~~~~~~~~~~ posECEF: A 3x1 vector containing the x, y, and z ECEF positions, respectively. ''' sin = np.sin cos = np.cos cosPhi = cos(latOri) sinPhi = sin(latOri) cosLambda = cos(lonOri) sinLambda = sin(lonOri) xNorth = posNED[0] yEast = posNED[1] zDown = posNED[2] t = cosPhi * -zDown - sinPhi * xNorth dz = sinPhi * -zDown + cosPhi * xNorth dx = cosLambda * t - sinLambda * yEast dy = sinLambda * t + cosLambda * yEast xECEF = OriECEF[0] + dx yECEF = OriECEF[1] + dy zECEF = OriECEF[2] + dz posECEF = [xECEF], [yECEF], [zECEF] return posECEF
{"hexsha": "3d55ef28468ec8e2d02c81b4cc22aa8dfbd108e4", "size": 22208, "ext": "py", "lang": "Python", "max_stars_repo_path": "pysatellite/Transformations.py", "max_stars_repo_name": "sgboakes/pysatellite", "max_stars_repo_head_hexsha": "743e6824bddf5d2cf760da699db27810d9e2f8f5", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "pysatellite/Transformations.py", "max_issues_repo_name": "sgboakes/pysatellite", "max_issues_repo_head_hexsha": "743e6824bddf5d2cf760da699db27810d9e2f8f5", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "pysatellite/Transformations.py", "max_forks_repo_name": "sgboakes/pysatellite", "max_forks_repo_head_hexsha": "743e6824bddf5d2cf760da699db27810d9e2f8f5", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 31.4115983027, "max_line_length": 204, "alphanum_fraction": 0.5686239193, "include": true, "reason": "import numpy", "num_tokens": 6857}
import numpy as np from dgp_aepmcm.layers.output_layer_base import OutputLayerBase from dgp_aepmcm.nodes.output_node_regression import OutputNodeRegression class OutputLayerRegression(OutputLayerBase): def __init__( self, y_train_tf, y_test_tf, y_train_mean_tf, y_train_std_tf, n_samples, dtype=np.float32 ): OutputLayerBase.__init__(self, y_test_tf) self.n_samples = n_samples self.n_nodes = 1 output_node = OutputNodeRegression( y_train_tf, y_test_tf, y_train_mean_tf, y_train_std_tf, n_samples, dtype ) self.add_node(output_node) def sample_from_predictive_distribution(self, samples_per_point=1): return self.get_node_list()[0].sample_from_predictive_distribution(samples_per_point) def get_predictive_distribution_fixed_x(self, y_values): return self.get_node_list()[0].get_predictive_distribution_fixed_x(y_values) def calculate_loglikehood_rmse(self): """ Calculates LL and RMSE for a regression problem As the dimension of the Y variables should be 1 this layer should only have 1 node """ return self.get_node_list()[0].calculate_loglikehood_rmse()
{"hexsha": "ffcaf7d69210291c72d7db91c58ea27cc3ece0db", "size": 1209, "ext": "py", "lang": "Python", "max_stars_repo_path": "dgp_aepmcm/layers/output_layer_regression.py", "max_stars_repo_name": "Gonzalo933/dgp-aepmcm", "max_stars_repo_head_hexsha": "d4aca49a5072daee0a7b9a906827d7c7b3179ec0", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "dgp_aepmcm/layers/output_layer_regression.py", "max_issues_repo_name": "Gonzalo933/dgp-aepmcm", "max_issues_repo_head_hexsha": "d4aca49a5072daee0a7b9a906827d7c7b3179ec0", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "dgp_aepmcm/layers/output_layer_regression.py", "max_forks_repo_name": "Gonzalo933/dgp-aepmcm", "max_forks_repo_head_hexsha": "d4aca49a5072daee0a7b9a906827d7c7b3179ec0", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 37.78125, "max_line_length": 97, "alphanum_fraction": 0.7402812242, "include": true, "reason": "import numpy", "num_tokens": 278}
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The TensorBoard Scalars plugin. See `http_api.md` in this directory for specifications of the routes for this plugin. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import csv import six from six import StringIO from werkzeug import wrappers import numpy as np from tensorboard import errors from tensorboard import plugin_util from tensorboard.backend import http_util from tensorboard.data import provider from tensorboard.plugins import base_plugin from tensorboard.plugins.scalar import metadata from tensorboard.util import tensor_util _DEFAULT_DOWNSAMPLING = 1000 # scalars per time series class OutputFormat(object): """An enum used to list the valid output formats for API calls.""" JSON = "json" CSV = "csv" class ScalarsPlugin(base_plugin.TBPlugin): """Scalars Plugin for TensorBoard.""" plugin_name = metadata.PLUGIN_NAME def __init__(self, context): """Instantiates ScalarsPlugin via TensorBoard core. Args: context: A base_plugin.TBContext instance. """ self._downsample_to = (context.sampling_hints or {}).get( self.plugin_name, _DEFAULT_DOWNSAMPLING ) self._data_provider = context.data_provider def get_plugin_apps(self): return { "/scalars": self.scalars_route, "/tags": self.tags_route, } def is_active(self): return False # `list_plugins` as called by TB core suffices def frontend_metadata(self): return base_plugin.FrontendMetadata(element_name="tf-scalar-dashboard") def index_impl(self, ctx, experiment=None): """Return {runName: {tagName: {displayName: ..., description: ...}}}.""" mapping = self._data_provider.list_scalars( ctx, experiment_id=experiment, plugin_name=metadata.PLUGIN_NAME, ) result = {run: {} for run in mapping} for (run, tag_to_content) in six.iteritems(mapping): for (tag, metadatum) in six.iteritems(tag_to_content): description = plugin_util.markdown_to_safe_html( metadatum.description ) result[run][tag] = { "displayName": metadatum.display_name, "description": description, } return result def scalars_impl(self, ctx, tag, run, experiment, output_format): """Result of the form `(body, mime_type)`.""" all_scalars = self._data_provider.read_scalars( ctx, experiment_id=experiment, plugin_name=metadata.PLUGIN_NAME, downsample=self._downsample_to, run_tag_filter=provider.RunTagFilter(runs=[run], tags=[tag]), ) scalars = all_scalars.get(run, {}).get(tag, None) if scalars is None: raise errors.NotFoundError( "No scalar data for run=%r, tag=%r" % (run, tag) ) values = [(x.wall_time, x.step, x.value) for x in scalars] if output_format == OutputFormat.CSV: string_io = StringIO() writer = csv.writer(string_io) writer.writerow(["Wall time", "Step", "Value"]) writer.writerows(values) return (string_io.getvalue(), "text/csv") else: return (values, "application/json") @wrappers.Request.application def tags_route(self, request): ctx = plugin_util.context(request.environ) experiment = plugin_util.experiment_id(request.environ) index = self.index_impl(ctx, experiment=experiment) return http_util.Respond(request, index, "application/json") @wrappers.Request.application def scalars_route(self, request): """Given a tag and single run, return array of ScalarEvents.""" tag = request.args.get("tag") run = request.args.get("run") ctx = plugin_util.context(request.environ) experiment = plugin_util.experiment_id(request.environ) output_format = request.args.get("format") (body, mime_type) = self.scalars_impl( ctx, tag, run, experiment, output_format ) return http_util.Respond(request, body, mime_type)
{"hexsha": "fc1262d2e00618c8f06ef4ca02d3e3ab4748a18c", "size": 4997, "ext": "py", "lang": "Python", "max_stars_repo_path": "Lib/site-packages/tensorboard/plugins/scalar/scalars_plugin.py", "max_stars_repo_name": "caiyongji/tf2.3.1-py3.7.9-full-built", "max_stars_repo_head_hexsha": "ace4efcbf05b2b494388739718a18c13eab83c71", "max_stars_repo_licenses": ["CNRI-Python-GPL-Compatible"], "max_stars_count": 4, "max_stars_repo_stars_event_min_datetime": "2020-09-02T16:13:51.000Z", "max_stars_repo_stars_event_max_datetime": "2021-06-05T08:45:59.000Z", "max_issues_repo_path": "Lib/site-packages/tensorboard/plugins/scalar/scalars_plugin.py", "max_issues_repo_name": "caiyongji/tf2.3.1-py3.7.9-full-built", "max_issues_repo_head_hexsha": "ace4efcbf05b2b494388739718a18c13eab83c71", "max_issues_repo_licenses": ["CNRI-Python-GPL-Compatible"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "Lib/site-packages/tensorboard/plugins/scalar/scalars_plugin.py", "max_forks_repo_name": "caiyongji/tf2.3.1-py3.7.9-full-built", "max_forks_repo_head_hexsha": "ace4efcbf05b2b494388739718a18c13eab83c71", "max_forks_repo_licenses": ["CNRI-Python-GPL-Compatible"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2020-09-17T13:16:30.000Z", "max_forks_repo_forks_event_max_datetime": "2020-09-17T13:16:30.000Z", "avg_line_length": 35.4397163121, "max_line_length": 80, "alphanum_fraction": 0.6495897539, "include": true, "reason": "import numpy", "num_tokens": 1052}
c c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * c * * c * copyright (c) 1998 by UCAR * c * * c * University Corporation for Atmospheric Research * c * * c * all rights reserved * c * * c * SPHEREPACK version 3.2 * c * * c * A Package of Fortran77 Subroutines and Programs * c * * c * for Modeling Geophysical Processes * c * * c * by * c * * c * John Adams and Paul Swarztrauber * c * * c * of * c * * c * the National Center for Atmospheric Research * c * * c * Boulder, Colorado (80307) U.S.A. * c * * c * which is sponsored by * c * * c * the National Science Foundation * c * * c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * c c c ... file trvsph.f c c this file contains documentation and code for subroutine trvsph c c ... required files c c sphcom.f, hrfft.f, gaqd.f, vhaec.f, vhsec.f, vhagc.f, vhsgc.f c c subroutine trvsph (intl,igrida,nlona,nlata,iveca,ua,va, c +igridb,nlonb,nlatb,ivecb,ub,vb,wsave,lsave,lsvmin,work, c +lwork,lwkmin,dwork,ldwork,ier) c c *** author c c John C. Adams (NCAR 1997), email: johnad@ncar.ucar.edu c c *** purpose c c subroutine trvsph transfers vector data given in (ua,va) on a grid on c the full sphere to vector data in (ub,vb) on a grid on the full sphere. c the grids on which (ua,va) is given and (ub,vb) is generated can be c specified independently of each other (see the input arguments igrida, c igridb,iveca,ivecb). ua and ub are the east longitudinal components of c the given and transformed vector fields. va is either the latitudinal c or colatitudinal component of the given vector field (see iveca). c vb is either the latitudinal or colatitudinal component of the c transformed vector field (see ivecb). for transferring scalar data c on the sphere, use subroutine trssph. c c * notice that scalar and vector quantities are fundamentally different c on the sphere. for example, vectors are discontinuous and multiple c valued at the poles. scalars are continuous and single valued at the c poles. erroneous results would be produced if one attempted to transfer c vector fields between grids with subroutine trssph applied to each c component of the vector. c c *** underlying grid assumptions and a description c c discussions with the ncar scd data support group and others indicate c there is no standard grid for storing observational or model generated c data on the sphere. subroutine trvsph was designed to handle most c cases likely to be encountered when moving data from one grid format c to another. c c the grid on which (ua,va) is given must be equally spaced in longitude c and either equally spaced or gaussian in latitude (or colatitude). c longitude, which can be either the first or second dimension of ua,va c subdivides [0,2pi) excluding the periodic point 2pi. (co)latitude, c which can be the second or first dimension of ua,va, has south c to north or north to south orientation with increasing subscript c value in ua,va (see the argument igrida). c c the grid on which ub,vb is generated must be equally spaced in longitude c and either equally spaced or gaussian in latitude (or colatitude). c longitude, which can be either the first or second dimension of ub,vb c subdivides [0,2pi) excluding the periodic point 2pi. (co)latitude, c which can be the second or first dimension of ub,vb, has south c to north or north to south orientation with increasing subscript c value in db (see the argument igridb). c c let nlon be either nlona or nlonb (the number of grid points in c longitude. the longitude grid subdivides [0,2pi) into nlon spaced c points c c (j-1)*2.*pi/nlon (j=1,...,nlon). c c it is not necessary to communicate to subroutine trvsph whether the c underlying grids are in latitude or colatitude. it is only necessary c to communicate whether they run south to north or north to south with c increasing subscripts. a brief discussion of latitude and colatitude c follows. equally spaced latitude grids are assumed to subdivide c [-pi/2,pi/2] with the south pole at -pi/2 and north pole at pi/2. c equally spaced colatitude grids subdivide [0,pi] with the north pole c at 0 and south pole at pi. equally spaced partitions on the sphere c include both poles. gaussian latitude grids subdivide (-pi/2,pi/2) c and gaussian colatitude grids subdivide (0,pi). gaussian grids do not c include the poles. the gaussian grid points are uniquely determined by c the size of the partition. they can be computed in colatitude in c (0,pi) (north to south) in double precision by the spherepack subroutine c gaqd. let nlat be nlata or nlatb if either the ua,va or ub,vb grid is c gaussian. let c c north pole south pole c ---------- ---------- c 0.0 < cth(1) < ... < cth(nlat) < pi c c c be nlat gaussian colatitude points in the interval (0,pi) and let c c south pole north pole c ---------- ---------- c -pi/2 < th(1) < ... < th(nlat) < pi/2 c c be nlat gaussian latitude points in the open interval (-pi/2,pi/2). c these are related by c c th(i) = -pi/2 + cth(i) (i=1,...,nlat) c c if the (ua,va) or (ub,vb) grid is equally spaced in (co)latitude then c c ctht(i) = (i-1)*pi/(nlat-1) c (i=1,...,nlat) c tht(i) = -pi/2 + (i-1)*pi/(nlat-1) c c define the equally spaced (north to south) colatitude and (south to c north) latitude grids. c c *** method (simplified description) c c (1) c c the vector field (ua,va) is reformated to a vector field in mathematical c spherical coordinates using array transpositions, subscript reordering c and negation of va as necessary (see arguments igrida,iveca). c c (2) c c a vector harmonic analysis is performed on the result from (1) c c (3) c c a vector harmonic synthesis is performed on the (ub,vb) grid c using as many coefficients from (2) as possible (i.e., as c as is consistent with the size of the ub,vb grid). c c (4) c c the vector field generated in (3) is transformed from mathematical c spherical coordinates to the form flagged by ivecb and igridb in c (ub,vb) using array transpositions, subscript reordering and negation c as necessary c c c *** advantages c c the use of vector spherical harmonics to transfer vector data is c highly accurate and preserves properties of vectors on the sphere. c the method produces a weighted least squares fit to vector data in c which waves are resolved uniformly on the full sphere. high frequencies c induced by closeness of grid points near the poles (due to computational c or observational errors) are smoothed. the method is consistent with c methods used to generate vector data in numerical spectral models based c on spherical harmonics. for more discussion of these and related issues, c see "on the spectral approximation of discrete scalar and vector c functions on the sphere," siam j. numer. anal., vol. 16, december 1979, c pp. 934-949, by paul swarztrauber. c c c *** comment c c on a nlon by nlat or nlat by nlon grid (gaussian or equally spaced) c spherical harmonic analysis generates and synthesis utilizes c min0(nlat,(nlon+2)/2)) by nlat coefficients. consequently, for c ua,va and ub,vb, if either c c min0(nlatb,(nlonb+2)/2) < min0(nlata,(nlona+2)/2) c c or if c c nlatb < nlata c c then all the coefficients generated by an analysis of ua,va cannot be c used in the synthesis which generates ub,vb. in this case "information" c can be lost in generating ub,vb. more precisely, information will be c lost if the analysis of ua,va yields nonzero coefficients which are c outside the coefficient bounds determined by the ub,vb grid. still c transference with vector spherical harmonics will yield results c consistent with grid resolution and is highly accurate. c c *** input arguments c c ... intl c c an initialization argument which should be zero on an initial call to c trvsph. intl should be one if trvsph is being recalled and c c igrida,nlona,nlata,iveca,igridb,nlonb,nlatb,ivecb c c have not changed from the previous call. if any of these arguments have c changed intl=0 must be used to avoid undetectable errors. when allowed, c calls with intl=1 bypass redundant computation and save time. it can c be used when transferring multiple vector data sets with the same c underlying grids. c c ... igrida c c an integer vector dimensioned two which identifies the underlying grid c on the full sphere for the given vector data (ua,va) as follows: c c igrida(1) c c = -1 c if the latitude (or colatitude) grid for ua,va is an equally spaced c partition of [-pi/2,pi/2] ( or [0,pi] ) including the poles which c runs north to south with increasing subscript value c c = +1 c if the latitude (or colatitude) grid for ua,va is an equally spaced c partition of [-pi/2,pi/2] ( or [0,pi] ) including the poles which c runs south to north with increasing subscript value c c = -2 c if the latitude (or colatitude) grid for ua,va is a gaussian partition c of (-pi/2,pi/2) ( or (0,pi) ) excluding the poles which runs north c to south with increasing subscript value c c = +2 c if the latitude (or colatitude) grid for ua,va is a gaussian partition c of (-pi/2,pi/2) ( or (0,pi) ) excluding the poles which runs south c north with increasing subscript value c c igrida(2) c c = 0 if the underlying grid for ua,va is a nlona by nlata c c = 1 if the underlying grid for ua,va is a nlata by nlona c c c ... nlona c c the number of longitude points on the uniform grid which partitions c [0,2pi) for the given vector (ua,va). nlona is also the first or second c dimension of ua,va (see igrida(2)) in the program which calls trvsph. c nlona determines the grid increment in longitude as 2*pi/nlona. for c example nlona = 72 for a five degree grid. nlona must be greater than c or equal to 4. the efficiency of the computation is improved when c nlona is a product of small prime numbers c c ... nlata c c the number of points in the latitude (or colatitude) grid for the c given vector (ua,va). nlata is also the first or second dimension c of ua and va (see igrida(2)) in the program which calls trvsph. c if nlata is odd then the equator will be located at the (nlata+1)/2 c gaussian grid point. if nlata is even then the equator will be c located half way between the nlata/2 and nlata/2+1 grid points. c c ... iveca c c if iveca=0 is input then va is the latitudinal component of the c given vector field. if iveca=1 then va is the colatitudinal c compoenent of the given vector field. in either case, ua must c be the east longitudinal component of the given vector field. c c *** note: c igrida(1)=-1 or igrida(1)=-2, igrida(2)=1, and iveca=1 corresponds c to the "usual" mathematical spherical coordinate system required c by most of the drivers in spherepack2. igrida(1)=1 or igrida(1)=2, c igrida(2)=0, and iveca=0 corresponds to the "usual" geophysical c spherical coordinate system. c c c ... ua c c ua is the east longitudinal component of the given vector field. c ua must be dimensioned nlona by nlata in the program calling trvsph if c igrida(2) = 0. ua must be dimensioned nlata by nlona in the program c calling trvsph if igrida(2) = 1. if ua is not properly dimensioned c and if the latitude (colatitude) values do not run south to north or c north to south as flagged by igrida(1) (this cannot be checked!) then c incorrect results will be produced. c c c ... va c c va is either the latitudinal or colatitudinal componenet of the c given vector field (see iveca). va must be dimensioned nlona by c nlata in the program calling trvsph if igrida(2)=0. va must be c dimensioned nlata by nlona in the program calling trvsph if c igrida(2)=1. if va is not properly dimensioned or if the latitude c (colatitude) values do not run south to north or north to south c as flagged by igrida(1) (this cannot be checked!) then incorrect c results will be produced. c c ... igridb c c an integer vector dimensioned two which identifies the underlying grid c on the full sphere for the transformed vector (ub,vb) as follows: c c igridb(1) c c = -1 c if the latitude (or colatitude) grid for ub,vb is an equally spaced c partition of [-pi/2,pi/2] ( or [0,pi] ) including the poles which c north to south c c = +1 c if the latitude (or colatitude) grid for ub,vb is an equally spaced c partition of [-pi/2,pi/2] ( or [0,pi] ) including the poles which c south to north c c = -2 c if the latitude (or colatitude) grid for ub,vb is a gaussian partition c of (-pi/2,pi/2) ( or (0,pi) ) excluding the poles which runs north to c south c c = +2 c if the latitude (or colatitude) grid for ub,vb is a gaussian partition c of (-pi/2,pi/2) ( or (0,pi) ) excluding the poles which runs south to c north c c igridb(2) c c = 0 if the underlying grid for ub,vb is a nlonb by nlatb c c = 1 if the underlying grid for ub,vb is a nlatb by nlonb c c c ... nlonb c c the number of longitude points on the uniform grid which partitions c [0,2pi) for the transformed vector (ub,vb). nlonb is also the first or c second dimension of ub and vb (see igridb(2)) in the program which calls c trvsph. nlonb determines the grid increment in longitude as 2*pi/nlonb. c for example nlonb = 72 for a five degree grid. nlonb must be greater c than or equal to 4. the efficiency of the computation is improved when c nlonb is a product of small prime numbers c c ... nlatb c c the number of points in the latitude (or colatitude) grid for the c transformed vector (ub,vb). nlatb is also the first or second dimension c of ub and vb (see igridb(2)) in the program which calls trvsph. c if nlatb is odd then the equator will be located at the (nlatb+1)/2 c gaussian grid point. if nlatb is even then the equator will be c located half way between the nlatb/2 and nlatb/2+1 grid points. c c ... ivecb c c if ivecb=0 is input then vb is the latitudinal component of the c given vector field. if ivecb=1 then vb is the colatitudinal c compoenent of the given vector field. in either case, ub must c be the east longitudinal component of the given vector field. c c *** note: c igridb(1)=-1 or igridb(1)=-2, igridb(2)=1, and ivecb=1 corresponds c to the "usual" mathematical spherical coordinate system required c by most of the drivers in spherepack2. igridb(1)=1 or igridb(1)=2, c igridb(2)=0, and ivecb=0 corresponds to the "usual" geophysical c spherical coordinate system. c c ... wsave c c a saved work space array that can be utilized repeatedly by trvsph c as long as the arguments nlata,nlona,nlatb,nlonb remain unchanged. c wsave is set by a intl=0 call to trvsph. wsave must not be altered c when trvsph is being recalled with intl=1. c c ... lsave c c the dimension of the work space wsave as it appears in the program c that calls trvsph. the minimum required value of lsave for the c current set of input arguments is set in the output argument lsvmin. c it can be determined by calling trvsph with lsave=0 and printing lsvmin. c c la1 = min0(nlata,(nlona+1)/2), la2 = (nlata+1)/2 c c lb1 = min0(nlatb,(nlonb+1)/2), lb2 = (nlatb+1)/2 c c lwa = 4*nlata*la2+3*max0(la1-2,0)*(2*nlata-la1-1)+la2+nlona+15 c c lwb = 4*nlatb*lb2+3*max0(lb1-2,0)*(2*nlatb-lb1-1)+nlonb+15 c c then c c lsvmin = lwa + lwb c c is the minimal required work space length of wsave c c c ... work c c a work array that does not have to be preserved c c ... lwork c c the dimension of the array work as it appears in the program that c calls trvsph. the minimum required value of lwork for the current c set of input arguments is set in the output argument lwkmin. c it can be determined by calling trvsph with lwork=0 and printing c lwkmin. an estimate for lwork follows. let nlat = max0(nlata,nlatb), c nlon = max0(nlona,nlonb) and l1 = min0(nlat,(nlon+2)/2). with these c these definitions, the quantity c c 2*nlat*(8*l1 + 4*nlon + 3) c c will suffice as a length for the unsaved work space. this formula c may overestimate the required minimum value for lwork. the exact c minimum value can be predetermined by calling trvsph wtih lwork=0 c and printout of lwkmin. c c ... dwork c c a double precision work array that does not have to be preserved. c c ... ldwork c c the length of dwork in the routine calling trvsph c Let c c nlat = max0(nlata,nlatb) c c ldwork must be at least 2*nlat*(nlat+1)+1 c c c *** output arguments c c c ... ub c c a two dimensional array that contains the east longitudinal component c of the transformed vector data. ub c must be dimensioned nlonb by nlatb in the program calling trvsph if c igridb(2)=0. ub must be dimensioned nlatb by nlonb in the program c calling trvsph if igridb(2)=1. if ub is not properly dimensioned c and if the latitude (colatitude) values do not run south to north or c north to south as flagged by igrdb(1) (this cannot be checked!) then c incorrect results will be produced. c c c ... vb c c a two dimensional array that contains the latitudinal or colatitudinal c component of the transformed vector data (see ivecb). c vb must be dimensioned nlonb by nlatb in the program calling trvsph if c igridb(2)=0. vb must be dimensioned nlatb by nlonb in the program c calling trvsph if igridb(2)=1. if vb is not properly dimensioned c and if the latitude (colatitude) values do not run south to north or c north to south as flagged by igrdb(1) (this cannot be checked!) then c incorrect results will be produced. c c ... lsvmin c c the minimum length of the saved work space in wsave. c lsvmin is computed even if lsave < lsvmin (ier = 10). c c ... lwkmin c c the minimum length of the unsaved work space in work. c lwkmin is computed even if lwork < lwkmin (ier = 11). c c c *** error argument c c ... ier = 0 if no errors are detected c c = 1 if intl is not 0 or 1 c c = 2 if igrida(1) is not -1 or +1 or -2 or +2 c c = 3 if igrida(2) is not 0 or 1 c c = 4 if nlona is less than 4 c c = 5 if nlata is less than 3 c c = 6 if iveca is not 0 or 1 c c = 7 if igridb(1) is not -1 or +1 or -2 or +2 c c = 8 if igridb(2) is not 0 or 1 c c = 9 if nlonb is less than 4 c c =10 if nlatb is less than 3 c c =11 if ivecb is not 0 or 1 c c =12 if there is insufficient saved work space (lsave < lsvmin) c c =13 if there is insufficient unsaved work space (lwork < lwkmin) c c =14 indicates failure in an eigenvalue routine which computes c gaussian weights and points c c =15 if ldwork is too small (insufficient double precision c unsaved work space) c c ***************************************************** c ***************************************************** c c end of argument description ... code follows c c ***************************************************** c ***************************************************** c subroutine trvsph (intl,igrida,nlona,nlata,iveca,ua,va, +igridb,nlonb,nlatb,ivecb,ub,vb,wsave,lsave,lsvmin,work, +lwork,lwkmin,dwork,ldwork,ier) implicit none integer intl,igrida(2),nlona,nlata,igridb(2),nlonb,nlatb integer iveca,ivecb,lsave,lsvmin,lwork,lwkmin,ldwork,ier real ua(*),va(*),ub(*),vb(*),wsave(*),work(*) double precision dwork(*) integer ig,igrda,igrdb,la1,la2,lb1,lb2,lwa,lwb integer iabr,iabi,iacr,iaci,ibbr,ibbi,ibcr,ibci integer nlat,lwk1,lwk2,lw,iw,jb,nt,ityp c c include a save statement to ensure local variables in trvsph, set during c an intl=0 call, are preserved if trvsph is recalled with intl=1 c save c c check input arguments c ier = 1 if (intl*(intl-1).ne.0) return ier = 2 ig = igrida(1) if ((ig-1)*(ig+1)*(ig-2)*(ig+2).ne.0) return ier = 3 ig = igrida(2) if (ig*(ig-1).ne.0) return ier = 4 if (nlona .lt. 4) return ier = 5 if (nlata .lt.3) return ier = 6 if (iveca*(iveca-1).ne.0) return ier = 7 ig = igridb(1) if ((ig-1)*(ig+1)*(ig-2)*(ig+2).ne.0) return ier = 8 ig = igridb(2) if (ig*(ig-1).ne.0) return ier = 9 if (nlonb .lt.4) return ier = 10 if (nlatb .lt.3) return ier = 11 if (ivecb*(ivecb-1).ne.0) return ier = 0 igrda = iabs(igrida(1)) igrdb = iabs(igridb(1)) if (intl.eq.0) then la1 = min0(nlata,(nlona+1)/2) la2 = (nlata+1)/2 lb1 = min0(nlatb,(nlonb+1)/2) lb2 = (nlatb+1)/2 c c saved space for analysis on a grid c lwa = 4*nlata*la2+3*max0(la1-2,0)*(2*nlata-la1-1)+la2+nlona+15 c c set saved work space length for synthesis on b grid c lwb = 4*nlatb*lb2+3*max0(lb1-2,0)*(2*nlatb-lb1-1)+nlonb+15 c c set minimum required saved work space length c lsvmin = lwa + lwb c c set wsave pointer c jb = 1+lwa c c set pointers for vector spherical harmonic coefs in work c iabr = 1 iabi = iabr + la1*nlata iacr = iabi + la1*nlata iaci = iacr + la1*nlata ibbr = iaci + la1*nlata ibbi = ibbr + lb1*nlatb ibcr = ibbi + lb1*nlatb ibci = ibcr + lb1*nlatb c c set pointers for remaining work c iw = ibci + lb1*nlatb c c set remaining work space length in lw c lw = lwork - iw c c compute unsaved space for analysis and synthesis c lwk1 = 2*nlata*(2*nlona+max0(6*la2,nlona)) lwk2 = 2*nlatb*(2*nlonb+max0(6*lb2,nlonb)) c c set minimum unsaved work space required by trvsph c lwkmin = iw + max0(lwk1,lwk2) c c set error flags if saved or unsaved work space is insufficient c ier = 12 if (lsave .lt. lsvmin) return ier = 13 if (lwork .lt. lwkmin) return ier = 15 nlat = max0(nlata,nlatb) if (ldwork .lt. 2*nlat*(nlat+1)+1) return ier = 0 if (igrda .eq. 1) then c c initialize wsave for equally spaced analysis c call vhaeci(nlata,nlona,wsave,lwa,dwork,ldwork,ier) else c c initialize wsave for gaussian analysis c call vhagci(nlata,nlona,wsave,lwa,dwork,ldwork,ier) if (ier.ne.0) then c c flag failure in spherepack gaussian software c ier = 14 return end if end if if (igrdb .eq. 2) then c c initialize wsave for gaussian synthesis c call vhsgci(nlatb,nlonb,wsave(jb),lwb,dwork,ldwork,ier) if (ier.ne.0) then c c flag failure in spherepack gaussian software c ier = 14 return end if else c c initialize wsave for equally spaced synthesis c call vhseci(nlatb,nlonb,wsave(jb),lwb,dwork,ldwork,ier) end if c c end of initialization (intl=0) call c end if c c convert the vector field (ua,va) to mathematical spherical coordinates c if (igrida(2).eq.0) then call trvplat(nlona,nlata,ua,work) call trvplat(nlona,nlata,va,work) end if if (igrida(1) .gt. 0) then call covlat(nlata,nlona,ua) call covlat(nlata,nlona,va) end if if (iveca .eq. 0) then call negv(nlata,nlona,va) end if nt = 1 ityp = 0 c c analyze vector field c if (igrda .eq. 2) then call vhagc(nlata,nlona,ityp,nt,va,ua,nlata,nlona,work(iabr), + work(iabi),work(iacr),work(iaci),la1,nlata,wsave,lwa,work(iw), + lw,ier) else call vhaec(nlata,nlona,ityp,nt,va,ua,nlata,nlona,work(iabr), + work(iabi),work(iacr),work(iaci),la1,nlata,wsave,lwa,work(iw), + lw,ier) end if c c transfer a grid coefficients to b grid coefficients c call trvab(la1,nlata,work(iabr),work(iabi),work(iacr),work(iaci), + lb1,nlatb,work(ibbr),work(ibbi),work(ibcr),work(ibci)) c c synthesize on b grid c if (igrdb .eq. 1) then call vhsec(nlatb,nlonb,ityp,nt,vb,ub,nlatb,nlonb,work(ibbr), +work(ibbi),work(ibcr),work(ibci),lb1,nlatb,wsave(jb),lwb, +work(iw),lw,ier) else call vhsgc(nlatb,nlonb,ityp,nt,vb,ub,nlatb,nlonb,work(ibbr), +work(ibbi),work(ibcr),work(ibci),lb1,nlatb,wsave(jb),lwb,work(iw), +lw,ier) end if c c restore a grid and b grid vector fields (now in math coordinates) to c agree with grid flags in igrida,iveca,igridb,ivecb c if (iveca .eq. 0) then call negv(nlata,nlona,va) end if if (ivecb .eq. 0) then call negv(nlatb,nlonb,vb) end if if (igrida(1).gt. 0) then call covlat(nlata,nlona,ua) call covlat(nlata,nlona,va) end if if (igridb(1) .gt. 0) then call covlat(nlatb,nlonb,ub) call covlat(nlatb,nlonb,vb) end if if (igrida(2) .eq. 0) then call trvplat(nlata,nlona,ua,work) call trvplat(nlata,nlona,va,work) end if if (igridb(2) .eq. 0) then call trvplat(nlatb,nlonb,ub,work) call trvplat(nlatb,nlonb,vb,work) end if return end subroutine negv(nlat,nlon,v) c c negate (co)latitudinal vector componenet c implicit none integer nlat,nlon,i,j real v(nlat,nlon) do j=1,nlon do i=1,nlat v(i,j) = -v(i,j) end do end do return end subroutine trvab(ma,na,abr,abi,acr,aci,mb,nb,bbr,bbi,bcr,bci) implicit none integer ma,na,mb,nb,i,j,m,n real abr(ma,na),abi(ma,na),acr(ma,na),aci(ma,na) real bbr(mb,nb),bbi(mb,nb),bcr(mb,nb),bci(mb,nb) c c set coefficients for b grid from coefficients for a grid c m = min0(ma,mb) n = min0(na,nb) do j=1,n do i=1,m bbr(i,j) = abr(i,j) bbi(i,j) = abi(i,j) bcr(i,j) = acr(i,j) bci(i,j) = aci(i,j) end do end do c c set coefs outside triangle to zero c do i=m+1,mb do j=1,nb bbr(i,j) = 0.0 bbi(i,j) = 0.0 bcr(i,j) = 0.0 bci(i,j) = 0.0 end do end do do j=n+1,nb do i=1,mb bbr(i,j) = 0.0 bbi(i,j) = 0.0 bcr(i,j) = 0.0 bci(i,j) = 0.0 end do end do return end subroutine trvplat(n,m,data,work) c c transpose the n by m array data to a m by n array data c work must be at least n*m words long c implicit none integer n,m,i,j,ij,ji real data(*),work(*) do j=1,m do i=1,n ij = (j-1)*n+i work(ij) = data(ij) end do end do do i=1,n do j=1,m ji = (i-1)*m+j ij = (j-1)*n+i data(ji) = work(ij) end do end do return end subroutine covlat(nlat,nlon,data) c c reverse order of latitude (colatitude) grids c implicit none integer nlat,nlon,nlat2,i,ib,j real data(nlat,nlon),temp nlat2 = nlat/2 do i=1,nlat2 ib = nlat-i+1 do j=1,nlon temp = data(i,j) data(i,j) = data(ib,j) data(ib,j) = temp end do end do return end
{"hexsha": "91cea58f3afcec4c1365c8f9b0b992462f386b8a", "size": 29231, "ext": "f", "lang": "FORTRAN", "max_stars_repo_path": "install/spherepack3.2/src/trvsph.f", "max_stars_repo_name": "comp-physics/RBC3D", "max_stars_repo_head_hexsha": "2891a1e3b356e2cff0cfa74ba26d4aef3336641d", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "install/spherepack3.2/src/trvsph.f", "max_issues_repo_name": "comp-physics/RBC3D", "max_issues_repo_head_hexsha": "2891a1e3b356e2cff0cfa74ba26d4aef3336641d", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "install/spherepack3.2/src/trvsph.f", "max_forks_repo_name": "comp-physics/RBC3D", "max_forks_repo_head_hexsha": "2891a1e3b356e2cff0cfa74ba26d4aef3336641d", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 35.0071856287, "max_line_length": 79, "alphanum_fraction": 0.6224898224, "num_tokens": 9119}
import numpy as np import cv2 from ellipse import Ellipse class Noise: def __init__(self, min_area): self.min_area = min_area self.pixel_remove = 255 self.new_pixel = 0 self.ellipse = Ellipse() def treatment_noise(self, frame, contours): if frame is None: raise Exception("Frame is none!") new_frame = np.copy(frame) center, _ = self.ellipse.search_ellipse(frame, contours) if frame[center[1], center[0]] == self.pixel_remove: new_frame = self.remove_false_center(frame, center) return new_frame def remove_false_center(self, frame, center): new_frame = np.copy(frame) i, j = center lin, col = frame.shape new_frame[i, j] = self.new_pixel validate = True increment = 0 while validate: increment += 1 if i + increment >= lin or j + increment >= col: break new_frame[j, i+increment] = new_frame[j, i-increment] = self.new_pixel new_frame[j+increment, i] = new_frame[j-increment, i] = self.new_pixel validate = (new_frame[i+2, j] == self.pixel_remove or new_frame[i-2, j] == self.pixel_remove) or ( new_frame[i, j+2] == self.pixel_remove or new_frame[i, j-2] == self.pixel_remove) return new_frame
{"hexsha": "0d5bbe3924d1c637a4ba8eb19108d297b3b0b749", "size": 1376, "ext": "py", "lang": "Python", "max_stars_repo_path": "pupilometer/noise.py", "max_stars_repo_name": "marcosvsilva/ProjectPupilometer", "max_stars_repo_head_hexsha": "dadacabdce2c4702de6bafba18b47220e38905b4", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "pupilometer/noise.py", "max_issues_repo_name": "marcosvsilva/ProjectPupilometer", "max_issues_repo_head_hexsha": "dadacabdce2c4702de6bafba18b47220e38905b4", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "pupilometer/noise.py", "max_forks_repo_name": "marcosvsilva/ProjectPupilometer", "max_forks_repo_head_hexsha": "dadacabdce2c4702de6bafba18b47220e38905b4", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 29.2765957447, "max_line_length": 110, "alphanum_fraction": 0.59375, "include": true, "reason": "import numpy", "num_tokens": 335}
import platform import sys import os # The 'sysconfig' module is only available with Python 2.7 and newer, but # an equivalent module in 'distutils' is available for Python 2.6. if sys.version < '2.7': from distutils import sysconfig else: import sysconfig # The 'imp' module is deprecated since Python 3.4, and the use of # 'importlib' is recommended instead. if sys.version < '3.4': import imp def module_path(name): if name in sys.builtin_module_names: return "[builtin module]" spec = imp.find_module(name) return spec[1] else: from importlib import util def module_path(name): if name in sys.builtin_module_names: return "[builtin module]" spec = util.find_spec(name) origin = spec.origin return origin[:origin.rfind('/')] # Get appropriate path-entry separator for platform pathsep = ";" if os.name == "nt" else ":" # Read default configuration values config = { "Architecture" : platform.architecture()[0], "Version" : str(sys.version).replace("\n", " "), "VersionNumber" : str(sys.version_info[0]) + "." + str(sys.version_info[1]), "Prefix" : getattr(sys, "prefix", ""), "ExecPrefix" : getattr(sys, "exec_prefix", ""), "BaseExecPrefix" : getattr(sys, "base_exec_prefix", ""), "BaseExecPrefixLib": getattr(sys, "base_exec_prefix", "") + "/lib", "PythonPath" : pathsep.join(sys.path[1:]), "LIBPL" : sysconfig.get_config_var("LIBPL"), "LIBDIR" : sysconfig.get_config_var("LIBDIR") } # Read numpy configuration (if available) try: import numpy config["NumpyPath"] = str(numpy.__path__[0]) config["NumpyVersion"] = str(numpy.__version__) except: pass # Read required module information (if requested) try: required_module = os.environ["RETICULATE_REQUIRED_MODULE"] if required_module is not None and len(required_module) > 0: config["RequiredModule"] = required_module config["RequiredModulePath"] = module_path(required_module) except: pass # Write configuration to stdout lines = [str(key) + ": " + str(val) for (key, val) in config.items()] text = "\n".join(lines) sys.stdout.write(text)
{"hexsha": "48902f8d7df528df0099ed90f334ae3adaaad5be", "size": 2160, "ext": "py", "lang": "Python", "max_stars_repo_path": "inst/config/config.py", "max_stars_repo_name": "pradosj/reticulate", "max_stars_repo_head_hexsha": "66e99d30f21d9479f48e4751d9ca8fcef68e03c0", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "inst/config/config.py", "max_issues_repo_name": "pradosj/reticulate", "max_issues_repo_head_hexsha": "66e99d30f21d9479f48e4751d9ca8fcef68e03c0", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "inst/config/config.py", "max_forks_repo_name": "pradosj/reticulate", "max_forks_repo_head_hexsha": "66e99d30f21d9479f48e4751d9ca8fcef68e03c0", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 31.3043478261, "max_line_length": 81, "alphanum_fraction": 0.6768518519, "include": true, "reason": "import numpy", "num_tokens": 561}
/*Copyright (c) 2019, Suliman Alsowelim All rights reserved. This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. */ #import <opencv2/opencv.hpp> #import "fingerprint.h" #include <iostream> #include <algorithm> #include <vector> #include <limits> #include <iterator> #include <iostream> #include <typeinfo> #include <math.h> #include <chrono> #include <boost/property_tree/ptree.hpp> #include <boost/property_tree/json_parser.hpp> #include <boost/uuid/sha1.hpp> #include <fstream> using boost::property_tree::ptree; using namespace std; int DEFAULT_FAN_VALUE = 15; int MIN_HASH_TIME_DELTA = 0; int MAX_HASH_TIME_DELTA = 200; int FINGERPRINT_REDUCTION = 20; int PEAK_NEIGHBORHOOD_SIZE = 20; float DEFAULT_AMP_MIN = 10; int DEFAULT_WINDOW_SIZE = 4096; float DEFAULT_OVERLAP_RATIO = 0.5; float FS = 44100.0; std::vector<std::vector<float>> stride_windows(const std::vector<float>& data, size_t blocksize, size_t overlap){ //https://stackoverflow.com/questions/21344296/striding-windows/21345055 std::vector<std::vector<float>> res; size_t minlen = (data.size() - overlap)/(blocksize - overlap); auto start = data.begin(); for (size_t i=0; i<blocksize; ++i) { res.emplace_back(std::vector<float>()); std::vector<float>& block = res.back(); auto it = start++; for (size_t j=0; j<minlen; ++j) { block.push_back(*it); std::advance(it,(blocksize-overlap)); } } return res; } int detrend(std::vector<std::vector<float>>& data){ size_t nocols = data[0].size(); size_t norows = data.size(); float mean = 0; for (size_t i=0; i<nocols; ++i){ for (size_t j=0; j<norows; ++j){ mean = mean + data[j][i]; } } mean = mean/(norows*nocols); for (size_t i=0; i<nocols; ++i){ for (size_t j=0; j<norows; ++j){ data[j][i] = data[j][i] - mean; } } return 0; } std::vector<float> create_window(int wsize){ std::vector<float> res; float multiplier; for (int i = 0; i < wsize; i++) { multiplier = 0.5 - 0.5 *(cos(2.0*M_PI*i/(wsize-1))); res.emplace_back(multiplier); } return res; } void apply_window(std::vector<float> &hann_window,std::vector<std::vector<float>>& data){ size_t nocols = data[0].size(); size_t norows = data.size(); for (size_t i=0; i<nocols; ++i){ for (size_t j=0; j<norows; ++j){ data[j][i] = data[j][i] * hann_window[j]; } } } std::string get_sha1(const std::string& p_arg) { boost::uuids::detail::sha1 sha1; sha1.process_bytes(p_arg.data(), p_arg.size()); unsigned hash[5] = {0}; sha1.get_digest(hash); // Back to string char buf[41] = {0}; for (int i = 0; i < 5; i++) { std::sprintf(buf + (i << 3), "%08x", hash[i]); } return std::string(buf); } std::string generate_hashes(vector<pair<int,int>> &v_in){ //sorting //https://stackoverflow.com/questions/279854/how-do-i-sort-a-vector-of-pairs-based-on-the-second-element-of-the-pair std::sort(v_in.begin(), v_in.end(), [](auto &left, auto &right) { if (left.second == right.second) return left.first < right.first; return left.second < right.second; }); std::ostringstream buf; buf << "["; for(int i=0; i<v_in.size(); i++){ for(int j=1; j<DEFAULT_FAN_VALUE; j++){ if ((i+j) < v_in.size()){ int freq1 = v_in[i].first; int freq2 = v_in[i+j].first; int time1 = v_in[i].second; int time2 = v_in[i+j].second; int t_delta = time2 - time1; if ((t_delta >= MIN_HASH_TIME_DELTA) and (t_delta <= MAX_HASH_TIME_DELTA)){ char buffer [100]; snprintf(buffer, sizeof(buffer),"%d|%d|%d", freq1,freq2,t_delta); std::string to_be_hashed = buffer; std::string hash_result = get_sha1(to_be_hashed).erase(FINGERPRINT_REDUCTION,40); ptree pt; pt.put ("hash", hash_result); pt.put ("offset", time1); if(buf.str() != "["){ buf << ","; } write_json(buf, pt, false); } } } } buf << "]"; return buf.str(); } vector<pair<int,int>> get_2D_peaks (cv::Mat data){ /* generate binary structure and apply maximum filter*/ cv::Mat tmpkernel = cv::getStructuringElement(cv::MORPH_CROSS,cv::Size(3,3),cv::Point(-1,-1)); cv::Mat kernel = cv::Mat(PEAK_NEIGHBORHOOD_SIZE*2+1,PEAK_NEIGHBORHOOD_SIZE*2+1, CV_8U, uint8_t(0)); kernel.at<uint8_t>(PEAK_NEIGHBORHOOD_SIZE,PEAK_NEIGHBORHOOD_SIZE) = uint8_t(1); cv::dilate(kernel, kernel, tmpkernel,cv::Point(-1, -1), PEAK_NEIGHBORHOOD_SIZE,1,1); cv::Mat d1; cv::dilate(data, d1, kernel);/* d1 now contain m1 with max filter applied */ /* generate eroded background */ cv::Mat background = (data == 0); // 255 if element == 0 , 0 otherwise cv::Mat local_max = (data == d1); // 255 if true, 0 otherwise cv::Mat eroded_background; cv::erode(background, eroded_background, kernel); cv::Mat detected_peaks = local_max - eroded_background; /* now detected peaks.size == m1.size .. iterate through m1. get amp where peak == 255 (true), get indices i,j as well.*/ vector<pair<int,int>> freq_time_idx_pairs; for(int i=0; i<data.rows; ++i){ for(int j=0; j<data.cols; ++j){ if ((detected_peaks.at<uint8_t>(i, j) == 255) and (data.at<float>(i,j) > DEFAULT_AMP_MIN)) { freq_time_idx_pairs.push_back(std::make_pair(i,j)); } } } return freq_time_idx_pairs; } void max_filter(std::vector<std::vector<float>>& data){ //https://gist.github.com/otmb/014107e7b6c6d6a79f0ac1ccc456580a cv::Mat m1(data.size(), data.at(0).size(), CV_32F); for(int i=0; i<m1.rows; ++i) for(int j=0; j<m1.cols; ++j) m1.at<float>(i, j) = data.at(i).at(j); /* generate binary structure and apply maximum filter*/ cv::Mat tmpkernel = cv::getStructuringElement(cv::MORPH_CROSS,cv::Size(3,3),cv::Point(-1,-1)); cv::Mat kernel = cv::Mat(PEAK_NEIGHBORHOOD_SIZE*2+1,PEAK_NEIGHBORHOOD_SIZE*2+1, CV_8U, uint8_t(0)); kernel.at<uint8_t>(PEAK_NEIGHBORHOOD_SIZE,PEAK_NEIGHBORHOOD_SIZE) = uint8_t(1); cv::dilate(kernel, kernel, tmpkernel,cv::Point(-1, -1), PEAK_NEIGHBORHOOD_SIZE,1,1); cv::Mat d1; cv::dilate(m1, d1, kernel); /* d1 now contain m1 with max filter applied */ /* generate eroded background */ cv::Mat background = (m1 == 0); cv::Mat local_max = (m1 == d1); cv::Mat eroded_background; cv::erode(background, eroded_background, kernel); cv::Mat detected_peaks = local_max - eroded_background; vector<pair<int,int>> freq_time_idx_pairs; for(int i=0; i<m1.rows; ++i){ for(int j=0; j<m1.cols; ++j){ if ((detected_peaks.at<uint8_t>(i, j) == 255) and (m1.at<float>(i,j) > DEFAULT_AMP_MIN)) { freq_time_idx_pairs.push_back(std::make_pair(i,j)); } } } } std::string fingerprint (float * data, int data_size){ std::vector<float> vec(&data[0], data + data_size); // see mlab.py on how to decide number of frequencies int max_freq = 0; //onesided if (DEFAULT_WINDOW_SIZE % 2 == 0){ max_freq = int(std::floor(DEFAULT_WINDOW_SIZE / 2)) + 1; }else{ max_freq = int(std::floor((DEFAULT_WINDOW_SIZE+1) / 2)); } std::vector<std::vector<float>> blocks = stride_windows(vec, DEFAULT_WINDOW_SIZE, DEFAULT_WINDOW_SIZE*DEFAULT_OVERLAP_RATIO); std::vector<float> hann_window = create_window(DEFAULT_WINDOW_SIZE); apply_window(hann_window,blocks); cv::Mat dst(blocks[0].size(),blocks.size(), CV_32F); for(int i=0; i<dst.rows; ++i) for(int j=0; j<dst.cols; ++j){ dst.at<float>(i, j) = blocks[j][i]; } cv::dft(dst,dst,cv::DftFlags::DFT_COMPLEX_OUTPUT+cv::DftFlags::DFT_ROWS,0); cv::mulSpectrums(dst,dst,dst,0,true); cv::Mat dst2(max_freq,blocks.at(0).size(), CV_32F); for(int i=0; i<max_freq; ++i) for(int j=0; j<dst2.cols; ++j){ dst2.at<float>(i, j) = dst.ptr<float>(j)[2*i]; } for(int i=1; i<dst2.rows -1; ++i) for(int j=0; j<dst2.cols; ++j) dst2.at<float>(i, j) = dst2.at<float>(i, j)*2; dst2 = dst2 * (1.0/FS); float sum = 0.0; float tmp = 0.0; for(unsigned int i = 0; i < hann_window.size(); i++){ if(hann_window[i] < 0) tmp = hann_window[i]* -1; else tmp = hann_window[i]; sum = sum + (tmp*tmp); } dst2 = dst2 * (1.0/sum); //see https://github.com/worldveil/dejavu/issues/118 float threshold = 0.00000001; for(int i=0; i<dst2.rows; ++i){ for(int j=0; j<dst2.cols; ++j){ if ((dst2.at<float>(i, j)) < threshold){ dst2.at<float>(i, j) = threshold; } dst2.at<float>(i, j) = 10 * log10(dst2.at<float>(i, j)); } } vector<pair<int,int>> v_in = get_2D_peaks(dst2); std::string json = generate_hashes(v_in); return json; } int main () { std::system("ffmpeg -hide_banner -loglevel panic -i test.mp3 -f s16le -acodec pcm_s16le -ss 0 -ac 1 -ar 22050 - > raw_data "); //https://www.daniweb.com/programming/software-development/threads/128352/read-a-raw-pcm-file-and-then-play-it-with-sound-in-c-or-c //https://stackoverflow.com/questions/49161854/reading-raw-audio-file std::fstream f_in; short speech; float data[200000]; f_in.open("raw_data", std::ios::in | std::ios::binary); int i = 0; while (true) { f_in.read((char *)&speech, 2); if (!f_in.good()){ break; } data[i] = speech; i++; } f_in.close(); std::string json = fingerprint(data,i); cout << json << std::endl; return 0; }
{"hexsha": "d2efe859be6e099fcbb6424af1ae30e1ce6723c0", "size": 9418, "ext": "cpp", "lang": "C++", "max_stars_repo_path": "fingerprint.cpp", "max_stars_repo_name": "salsowelim/dejavu_cpp_port", "max_stars_repo_head_hexsha": "70b4307111be4a2481e40e7d58b763ac50a2081b", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 35.0, "max_stars_repo_stars_event_min_datetime": "2019-05-13T17:06:24.000Z", "max_stars_repo_stars_event_max_datetime": "2021-07-24T07:33:21.000Z", "max_issues_repo_path": "fingerprint.cpp", "max_issues_repo_name": "salsowelim/dejavu_cpp_port", "max_issues_repo_head_hexsha": "70b4307111be4a2481e40e7d58b763ac50a2081b", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": 3.0, "max_issues_repo_issues_event_min_datetime": "2019-11-06T07:33:19.000Z", "max_issues_repo_issues_event_max_datetime": "2020-07-17T15:37:16.000Z", "max_forks_repo_path": "fingerprint.cpp", "max_forks_repo_name": "salsowelim/dejavu_cpp_port", "max_forks_repo_head_hexsha": "70b4307111be4a2481e40e7d58b763ac50a2081b", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": 5.0, "max_forks_repo_forks_event_min_datetime": "2020-07-16T23:00:37.000Z", "max_forks_repo_forks_event_max_datetime": "2021-07-21T07:26:50.000Z", "avg_line_length": 32.2534246575, "max_line_length": 133, "alphanum_fraction": 0.6336801869, "num_tokens": 3038}
import numpy as np import tensorflow as tf from keras.layers import Dense, Input from keras.models import Model from keras.layers.advanced_activations import LeakyReLU from mpi4py import MPI from keras.optimizers import SGD import keras.backend as K import time def mapping(dim,edim): n=int(2.5*dim) Z0=np.random.rand(n,edim) B1=np.tile(np.random.rand(1,dim),(n,1))-0.5 B2=np.tile(np.random.rand(1,dim),(n,1))-0.5 B3=np.tile(np.random.rand(1,dim),(n,1))-0.5 W1=(np.random.rand(edim,dim)*0.05+0.05)*np.sign(np.random.rand(edim,dim)-0.5) W2=(np.random.rand(dim,dim)*0.05+0.05)*np.sign(np.random.rand(dim,dim)-0.5) W3=(np.random.rand(dim,dim)*0.05+0.05)*np.sign(np.random.rand(dim,dim)-0.5) X1=np.tanh(B1+np.dot(Z0,W1)) X2=B2+np.dot(X1,W2) X2=np.exp(-X2**2) X3=2/(1-np.min(X2,0)[np.newaxis,:])*(X2-np.min(X2,0)[np.newaxis,:])-1 X4=B3+np.dot(X3,W3) X5=X4-X4[0,:] X5=np.tanh(X5)*0.325 X6=(X5**2-1)*(0.75*X5-0.25)+2/np.pi*np.arcsin(X5) return X6 def cost_opt(X,opt_it,X0): M=np.zeros(X.shape) V=np.zeros(X.shape) eta=0.001 betam=0.9 betav=0.999 betamh=0.9 betavh=0.999 for i in range(opt_it): G=gradient(X,X0) M=betam*M+(1-betam)*G V=betav*V+(1-betav)*G**2 Mh=M/(1-betamh) Vh=V/(1-betavh) betamh=betamh*betam betavh=betavh*betav D=eta*Mh/(Vh**0.5 +1e-8) X=X-D X=np.clip(X,-1,1) return cost(X,X0) def cost_dec(Z,decoder,opt_it,X0): X=decoder.predict(Z) M=np.zeros(X.shape) V=np.zeros(X.shape) eta=0.001 betam=0.9 betav=0.999 betamh=0.9 betavh=0.999 for i in range(opt_it): G=gradient(X,X0) M=betam*M+(1-betam)*G V=betav*V+(1-betav)*G**2 Mh=M/(1-betamh) Vh=V/(1-betavh) betamh=betamh*betam betavh=betavh*betav D=eta*Mh/(Vh**0.5 +1e-8) X=X-D X=np.clip(X,-1,1) return cost(X,X0) def cost(X,X0): C=np.zeros(len(X)) for i in range(len(X)): C[i]=np.min(np.sum((X0-X[[i],:])**2,1)) Cn=np.sum((X-0.25)**2,1) Cn=(1-np.exp(-10*Cn))*(0.4+np.exp(-10*Cn))*3 return C+Cn def gradient(X,X0): ECn=np.exp(-10*np.sum((X-0.25)**2,1)) dCndX=2*(X-0.25) dCndCn=3*(20*ECn**2-6*ECn) Gn=dCndCn[:,np.newaxis]*dCndX G0=np.zeros(X.shape) for i in range(len(X)): jmin=np.argmin(np.sum((X0-X[[i],:])**2,1)) G0[i,:]=2*(X[i,:]-X0[jmin,:]) G=G0+Gn return G def train_autoencoder(AE,X_rank,rank,size,perrank,n_epochs): num_batches=10 batch_size_perrank=int(perrank/num_batches) betam=0.9 betav=0.999 betamh=0.9 betavh=0.999 eta=0.001 m=None v=None Index=np.arange(perrank) if rank==0: optimizer=SGD(learning_rate=eta,momentum=0.0) comm.Barrier() for epoch in range(n_epochs): np.random.shuffle(Index) if epoch+1>0.9*n_epochs: num_batches=1 batch_size_perrank=perrank for batch in range(num_batches): X_batch=np.copy(X_rank[Index[batch*batch_size_perrank:(batch+1)*batch_size_perrank],:]) if rank==0: AE_weights=AE.get_weights() else: AE_weights=None AE_weights=comm.bcast(AE_weights,root=0) AE.set_weights(AE_weights) with tf.GradientTape() as tape: X_batch_pred=AE(X_batch) loss_batch=K.mean((X_batch-X_batch_pred)**2)/size grad=np.array(tape.gradient(loss_batch,AE.trainable_weights),dtype=object) Gradient=[None]*len(grad) for i in range(len(grad)): Gradient[i]=comm.gather(grad[i],root=0) # Gradients=comm.gather(grad,root=0) if rank==0: # Grad=np.sum(Gradients,0) Grad=np.sum(Gradient,1) if epoch==0 and batch==0: m=(1-betam)*Grad v=(1-betav)*Grad*Grad else: m=betam*m+(1-betam)*Grad v=betav*v+(1-betav)*Grad*Grad mh=m/(1-betamh) vh=v/(1-betavh) betamh=betamh*betam betavh=betavh*betav grad_diff=(1/(vh**0.5+1e-8)*mh).tolist() optimizer.apply_gradients(zip(grad_diff,AE.trainable_weights)) comm.Barrier() comm.Barrier() if rank==0: AE_weights=AE.get_weights() else: AE_weights=None AE_weights=comm.bcast(AE_weights,root=0) return AE_weights comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() dim=1000 Edim=[10,5] if rank==0: D=1 while D<4: X0=mapping(1000,10) D=np.sqrt(np.sum((np.mean(X0,0)-0.25)**2)) np.save('Results/Local_minima.npy',X0) else: X0=None comm.Barrier() X0=comm.bcast(X0,root=0) ###################################################################### ## Proposed Method ## ###################################################################### num_samples=10000 perrank=int(num_samples/size) number_advances=500 opt_it=10 start_time=time.time() X_rank=np.random.rand(perrank,dim)*2-1 C_rank=np.zeros((perrank,number_advances+1)) C_rank[:,0]=cost(X_rank,X0) M_rank=np.zeros((perrank,dim)) V_rank=np.zeros((perrank,dim)) eta=0.01 betam=0.9 betav=0.999 betamh=0.9 betavh=0.999 for iteration in range(number_advances): G_rank=gradient(X_rank,X0) M_rank=betam*M_rank+(1-betam)*G_rank V_rank=betav*V_rank+(1-betav)*G_rank**2 Mh_rank=M_rank/(1-betamh) Vh_rank=V_rank/(1-betavh) betamh=betamh*betam betavh=betavh*betav D_rank=eta*Mh_rank/(Vh_rank**0.5 +1e-8) X_rank=X_rank-D_rank X_rank=np.clip(X_rank,-1,1) C_rank[:,iteration+1]=cost(X_rank,X0) if rank==0: C_rand=np.zeros((size,perrank,number_advances+1)) X_rand=np.zeros((size,perrank,dim)) else: C_rand=None eval_rand=None X_rand=None comm.Barrier() comm.Gather(C_rank,C_rand,root=0) comm.Gather(X_rank,X_rand,root=0) stop_time=time.time() if rank==0: C_rand=np.min(C_rand,(0,1)) eval_rand=np.linspace(0,number_advances*size*perrank,number_advances+1) np.save('Results/X_rand.npy',X_rand.reshape((size*perrank,dim))) print('Step 1: {:1.1f}s'.format(stop_time-start_time)) for edim in Edim: start_time=time.time() ## Now train network design_space=Input((dim)) enc=Dense(dim,activation='tanh')(design_space) enc=LeakyReLU(alpha=0.3)(enc) enc=Dense(dim,activation='tanh')(enc) enc=LeakyReLU(alpha=0.3)(enc) enc=Dense(dim,activation='tanh')(enc) enc=LeakyReLU(alpha=0.3)(enc) enc=Dense(edim,activation='sigmoid')(enc) encoder=Model(design_space,enc) latent_space=Input((edim)) dec=Dense(dim,activation='tanh')(latent_space) dec=LeakyReLU(alpha=0.3)(dec) dec=Dense(dim,activation='tanh')(dec) dec=LeakyReLU(alpha=0.3)(dec) dec=Dense(dim,activation='tanh')(dec) dec=LeakyReLU(alpha=0.3)(dec) dec=Dense(dim,activation='tanh')(dec) decoder=Model(latent_space,dec) AE=Model(design_space,decoder(encoder(design_space))) AE_weights=train_autoencoder(AE,X_rank,rank,size,perrank,250) AE.set_weights(AE_weights) stop_time=time.time() if rank==0: print('Step 2: {:1.1f}s'.format(stop_time-start_time)) start_time=time.time() # Optimize in latent space comm.Barrier() num_pop_perrank=int(np.ceil(10*edim/size)) num_pop=num_pop_perrank*size prob_change=0.9 multiplyer=0.6 Z_rank=np.random.rand(num_pop_perrank,edim) F_rank=cost_dec(Z_rank, decoder, opt_it, X0) comm.Barrier() if rank==0: Z_rec=np.empty((size,num_pop_perrank,edim)) F_rec=np.empty((size,num_pop_perrank)) else: Z_rec=None F_rec=None comm.Gather(Z_rank,Z_rec,root=0) comm.Gather(F_rank,F_rec,root=0) if rank==0: Z=Z_rec.reshape((num_pop_perrank*size,edim)) F=F_rec.reshape(num_pop_perrank*size) else: Z=None F=None Z=comm.bcast(Z,root=0) F=comm.bcast(F,root=0) C_ae=np.zeros((num_pop,501)) C_ae[:,0]=F[:num_pop] loop=0 while loop<500: Z_rank=Z[rank*num_pop_perrank:(rank+1)*num_pop_perrank,:] F_rank=F[rank*num_pop_perrank:(rank+1)*num_pop_perrank] test_case=np.floor(np.random.rand(num_pop_perrank,3)*(num_pop-1e-7)).astype('int') Za_rank=np.copy(Z[test_case[:,0],:]) Zb_rank=np.copy(Z[test_case[:,1],:]) Zc_rank=np.copy(Z[test_case[:,2],:]) Zcom_rank=Za_rank+multiplyer*(Zb_rank-Zc_rank) prob=np.random.rand(num_pop_perrank,edim) Zcom_rank[prob>prob_change]=np.copy(Z_rank[prob>prob_change]) Zcom_rank[Zcom_rank<0]=0 Zcom_rank[Zcom_rank>1]=1 F_compare=cost_dec(Zcom_rank, decoder, opt_it, X0) F_rank=np.minimum(F_rank,F_compare) Z_rank[F_compare<=F_rank,:]=Zcom_rank[F_compare<=F_rank,:] if rank==0: Z_rec=np.empty((size,num_pop_perrank,edim)) F_rec=np.empty((size,num_pop_perrank)) else: Z_rec=None F_rec=None comm.Barrier() comm.Gather(Z_rank,Z_rec,root=0) comm.Gather(F_rank,F_rec,root=0) if rank==0: Z=Z_rec.reshape((num_pop_perrank*size,edim)) F=F_rec.reshape(num_pop_perrank*size) Z=comm.bcast(Z,root=0) F=comm.bcast(F,root=0) loop=loop+1 C_ae[:,loop]=F[:num_pop] C_min_ae=np.min(C_ae,0) if rank==0: eval_ae=eval_rand[-1]+np.linspace(0,num_pop*500*(opt_it+1),501) else: eval_ae=None stop_time=time.time() if rank==0: print('Step 3: {:1.1f}s'.format(stop_time-start_time)) start_time=time.time() #post opt i_post=1000 X_post_rank=decoder.predict(Z_rank) C_rank=np.zeros((num_pop_perrank,i_post+1)) C_rank[:,0]=cost(X_post_rank,X0) M_rank=np.zeros((num_pop_perrank,dim)) V_rank=np.zeros((num_pop_perrank,dim)) eta=0.001 betam=0.9 betav=0.999 betamh=0.9 betavh=0.999 for iteration in range(i_post): G_rank=gradient(X_post_rank,X0) M_rank=betam*M_rank+(1-betam)*G_rank V_rank=betav*V_rank+(1-betav)*G_rank**2 Mh_rank=M_rank/(1-betamh) Vh_rank=V_rank/(1-betavh) betamh=betamh*betam betavh=betavh*betav D_rank=eta*Mh_rank/(Vh_rank**0.5 +1e-8) X_post_rank=X_post_rank-D_rank X_post_rank=np.clip(X_post_rank,-1,1) C_rank[:,iteration+1]=cost(X_post_rank,X0) if rank==0: C_post=np.zeros((size,num_pop_perrank,i_post+1)) else: C_post=None eval_post=None data=None comm.Barrier() comm.Gather(C_rank,C_post,root=0) stop_time=time.time() if rank==0: print('Step 4: {:1.1f}s'.format(stop_time-start_time)) C_post=np.min(C_post[:,:,opt_it:],(0,1)) eval_post=np.linspace(0,(i_post-opt_it)*num_pop,i_post+1-opt_it)+eval_ae[-1] data=[C_rand,C_min_ae,C_post,eval_rand,eval_ae,eval_post,0] np.save('Results/Benchmark_data_edim={}.npy'.format(edim),np.array(data)) ###################################################################### ## Comparison Method ## ###################################################################### comm.Barrier() start_time=time.time() num_pop_perrank=int(np.ceil(0.5*dim/size)) num_pop=size*num_pop_perrank prob_change=0.9 multiplyer=0.6 X_rank=np.random.rand(num_pop_perrank,dim) C_rank=cost_opt(X_rank,opt_it, X0) comm.Barrier() if rank==0: X_rec=np.empty((size,num_pop_perrank,dim)) C_rec=np.empty((size,num_pop_perrank)) else: X_rec=None C_rec=None comm.Gather(X_rank,X_rec,root=0) comm.Gather(C_rank,C_rec,root=0) if rank==0: X=X_rec.reshape((num_pop,dim)) C=C_rec.reshape(num_pop) else: X=None C=None X=comm.bcast(X,root=0) C=comm.bcast(C,root=0) C_de=np.zeros((num_pop,1001)) C_de[:,0]=C loop=0 while loop<1000: X_rank=X[rank*num_pop_perrank:(rank+1)*num_pop_perrank,:] C_rank=C[rank*num_pop_perrank:(rank+1)*num_pop_perrank] test_case=np.floor(np.random.rand(num_pop_perrank,3)*(num_pop-1e-7)).astype('int') Xa_rank=np.copy(X[test_case[:,0],:]) Xb_rank=np.copy(X[test_case[:,1],:]) Xc_rank=np.copy(X[test_case[:,2],:]) Xcom_rank=Xa_rank+multiplyer*(Xb_rank-Xc_rank) prob=np.random.rand(num_pop_perrank,dim) Xcom_rank[prob>prob_change]=np.copy(X_rank[prob>prob_change]) Xcom_rank[Xcom_rank<0]=0 Xcom_rank[Xcom_rank>1]=1 C_compare=cost_opt(Xcom_rank,opt_it, X0) C_rank=np.minimum(C_rank,C_compare) X_rank[C_compare<=C_rank,:]=Xcom_rank[C_compare<=C_rank,:] if rank==0: X_rec=np.empty((size,num_pop_perrank,dim)) C_rec=np.empty((size,num_pop_perrank)) else: X_rec=None C_rec=None comm.Gather(X_rank,X_rec,root=0) comm.Gather(C_rank,C_rec,root=0) if rank==0: X=X_rec.reshape((num_pop,dim)) C=C_rec.reshape(num_pop) else: X=None C=None X=comm.bcast(X,root=0) C=comm.bcast(C,root=0) loop=loop+1 C_de[:,loop]=C C_min_de=np.min(C_de,0) if rank==0: eval_de=np.linspace(0,num_pop*1000*(opt_it+1),1001) else: eval_de=None stop_time=time.time() if rank==0: print('DE: {:1.1f}s'.format(stop_time-start_time)) start_time=time.time() #post opt i_post=200 X_post_rank=np.copy(X_rank) C_rank=np.zeros((num_pop_perrank,i_post+1)) C_rank[:,0]=cost(X_post_rank,X0) M_rank=np.zeros((num_pop_perrank,dim)) V_rank=np.zeros((num_pop_perrank,dim)) eta=0.001 betam=0.9 betav=0.999 betamh=0.9 betavh=0.999 for it_post in range(i_post): G_rank=gradient(X_post_rank,X0) M_rank=betam*M_rank+(1-betam)*G_rank V_rank=betav*V_rank+(1-betav)*G_rank**2 Mh_rank=M_rank/(1-betamh) Vh_rank=V_rank/(1-betavh) betamh=betamh*betam betavh=betavh*betav D_rank=eta*Mh_rank/(Vh_rank**0.5 +1e-8) X_post_rank=X_post_rank-D_rank X_post_rank=np.clip(X_post_rank,-1,1) C_rank[:,it_post+1]=cost(X_post_rank,X0) if rank==0: C_post=np.zeros((size,num_pop_perrank,i_post+1)) else: C_post=None eval_post=None data=None comm.Barrier() comm.Gather(C_rank,C_post,root=0) stop_time=time.time() if rank==0: print('LO: {:1.1f}s'.format(stop_time-start_time)) C_post=np.min(C_post[:,:,opt_it:],(0,1)) eval_post=np.linspace(0,(i_post-opt_it)*num_pop,i_post+1-opt_it)+eval_de[-1] data=[C_min_de,C_post,eval_de,eval_post,0] np.save('Results/Benchmark_test_comp_data.npy',np.array(data))
{"hexsha": "421664ba45d6daa2ebb9e91f16accd1c2b71a245", "size": 14938, "ext": "py", "lang": "Python", "max_stars_repo_path": "Benchmark_functions/C1/benchmark_test_c1.py", "max_stars_repo_name": "julianschumann/ae-opt", "max_stars_repo_head_hexsha": "611b6c893546267732a2d690df20a4cc238002e6", "max_stars_repo_licenses": ["CC0-1.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "Benchmark_functions/C1/benchmark_test_c1.py", "max_issues_repo_name": "julianschumann/ae-opt", "max_issues_repo_head_hexsha": "611b6c893546267732a2d690df20a4cc238002e6", "max_issues_repo_licenses": ["CC0-1.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "Benchmark_functions/C1/benchmark_test_c1.py", "max_forks_repo_name": "julianschumann/ae-opt", "max_forks_repo_head_hexsha": "611b6c893546267732a2d690df20a4cc238002e6", "max_forks_repo_licenses": ["CC0-1.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 29.5801980198, "max_line_length": 100, "alphanum_fraction": 0.6056366314, "include": true, "reason": "import numpy", "num_tokens": 4863}
% VL_LBP Local Binary Patterns % F = VL_LBP(IM, CELLSIZE) computes the Local Binary Pattern (LBP) % features for image I. % % IM is divided in cells of size CELLSIZE. F is a three-dimensional % array containing one histograms of quantized LBP features per % cell. The witdh of F is FLOOR(WIDTH/CELLSIZE), where WIDTH is the % width of the image. The same for the height. The third dimension % is 58. % % See also: VL_HELP(). % AUTORIGHTS
{"author": "Cloud-CV", "repo": "object-proposals", "sha": "597a89520bc1b0b261420d7627b8c36439a24c7a", "save_path": "github-repos/MATLAB/Cloud-CV-object-proposals", "path": "github-repos/MATLAB/Cloud-CV-object-proposals/object-proposals-597a89520bc1b0b261420d7627b8c36439a24c7a/dependencies/vlfeat-0.9.16/toolbox/misc/vl_lbp.m"}
""" Modeling Relational Data with Graph Convolutional Networks Paper: https://arxiv.org/abs/1703.06103 Code: https://github.com/tkipf/relational-gcn Difference compared to tkipf/relation-gcn * l2norm applied to all weights * remove nodes that won't be touched """ import argparse import itertools import numpy as np import time import os os.environ['DGLBACKEND']='pytorch' import torch as th import torch.nn as nn import torch.nn.functional as F import torch.multiprocessing as mp from torch.multiprocessing import Queue from torch.nn.parallel import DistributedDataParallel from torch.utils.data import DataLoader import dgl from dgl import DGLGraph from dgl.distributed import DistDataLoader from functools import partial from dgl.nn import RelGraphConv import tqdm from ogb.nodeproppred import DglNodePropPredDataset from pyinstrument import Profiler class EntityClassify(nn.Module): """ Entity classification class for RGCN Parameters ---------- device : int Device to run the layer. num_nodes : int Number of nodes. h_dim : int Hidden dim size. out_dim : int Output dim size. num_rels : int Numer of relation types. num_bases : int Number of bases. If is none, use number of relations. num_hidden_layers : int Number of hidden RelGraphConv Layer dropout : float Dropout use_self_loop : bool Use self loop if True, default False. low_mem : bool True to use low memory implementation of relation message passing function trade speed with memory consumption """ def __init__(self, device, h_dim, out_dim, num_rels, num_bases=None, num_hidden_layers=1, dropout=0, use_self_loop=False, low_mem=False, layer_norm=False): super(EntityClassify, self).__init__() self.device = device self.h_dim = h_dim self.out_dim = out_dim self.num_rels = num_rels self.num_bases = None if num_bases < 0 else num_bases self.num_hidden_layers = num_hidden_layers self.dropout = dropout self.use_self_loop = use_self_loop self.low_mem = low_mem self.layer_norm = layer_norm self.layers = nn.ModuleList() # i2h self.layers.append(RelGraphConv( self.h_dim, self.h_dim, self.num_rels, "basis", self.num_bases, activation=F.relu, self_loop=self.use_self_loop, low_mem=self.low_mem, dropout=self.dropout)) # h2h for idx in range(self.num_hidden_layers): self.layers.append(RelGraphConv( self.h_dim, self.h_dim, self.num_rels, "basis", self.num_bases, activation=F.relu, self_loop=self.use_self_loop, low_mem=self.low_mem, dropout=self.dropout)) # h2o self.layers.append(RelGraphConv( self.h_dim, self.out_dim, self.num_rels, "basis", self.num_bases, activation=None, self_loop=self.use_self_loop, low_mem=self.low_mem)) def forward(self, blocks, feats, norm=None): if blocks is None: # full graph training blocks = [self.g] * len(self.layers) h = feats for layer, block in zip(self.layers, blocks): block = block.to(self.device) h = layer(block, h, block.edata[dgl.ETYPE], block.edata['norm']) return h def init_emb(shape, dtype): arr = th.zeros(shape, dtype=dtype) nn.init.uniform_(arr, -1.0, 1.0) return arr class DistEmbedLayer(nn.Module): r"""Embedding layer for featureless heterograph. Parameters ---------- dev_id : int Device to run the layer. g : DistGraph training graph embed_size : int Output embed size sparse_emb: bool Whether to use sparse embedding Default: False dgl_sparse_emb: bool Whether to use DGL sparse embedding Default: False embed_name : str, optional Embed name """ def __init__(self, dev_id, g, embed_size, sparse_emb=False, dgl_sparse_emb=False, feat_name='feat', embed_name='node_emb'): super(DistEmbedLayer, self).__init__() self.dev_id = dev_id self.embed_size = embed_size self.embed_name = embed_name self.feat_name = feat_name self.sparse_emb = sparse_emb self.g = g self.ntype_id_map = {g.get_ntype_id(ntype):ntype for ntype in g.ntypes} self.node_projs = nn.ModuleDict() for ntype in g.ntypes: if feat_name in g.nodes[ntype].data: self.node_projs[ntype] = nn.Linear(g.nodes[ntype].data[feat_name].shape[1], embed_size) nn.init.xavier_uniform_(self.node_projs[ntype].weight) print('node {} has data {}'.format(ntype, feat_name)) if sparse_emb: if dgl_sparse_emb: self.node_embeds = {} for ntype in g.ntypes: # We only create embeddings for nodes without node features. if feat_name not in g.nodes[ntype].data: part_policy = g.get_node_partition_policy(ntype) self.node_embeds[ntype] = dgl.distributed.DistEmbedding(g.number_of_nodes(ntype), self.embed_size, embed_name + '_' + ntype, init_emb, part_policy) else: self.node_embeds = nn.ModuleDict() for ntype in g.ntypes: # We only create embeddings for nodes without node features. if feat_name not in g.nodes[ntype].data: self.node_embeds[ntype] = th.nn.Embedding(g.number_of_nodes(ntype), self.embed_size, sparse=self.sparse_emb) nn.init.uniform_(self.node_embeds[ntype].weight, -1.0, 1.0) else: self.node_embeds = nn.ModuleDict() for ntype in g.ntypes: # We only create embeddings for nodes without node features. if feat_name not in g.nodes[ntype].data: self.node_embeds[ntype] = th.nn.Embedding(g.number_of_nodes(ntype), self.embed_size) nn.init.uniform_(self.node_embeds[ntype].weight, -1.0, 1.0) def forward(self, node_ids, ntype_ids): """Forward computation Parameters ---------- node_ids : Tensor node ids to generate embedding for. ntype_ids : Tensor node type ids Returns ------- tensor embeddings as the input of the next layer """ embeds = th.empty(node_ids.shape[0], self.embed_size, device=self.dev_id) for ntype_id in th.unique(ntype_ids).tolist(): ntype = self.ntype_id_map[int(ntype_id)] loc = ntype_ids == ntype_id if self.feat_name in self.g.nodes[ntype].data: embeds[loc] = self.node_projs[ntype](self.g.nodes[ntype].data[self.feat_name][node_ids[ntype_ids == ntype_id]].to(self.dev_id)) else: embeds[loc] = self.node_embeds[ntype](node_ids[ntype_ids == ntype_id]).to(self.dev_id) return embeds def compute_acc(results, labels): """ Compute the accuracy of prediction given the labels. """ labels = labels.long() return (results == labels).float().sum() / len(results) def gen_norm(g): _, v, eid = g.all_edges(form='all') _, inverse_index, count = th.unique(v, return_inverse=True, return_counts=True) degrees = count[inverse_index] norm = th.ones(eid.shape[0], device=eid.device) / degrees norm = norm.unsqueeze(1) g.edata['norm'] = norm def evaluate(g, model, embed_layer, labels, eval_loader, test_loader, all_val_nid, all_test_nid): model.eval() embed_layer.eval() eval_logits = [] eval_seeds = [] global_results = dgl.distributed.DistTensor(labels.shape, th.long, 'results', persistent=True) with th.no_grad(): for sample_data in tqdm.tqdm(eval_loader): seeds, blocks = sample_data for block in blocks: gen_norm(block) feats = embed_layer(blocks[0].srcdata[dgl.NID], blocks[0].srcdata[dgl.NTYPE]) logits = model(blocks, feats) eval_logits.append(logits.cpu().detach()) assert np.all(seeds.numpy() < g.number_of_nodes('paper')) eval_seeds.append(seeds.cpu().detach()) eval_logits = th.cat(eval_logits) eval_seeds = th.cat(eval_seeds) global_results[eval_seeds] = eval_logits.argmax(dim=1) test_logits = [] test_seeds = [] with th.no_grad(): for sample_data in tqdm.tqdm(test_loader): seeds, blocks = sample_data for block in blocks: gen_norm(block) feats = embed_layer(blocks[0].srcdata[dgl.NID], blocks[0].srcdata[dgl.NTYPE]) logits = model(blocks, feats) test_logits.append(logits.cpu().detach()) assert np.all(seeds.numpy() < g.number_of_nodes('paper')) test_seeds.append(seeds.cpu().detach()) test_logits = th.cat(test_logits) test_seeds = th.cat(test_seeds) global_results[test_seeds] = test_logits.argmax(dim=1) g.barrier() if g.rank() == 0: return compute_acc(global_results[all_val_nid], labels[all_val_nid]), \ compute_acc(global_results[all_test_nid], labels[all_test_nid]) else: return -1, -1 class NeighborSampler: """Neighbor sampler Parameters ---------- g : DGLHeterograph Full graph target_idx : tensor The target training node IDs in g fanouts : list of int Fanout of each hop starting from the seed nodes. If a fanout is None, sample full neighbors. """ def __init__(self, g, fanouts, sample_neighbors): self.g = g self.fanouts = fanouts self.sample_neighbors = sample_neighbors def sample_blocks(self, seeds): """Do neighbor sample Parameters ---------- seeds : Seed nodes Returns ------- tensor Seed nodes, also known as target nodes blocks Sampled subgraphs """ blocks = [] etypes = [] norms = [] ntypes = [] seeds = th.LongTensor(np.asarray(seeds)) gpb = self.g.get_partition_book() # We need to map the per-type node IDs to homogeneous IDs. cur = gpb.map_to_homo_nid(seeds, 'paper') for fanout in self.fanouts: # For a heterogeneous input graph, the returned frontier is stored in # the homogeneous graph format. frontier = self.sample_neighbors(self.g, cur, fanout, replace=False) block = dgl.to_block(frontier, cur) cur = block.srcdata[dgl.NID] block.edata[dgl.EID] = frontier.edata[dgl.EID] # Map the homogeneous edge Ids to their edge type. block.edata[dgl.ETYPE], block.edata[dgl.EID] = gpb.map_to_per_etype(block.edata[dgl.EID]) # Map the homogeneous node Ids to their node types and per-type Ids. block.srcdata[dgl.NTYPE], block.srcdata[dgl.NID] = gpb.map_to_per_ntype(block.srcdata[dgl.NID]) block.dstdata[dgl.NTYPE], block.dstdata[dgl.NID] = gpb.map_to_per_ntype(block.dstdata[dgl.NID]) blocks.insert(0, block) return seeds, blocks def run(args, device, data): g, num_classes, train_nid, val_nid, test_nid, labels, all_val_nid, all_test_nid = data num_rels = len(g.etypes) fanouts = [int(fanout) for fanout in args.fanout.split(',')] val_fanouts = [int(fanout) for fanout in args.validation_fanout.split(',')] sampler = NeighborSampler(g, fanouts, dgl.distributed.sample_neighbors) # Create DataLoader for constructing blocks dataloader = DistDataLoader( dataset=train_nid, batch_size=args.batch_size, collate_fn=sampler.sample_blocks, shuffle=True, drop_last=False) valid_sampler = NeighborSampler(g, val_fanouts, dgl.distributed.sample_neighbors) # Create DataLoader for constructing blocks valid_dataloader = DistDataLoader( dataset=val_nid, batch_size=args.batch_size, collate_fn=valid_sampler.sample_blocks, shuffle=False, drop_last=False) test_sampler = NeighborSampler(g, [-1] * args.n_layers, dgl.distributed.sample_neighbors) # Create DataLoader for constructing blocks test_dataloader = DistDataLoader( dataset=test_nid, batch_size=args.batch_size, collate_fn=test_sampler.sample_blocks, shuffle=False, drop_last=False) embed_layer = DistEmbedLayer(device, g, args.n_hidden, sparse_emb=args.sparse_embedding, dgl_sparse_emb=args.dgl_sparse, feat_name='feat') model = EntityClassify(device, args.n_hidden, num_classes, num_rels, num_bases=args.n_bases, num_hidden_layers=args.n_layers-2, dropout=args.dropout, use_self_loop=args.use_self_loop, low_mem=args.low_mem, layer_norm=args.layer_norm) model = model.to(device) if not args.standalone: model = th.nn.parallel.DistributedDataParallel(model) # If there are dense parameters in the embedding layer # or we use Pytorch saprse embeddings. if len(embed_layer.node_projs) > 0 or not args.dgl_sparse: embed_layer = DistributedDataParallel(embed_layer, device_ids=None, output_device=None) if args.sparse_embedding: if args.dgl_sparse and args.standalone: emb_optimizer = dgl.distributed.SparseAdagrad(list(embed_layer.node_embeds.values()), lr=args.sparse_lr) print('optimize DGL sparse embedding:', embed_layer.node_embeds.keys()) elif args.dgl_sparse: emb_optimizer = dgl.distributed.SparseAdagrad(list(embed_layer.module.node_embeds.values()), lr=args.sparse_lr) print('optimize DGL sparse embedding:', embed_layer.module.node_embeds.keys()) elif args.standalone: emb_optimizer = th.optim.SparseAdam(list(embed_layer.node_embeds.parameters()), lr=args.sparse_lr) print('optimize Pytorch sparse embedding:', embed_layer.node_embeds) else: emb_optimizer = th.optim.SparseAdam(list(embed_layer.module.node_embeds.parameters()), lr=args.sparse_lr) print('optimize Pytorch sparse embedding:', embed_layer.module.node_embeds) dense_params = list(model.parameters()) if args.node_feats: if args.standalone: dense_params += list(embed_layer.node_projs.parameters()) print('optimize dense projection:', embed_layer.node_projs) else: dense_params += list(embed_layer.module.node_projs.parameters()) print('optimize dense projection:', embed_layer.module.node_projs) optimizer = th.optim.Adam(dense_params, lr=args.lr, weight_decay=args.l2norm) else: all_params = list(model.parameters()) + list(embed_layer.parameters()) optimizer = th.optim.Adam(all_params, lr=args.lr, weight_decay=args.l2norm) # training loop print("start training...") for epoch in range(args.n_epochs): tic = time.time() sample_time = 0 copy_time = 0 forward_time = 0 backward_time = 0 update_time = 0 number_train = 0 step_time = [] iter_t = [] sample_t = [] feat_copy_t = [] forward_t = [] backward_t = [] update_t = [] iter_tput = [] start = time.time() # Loop over the dataloader to sample the computation dependency graph as a list of # blocks. step_time = [] for step, sample_data in enumerate(dataloader): seeds, blocks = sample_data number_train += seeds.shape[0] tic_step = time.time() sample_time += tic_step - start sample_t.append(tic_step - start) for block in blocks: gen_norm(block) feats = embed_layer(blocks[0].srcdata[dgl.NID], blocks[0].srcdata[dgl.NTYPE]) label = labels[seeds] copy_time = time.time() feat_copy_t.append(copy_time - tic_step) # forward logits = model(blocks, feats) loss = F.cross_entropy(logits, label) forward_end = time.time() # backward optimizer.zero_grad() if args.sparse_embedding and not args.dgl_sparse: emb_optimizer.zero_grad() loss.backward() optimizer.step() if args.sparse_embedding: emb_optimizer.step() compute_end = time.time() forward_t.append(forward_end - copy_time) backward_t.append(compute_end - forward_end) # Aggregate gradients in multiple nodes. update_t.append(time.time() - compute_end) step_t = time.time() - start step_time.append(step_t) train_acc = th.sum(logits.argmax(dim=1) == label).item() / len(seeds) if step % args.log_every == 0: print('[{}] Epoch {:05d} | Step {:05d} | Train acc {:.4f} | Loss {:.4f} | time {:.3f} s' \ '| sample {:.3f} | copy {:.3f} | forward {:.3f} | backward {:.3f} | update {:.3f}'.format( g.rank(), epoch, step, train_acc, loss.item(), np.sum(step_time[-args.log_every:]), np.sum(sample_t[-args.log_every:]), np.sum(feat_copy_t[-args.log_every:]), np.sum(forward_t[-args.log_every:]), np.sum(backward_t[-args.log_every:]), np.sum(update_t[-args.log_every:]))) start = time.time() print('[{}]Epoch Time(s): {:.4f}, sample: {:.4f}, data copy: {:.4f}, forward: {:.4f}, backward: {:.4f}, update: {:.4f}, #number_train: {}'.format( g.rank(), np.sum(step_time), np.sum(sample_t), np.sum(feat_copy_t), np.sum(forward_t), np.sum(backward_t), np.sum(update_t), number_train)) epoch += 1 start = time.time() g.barrier() val_acc, test_acc = evaluate(g, model, embed_layer, labels, valid_dataloader, test_dataloader, all_val_nid, all_test_nid) if val_acc >= 0: print('Val Acc {:.4f}, Test Acc {:.4f}, time: {:.4f}'.format(val_acc, test_acc, time.time() - start)) def main(args): dgl.distributed.initialize(args.ip_config, args.num_servers, num_workers=args.num_workers) if not args.standalone: th.distributed.init_process_group(backend='gloo') g = dgl.distributed.DistGraph(args.graph_name, part_config=args.conf_path) print('rank:', g.rank()) pb = g.get_partition_book() train_nid = dgl.distributed.node_split(g.nodes['paper'].data['train_mask'], pb, ntype='paper', force_even=True) val_nid = dgl.distributed.node_split(g.nodes['paper'].data['val_mask'], pb, ntype='paper', force_even=True) test_nid = dgl.distributed.node_split(g.nodes['paper'].data['test_mask'], pb, ntype='paper', force_even=True) local_nid = pb.partid2nids(pb.partid, 'paper').detach().numpy() print('part {}, train: {} (local: {}), val: {} (local: {}), test: {} (local: {})'.format( g.rank(), len(train_nid), len(np.intersect1d(train_nid.numpy(), local_nid)), len(val_nid), len(np.intersect1d(val_nid.numpy(), local_nid)), len(test_nid), len(np.intersect1d(test_nid.numpy(), local_nid)))) device = th.device('cpu') labels = g.nodes['paper'].data['labels'][np.arange(g.number_of_nodes('paper'))] all_val_nid = th.LongTensor(np.nonzero(g.nodes['paper'].data['val_mask'][np.arange(g.number_of_nodes('paper'))])).squeeze() all_test_nid = th.LongTensor(np.nonzero(g.nodes['paper'].data['test_mask'][np.arange(g.number_of_nodes('paper'))])).squeeze() n_classes = len(th.unique(labels[labels >= 0])) print('#classes:', n_classes) run(args, device, (g, n_classes, train_nid, val_nid, test_nid, labels, all_val_nid, all_test_nid)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='RGCN') # distributed training related parser.add_argument('--graph-name', type=str, help='graph name') parser.add_argument('--id', type=int, help='the partition id') parser.add_argument('--ip-config', type=str, help='The file for IP configuration') parser.add_argument('--conf-path', type=str, help='The path to the partition config file') parser.add_argument('--num-client', type=int, help='The number of clients') parser.add_argument('--num-servers', type=int, default=1, help='Server count on each machine.') # rgcn related parser.add_argument("--gpu", type=str, default='0', help="gpu") parser.add_argument("--dropout", type=float, default=0, help="dropout probability") parser.add_argument("--n-hidden", type=int, default=16, help="number of hidden units") parser.add_argument("--lr", type=float, default=1e-2, help="learning rate") parser.add_argument("--sparse-lr", type=float, default=1e-2, help="sparse lr rate") parser.add_argument("--n-bases", type=int, default=-1, help="number of filter weight matrices, default: -1 [use all]") parser.add_argument("--n-layers", type=int, default=2, help="number of propagation rounds") parser.add_argument("-e", "--n-epochs", type=int, default=50, help="number of training epochs") parser.add_argument("-d", "--dataset", type=str, required=True, help="dataset to use") parser.add_argument("--l2norm", type=float, default=0, help="l2 norm coef") parser.add_argument("--relabel", default=False, action='store_true', help="remove untouched nodes and relabel") parser.add_argument("--fanout", type=str, default="4, 4", help="Fan-out of neighbor sampling.") parser.add_argument("--validation-fanout", type=str, default=None, help="Fan-out of neighbor sampling during validation.") parser.add_argument("--use-self-loop", default=False, action='store_true', help="include self feature as a special relation") parser.add_argument("--batch-size", type=int, default=100, help="Mini-batch size. ") parser.add_argument("--eval-batch-size", type=int, default=128, help="Mini-batch size. ") parser.add_argument('--log-every', type=int, default=20) parser.add_argument("--num-workers", type=int, default=1, help="Number of workers for distributed dataloader.") parser.add_argument("--low-mem", default=False, action='store_true', help="Whether use low mem RelGraphCov") parser.add_argument("--mix-cpu-gpu", default=False, action='store_true', help="Whether store node embeddins in cpu") parser.add_argument("--sparse-embedding", action='store_true', help='Use sparse embedding for node embeddings.') parser.add_argument("--dgl-sparse", action='store_true', help='Whether to use DGL sparse embedding') parser.add_argument('--node-feats', default=False, action='store_true', help='Whether use node features') parser.add_argument('--layer-norm', default=False, action='store_true', help='Use layer norm') parser.add_argument('--local_rank', type=int, help='get rank of the process') parser.add_argument('--standalone', action='store_true', help='run in the standalone mode') args = parser.parse_args() # if validation_fanout is None, set it with args.fanout if args.validation_fanout is None: args.validation_fanout = args.fanout print(args) main(args)
{"hexsha": "d4d91fd858fd54adaa3a4b1c5dab60fd478fe19b", "size": 24691, "ext": "py", "lang": "Python", "max_stars_repo_path": "examples/pytorch/rgcn/experimental/entity_classify_dist.py", "max_stars_repo_name": "Padarn/dgl", "max_stars_repo_head_hexsha": "5087a21279be98021fddfd1ba61487be4adfede8", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2020-10-12T08:14:04.000Z", "max_stars_repo_stars_event_max_datetime": "2020-10-12T08:14:04.000Z", "max_issues_repo_path": "examples/pytorch/rgcn/experimental/entity_classify_dist.py", "max_issues_repo_name": "Padarn/dgl", "max_issues_repo_head_hexsha": "5087a21279be98021fddfd1ba61487be4adfede8", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "examples/pytorch/rgcn/experimental/entity_classify_dist.py", "max_forks_repo_name": "Padarn/dgl", "max_forks_repo_head_hexsha": "5087a21279be98021fddfd1ba61487be4adfede8", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2022-02-08T11:27:24.000Z", "max_forks_repo_forks_event_max_datetime": "2022-02-08T11:27:24.000Z", "avg_line_length": 42.3516295026, "max_line_length": 154, "alphanum_fraction": 0.610829857, "include": true, "reason": "import numpy", "num_tokens": 5649}
from django.shortcuts import render from django.http import HttpResponse, Http404 import os from os import path import numpy as np import pandas as pd from PIL import Image from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator import matplotlib.pyplot as plt from newspaper import Article import nltk nltk.download('punkt') import re, pprint from nltk import word_tokenize from hatesonar import Sonar from django.views.static import serve def checkKey(dict, key): if key in dict.keys(): return True print("Present, ", end =" ") print("value =", dict[key]) else: return False print("Not present") def home(request): return render(request, 'consciousApp/home.html') def ocr(request): return render(request, 'consciousApp/ocr.html') def texttobrf(request): print(request.POST) #data=request.POST.get('text_data') data=dict(request.POST) text_data=data['text_data'] text_file = open('./consciousApp/static/consciousApp/input/data.txt', 'w+') text_file.write(str(text_data[0])) text_file.close() os.system("./consciousApp/static/consciousApp/file2brl/file2brl ./consciousApp/static/consciousApp/input/data.txt ./consciousApp/static/consciousApp/output/data.brf") return render(request,'consciousApp/braille.html') def braille(request): val = 'I am reading Braille' print(request.POST) key = 'download' one=checkKey(dict(request.POST), key); if one == True: filepath = './consciousApp/static/consciousApp/output/data.brf' return serve(request, os.path.basename(filepath), os.path.dirname(filepath)) if request.method=='POST': val = request.POST['some_text'] return render(request,'consciousApp/braille.html', {'val': val}) def triggers(request): if request.method=='POST': print(request.POST) data=dict(request.POST) # Driver Code key = 'show_details' one=checkKey(data, key); key = 'check_triggers' two=checkKey(data, key) key = 'show_wordcloud' three=checkKey(data, key) key = 'hate_speech' four=checkKey(data, key) print(one,two,three) #URL Link case if(one==True): url=data['Link'][0] print(url) article = Article(url) article.download() article.parse() authors=article.authors publishdate=article.publish_date #article.text article.nlp() keywords=article.keywords articlesummary=article.summary return render(request, 'consciousApp/triggers.html', {'authors':authors , 'publishdate': publishdate,'keywords':keywords,'articlesummary':articlesummary}) #Show triggers elif(two==True): text = request.POST['input_text'].lower() triggers = ["9 11", "9-11", "9/11", "ableism", "abusive", "ageism", "alcoholism", "animal abuse", "animal death", "animal violence", "bestiality", "gore", "corpse", "bully", "cannibal", "car accident", "child abuse", "childbirth", "classism", "death", "decapitation", "abuse", "drug", "heroin", "cocaine", "eating disorder", "anorexia", "binge eating", "bulimia", "fatphobia", "forced captivity", "holocaust", "hitler", "homophobia", "hostage", "incest", "kidnap", "murder", "nazi", "overdose", "pedophilia", "prostitution", "PTSD", "racism", "racist", "rape", "raping", "scarification", "self-harm", "self harm", "cutting", "sexism", "slavery", "slurs", "suicide", "suicidal", "swearing", "terminal illness", "terrorism", "torture", "transphobia", "violence", "warfare"] tw = [] text_file = open('./consciousApp/static/consciousApp/input/triggercheckdata.txt', 'w+') text_file.write(str(text)) text_file.close() for trigger in triggers: if text.find(trigger) > -1: tw.append(trigger) if tw == []: tw.append('No Triggers Found') return render(request, 'consciousApp/triggers.html', {'text': text, 'triggers': tw,'data':data}) #Show_cloud elif(three==True): text = request.POST['input_text'].lower() tokens = word_tokenize(text) textdata = nltk.Text(tokens) stopwords = set(STOPWORDS) wordcloud = WordCloud(stopwords=stopwords, max_font_size=50, max_words=100, background_color="white").generate(text) wordcloud.to_file("./consciousApp/static/consciousApp/output/word-cloud.png") data="./../../static/consciousApp/output/word-cloud.png" return render(request, 'consciousApp/triggers.html', {'data': data} ) elif(four==True): sonar = Sonar(); text = request.POST['input_text'].lower(); url=data['Link'][0]; data=sonar.ping(text=text)["classes"]; hate_speech=data[0]; hate_speech_confidence=hate_speech["confidence"]*100; offensive_language=data[1]; offensive_language_confidence=offensive_language["confidence"]*100; neither=data[2]; neither_confidence=neither["confidence"]*100; print(type(data)) print(offensive_language_confidence*100,hate_speech_confidence*100,neither_confidence*100) return render(request, 'consciousApp/triggers.html',{'hate_speech_confidence':hate_speech_confidence,'offensive_language_confidence':offensive_language_confidence,'neither_confidence':neither_confidence}) else: return render(request, 'consciousApp/triggers.html') def dyslexicsol(request): val = 'Hello! Convert your text into dyslexic readable form.' if request.method == 'POST': val = request.POST['some_text'] return render(request,'consciousApp/open-dyslexic.html', {'val':val})
{"hexsha": "b2eee6ce91ad749da3f23bd12f42ce53bcb15b02", "size": 6178, "ext": "py", "lang": "Python", "max_stars_repo_path": "consciousApp/views.py", "max_stars_repo_name": "ashwani-rathee/Conscious", "max_stars_repo_head_hexsha": "8eda41f21bf5e574e657d325f9c86e20635e812a", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 2, "max_stars_repo_stars_event_min_datetime": "2021-01-18T09:43:13.000Z", "max_stars_repo_stars_event_max_datetime": "2021-02-07T09:22:09.000Z", "max_issues_repo_path": "consciousApp/views.py", "max_issues_repo_name": "ashwani-rathee/Conscious", "max_issues_repo_head_hexsha": "8eda41f21bf5e574e657d325f9c86e20635e812a", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "consciousApp/views.py", "max_forks_repo_name": "ashwani-rathee/Conscious", "max_forks_repo_head_hexsha": "8eda41f21bf5e574e657d325f9c86e20635e812a", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2021-01-19T07:09:17.000Z", "max_forks_repo_forks_event_max_datetime": "2021-02-18T15:33:36.000Z", "avg_line_length": 46.4511278195, "max_line_length": 787, "alphanum_fraction": 0.6133052768, "include": true, "reason": "import numpy", "num_tokens": 1421}
""" Ichimoku Indicator """ import math import numpy import pandas from talib import abstract from analyzers.utils import IndicatorUtils class Ichimoku(IndicatorUtils): def analyze(self, historical_data, signal=['leading_span_a', 'leading_span_b'], hot_thresh=None, cold_thresh=None): """Performs an ichimoku cloud analysis on the historical data Args: historical_data (list): A matrix of historical OHCLV data. signal (list, optional): Defaults to leading_span_a and leading_span_b. The indicator line to check hot/cold against. hot_thresh (float, optional): Defaults to None. The threshold at which this might be good to purchase. cold_thresh (float, optional): Defaults to None. The threshold at which this might be good to sell. Returns: pandas.DataFrame: A dataframe containing the indicators and hot/cold values. """ tenkansen_period = 9 kijunsen_period = 26 leading_span_b_period = 52 dataframe = self.convert_to_dataframe(historical_data) ichimoku_columns = { 'tenkansen': [numpy.nan] * dataframe.index.shape[0], 'kijunsen': [numpy.nan] * dataframe.index.shape[0], 'leading_span_a': [numpy.nan] * dataframe.index.shape[0], 'leading_span_b': [numpy.nan] * dataframe.index.shape[0] } ichimoku_values = pandas.DataFrame( ichimoku_columns, index=dataframe.index ) ichimoku_df_size = ichimoku_values.shape[0] for index in range(tenkansen_period, ichimoku_df_size): start_index = index - tenkansen_period last_index = index + 1 tankansen_min = dataframe['low'][start_index:last_index].min() tankansen_max = dataframe['high'][start_index:last_index].max() ichimoku_values['tenkansen'][index] = (tankansen_min + tankansen_max) / 2 for index in range(kijunsen_period, ichimoku_df_size): start_index = index - kijunsen_period last_index = index + 1 kijunsen_min = dataframe['low'][start_index:last_index].min() kijunsen_max = dataframe['high'][start_index:last_index].max() ichimoku_values['kijunsen'][index] = (kijunsen_min + kijunsen_max) / 2 for index in range(leading_span_b_period, ichimoku_df_size): start_index = index - leading_span_b_period last_index = index + 1 leading_span_b_min = dataframe['low'][start_index:last_index].min() leading_span_b_max = dataframe['high'][start_index:last_index].max() ichimoku_values['leading_span_b'][index] = ( leading_span_b_min + leading_span_b_max ) / 2 ichimoku_values['leading_span_a'] = ( ichimoku_values['tenkansen'] + ichimoku_values['kijunsen'] ) / 2 ichimoku_values.dropna(how='any', inplace=True) ichimoku_df_size = ichimoku_values.shape[0] ichimoku_values['is_hot'] = False ichimoku_values['is_cold'] = False for index in range(0, ichimoku_df_size): span_hot = ichimoku_values['leading_span_a'][index] > ichimoku_values['leading_span_b'][index] close_hot = dataframe['close'][index] > ichimoku_values['leading_span_a'][index] if hot_thresh: ichimoku_values.at[ichimoku_values.index[index], 'is_hot'] = span_hot and close_hot span_cold = ichimoku_values['leading_span_a'][index] < ichimoku_values['leading_span_b'][index] close_cold = dataframe['close'][index] < ichimoku_values['leading_span_a'][index] if cold_thresh: ichimoku_values.at[ichimoku_values.index[index], 'is_cold'] = span_cold and close_cold return ichimoku_values
{"hexsha": "4f8cbfab1bff7d3a3ff4e2a079d5b014530f2be7", "size": 3903, "ext": "py", "lang": "Python", "max_stars_repo_path": "app/analyzers/indicators/ichimoku.py", "max_stars_repo_name": "ferreiramarcelo/telegram-crypto-signals", "max_stars_repo_head_hexsha": "321d9305de5b98cc1c70bec293cafd0ce7432db3", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1857, "max_stars_repo_stars_event_min_datetime": "2020-09-03T16:15:27.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-31T23:08:43.000Z", "max_issues_repo_path": "app/analyzers/indicators/ichimoku.py", "max_issues_repo_name": "ExBotTrader/Crypto-Signal", "max_issues_repo_head_hexsha": "7c6871baa5023e0e4cc14f4cd5ae10ac5592698d", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 154, "max_issues_repo_issues_event_min_datetime": "2018-02-26T12:37:57.000Z", "max_issues_repo_issues_event_max_datetime": "2020-08-26T13:06:08.000Z", "max_forks_repo_path": "app/analyzers/indicators/ichimoku.py", "max_forks_repo_name": "ExBotTrader/Crypto-Signal", "max_forks_repo_head_hexsha": "7c6871baa5023e0e4cc14f4cd5ae10ac5592698d", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 535, "max_forks_repo_forks_event_min_datetime": "2020-09-04T22:49:14.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-27T16:52:07.000Z", "avg_line_length": 41.0842105263, "max_line_length": 119, "alphanum_fraction": 0.6443761209, "include": true, "reason": "import numpy", "num_tokens": 931}
using SymbolicCodegen using Test @testset "SymbolicCodegen.jl" begin # Write your tests here. end
{"hexsha": "195f970efb88ccf62bc5d8e37b140e2aabaf5c08", "size": 103, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "test/runtests.jl", "max_stars_repo_name": "cscherrer/SymbolicCodegen.jl", "max_stars_repo_head_hexsha": "97815f9d900da37aee54a87b6a1f5baf9a528212", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 7, "max_stars_repo_stars_event_min_datetime": "2021-01-10T14:33:11.000Z", "max_stars_repo_stars_event_max_datetime": "2021-03-08T12:36:03.000Z", "max_issues_repo_path": "test/runtests.jl", "max_issues_repo_name": "cscherrer/SymbolicCodegen.jl", "max_issues_repo_head_hexsha": "97815f9d900da37aee54a87b6a1f5baf9a528212", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 2, "max_issues_repo_issues_event_min_datetime": "2021-01-14T03:07:37.000Z", "max_issues_repo_issues_event_max_datetime": "2021-10-03T20:37:06.000Z", "max_forks_repo_path": "test/runtests.jl", "max_forks_repo_name": "cscherrer/SymbolicCodegen.jl", "max_forks_repo_head_hexsha": "97815f9d900da37aee54a87b6a1f5baf9a528212", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 14.7142857143, "max_line_length": 35, "alphanum_fraction": 0.7669902913, "num_tokens": 30}
# coding: utf-8 # # Assignment 2 # # Before working on this assignment please read these instructions fully. In the submission area, you will notice that you can click the link to **Preview the Grading** for each step of the assignment. This is the criteria that will be used for peer grading. Please familiarize yourself with the criteria before beginning the assignment. # # An NOAA dataset has been stored in the file `data/C2A2_data/BinnedCsvs_d100/4e86d2106d0566c6ad9843d882e72791333b08be3d647dcae4f4b110.csv`. The data for this assignment comes from a subset of The National Centers for Environmental Information (NCEI) [Daily Global Historical Climatology Network](https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt) (GHCN-Daily). The GHCN-Daily is comprised of daily climate records from thousands of land surface stations across the globe. # # Each row in the assignment datafile corresponds to a single observation. # # The following variables are provided to you: # # * **id** : station identification code # * **date** : date in YYYY-MM-DD format (e.g. 2012-01-24 = January 24, 2012) # * **element** : indicator of element type # * TMAX : Maximum temperature (tenths of degrees C) # * TMIN : Minimum temperature (tenths of degrees C) # * **value** : data value for element (tenths of degrees C) # # For this assignment, you must: # # 1. Read the documentation and familiarize yourself with the dataset, then write some python code which returns a line graph of the record high and record low temperatures by day of the year over the period 2005-2014. The area between the record high and record low temperatures for each day should be shaded. # 2. Overlay a scatter of the 2015 data for any points (highs and lows) for which the ten year record (2005-2014) record high or record low was broken in 2015. # 3. Watch out for leap days (i.e. February 29th), it is reasonable to remove these points from the dataset for the purpose of this visualization. # 4. Make the visual nice! Leverage principles from the first module in this course when developing your solution. Consider issues such as legends, labels, and chart junk. # # The data you have been given is near **None, None, Singapore**, and the stations the data comes from are shown on the map below. # In[1]: import matplotlib.pyplot as plt import mplleaflet import pandas as pd def leaflet_plot_stations(binsize, hashid): df = pd.read_csv('data/C2A2_data/BinSize_d{}.csv'.format(binsize)) station_locations_by_hash = df[df['hash'] == hashid] lons = station_locations_by_hash['LONGITUDE'].tolist() lats = station_locations_by_hash['LATITUDE'].tolist() plt.figure(figsize=(8,8)) plt.scatter(lons, lats, c='r', alpha=0.7, s=200) return mplleaflet.display() leaflet_plot_stations(100,'4e86d2106d0566c6ad9843d882e72791333b08be3d647dcae4f4b110') # In[2]: df = pd.read_csv('data/C2A2_data/BinnedCsvs_d100/4e86d2106d0566c6ad9843d882e72791333b08be3d647dcae4f4b110.csv') # In[3]: df.sort(['ID','Date']).head() # In[4]: df['Year'], df['Month-Date'] = zip(*df['Date'].apply(lambda x: (x[:4], x[5:]))) df = df[df['Month-Date'] != '02-29'] # In[5]: import numpy as np temp_min = df[(df['Element'] == 'TMIN') & (df['Year'] != '2015')].groupby('Month-Date').aggregate({'Data_Value':np.min}) temp_max = df[(df['Element'] == 'TMAX') & (df['Year'] != '2015')].groupby('Month-Date').aggregate({'Data_Value':np.max}) # In[6]: temp_min.head() # In[7]: temp_min_15 = df[(df['Element'] == 'TMIN') & (df['Year'] == '2015')].groupby('Month-Date').aggregate({'Data_Value':np.min}) temp_max_15 = df[(df['Element'] == 'TMAX') & (df['Year'] == '2015')].groupby('Month-Date').aggregate({'Data_Value':np.max}) # In[8]: broken_min = np.where(temp_min_15['Data_Value'] < temp_min['Data_Value'])[0] broken_max = np.where(temp_max_15['Data_Value'] > temp_max['Data_Value'])[0] # In[9]: broken_max, broken_min # In[10]: temp_min_15.head() # In[11]: plt.figure() plt.plot(temp_min.values, 'b', label = 'record low') plt.plot(temp_max.values, 'r', label = 'record high') plt.scatter(broken_min, temp_min_15.iloc[broken_min], s = 10, c = 'g', label = 'broken low') plt.scatter(broken_max, temp_max_15.iloc[broken_max], s = 10, c = 'm', label = 'broken high') plt.gca().axis([-5, 370, -150, 650]) plt.xticks(range(0, len(temp_min), 20), temp_min.index[range(0, len(temp_min), 20)], rotation = '45') plt.xlabel('Day of the Year') plt.ylabel('Temperature (Tenths of Degrees C)') plt.title('Temperature Summary Plot near Singapore') plt.legend(loc = 4, frameon = False) plt.gca().fill_between(range(len(temp_min)), temp_min['Data_Value'], temp_max['Data_Value'], facecolor = 'yellow', alpha = 0.5) plt.gca().spines['top'].set_visible(False) plt.gca().spines['right'].set_visible(False) plt.show()
{"hexsha": "e7cbcae9caaefdd61d0dd2c1b7746491c06661ee", "size": 4815, "ext": "py", "lang": "Python", "max_stars_repo_path": "reference/coursera-Applied-Data-Science-with-Python/Applied-Plotting-Charting-And-Data-Representation-in-Python/week2/Assignment2.py", "max_stars_repo_name": "shijiansu/coursera-applied-data-science-with-python", "max_stars_repo_head_hexsha": "a0f2bbd0b9201805f26d18b73a25183cf0b3a0e9", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "reference/coursera-Applied-Data-Science-with-Python/Applied-Plotting-Charting-And-Data-Representation-in-Python/week2/Assignment2.py", "max_issues_repo_name": "shijiansu/coursera-applied-data-science-with-python", "max_issues_repo_head_hexsha": "a0f2bbd0b9201805f26d18b73a25183cf0b3a0e9", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "reference/coursera-Applied-Data-Science-with-Python/Applied-Plotting-Charting-And-Data-Representation-in-Python/week2/Assignment2.py", "max_forks_repo_name": "shijiansu/coursera-applied-data-science-with-python", "max_forks_repo_head_hexsha": "a0f2bbd0b9201805f26d18b73a25183cf0b3a0e9", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 39.4672131148, "max_line_length": 480, "alphanum_fraction": 0.7165109034, "include": true, "reason": "import numpy", "num_tokens": 1393}
""" This file contains logic responsible for teaching model on a processed dataset. It prints it's accuracy. Based on Paul van Gent's code from blog post: http://www.paulvangent.com/2016/04/01/emotion-recognition-with-python-opencv-and-a-face-dataset/ """ import glob import random import numpy as np import cv2 from image_commons import load_image fishface = cv2.face.FisherFaceRecognizer_create() training_set_size = 0.95 def get_files(emotion): """ gets paths to all images of given emotion and splits them into two sets: trainging and test :param emotion: name of emotion to find images for """ files = glob.glob("data/sorted_set/%s/*" % emotion) random.shuffle(files) training = files[:int(len(files) * training_set_size)] prediction = files[-int(len(files) * (1 - training_set_size)):] return training, prediction def make_sets(): """ method used to create datasets for all emotions. It loads both images and its labels to memory into training and test labels """ training_data = [] training_labels = [] prediction_data = [] prediction_labels = [] for emotion in emotions: training, prediction = get_files(emotion) for item in training: training_data.append(load_image(item)) training_labels.append(emotions.index(emotion)) for item in prediction: prediction_data.append(load_image(item)) prediction_labels.append(emotions.index(emotion)) return training_data, training_labels, prediction_data, prediction_labels def run_recognizer(): """ method is creating datasets using make_sets method, then it trains a model and tet with a test set. It returns correct guesses to test data count ratio """ training_data, training_labels, prediction_data, prediction_labels = make_sets() print("size of training set is:", len(training_labels), "images") fishface.train(training_data, np.asarray(training_labels)) print("predicting classification set") correct = sum(1 for id, image in enumerate(prediction_data) if fishface.predict(image)[0] == prediction_labels[id]) return ((100 * correct) / len(prediction_data)) if __name__ == '__main__': emotions = ["neutral", "anger", "disgust", "happy", "sadness", "surprise"] for i in range(0, 1): correct = run_recognizer() print("got", correct, "percent correct!") fishface.save('models/emotion_detection_model.xml')
{"hexsha": "b00bb9fcad7808d1230ec6724803b0e91e078089", "size": 2482, "ext": "py", "lang": "Python", "max_stars_repo_path": "prepare_model.py", "max_stars_repo_name": "Navaneethg98/facemoji", "max_stars_repo_head_hexsha": "7ee5dc5f9aa332847111f02c493c94eb2efdcdd3", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 130, "max_stars_repo_stars_event_min_datetime": "2017-10-09T13:56:22.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-10T19:58:07.000Z", "max_issues_repo_path": "prepare_model.py", "max_issues_repo_name": "Navaneethg98/facemoji", "max_issues_repo_head_hexsha": "7ee5dc5f9aa332847111f02c493c94eb2efdcdd3", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 3, "max_issues_repo_issues_event_min_datetime": "2018-10-30T09:51:46.000Z", "max_issues_repo_issues_event_max_datetime": "2019-07-16T08:45:06.000Z", "max_forks_repo_path": "prepare_model.py", "max_forks_repo_name": "Navaneethg98/facemoji", "max_forks_repo_head_hexsha": "7ee5dc5f9aa332847111f02c493c94eb2efdcdd3", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 47, "max_forks_repo_forks_event_min_datetime": "2017-09-22T03:27:35.000Z", "max_forks_repo_forks_event_max_datetime": "2021-02-01T16:57:55.000Z", "avg_line_length": 33.5405405405, "max_line_length": 155, "alphanum_fraction": 0.7054794521, "include": true, "reason": "import numpy", "num_tokens": 549}
program t integer,dimension(3)::i=(/1,2,3/) where (i>1) i=i*2 print *,i end program t
{"hexsha": "8954cf41fbdd84fb503988e5820d2c69276148b4", "size": 116, "ext": "f", "lang": "FORTRAN", "max_stars_repo_path": "tests/t0116x/t.f", "max_stars_repo_name": "maddenp/ppp", "max_stars_repo_head_hexsha": "81956c0fc66ff742531817ac9028c4df940cc13e", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 2, "max_stars_repo_stars_event_min_datetime": "2017-08-13T16:32:02.000Z", "max_stars_repo_stars_event_max_datetime": "2021-06-21T12:37:58.000Z", "max_issues_repo_path": "tests/t0116x/t.f", "max_issues_repo_name": "maddenp/ppp", "max_issues_repo_head_hexsha": "81956c0fc66ff742531817ac9028c4df940cc13e", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "tests/t0116x/t.f", "max_forks_repo_name": "maddenp/ppp", "max_forks_repo_head_hexsha": "81956c0fc66ff742531817ac9028c4df940cc13e", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2015-07-30T17:02:27.000Z", "max_forks_repo_forks_event_max_datetime": "2015-08-03T16:29:41.000Z", "avg_line_length": 19.3333333333, "max_line_length": 39, "alphanum_fraction": 0.4827586207, "num_tokens": 42}
# Scenario E - Peakshape Variation (pVoigt model - results evaluation) This file is used to evaluate the inference results. In this scenario the peakshape in a spectrum with a fixed number of peaks is varied from Gaussian (n = 0.0) to Lorentzian (n = 1.0). All datasets contain 3 peaks and the noise level is kept constant at 1%. The model used in the inference of the parameters is formulated as follows: \begin{equation} \large y = f(x) = \sum\limits_{m=1}^M \big[A_m \cdot f_{pseudo-Voigt}(x)\big] + \epsilon \end{equation} where: \begin{equation} \large f_{pseudo-Voigt}(x) = \eta \cdot \frac{\sigma_m^2}{(x-\mu_m)^2 + \sigma_m^2} + (1 - \eta) \cdot e^{-\frac{(x-\mu_m)^2}{2\cdot\sigma_m^2}} \end{equation} ```python %matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt import pymc3 as pm import arviz as az #az.style.use('arviz-darkgrid') print('Running on PyMC3 v{}'.format(pm.__version__)) ``` WARNING (theano.tensor.blas): Using NumPy C-API based implementation for BLAS functions. Running on PyMC3 v3.8 ## Load results summary ```python # load results from disk #fname = './scenario_peakshape_pvoigt.csv' fname = './scenario_peakshape_pvoigt_lrun.csv' df = pd.read_csv(fname) df.index += 1 df ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>r_hat</th> <th>mcse</th> <th>ess</th> <th>bfmi</th> <th>r2</th> <th>waic</th> <th>epsilon</th> <th>epsilon_real</th> <th>eta</th> <th>eta_real</th> <th>cat</th> </tr> </thead> <tbody> <tr> <th>1</th> <td>1.780909</td> <td>0.226636</td> <td>104.363636</td> <td>1.249257</td> <td>0.999856</td> <td>-4675.470979</td> <td>0.049972</td> <td>0.05</td> <td>0.005661</td> <td>0.0</td> <td>1</td> </tr> <tr> <th>2</th> <td>1.000000</td> <td>0.000000</td> <td>4383.363636</td> <td>1.029887</td> <td>0.999035</td> <td>-2331.742859</td> <td>0.109758</td> <td>0.05</td> <td>0.000332</td> <td>0.0</td> <td>1</td> </tr> <tr> <th>3</th> <td>1.070909</td> <td>0.049455</td> <td>684.363636</td> <td>1.014762</td> <td>0.999820</td> <td>-4207.406117</td> <td>0.059134</td> <td>0.05</td> <td>0.000384</td> <td>0.0</td> <td>1</td> </tr> <tr> <th>4</th> <td>1.005455</td> <td>0.003818</td> <td>1720.727273</td> <td>1.037991</td> <td>0.999818</td> <td>-4715.487126</td> <td>0.050034</td> <td>0.05</td> <td>0.008271</td> <td>0.0</td> <td>1</td> </tr> <tr> <th>5</th> <td>1.000000</td> <td>0.000727</td> <td>2124.454545</td> <td>1.044191</td> <td>0.999872</td> <td>-4726.544298</td> <td>0.049924</td> <td>0.05</td> <td>0.001852</td> <td>0.0</td> <td>1</td> </tr> <tr> <th>...</th> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> </tr> <tr> <th>196</th> <td>1.000000</td> <td>0.000182</td> <td>2297.909091</td> <td>1.000964</td> <td>0.999846</td> <td>-4766.885947</td> <td>0.049235</td> <td>0.05</td> <td>0.998066</td> <td>1.0</td> <td>5</td> </tr> <tr> <th>197</th> <td>1.450909</td> <td>0.557818</td> <td>1605.181818</td> <td>1.008004</td> <td>0.999950</td> <td>-4836.525261</td> <td>0.048113</td> <td>0.05</td> <td>0.999041</td> <td>1.0</td> <td>5</td> </tr> <tr> <th>198</th> <td>1.000000</td> <td>0.000000</td> <td>4905.090909</td> <td>1.054635</td> <td>0.999424</td> <td>-2786.356407</td> <td>0.094399</td> <td>0.05</td> <td>0.977116</td> <td>1.0</td> <td>5</td> </tr> <tr> <th>199</th> <td>1.000000</td> <td>0.000000</td> <td>3922.636364</td> <td>0.997197</td> <td>0.999916</td> <td>-4743.426499</td> <td>0.049649</td> <td>0.05</td> <td>0.999503</td> <td>1.0</td> <td>5</td> </tr> <tr> <th>200</th> <td>1.000000</td> <td>0.000000</td> <td>3774.636364</td> <td>1.053122</td> <td>0.999882</td> <td>-4733.435338</td> <td>0.049827</td> <td>0.05</td> <td>0.999430</td> <td>1.0</td> <td>5</td> </tr> </tbody> </table> <p>200 rows × 11 columns</p> </div> ```python # number of succesfull convergences suc = df.loc[(df['r_hat'] <= 1.1) & (df['r2'] >= 0.99)] len(suc) ``` 189 ```python import seaborn as sns sns.set(style="ticks", rc={'figure.figsize':(8,6)}, font_scale=1.35) # color palette pal = sns.cubehelix_palette(8, rot=-.5, dark=.3) ax = sns.violinplot(x='eta_real', y='epsilon', data=suc, palette=pal, linewidth=2) \ .set_title("Peakshape eta (real) vs. Noise level (inferred)") plt.savefig('violinplot_noise.png', dpi=150) ``` ```python #ax = sns.boxplot(x='eta_real', y='epsilon', data=suc, palette=pal, linewidth=2, fliersize=2) \ # .set_title("Peakshape eta (real) vs. Noise level (inferred)") ax = sns.boxplot(x='eta_real', y='epsilon', data=suc, palette=sns.color_palette("Purples"), linewidth=1, fliersize=2.5) plt.savefig('boxplot_noise.png', dpi=150) ``` ```python ax = sns.violinplot(x='eta_real', y='eta', data=suc, palette=pal, linewidth=2) \ .set_title("Peakshape eta (real) vs. Peakshape eta (inferred)") plt.savefig('violinplot_peakshape.png', dpi=150) ``` ```python #ax = sns.boxplot(x='eta_real', y='eta', data=suc, palette=pal, linewidth=2, fliersize=2) \ # .set_title("Peakshape eta (real) vs. Peakshape eta (inferred)") #ax = sns.boxplot(x='eta_real', y='eta', data=suc, palette=pal, linewidth=2, fliersize=2) ax = sns.boxplot(x='eta_real', y='eta', data=suc, palette=sns.color_palette("Purples"), linewidth=1, fliersize=2.5) plt.savefig('boxplot_peakshape.png', dpi=150) ``` ```python # table values suc_000 = suc.loc[(suc['eta_real'] == 0.0)] print("N = {0}".format(len(suc_000))) suc_000['eta'].quantile([.25, .5, .75]) ``` N = 35 0.25 0.000404 0.50 0.000938 0.75 0.001384 Name: eta, dtype: float64 ```python suc_025 = suc.loc[(suc['eta_real'] == 0.25)] print("N = {0}".format(len(suc_025))) suc_025['eta'].quantile([.25, .5, .75]) ``` N = 39 0.25 0.227337 0.50 0.246641 0.75 0.250805 Name: eta, dtype: float64 ```python suc_050 = suc.loc[(suc['eta_real'] == 0.5)] print("N = {0}".format(len(suc_050))) suc_050['eta'].quantile([.25, .5, .75]) ``` N = 39 0.25 0.489433 0.50 0.499222 0.75 0.500169 Name: eta, dtype: float64 ```python suc_075 = suc.loc[(suc['eta_real'] == 0.75)] print("N = {0}".format(len(suc_075))) suc_075['eta'].quantile([.25, .5, .75]) ``` N = 38 0.25 0.733126 0.50 0.748641 0.75 0.750410 Name: eta, dtype: float64 ```python suc_100 = suc.loc[(suc['eta_real'] == 1.0)] print("N = {0}".format(len(suc_100))) suc_100['eta'].quantile([.25, .5, .75]) ``` N = 38 0.25 0.990277 0.50 0.997331 0.75 0.998399 Name: eta, dtype: float64 ```python ax = sns.scatterplot(x="eta", y="epsilon", data=suc, hue="eta_real", s=100, palette="jet", legend="full") plt.savefig('scatterplot_noise_peakshape.png', dpi=150) ``` ## Statistics per peak shape factor ```python for i in [1,2,3,4,5]: cat = df.loc[(df['cat'] == i)] print('cat: {0} r-hat: {1:.2f}'.format(i, cat['r_hat'].mean())) print('cat: {0} r2 : {1:.4f}'.format(i, cat['r2'].mean())) print('cat: {0} waic : {1:.2f}'.format(i, cat['waic'].mean())) print('cat: {0} mcse : {1:.4f}'.format(i, cat['mcse'].mean())) print('cat: {0} ess : {1:.1f}'.format(i, cat['ess'].mean())) print('cat: {0} bfmi : {1:.4f}'.format(i, cat['bfmi'].mean())) print('cat: {0} epsi : {1:.4f}'.format(i, cat['epsilon'].mean())) print('cat: {0} eta : {1:.4f}'.format(i, cat['eta'].mean())) print('\n') ``` cat: 1 r-hat: 1.08 cat: 1 r2 : 0.9997 cat: 1 waic : -4342.65 cat: 1 mcse : 0.0823 cat: 1 ess : 3298.4 cat: 1 bfmi : 1.0416 cat: 1 epsi : 0.0585 cat: 1 eta : 0.0014 cat: 2 r-hat: 1.01 cat: 2 r2 : 0.9995 cat: 2 waic : -3972.92 cat: 2 mcse : 0.0267 cat: 2 ess : 3879.6 cat: 2 bfmi : 1.0516 cat: 2 epsi : 0.0762 cat: 2 eta : 0.2313 cat: 3 r-hat: 1.01 cat: 3 r2 : 0.9995 cat: 3 waic : -4069.55 cat: 3 mcse : 0.0199 cat: 3 ess : 3676.4 cat: 3 bfmi : 1.0493 cat: 3 epsi : 0.0713 cat: 3 eta : 0.4816 cat: 4 r-hat: 1.00 cat: 4 r2 : 0.9988 cat: 4 waic : -3637.68 cat: 4 mcse : 0.0039 cat: 4 ess : 3647.7 cat: 4 bfmi : 1.0568 cat: 4 epsi : 0.0971 cat: 4 eta : 0.7067 cat: 5 r-hat: 1.02 cat: 5 r2 : 0.9996 cat: 5 waic : -4145.78 cat: 5 mcse : 0.0217 cat: 5 ess : 3287.5 cat: 5 bfmi : 1.0257 cat: 5 epsi : 0.0649 cat: 5 eta : 0.9747 ```python ```
{"hexsha": "272adc201c79cece126e4d97ad88200211080207", "size": 148485, "ext": "ipynb", "lang": "Jupyter Notebook", "max_stars_repo_path": "code/scenarios/scenario_e/scenario_peakshape_pvoigt_evaluation.ipynb", "max_stars_repo_name": "jnispen/PPSDA", "max_stars_repo_head_hexsha": "910261551dd08768a72ab0a3e81bd73c706a143a", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2021-01-07T02:22:25.000Z", "max_stars_repo_stars_event_max_datetime": "2021-01-07T02:22:25.000Z", "max_issues_repo_path": "code/scenarios/scenario_e/scenario_peakshape_pvoigt_evaluation.ipynb", "max_issues_repo_name": "jnispen/PPSDA", "max_issues_repo_head_hexsha": "910261551dd08768a72ab0a3e81bd73c706a143a", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "code/scenarios/scenario_e/scenario_peakshape_pvoigt_evaluation.ipynb", "max_forks_repo_name": "jnispen/PPSDA", "max_forks_repo_head_hexsha": "910261551dd08768a72ab0a3e81bd73c706a143a", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 203.1258549932, "max_line_length": 38820, "alphanum_fraction": 0.8900023571, "converted": true, "num_tokens": 3969}
[STATEMENT] lemma poly_ring_one_mono: assumes "n \<le> m" shows "\<one>\<^bsub>R[\<X>\<^bsub>n\<^esub>]\<^esub> = \<one>\<^bsub>coord_ring R m\<^esub>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<one>\<^bsub>R [\<X>\<^bsub>n\<^esub>]\<^esub> = \<one>\<^bsub>R [\<X>\<^bsub>m\<^esub>]\<^esub> [PROOF STEP] by (metis R.Pring_one coord_ring_def)
{"llama_tokens": 167, "file": "Padic_Field_Ring_Powers", "length": 1}
import matplotlib.pyplot as plt import networkx as nx import numpy as np import pandas as pd import altair as alt from pylab import rcParams from .common import * alt.data_transformers.disable_max_rows() from networkx.drawing.nx_agraph import graphviz_layout, to_agraph import pygraphviz as pgv from IPython.display import Image def draw(A): return Image(A.draw(format='png', prog='dot')) def D_as_graph(D,file=None): G = nx.DiGraph() for i in D.index: for j in D.columns: if D.loc[i,j] != 0: G.add_edge(i,j,width=D.loc[i,j],label=D.loc[i,j]) A = to_agraph(G) A.layout('dot') if file is not None: A.draw(file) return draw(A) # Given something like: # A = [4, 10, 1, 12, 3, 9, 0, 6, 5, 11, 2, 8, 7] # B = [5, 4, 10, 1, 7, 6, 12, 3, 9, 0, 11, 2, 8] def AB_to_P2(A,B): P2 = pd.DataFrame(np.array([A,B])) return P2 def spider3(perm1,perm2,file=None,fig_format="PNG",width=5,height=10,font_size=8,xmult = 2,ymult=1.2): assert len(perm1) == len(perm2) assert type(perm1) == pd.Series assert type(perm2) == pd.Series assert perm1.name != perm2.name rcParams['figure.figsize'] = width, height #rcParams['figure.constrained_layout.h_pad'] = 5 #plt.tight_layout() plt.clf() G = nx.Graph() pos = {} buffer = 0.25 step = (2-2*buffer)/len(perm1) labels={} y1 = [] y2 = [] y = [] index = [] for i in range(len(perm1)): name1 = f"{perm1.name}:{perm1.iloc[i]}" name2 = f"{perm2.name}:{perm2.iloc[i]}" G.add_node(name1) G.add_node(name2) loc = 1-buffer-(i*step) pos[name1] = np.array([-1,loc]) pos[name2] = np.array([1,loc]) labels[name1] = perm1.index[i] labels[name2] = perm2.index[i] y1.append(name1) y2.append(name2) y.append("A") y.append("B") index.append(name1) index.append(name2) y=pd.Series(y,index=index) for i in range(len(perm1)): name1 = f"{perm1.name}:{perm1.iloc[i]}" ix = np.where(perm1.iloc[i] == perm2)[0][0] name2 = f"{perm2.name}:{perm2.iloc[ix]}" G.add_edge(name1, name2) edges = G.edges() nx.draw_networkx_labels(G,pos=pos,labels=labels,font_size=font_size) color_map = y.map({"A":"white","B":"white"}) nx.draw(G, pos, node_color=color_map) xmax= xmult*max(xx for xx,yy in pos.values()) ymax= ymult*max(yy for xx,yy in pos.values()) plt.xlim(-xmax,xmax) plt.ylim(-ymax,ymax) #A = to_agraph(G) #A.layout('dot') #nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) if file is not None: plt.savefig(file) def spider2(perm1,perm2,file=None,fig_format="PNG",width=5,height=10,font_size=8,xmult = 2,ymult=1.2): assert len(perm1) == len(perm2) assert type(perm1) == pd.Series assert type(perm2) == pd.Series assert perm1.name != perm2.name rcParams['figure.figsize'] = width, height #rcParams['figure.constrained_layout.h_pad'] = 5 #plt.tight_layout() plt.clf() G = nx.Graph() pos = {} buffer = 0.25 step = (2-2*buffer)/len(perm1) labels={} y1 = [] y2 = [] y = [] index = [] for i in range(len(perm1)): name1 = f"{perm1.name}:{perm1.loc[i]}" name2 = f"{perm2.name}:{perm2.loc[i]}" G.add_node(name1) G.add_node(name2) loc = 1-buffer-(i*step) pos[name1] = np.array([-1,loc]) pos[name2] = np.array([1,loc]) labels[name1] = perm1.loc[i] labels[name2] = perm2.loc[i] y1.append(name1) y2.append(name2) y.append("A") y.append("B") index.append(name1) index.append(name2) y=pd.Series(y,index=index) for i in range(len(perm1)): name1 = f"{perm1.name}:{perm1.loc[i]}" ix = np.where(perm1.loc[i] == perm2)[0][0] name2 = f"{perm2.name}:{perm2.loc[ix]}" G.add_edge(name1, name2) edges = G.edges() nx.draw_networkx_labels(G,pos=pos,labels=labels,font_size=font_size) color_map = y.map({"A":"white","B":"white"}) nx.draw(G, pos, node_color=color_map) xmax= xmult*max(xx for xx,yy in pos.values()) ymax= ymult*max(yy for xx,yy in pos.values()) plt.xlim(-xmax,xmax) plt.ylim(-ymax,ymax) #A = to_agraph(G) #A.layout('dot') #nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) if file is not None: plt.savefig(file) def spider(P2,file=None,fig_format="PNG",width=5,height=10,font_size=8): """ from pyrankability.plot import spider, AB_to_P2 A = [4, 10, 1, 12, 3, 9, 0, 6, 5, 11, 2, 8, 7] B = [5, 4, 10, 1, 7, 6, 12, 3, 9, 0, 11, 2, 8] spider(AB_to_P2(A,B)) """ rcParams['figure.figsize'] = width, height G = nx.Graph() pos = {} buffer = 0.25 step = (2-2*buffer)/P2.shape[1] labels={} y1 = [] y2 = [] y = [] index = [] for i in range(P2.shape[1]): v = str(i+1) name1 = f"A{v}:{P2.iloc[0,i]}" name2 = f"B{v}:{P2.iloc[1,i]}" #name2 = "B%d:%d"%(i+1,P2.iloc[1,i]) G.add_node(name1) G.add_node(name2) loc = 1-buffer-(i*step) pos[name1] = np.array([-1,loc]) pos[name2] = np.array([1,loc]) labels[name1] = P2.iloc[0,i] labels[name2] = P2.iloc[1,i] y1.append(name1) y2.append(name2) y.append("A") y.append("B") index.append(name1) index.append(name2) y=pd.Series(y,index=index) for i in range(P2.shape[1]): v=str(i+1) name1 = f"A{v}:{P2.iloc[0,i]}" #name1 = "A%d:%d"%(i+1,P2.iloc[0,i]) ix = np.where(P2.iloc[1,:] == P2.iloc[0,i])[0][0] v=str(ix+1) name2 = f"B{v}:{P2.iloc[0,i]}" #name2 = "B%d:%d"%(ix+1,P2.iloc[0,i]) G.add_edge(name1, name2) edges = G.edges() nx.draw_networkx_labels(G,pos=pos,labels=labels,font_size=font_size) color_map = y.map({"A":"white","B":"white"}) nx.draw(G, pos, node_color=color_map) #A = to_agraph(G) #A.layout('dot') #nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) if file is not None: #A.draw(file) plt.savefig(file) def show_score_xstar(xstars,indices=None,group_label="Group",fixed_r=None,resolve_scale=False,columns=1,width=300,height=300): all_df = pd.DataFrame(columns=["i","j","x",group_label,"ri","rj"]) score_df = pd.DataFrame(columns=["num_frac_xstar_upper","num_one_xstar_upper","num_zero_xstar_upper"]) score_df.index.name = group_label ordered_xstars = {} for key in xstars.keys(): x = xstars[key].copy() if fixed_r is not None and key in fixed_r: r = fixed_r[key] else: r = x.sum(axis=0) order = np.argsort(r) xstar = x.copy().iloc[order,:].iloc[:,order] xstar.loc[:,:] = threshold_x(xstar.values) if indices is not None: x = x.iloc[indices[key],:].iloc[:,indices[key]] ordered_xstars[key] = xstar inxs = np.triu_indices(len(xstar),k=1) xstar_upper = xstar.values[inxs[0],inxs[1]] nfrac_upper = sum((xstar_upper > 0) & (xstar_upper < 1)) none_upper = sum(xstar_upper == 1) nzero_upper = sum(xstar_upper == 0) score_df = score_df.append(pd.Series([nfrac_upper,none_upper,nzero_upper],index=score_df.columns,name=key)) #rixs = np.argsort(r) #x = x.iloc[:,rixs].iloc[rixs,:]#np.ix_(rixs,rixs)] df = (1-x).stack().reset_index() df.columns=["i","j","x"] df["ri"] = list(r.loc[df["i"]]) df["rj"] = list(r.loc[df["j"]]) df[group_label] = key all_df = all_df.append(df) #all_df = all_df.loc[(all_df.x != 0) & (all_df.x != 1)] g = alt.Chart(all_df,width=width).mark_square().encode( x=alt.X( 'i:N', axis=alt.Axis(labelOverlap=False), title="r", sort=alt.EncodingSortField(field="ri",order="ascending") # The order to sort in ), y=alt.Y( 'j:N', axis=alt.Axis(labelOverlap=False), title="r", sort=alt.EncodingSortField(field="rj",order="ascending") # The order to sort in ), color=alt.Color("x",scale=alt.Scale(scheme='greys')) ).properties( width=width, height=height ).facet( facet=alt.Column("%s:N"%group_label, title=None), columns=columns ) if resolve_scale: g = g.resolve_scale(x='independent',y='independent') g.configure_title( fontSize=12, font='Times', orient='bottom' ) return g,score_df,ordered_xstars def show_single_xstar(x,indices=None,fixed_r=None, width=300,height=300, labelFontSize=10,titleFontSize=10,prepare_url_func=None): ordered_xstars = {} if fixed_r is not None and key in fixed_r: r = fixed_r[key] else: r = x.sum(axis=0) order = np.argsort(r) xstar = x.copy().iloc[order,:].iloc[:,order] xstar.loc[:,:] = threshold_x(xstar.values) if indices is not None: x = x.iloc[indices[key],:].iloc[:,indices[key]] # For coloring purposes x.loc[:,:] = threshold_x(x.values) ordered_xstar = xstar inxs = np.triu_indices(len(xstar),k=1) xstar_upper = xstar.values[inxs] nfrac_upper = sum((xstar_upper > 0) & (xstar_upper < 1)) none_upper = sum(xstar_upper == 1) nzero_upper = sum(xstar_upper == 0) score_series = pd.Series([nfrac_upper,none_upper,nzero_upper], index=["num_frac_xstar_upper","num_one_xstar_upper","num_zero_xstar_upper"]) df = x.stack().reset_index() df.columns=["i","j","x"] df["ri"] = list(r.loc[df["i"]]) df["rj"] = list(r.loc[df["j"]]) df.loc[:,"c"] = "white" df.loc[(df["x"] > 0) & (df["x"] < 1) & (df["ri"] < df["rj"]),"c"] = "green" df.loc[(df["x"] > 0) & (df["x"] < 1) & (df["ri"] > df["rj"]),"c"] = "red" df.loc[df["i"] == df["j"],"c"] = "black" if prepare_url_func is not None: df_url = prepare_url_func(df) else: df_url = df g = alt.Chart(df_url,width=width).mark_square().encode( x=alt.X( 'i:N', axis=alt.Axis(labelOverlap=False,labelFontSize=8), title="r", sort=alt.EncodingSortField(field="ri",order="ascending") # The order to sort in ), y=alt.Y( 'j:N', axis=alt.Axis(labelOverlap=False,labelFontSize=8), title="r", sort=alt.EncodingSortField(field="rj",order="ascending") # The order to sort in ), color=alt.Color("c:N",scale=None)#alt.Scale(scheme='greys')) ).properties( width=width, height=height ).configure_axis( labelFontSize=labelFontSize, titleFontSize=titleFontSize ) return g,score_series,ordered_xstar def show_score_xstar2(xstars,indices=None,group_label="Group",fixed_r=None,resolve_scale=False,columns=1,width=300,height=300,labelFontSize=12): all_df = pd.DataFrame(columns=["i","j","x",group_label,"ri","rj"]) score_df = pd.DataFrame(columns=["num_frac_xstar_upper","num_one_xstar_upper","num_zero_xstar_upper"]) score_df.index.name = group_label ordered_xstars = {} for key in xstars.keys(): x = xstars[key].copy() if fixed_r is not None and key in fixed_r: r = fixed_r[key] else: r = x.sum(axis=0) order = np.argsort(r) xstar = x.copy().iloc[order,:].iloc[:,order] xstar.loc[:,:] = threshold_x(xstar.values) if indices is not None: x = x.iloc[indices[key],:].iloc[:,indices[key]] # For coloring purposes x.loc[:,:] = threshold_x(x.values) ordered_xstars[key] = xstar inxs = np.triu_indices(len(xstar),k=1) xstar_upper = xstar.values[inxs] #import pdb; pdb.set_trace() nfrac_upper = sum((xstar_upper > 0) & (xstar_upper < 1)) none_upper = sum(xstar_upper == 1) nzero_upper = sum(xstar_upper == 0) score_df = score_df.append(pd.Series([nfrac_upper,none_upper,nzero_upper],index=score_df.columns,name=key)) #rixs = np.argsort(r) #x = x.iloc[:,rixs].iloc[rixs,:]#np.ix_(rixs,rixs)] df = x.stack().reset_index() df.columns=["i","j","x"] df["ri"] = list(r.loc[df["i"]]) df["rj"] = list(r.loc[df["j"]]) df.loc[:,"c"] = "white" df.loc[(df["x"] > 0) & (df["x"] < 1) & (df["ri"] < df["rj"]),"c"] = "green" df.loc[(df["x"] > 0) & (df["x"] < 1) & (df["ri"] > df["rj"]),"c"] = "red" df.loc[df["i"] == df["j"],"c"] = "black" df[group_label] = key all_df = all_df.append(df) #all_df = all_df.loc[(all_df.x != 0) & (all_df.x != 1)] g = alt.Chart(all_df,width=width).mark_square().encode( x=alt.X( 'i:N', axis=alt.Axis(labelOverlap=False,labelFontSize=8), title="r", sort=alt.EncodingSortField(field="ri",order="ascending") # The order to sort in ), y=alt.Y( 'j:N', axis=alt.Axis(labelOverlap=False,labelFontSize=8), title="r", sort=alt.EncodingSortField(field="rj",order="ascending") # The order to sort in ), color=alt.Color("c",scale=None)#alt.Scale(scheme='greys')) ).properties( width=width, height=height ).facet( facet=alt.Column(title=None,field=alt.Field(group_label),type='nominal',header=alt.Header(labelFontSize=labelFontSize,labelOrient='bottom')), #alt.Column("%s:N"%group_label, title=,header=alt.Header(labelBaseline="bottom")), columns=columns ).configure_axis( labelFontSize=10, titleFontSize=10 ) #g= g.configure_title( # fontSize=12, # font='Times', # titleAnchor='bottom' #) if resolve_scale: g = g.resolve_scale(x='independent',y='independent') return g,score_df,ordered_xstars def show_hillside(V,P0): perm=pd.Series(P0,index=V.columns) r=perm.argsort() #V_G=V.iloc[perm,:].iloc[:,perm] #x = pd.DataFrame(details['x'],index=V.index,columns=V.columns).iloc[perm,:].iloc[:,perm] #r = x.sum(axis=1) df=V.T.stack().to_frame().reset_index() df.columns=["team_i_name","team_k_name","v"] df["ri"] = list(-r.loc[df["team_i_name"]]) df["rk"] = list(r.loc[df["team_k_name"]]) g=alt.Chart(df).mark_circle().encode( x=alt.X( 'team_i_name:N', axis=alt.Axis(labelOverlap=False), title="r", sort=alt.SortField(field="ri",order="descending") # The order to sort in ), y=alt.Y( 'team_k_name:N', axis=alt.Axis(labelOverlap=False), title="r", sort=alt.SortField(field="rk",order="ascending") # The order to sort in ), size='v:Q' ) return g
{"hexsha": "35336938a5f1e15a25bad542c30c12f7543e95dc", "size": 15181, "ext": "py", "lang": "Python", "max_stars_repo_path": "pyrankability/plot.py", "max_stars_repo_name": "IGARDS/ranking_toolbox", "max_stars_repo_head_hexsha": "98e2d318c76c92d91bb2c0481efe9879cd3614db", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "pyrankability/plot.py", "max_issues_repo_name": "IGARDS/ranking_toolbox", "max_issues_repo_head_hexsha": "98e2d318c76c92d91bb2c0481efe9879cd3614db", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 2, "max_issues_repo_issues_event_min_datetime": "2022-02-07T19:56:51.000Z", "max_issues_repo_issues_event_max_datetime": "2022-02-07T20:03:58.000Z", "max_forks_repo_path": "pyrankability/plot.py", "max_forks_repo_name": "IGARDS/ranking_toolbox", "max_forks_repo_head_hexsha": "98e2d318c76c92d91bb2c0481efe9879cd3614db", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 32.5074946467, "max_line_length": 149, "alphanum_fraction": 0.5627429023, "include": true, "reason": "import numpy,import networkx,from networkx", "num_tokens": 4536}
\documentclass[12pt,english]{article} \usepackage{mathptmx} \usepackage{color} \usepackage[dvipsnames]{xcolor} \definecolor{darkblue}{RGB}{0.,0.,139.} \usepackage[top=1in, bottom=1in, left=1in, right=1in]{geometry} \usepackage{amsmath} \usepackage{amstext} \usepackage{amssymb} \usepackage{setspace} \usepackage{lipsum} \usepackage[authoryear]{natbib} \usepackage{url} \usepackage{booktabs} \usepackage[flushleft]{threeparttable} \usepackage{graphicx} \usepackage[english]{babel} \usepackage{pdflscape} \usepackage[unicode=true,pdfusetitle, bookmarks=true,bookmarksnumbered=false,bookmarksopen=false, breaklinks=true,pdfborder={0 0 0},backref=false, colorlinks,citecolor=black,filecolor=black, linkcolor=black,urlcolor=black] {hyperref} \usepackage[all]{hypcap} % Links point to top of image, builds on hyperref \usepackage{breakurl} % Allows urls to wrap, including hyperref \linespread{2} \begin{document} \begin{singlespace} \title{Machine Learning for Sample Selection Models} \end{singlespace} \author{Owen McDevitt\thanks{Department of Economics, University of Oklahoma.\ E-mail~address:~\href{mailto:omcdevitt1022@ou.edu}{omcdevitt1022@ou.edu}}} % \date{\today} \date{May 9, 2019} \maketitle \begin{abstract} The existing literature on sample selection models, and problems thereof, is extensive and expanding. However, little has been discussed regarding the use of machine learning as a tool to correct selection bias. Despite this lack of literature, the predictive capabilities of many machine learning algorithms make them an ideal candidate for the task. This paper offers both a primer on the topic and a demonstration of its potential use. To explore the topic, I employ simulated data sets: (1) a large, unbiased, normally distributed reference set as the population, and (2) a biased subset of the population that is "observed". I correct for selection bias in the observed data using each observation's predicted probability of selection as determined by four different classifiers: neural net, random forest, naive bayes, and logit regression. I then compare the effectiveness of each classifier in recovering the true value of $\beta_1$ in the corrected model. Though the neural net is most computationally expensive, it ultimately provides the best correction - slightly better than the standard approach of using a logit model. Overall, the results are promising, and they affirm the potential that machine learning has in application to sample selection models. However, more extensive simulation studies are necessary to make any definitive conclusions regarding its utility in practice. \end{abstract} \section{Introduction} Beginning with the seminal work of James Heckman \cite{heckman_1979}, economists have produced an ever-growing literature on sample selection bias. Sample selection bias occurs when studying a population of data using a sample that is not wholly representative, that is, a non-random sub sample. The literature provides strategies that combat this bias under a variety of assumptions and in a variety of contexts. However the use of machine learning as a tool for correcting selection bias has yet to be seriously explored. Because machine learning models are often exceptional predictors, they provide an ideal candidate for the task. By exploiting this predictive accuracy, one can obtain the probability that a given observation will be "selected" or not. The conditional probability of selection dependent on a vector of observed covariates” is known as the propensity score \cite{rosenbaum_rubin_1983}. This predicted probability can then be included in a regression with the observed data, and this corrected regression model ultimately addresses the bias. I specifically examine the use of four different classifiers in obtaining the predicted probabilities: a Neural Net, a Random Forest, a Naive Bayes classifier, and a logistic regression. The standard approach uses a logistic regression, so I include it for comparison's sake. \par To test the effectiveness of the classifiers, I use simulated data based on a sample selection model. First, I simulate a data set from an outcome equation to be used as the population, and then I subset this population according to a selection equation. This subset contains data that is "observed". Due to the non-random sub-setting of the population, the observed data is systematically biased. Thus a linear model using this data produces an incorrect coefficient on the regressor of interest. Therefore, using this model to study the population as a whole will lead to erroneous conclusions. The dangers of failing to make this correction are evidenced by the following canonical example: studying wages. \par When studying potential wages of an entire population, selection bias is nearly impossible to avoid. For example, if one has a data set that only contains information for those who are employed, then any study that does not correct for the selection bias will only be able to draw conclusions about wages conditional on employment - not wages in general. Assume that we are studying the effect of education on wages. Also, assume that a given worker chooses to work if his/her wages are above a certain level (reservation wage). In this case, high-education individuals will be well represented because the wage offer they receive will likely be sufficient. However, low education individuals are more likely to be offered wages below their reservation wage. Thus, the only low education individuals that appear in the data set are the ones who are earning sufficiently high wages. Therefore, education is dependent on the error term, causing the effect of education on wages to be biased downward due to a proportion of low education individuals self-selecting out of the workforce. That is, selection into the workforce for low education workers is dependent on the wage offer. \par Keeping this in mind, one can see that sufficiently addressing selection bias is vital to making reliable conclusions. The difference between observing wages and observing all potential wage offers is subtle yet paramount. Fortunately, there are many ways to correct for this bias. In this paper, I use classifiers to obtain the predicted probability that a given observation is selected. I then incorporate these probabilities of being selected, or propensity scores, into the model experiencing selection bias. By controlling for the variables that determine selection, I essentially remove the effect of selection from the error term. Thus, it allows us to draw robust conclusions with regard to the entire population and therefore capture the "true" coefficient on the regressor of interest. That is, the value that I assigned for $\beta_1$ in the outcome equation. This whole process is shown in greater detail in the methods section. \par Because selection bias is so pervasive, having a flexible, effective, and easy-to-implement method for correction is essential. Machine Learning as a tool for this correction provides all three of the aforementioned qualities. Most importantly, it is comparatively stronger than most existing methods with regard to flexibility, since it does not necessarily rely on as many assumptions. \section{Literature Review} The most well-know method for correcting selection bias is the Heckman correction. By viewing the selection bias as an omitted variable problem, one can control for the dependence between the regressor of interest and the error term using a two-step control function \cite{heckman_1979}. The "omitted variable" in this case is $(\epsilon_i \mid \eta_i > -\gamma_1 Z_i)$. Essentially, this is the error conditional on whether or not someone is selected. By incorporating this back into the model using the Inverse-Mills ratio, one is able to correct for the bias. \par However, Heckman's solution relies on distributional assumptions for the error terms, specifically that they are jointly normal. When these assumptions are not met, the solution is inconsistent and misleading \cite{goldberger_1983}. Additionally, the correction is inefficient when their exists a correlation between the error term and selection mechanism \cite{puhani_2000}. Since then, the literature has expanded to weaken the assumptions of Heckman's original solution and improve its applicability and performance. \par Another popular method in correcting for selecting bias is Propensity Score mathcing (PSM) \cite{rosenbaum_rubin_1983}. PSM uses the observed covariates for each observation to estimate the probability of being treated by matching non-treated observations with treated ones. However, PSM implicitly assumes that all factors impacting this selection and the regressor of interest have already been observed. Moreover, it relies on data being available for the non-treated individuals. \par The most popular method for estimating propensity scores is logit regression \cite{austin_2011}. This paper also estimates the predicted probability of being treated with a logit regression, however it is primarily as a comparative baseline for the machine learning methods. Despite logistic regression being standard, the use of machine learning to estimate propensity scores has been shown to be effective. In a simulation study using a Neural Net compared to a logistic regression in a propensity score matching model, the Neural Net was found to produce less numerically biased estimates \cite{setoguchi_schneeweiss_brookhart_glynn_cook_2008}. However, up until now, no extensive simulation study has been done on the topic as a whole. \par On a broader scale, machine learning is increasingly contributing to economic literature, especially where it relates to econometrics and causal inference \cite{athey_2018}. Though the aim of machine learning is fundamentally different than that of traditional econometrics, its predictive strength alone makes it useful in a variety of contexts. Machine learning has been applied to many areas including regression discontinuity, difference-in-differences, structural modeling or individual and firm behavior, and more. Lastly, recent research by Chernozhukov has been particularly instrumental in marrying the two fields - causal inference and machine learning \cite{newey_hansen_duflo_robins_chernozhukov_demirer_chetverikov_2017}. \par Following the lead of similar simulation studies, this paper begins to overview the application of machine learning as it pertains to sample selection models. Eventually, it may serve as a guide to empirical use. This will hopefully contribute to the machine learning/causal inference literature. As of now however, this paper only examines a single context and thus fails to offer a complete view of the topic. \section{Data} In order to test the performance of the different classifiers, I simulate a sample selection model. This model includes two simulated data sets: first, a large data set (N = 100000) of unbiased data following a normal distribution, and then a smaller, biased subset of that data chosen according to a selection equation. The larger data set represents the population, and the smaller data set represents the individuals which are observed. On average, half of the total population is observed. The following equations are used for the simulation. Equation (1) is the outcome equation, and equation (2) is the selection equation. Equation (3) uses the selection equation to determine whether a given individual is observed. The simulated sample selection model can be formalized in the following way: \begin{equation} Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \end{equation} \begin{equation} U_i = \gamma_0 + \gamma_1 Z_i + \eta_i \end{equation} \begin{equation} d_i = \begin{array}{cc} \{ & \begin{array}{cc} 0 & if \; U_i\leq 0 \\ 1 & otherwise \end{array} \end{array} \end{equation} For simplicity, $\beta_0$ and $\gamma_0$ are assigned values of zero. Thus, there is no intercept on the models. Also, I assign a value of -1 to $\beta_i$. This is the coefficient on our regressor of interest. When I correct for the selection bias, I am trying to obtain this value. Additionally, $X_i$ and $Z_i$ each follow a normal distribution such that $X_i$,$Z_i$ \sim \mathcal{N}($0$,\,$\sigma^{2}$)\ . Also, $\eta$ and $\epsilon$ follow a bivariate normal distribution, such that \begin{pmatrix}\epsilon\\ \eta \end{pmatrix} &\sim N \begin{bmatrix} \begin{pmatrix} 0\\ 0 \end{pmatrix}\!\!,& \begin{pmatrix} 1 & 0\\ 0 & \sigma^2 \end{pmatrix} \end{bmatrix}\\[2\jot] \par First, I simulate the population data set of 100000 observations according to the outcome and selection equations. Then, I add a column of treatment values, such that observations are assigned a value of $d=0$ when $U_i \leq 0$ and a value of $d=1$ otherwise. Lastly, I subset this data, removing observations where $d=0$. This results in a biased data set with regards to the relationship between $Y_i$ and $X_i$. The model with only observed data is as follows: \begin{equation} Obs Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \end{equation} As evidenced by Table A1 in the appendix, this model results in a biased value of $\beta_1$. The linear model with observed data (4) has a $\beta_1 = -.812$ and the linear model with population data (1) has a $\beta_1 = -1.001$. Summary statistics for the two data sets are also available in the appendix. \section{Methods} In our simulated model, $U_i$ measures the tendency to be selected and $Y_i$ measures the outcome we want to study. Thus, we observe the outcome of any given data point only if the selection variable is positive. We ultimately want to study the relationship between $Y_i$ and $X_i$. However, we cannot yet directly observe this. What we do observe is $E[ Y | X_i = X, Z_i = Z, d = 1]$, or, our outcome variable conditional on selection. This can be rewritten as $\beta_1 X_i + E[\epsilon | \eta > -\gamma Z_i]$. Thus, the expectation of our outcome consists of two factors: the regressor of interest and the expected error caused by selection. Therefore, by controlling for the error caused by selection, we are able to achieve an accurate measure of $\beta_1$. \par In order to control for this error, I obtain the predicted probability of being selected for each observation in the data, that is, $P(d = 1 | X_i = X, Z_i = Z)$. By incorporating this predicted probability in the model of observed data, the effect of selection is essentially removed from the error term. \par When incorporating these probabilities, I use the utility-maximizing probability. That is, given $d=1$, I use $p = P(d=1)$, and given $d=0$, I use $p = 1- P(d=1)$. Additionally, to capture more than just a linear relationship, I incorporate the predicted probabilities as a flexible function. I include $p$, $p^2$, and $p^3$. Thus, our corrected model stands as follows: \begin{equation} Obs Y_i = \beta_0 + \beta_1 X_i + \beta_2 p_i + \beta_3 p_i^2 + \beta_4 p_i^3 + \epsilon_i \end{equation} \par As mentioned, I obtain the predicted probabilities using four different classifiers. I will briefly overview each of the three machine learning methods that I use. \par The random forest classifier essentially averages the predictions of many decision trees. Decision trees attempt to minimize error by splitting the data into increasingly small sub-samples. When no tree depth is specified (as is the case with our model), the data is continually split until the sub samples are maximally pure, that is, all observations in the sub-sample fall into a single category. This often results in overfitting. However, the random forest corrects for this by averaging the predictions over many trees - each tree run on a redrawn sample of the population. \par The next classifier I use is a nueral network. The nueral net begins with inputs ($X_i$ and $Z_i$ in our case) and, by continually adjusting how the model is weighted, reaches the output ($d_i$). It achieves this by passing through "layers" that perform transformations on the inputs, ultimately creating some non-linear function mapping the inputs to the output. In addition, I perform cross validation on my neural net. \par Lastly, I use a naive bayes classifier, which simply uses Bayes theorem to calculate the posterior probability of each potential outcome ($d_i$) and then chooses the outcome with the greatest probability. The naive bayes is simple and thus computationally inexpensive. \par In order to compare the effectiveness of the classifiers, I simply look at which ones result in a model with a $\beta_1$ closest to the true value when incorporated in the corrected model. I also run the classifiers several times and compare their computational efficiency. \section{Results} When running the corrected models, all four classifiers are able to recover a value of $\beta_1$ that is within .1 of the true value. However, the neural net and logistic regression performed generally better than the other two classifiers, with the neural net performing best. The results of the corrected regressions using machine learning are contained in Table 2 of the appendix. (1) is the Naive Bayes, (2) is the nueral net, and (3) is the Random Forest. Also, contained in table 3 of the appendix are the results from the logistic regression correction. \par I ran each of the four algorithms 100 times. A violin plot containing the computation times for each one is shown in the appendix as well. These plots show the probability density of computation times for each method. The neural net was the most computationally expensive, and the random forest was close behind. The logistic regression and naive bayes did not come with a significant computation cost. \par The results tentatively confirm that machine learning - especially neural nets - offer an effective alternative in correcting for selection bias. Moreover, the machine learning algorithms rely on relatively few assumptions. Therefore their application is not as constrained, and it offers a more flexible solution to selection bias relative to existing methods. However, because the standard approach of using logistic regression is only marginally outperformed by the much more computationally expensive neural net, there may not be immediate justification for its use. This paper is limited by the fact that corrections were only tested in a single context. Thus, it is difficult to generalize the findings. \section{Conclusion} This research offers a preliminary look at the use of machine learning in sample selection models. Though the results are promising, more research is needed to make definitive conclusions. However, this paper tentatively concludes that using a nueral net classifier results in the best correction. Moreover, the use of a random forest or naive bayes classifier removes a portion of the selection bias but is not nearly as effective. \par Future research can increase the number of classifiers, the number of scenarios each classifier is tested under (what assumptions are made), and the number of simulations being run. Some more potential thoughts to examine in closer detail are: an IV or many IVs being included in the model, varying dimensionality of X, varying strength of the selection bias, and varying portion of the population being selected. \par Looking at how machine learning classifiers perform under the aforementioned conditions will allow us to gain a clearer idea of where it belongs in application. However, I do believe it will ultimately prove to be empirically useful. \pagebreak{} \begin{spacing}{1.0} \bibliographystyle{jpe} \bibliography{FinalProject.bib} \addcontentsline{toc}{section}{References} \end{spacing} \pagebreak{} % The appendix command is issued once, prior to all appendices, if any. \appendix \section{Mathematical Appendix} \begin{table}[!htbp] \centering \caption{} \label{} \begin{tabular}{@{\extracolsep{5pt}}lcc} \\[-1.8ex]\hline \hline \\[-1.8ex] & \multicolumn{2}{c}{\textit{Dependent variable:}} \\ \cline{2-3} \\[-1.8ex] & Y & obsY \\ \\[-1.8ex] & (1) & (2)\\ \hline \\[-1.8ex] X & $-$1.001$^{***}$ & $-$0.812$^{***}$ \\ & (0.002) & (0.004) \\ & & \\ Constant & $-$0.002 & 0.319$^{***}$ \\ & (0.002) & (0.004) \\ & & \\ \hline \\[-1.8ex] Observations & 100,000 & 49,755 \\ R$^{2}$ & 0.665 & 0.493 \\ Adjusted R$^{2}$ & 0.665 & 0.493 \\ Residual Std. Error & 0.709 (df = 99998) & 0.661 (df = 49753) \\ F Statistic & 198,902.500$^{***}$ (df = 1; 99998) & 48,327.610$^{***}$ (df = 1; 49753) \\ \hline \hline \\[-1.8ex] \textit{Note:} & \multicolumn{2}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\ \end{tabular} \end{table} \begin{table}[!htbp] \centering \caption{} \label{} \begin{tabular}{@{\extracolsep{5pt}}lccc} \\[-1.8ex]\hline \hline \\[-1.8ex] & \multicolumn{3}{c}{\textit{Dependent variable:}} \\ \cline{2-4} \\[-1.8ex] & \multicolumn{3}{c}{obsY} \\ \\[-1.8ex] & (1) & (2) & (3)\\ \hline \\[-1.8ex] X & $-$1.084$^{***}$ & $-$1.002$^{***}$ & $-$0.958$^{***}$ \\ & (0.005) & (0.004) & (0.004) \\ & & & \\ poly(pred.1st.best, 3)1 & $-$100.676$^{***}$ & $-$91.238$^{***}$ & $-$77.010$^{***}$ \\ & (1.282) & (1.031) & (1.010) \\ & & & \\ poly(pred.1st.best, 3)2 & 23.641$^{***}$ & 9.305$^{***}$ & 4.745$^{***}$ \\ & (0.892) & (0.884) & (0.898) \\ & & & \\ poly(pred.1st.best, 3)3 & $-$3.153$^{***}$ & $-$8.495$^{***}$ & $-$8.300$^{***}$ \\ & (0.886) & (0.881) & (0.892) \\ & & & \\ Constant & 0.161$^{***}$ & 0.210$^{***}$ & 0.236$^{***}$ \\ & (0.004) & (0.004) & (0.004) \\ & & & \\ \hline \\[-1.8ex] Observations & 49,930 & 49,930 & 49,930 \\ R$^{2}$ & 0.569 & 0.571 & 0.553 \\ Adjusted R$^{2}$ & 0.569 & 0.571 & 0.553 \\ Residual Std. Error (df = 49925) & 0.610 & 0.609 & 0.622 \\ F Statistic (df = 4; 49925) & 16,458.040$^{***}$ & 16,585.240$^{***}$ & 15,415.450$^{***}$ \\ \hline \hline \\[-1.8ex] \textit{Note:} & \multicolumn{3}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\ \end{tabular} \end{table} \begin{table}[!htbp] \centering \caption{} \label{} \begin{tabular}{@{\extracolsep{5pt}}lc} \\[-1.8ex]\hline \hline \\[-1.8ex] & \multicolumn{1}{c}{\textit{Dependent variable:}} \\ \cline{2-2} \\[-1.8ex] & obsY \\ \hline \\[-1.8ex] X & $-$1.004$^{***}$ \\ & (0.004) \\ & \\ poly(pred.1st.best, 3)1 & $-$91.509$^{***}$ \\ & (1.029) \\ & \\ poly(pred.1st.best, 3)2 & 6.666$^{***}$ \\ & (0.888) \\ & \\ poly(pred.1st.best, 3)3 & $-$10.254$^{***}$ \\ & (0.885) \\ & \\ Constant & 0.209$^{***}$ \\ & (0.004) \\ & \\ \hline \\[-1.8ex] Observations & 49,930 \\ R$^{2}$ & 0.570 \\ Adjusted R$^{2}$ & 0.570 \\ Residual Std. Error & 0.609 (df = 49925) \\ F Statistic & 16,577.450$^{***}$ (df = 4; 49925) \\ \hline \hline \\[-1.8ex] \textit{Note:} & \multicolumn{1}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\ \end{tabular} \end{table} \begin{figure} \includegraphics[width=\linewidth]{Violin.png} \caption{Computational Efficiency} \label{fig:boat1} \end{figure} \end{document} \end{document}
{"hexsha": "a06b6997caf91be150a0a02583fcca22d72c7cd9", "size": 23031, "ext": "tex", "lang": "TeX", "max_stars_repo_path": "FinalProject/Final.Project/FinalProject.tex", "max_stars_repo_name": "omcdevi/DScourseS19", "max_stars_repo_head_hexsha": "87522d20227fcbf934762339dbe9d247b09203e0", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "FinalProject/Final.Project/FinalProject.tex", "max_issues_repo_name": "omcdevi/DScourseS19", "max_issues_repo_head_hexsha": "87522d20227fcbf934762339dbe9d247b09203e0", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "FinalProject/Final.Project/FinalProject.tex", "max_forks_repo_name": "omcdevi/DScourseS19", "max_forks_repo_head_hexsha": "87522d20227fcbf934762339dbe9d247b09203e0", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 81.670212766, "max_line_length": 1395, "alphanum_fraction": 0.7536798228, "num_tokens": 5887}
import numpy as np import tensorflow as tf from config import cfg epsilon = 1e-9 class CapsLayer(object): ''' Capsule layer. Args: input: A 4-D tensor. num_outputs: the number of capsule in this layer. vec_len: integer, the length of the output vector of a capsule. layer_type: string, one of 'FC' or "CONV", the type of this layer, fully connected or convolution, for the future expansion capability with_routing: boolean, this capsule is routing with the lower-level layer capsule. Returns: A 4-D tensor. ''' def __init__(self, num_outputs, vec_len, with_routing=True, layer_type='FC'): self.num_outputs = num_outputs self.vec_len = vec_len self.with_routing = with_routing self.layer_type = layer_type def __call__(self, input, kernel_size=None, stride=None): ''' The parameters 'kernel_size' and 'stride' will be used while 'layer_type' equal 'CONV' ''' if self.layer_type == 'CONV': self.kernel_size = kernel_size self.stride = stride if not self.with_routing: # the PrimaryCaps layer, a convolutional layer # input: [batch_size, 20, 20, 256] assert input.get_shape() == [cfg.batch_size, 20, 20, 256] ''' # version 1, computational expensive capsules = [] for i in range(self.vec_len): # each capsule i: [batch_size, 6, 6, 32] with tf.variable_scope('ConvUnit_' + str(i)): caps_i = tf.contrib.layers.conv2d(input, self.num_outputs, self.kernel_size, self.stride, padding="VALID", activation_fn=None) caps_i = tf.reshape(caps_i, shape=(cfg.batch_size, -1, 1, 1)) capsules.append(caps_i) assert capsules[0].get_shape() == [cfg.batch_size, 1152, 1, 1] capsules = tf.concat(capsules, axis=2) ''' # version 2, equivalent to version 1 but higher computational # efficiency. # NOTE: I can't find out any words from the paper whether the # PrimaryCap convolution does a ReLU activation before # squashing function. So, which one to use will be your choice # capsules = tf.contrib.layers.conv2d(input, self.num_outputs * self.vec_len, # self.kernel_size, self.stride,padding="VALID", # activation_fn=tf.nn.relu) capsules = tf.contrib.layers.conv2d(input, self.num_outputs * self.vec_len, self.kernel_size, self.stride,padding="VALID", activation_fn=None) capsules = tf.reshape(capsules, (cfg.batch_size, -1, self.vec_len, 1)) # [batch_size, 1152, 8, 1] capsules = squash(capsules) assert capsules.get_shape() == [cfg.batch_size, 1152, 8, 1] return(capsules) if self.layer_type == 'FC': if self.with_routing: # the DigitCaps layer, a fully connected layer # Reshape the input into [batch_size, 1152, 1, 8, 1] self.input = tf.reshape(input, shape=(cfg.batch_size, -1, 1, input.shape[-2].value, 1)) with tf.variable_scope('routing'): # b_IJ: [1, num_caps_l, num_caps_l_plus_1, 1, 1] b_IJ = tf.constant(np.zeros([1, input.shape[1].value, self.num_outputs, 1, 1], dtype=np.float32)) capsules = routing(self.input, b_IJ) capsules = tf.squeeze(capsules, axis=1) return(capsules) def routing(input, b_IJ): ''' The routing algorithm. Args: input: A Tensor with [batch_size, num_caps_l=1152, 1, length(u_i)=8, 1] shape, num_caps_l meaning the number of capsule in the layer l. Returns: A Tensor of shape [batch_size, num_caps_l_plus_1, length(v_j)=16, 1] representing the vector output `v_j` in the layer l+1 Notes: u_i represents the vector output of capsule i in the layer l, and v_j the vector output of capsule j in the layer l+1. ''' # W: [num_caps_j, num_caps_i, len_u_i, len_v_j] W = tf.get_variable('Weight', shape=(1, 1152, 10, 8, 16), dtype=tf.float32, initializer=tf.random_normal_initializer(stddev=cfg.stddev)) # Eq.2, calc u_hat # do tiling for input and W before matmul # input => [batch_size, 1152, 10, 8, 1] # W => [batch_size, 1152, 10, 8, 16] input = tf.tile(input, [1, 1, 10, 1, 1]) W = tf.tile(W, [cfg.batch_size, 1, 1, 1, 1]) assert input.get_shape() == [cfg.batch_size, 1152, 10, 8, 1] # in last 2 dims: # [8, 16].T x [8, 1] => [16, 1] => [batch_size, 1152, 10, 16, 1] u_hat = tf.matmul(W, input, transpose_a=True) assert u_hat.get_shape() == [cfg.batch_size, 1152, 10, 16, 1] # line 3,for r iterations do for r_iter in range(cfg.iter_routing): with tf.variable_scope('iter_' + str(r_iter)): # line 4: # => [1, 1152, 10, 1, 1] c_IJ = tf.nn.softmax(b_IJ, dim=2) c_IJ = tf.tile(c_IJ, [cfg.batch_size, 1, 1, 1, 1]) assert c_IJ.get_shape() == [cfg.batch_size, 1152, 10, 1, 1] # line 5: # weighting u_hat with c_IJ, element-wise in the last two dims # => [batch_size, 1152, 10, 16, 1] s_J = tf.multiply(c_IJ, u_hat) # then sum in the second dim, resulting in [batch_size, 1, 10, 16, 1] s_J = tf.reduce_sum(s_J, axis=1, keep_dims=True) assert s_J.get_shape() == [cfg.batch_size, 1, 10, 16, 1] # line 6: # squash using Eq.1, v_J = squash(s_J) assert v_J.get_shape() == [cfg.batch_size, 1, 10, 16, 1] # line 7: # reshape & tile v_j from [batch_size ,1, 10, 16, 1] to [batch_size, 10, 1152, 16, 1] # then matmul in the last tow dim: [16, 1].T x [16, 1] => [1, 1], reduce mean in the # batch_size dim, resulting in [1, 1152, 10, 1, 1] v_J_tiled = tf.tile(v_J, [1, 1152, 1, 1, 1]) u_produce_v = tf.matmul(u_hat, v_J_tiled, transpose_a=True) assert u_produce_v.get_shape() == [cfg.batch_size, 1152, 10, 1, 1] b_IJ += tf.reduce_sum(u_produce_v, axis=0, keep_dims=True) return(v_J) def squash(vector): '''Squashing function corresponding to Eq. 1 Args: vector: A 5-D tensor with shape [batch_size, 1, num_caps, vec_len, 1], Returns: A 5-D tensor with the same shape as vector but squashed in 4rd and 5th dimensions. ''' vec_squared_norm = tf.reduce_sum(tf.square(vector), -2, keep_dims=True) scalar_factor = vec_squared_norm / (1 + vec_squared_norm) / tf.sqrt(vec_squared_norm + epsilon) vec_squashed = scalar_factor * vector # element-wise return(vec_squashed) # TODO: 1. Test the `fully_connected` and `conv2d` function; # 2. Update docs about these two function. def fully_connected(inputs, num_outputs, vec_len, with_routing=True, weights_initializers=tf.contrib.layers.xavier_initializer(), reuse=None, variable_collections=None, scope=None): '''A capsule fully connected layer.(Note: not tested yet) Args: inputs: A tensor of as least rank 3, i.e. `[batch_size, num_inputs, vec_len]`, `[batch_size, num_inputs, vec_len, 1]`. num_outputs: ... Returns: ... Raise: ... ''' layer = CapsLayer(num_outputs=num_outputs, vec_len=vec_len, with_routing=with_routing, layer_type='FC') return layer.apply(inputs) def conv2d(inputs, filters, vec_len, kernel_size, strides=(1, 1), with_routing=False, reuse=None): '''A capsule convolutional layer.(Note: not tested yet) Args: inputs: A tensor. Returns: ... Raises: ... ''' layer = CapsLayer(num_outputs=filters, vec_len=vec_len, with_routing=with_routing, layer_type='CONV') return(layer(inputs, kernel_size=kernel_size, stride=strides))
{"hexsha": "7cae31de45ba96c2017229378a48af620a8f180c", "size": 8856, "ext": "py", "lang": "Python", "max_stars_repo_path": "capsLayer.py", "max_stars_repo_name": "crjramsden/CapsuleAI", "max_stars_repo_head_hexsha": "3d04a76259c72b647cf63c4dbad7c173c3851005", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "capsLayer.py", "max_issues_repo_name": "crjramsden/CapsuleAI", "max_issues_repo_head_hexsha": "3d04a76259c72b647cf63c4dbad7c173c3851005", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "capsLayer.py", "max_forks_repo_name": "crjramsden/CapsuleAI", "max_forks_repo_head_hexsha": "3d04a76259c72b647cf63c4dbad7c173c3851005", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 41.0, "max_line_length": 117, "alphanum_fraction": 0.5485546522, "include": true, "reason": "import numpy", "num_tokens": 2267}
# ---------------------------------------------------------------------------- # test_hsi11.py # # Copyright 2021 Daniel Tisza # MIT License # # Taking image with HSI changed to use mvImpact Pythin binding # # ---------------------------------------------------------------------------- from __future__ import print_function import os import platform import sys from mvIMPACT import acquire from mvIMPACT.Common import exampleHelper import ctypes import numpy as np import datetime as dt import matplotlib from LEDDriver import detect_LED_devices, LEDDriver, LEDException from spectracular.fpi_driver import detectFPIDevices, createFPIDevice import fpipy as fp import fpipy.conventions as c import xarray as xr from tqdm.autonotebook import tqdm, trange #----------------------------------------- # LED driver #----------------------------------------- LED_IDS = [ # ( VID, PID) (and the same in decimal) ('1FC9', '0083'), (8137, 131), ] """Known VID:PID pairs of LED devices.""" LED_HWIDS = [ # Strings returned by read_hardware_id '1000e016 aefba123 580267dd f5001982', '10025018 af28a028 5a66a511 f5001983' ] ledportdevice = detect_LED_devices() print(ledportdevice) ledportstring = '/dev/ttyACM1' # ledportstring = 'COM10' print('Trying to use ' + ledportstring + ' for LED control') # led = LEDDriver('/dev/ttyACM0') # led = LEDDriver('COM10') led = LEDDriver(ledportstring) print(led) led.open() print('Turning off LEDs') led.L(0) led.close() #----------------------------------------- # Camera #----------------------------------------- print("Creating device manager") devMgr = acquire.DeviceManager() print("Asking user to select device") pDev = exampleHelper.getDeviceFromUserInput(devMgr) if pDev == None: exampleHelper.requestENTERFromUser() sys.exit(-1) pDev.open() # # Set system settings # # RequestCount 10 # ss = acquire.SystemSettings(pDev) print("Old RequestCount:") print(ss.requestCount.readS()) # # Basic device settings # bdc = acquire.BasicDeviceSettings(pDev) print("Old ImageRequestTimeout_ms:") print(bdc.imageRequestTimeout_ms.readS()) # # Set camera settings # # AcquisitionMode SingleFrame # TriggerSource Line1 # TriggerMode Off # ac = acquire.AcquisitionControl(pDev) print("Old AcquisitionMode:") print(ac.acquisitionMode.readS()) print("New AcquisitionMode:") ac.acquisitionMode.writeS("SingleFrame") print(ac.acquisitionMode.readS()) print("Old TriggerMode:") print(ac.triggerMode.readS()) # print("New TriggerMode:") # ac.triggerMode.writeS("On") # print(ac.triggerMode.readS()) print("Old TriggerSource:") print(ac.triggerSource.readS()) # print("New TriggerSource:") # ac.triggerSource.writeS("Software") # print(ac.triggerSource.readS()) print("Old ExposureAuto:") print(ac.exposureAuto.readS()) print("New ExposureAuto:") ac.exposureAuto.writeS("Off") print(ac.exposureAuto.readS()) ifc = acquire.ImageFormatControl(pDev) print("Old pixelformat:") print(ifc.pixelFormat.readS()) print("New pixelformat:") ifc.pixelFormat.writeS("BayerGB12") # ifc.pixelFormat.writeS("RGB8") print(ifc.pixelFormat.readS()) print("Old pixelColorFilter:") print(ifc.pixelColorFilter.readS()) imgp = acquire.ImageProcessing(pDev) # "Auto" originally print("Old colorProcessing:") print(imgp.colorProcessing.readS()) imgp.colorProcessing.writeS("Raw") print("New colorProcessing:") print(imgp.colorProcessing.readS()) print("Old ExposureTime:") print(ac.exposureTime.readS()) print("New ExposureTime:") ac.exposureTime.writeS("150000") print(ac.exposureTime.readS()) anlgc = acquire.AnalogControl(pDev) print("Old BalanceWhiteAuto:") print(anlgc.balanceWhiteAuto.readS()) print("New BalanceWhiteAuto:") anlgc.balanceWhiteAuto.writeS("Off") print(anlgc.balanceWhiteAuto.readS()) print("Old Gamma:") print(anlgc.gamma.readS()) print("New Gamma:") anlgc.gamma.writeS("1") print(anlgc.gamma.readS()) print("Old Gain:") print(anlgc.gain.readS()) print("New Gain:") anlgc.gain.writeS("1.9382002601") print(anlgc.gain.readS()) print("Old GainAuto:") print(anlgc.gainAuto.readS()) print("New GainAuto:") anlgc.gainAuto.writeS("Off") print(anlgc.gainAuto.readS()) #----------------------------------------- # MFPI #----------------------------------------- FPI_IDS = [ # ( VID, PID) (and the same in decimal) ('1FC9', '0083'), (8137, 131), ] """Known VID:PID pairs of FPI devices.""" FPI_HWIDS = [ # Strings returned by read_hardware_id 'd02b012 af380065 5b5bbeab f50019c1' ] print('Trying to create FPI device') fpi = createFPIDevice(detectFPIDevices(FPI_IDS, FPI_HWIDS)[0].device) print(fpi) # ------------------------------------------ # camazing.pixelformats # ------------------------------------------ class PixelFormatError(Exception): pass def get_valid_range(pxformat): """Return the valid range of values for a given pixel format. Parameters ---------- pxformat: str Pixel format as given by cameras GenICam PixelFormat feature. Returns ------ np.array A vector of [min_value, max_value] with the same type as the decoded pixel format. """ try: valid_range = _ranges[pxformat] except KeyError: raise PixelFormatError(f'No range found for the pixel format `{pxformat}') return valid_range def get_decoder(pxformat): """Return a numpy decoder for a given GenICam pixel format. Parameters ---------- pxformat: str Pixel format as given by cameras PixelFormat. Returns ------- decoder: function Function for decoding a buffer """ try: decoder = _decoders[pxformat] except KeyError: raise PixelFormatError(f'No decoder for the pixel format `{pxformat}`') return decoder def decode_raw(dtype): """Decode raw buffer with a given bit depth.""" def decode(buf, shape): return np.frombuffer( buf, dtype=dtype ).reshape(*shape).copy() return decode def decode_RGB(bpp): """Decode RGB buffer with a given bit depth.""" def decode(buf, shape): return np.frombuffer( buf, dtype=bpp, ).reshape(*shape, 3).copy() return decode def decode_YCbCr422_8(): """Decode YCbCr422 buffer with given bit depth.""" raise NotImplementedError _decoders = { 'BayerRG8': decode_raw(np.uint8), 'BayerGB8': decode_raw(np.uint8), 'BayerGB12': decode_raw(np.uint16), 'BayerRG12': decode_raw(np.uint16), 'BayerRG16': decode_raw(np.uint16), 'RGB8': decode_RGB(np.uint8), 'Mono8': decode_raw(np.uint8), 'Mono16': decode_raw(np.uint16), } _ranges = { 'BayerRG8': np.uint8([0, 255]), 'BayerGB8': np.uint8([0, 255]), 'BayerGB12': np.uint16([0, 4095]), 'BayerRG12': np.uint16([0, 4095]), 'BayerRG16': np.uint16([0, 65535]), 'RGB8': np.uint8([0, 255]), 'Mono8': np.uint8([0, 255]), 'Mono16': np.uint16([0, 65535]), } # ------------------------------------------ # camazing.core # ------------------------------------------ class DanielCamera: def __init__(self, pDev): self._meta = None self._pDev = pDev def __enter__(self): return self def __exit__(self, exception_type, exception_value, traceback): print("Exit DanielCamera") def _get_frame(self, timeout=1): """Helper function""" self._pixel_format = "BayerGB12" self._buffer_decoder = get_decoder(self._pixel_format) self._image_range = get_valid_range(self._pixel_format) # data = self._buffer_decoder(buffer.raw_buffer, (height, width)) #------------------------ # Take frame #------------------------ self._fi = acquire.FunctionInterface(pDev) self._fi.imageRequestReset(0,0) self._fi.imageRequestSingle() exampleHelper.manuallyStartAcquisitionIfNeeded(self._pDev, self._fi) requestNr = self._fi.imageRequestWaitFor(20000) exampleHelper.manuallyStopAcquisitionIfNeeded(self._pDev, self._fi) data = [] if self._fi.isRequestNrValid(requestNr): print("Request number valid! " + str(requestNr)) pRequest = self._fi.getRequest(requestNr) print("Print request: " + str(pRequest)) print("Print request result: " + str(pRequest.requestResult)) print("Print request result readS: " + pRequest.requestResult.readS()) if pRequest.isOK: print("Request OK!") height = pRequest.imageHeight.read() width = pRequest.imageWidth.read() channelCount = pRequest.imageChannelCount.read() channelBitDepth = pRequest.imageChannelBitDepth.read() imageSize = pRequest.imageSize.read() print("Image height: " + str(height)) print("Image width: " + str(width)) print("Image channel count: " + str(channelCount)) print("Image channel bit depth: " + str(channelBitDepth)) print("Image size: " + str(imageSize)) cbuf = (ctypes.c_char * pRequest.imageSize.read()).from_address(int(pRequest.imageData.read())) # Check if this is now correct buffer format! # Convert with numpy if needed data = self._buffer_decoder(cbuf, (height, width)) print("Data from buffer_decoder()") print(data) self._fi.imageRequestUnlock(requestNr) exampleHelper.manuallyStopAcquisitionIfNeeded(pDev, self._fi) self._fi.imageRequestReset(0,0) else: print("imageRequestWaitFor failed (" + str(requestNr) + ", " + acquire.ImpactAcquireException.getErrorCodeAsString(requestNr) + ")") exampleHelper.manuallyStopAcquisitionIfNeeded(self._pDev, self._fi) return data def _get_frame_with_meta(self): """Fetch a frame and add metadata from the camera.""" data = self._get_frame() print("Data from _get_frame(): ") print(data) height, width = data.shape[0], data.shape[1] coords = { "x": ("x", np.arange(0, width) + 0.5), "y": ("y", np.arange(0, height) + 0.5), "timestamp": dt.datetime.today().timestamp(), } if 'RGB' in self._pixel_format: dims = ('y', 'x', 'colour') coords['colour'] = list('RGB') elif 'YUV' in self._pixel_format: dims = ('y', 'x', 'colour') coords['colour'] = list('YUV') elif 'YCbCr' in self._pixel_format: dims = ('y', 'x', 'colour') coords['colour'] = ['Y', 'Cb', 'Cr'] else: dims = ('y', 'x') # Keep some meta by default, if available # self._meta = [] # for feature in ['Gain', 'ExposureTime', 'PixelFormat', 'PixelColorFilter']: # if feature in self._features: # self._meta.append(feature) # Add metadata as coordinates # if self._meta: # coords.update({k: self._features[k].value for k in self._meta}) # Replace these hard-coded values by reading from camera! coords['Gain'] = "1.9382002601" coords['ExposureTime'] = 150000 coords['PixelFormat'] = "BayerGB12" coords['PixelColorFilter'] = "BayerGB" frame = xr.DataArray( data, name="frame", dims=dims, coords=coords, attrs={ 'valid_range': self._image_range, } ) return frame def get_frame(self): return self._get_frame_with_meta() # ------------------------------------------ # HSI # ------------------------------------------ class CaptureException(Exception): pass class HSI: """Hyperspectral imager""" def __init__(self, camera=None, fpi=None): self.camera = camera self.fpi = fpi self.dataset = None self.calibration_file = None def read_calibration_file(self, calibration_file): self.dataset = fp.io.read_calibration(calibration_file) self.calibration_file = calibration_file def take_dark_reference(self, number_of_frames=40, method="median"): self.read_calibration_file(self.calibration_file) # original_trigger_source = self.camera["TriggerSource"].value # self.camera["TriggerSource"].value = "Software" frames = [] with self.camera: for idx in trange(0, number_of_frames): frame = self.camera.get_frame() frame.coords[c.image_index] = idx frames.append(frame) # self.camera["TriggerSource"].value = original_trigger_source dark = xr.concat(frames, dim=c.image_index) if method == "median": dark = dark.median(dim=c.image_index) elif method == "mean": dark = dark.mean(dim=c.image_index) else: raise ValueError("Unknown method: '" + method) self.dataset[c.dark_reference_data] = dark return dark def capture_cube(self, *, selectors=None): if selectors is None: dataset = self.dataset.copy() else: dataset = self.dataset.sel(**selectors).copy() frames = [] # if self.camera["TriggerSource"].value == "Software": with self.camera: for idx in tqdm(dataset[c.image_index].values): setpoint = dataset[c.setpoint_data].sel( **{c.setpoint_coord: "SP1", c.image_index: idx, }).values self.fpi.set_setpoint(setpoint, wait=True) frame = self.camera.get_frame() frame.coords[c.image_index] = idx frames.append(frame) # else: # with self.camera: # self.create_fpi_taskfile(dataset) # self.camera["StrobeDuration"].value = \ # self.camera["ExposureTime"].value # self.fpi.run_taskfile() # for idx, setpoint in enumerate(tqdm( # dataset.setpoint.sel(setpoint_index="SP1").values)): # frame = self.camera.get_frame() # frame.coords[c.image_index] = idx # frames.append(frame) dataset[c.cfa_data] = xr.concat(frames, dim=c.image_index) return dataset def create_fpi_taskfile(dataset): raise NotImplementedError() danielCam = DanielCamera(pDev) print(danielCam) hsi = HSI(danielCam, fpi) print(hsi) hsi.read_calibration_file('led_set_a_calib_single.txt') input("Put the lens cap on") # hsi.take_dark_reference() # Reduce dark frame count from 40 to 2, # because Zybo does not have enough memory led = LEDDriver(ledportstring) print(led) led.open() print('Turning off LEDs') led.L(0) led.close() hsi.take_dark_reference(2) print(hsi.dataset.dark) input("Take the lens cap off and set white reference") print('Turning on LEDs') # VIS # # 542,8327583 # 552,8525817 # # 701,3626464 # 710,1310492 # # 111000000111000000111000000 # * Reverse for LED control: # 000000111000000111000000111 # led = LEDDriver(ledportstring) print(led) led.open() print('Turning on LEDs') led.L(0b000000111000000111000000111) led.close() print('Capturing white reference') white_raw = hsi.capture_cube() input("Set image (only for radiance)") print('Capturing cube') raw = hsi.capture_cube() print(raw) input("Waiting for keypress to turn off LEDs") print('Turning off LEDs') led = LEDDriver(ledportstring) print(led) led.open() print('Turning off LEDs') led.L(0) led.close() # print('Calculating radiance') # rad = fp.raw_to_radiance(raw, keep_variables=['dark']) # print(rad) # print(rad['radiance']) # # print('Calculating white radiance') # rad['white'] = fp.raw_to_radiance(white_raw, keep_variables = []).radiance # print(rad['white']) # # print('Calculating reflectance') # rad['reflectance'] = rad.radiance / rad.white # print(rad['reflectance']) # # # reflectance = fp.radiance_to_reflectance(rad, white_raw, keep_variables=[]) # # print(reflectance) # # print('Extracting single frame from cube and saving to PNG') # test = rad["radiance"] # # print('Radiance data') # testdata = test.data # print(testdata) # # print('White data') # whitedata = rad['white'].data # print(whitedata) # # print('Reflectance data') # reflectdata = rad['reflectance'].data # print(reflectdata) # # print ("Wavelengths") # wavelengths = rad["wavelength"].data # print(wavelengths) # # print ("Wavelengths count") # wavelengthCount = len(wavelengths) # print(wavelengthCount) # # # Multiple peaks result in multiple of single calib file row count # imagelastindex = wavelengthCount # # # # # Save radiance images # # # print('Start saving radiance images') # for x in range(0, imagelastindex): # # wavelengthValue = wavelengths[x] # wavelengthStr = str(wavelengthValue) # wavelengthReplacedStr = wavelengthStr.replace(".", "p") # print('Saving wavelength: ' + wavelengthStr) # # rad1 = testdata[:,:,x] # # matplotlib.image.imsave('rad_' + wavelengthReplacedStr + 'nm_' + str(x) + '.png', rad1) # # white1 = whitedata[:,:,x] # # matplotlib.image.imsave('white_' + wavelengthReplacedStr + 'nm_' + str(x) + '.png', white1) # # ref1 = reflectdata[:,:,x] # matplotlib.image.imsave('refl_' + wavelengthReplacedStr + 'nm_' + str(x) + '.png', ref1, vmin=0,vmax=1) import matplotlib.pyplot as plt plt.gray() # # Save raw images and demosaic images # print('Start saving raw data') for x in range(0, 1): # Raw data values dn1 = raw.dn.isel(index=x) matplotlib.image.imsave('raw_' + str(x) + '.png', dn1) # Demosaic to get three colour channels # dm1 = fp.demosaic(dn1, 'BayerGB', 'bilinear') # dm1_red = dm1[:,:,0] # dm1_green = dm1[:,:,1] # dm1_blue = dm1[:,:,2] # matplotlib.image.imsave('raw_' + str(x) + '_demosaic_red.png', dm1_red) # matplotlib.image.imsave('raw_' + str(x) + '_demosaic_green.png', dm1_green) # matplotlib.image.imsave('raw_' + str(x) + '_demosaic_blue.png', dm1_blue) # fi.acquisitionStart() # self["TriggerSoftware"].execute() # acquire.TriggerControl.triggerSoftware() # fi.acquisitionStop()
{"hexsha": "e6c5edd0851be5ac42774998940e51cf36072dfe", "size": 18433, "ext": "py", "lang": "Python", "max_stars_repo_path": "python/zybohsi/test_hsi11.py", "max_stars_repo_name": "DanielTisza/spectralcamera", "max_stars_repo_head_hexsha": "4fef93b3b4cd8f83e016070f1c0d68aa0cff5102", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "python/zybohsi/test_hsi11.py", "max_issues_repo_name": "DanielTisza/spectralcamera", "max_issues_repo_head_hexsha": "4fef93b3b4cd8f83e016070f1c0d68aa0cff5102", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "python/zybohsi/test_hsi11.py", "max_forks_repo_name": "DanielTisza/spectralcamera", "max_forks_repo_head_hexsha": "4fef93b3b4cd8f83e016070f1c0d68aa0cff5102", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 26.5988455988, "max_line_length": 144, "alphanum_fraction": 0.6153637498, "include": true, "reason": "import numpy", "num_tokens": 4583}
import argparse import numpy as np import torch import yaml from torch.utils.data import DataLoader from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence from model import LanguageModel from dataset import CoNLLDataset, collate_annotations FLAGS = None def main(_): # Load configuration. with open(FLAGS.config, 'r') as f: config = yaml.load(f) # Initialize CoNLL dataset. dataset = CoNLLDataset(fname=config['data']['train'], target='lm') # Initialize model. language_model = LanguageModel( vocab_size=len(dataset.token_vocab), embedding_dim=config['model']['embedding_dim'], hidden_size=config['model']['hidden_size'], num_layers=config['model']['num_layers']) if torch.cuda.is_available(): language_model = language_model.cuda() # Initialize loss function. NOTE: Manually setting weight of padding to 0. weight = torch.ones(len(dataset.token_vocab)) weight[0] = 0 if torch.cuda.is_available(): weight = weight.cuda() loss_function = torch.nn.NLLLoss(weight) optimizer = torch.optim.Adam(language_model.parameters()) # Main training loop. data_loader = DataLoader( dataset, batch_size=config['training']['batch_size'], shuffle=True, collate_fn=collate_annotations) losses = [] i = 0 for epoch in range(config['training']['num_epochs']): for batch in data_loader: inputs, targets, lengths = batch optimizer.zero_grad() outputs, _ = language_model(inputs, lengths=lengths) outputs = outputs.view(-1, len(dataset.token_vocab)) targets = targets.view(-1) loss = loss_function(outputs, targets) loss.backward() optimizer.step() losses.append(loss.data[0]) if (i % 100) == 0: average_loss = np.mean(losses) losses = [] print('Iteration %i - Loss: %0.6f' % (i, average_loss), end='\r') if (i % 1000) == 0: torch.save(language_model, config['data']['checkpoint']) i += 1 torch.save(language_model, config['data']['checkpoint']) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--config', type=str, required=True, help='Path to configuration file.') FLAGS, _ = parser.parse_known_args() main(_)
{"hexsha": "b975820b54544011a3cf9c9ca812def1281769d3", "size": 2477, "ext": "py", "lang": "Python", "max_stars_repo_path": "tutorials/rnn-examples/train_lm.py", "max_stars_repo_name": "SamuelPhang/uci-statnlp", "max_stars_repo_head_hexsha": "799e95daa1cbdfe00f501b3068df24eb90c0d351", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 16, "max_stars_repo_stars_event_min_datetime": "2017-01-19T21:36:05.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-07T05:49:01.000Z", "max_issues_repo_path": "tutorials/rnn-examples/train_lm.py", "max_issues_repo_name": "SamuelPhang/uci-statnlp", "max_issues_repo_head_hexsha": "799e95daa1cbdfe00f501b3068df24eb90c0d351", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "tutorials/rnn-examples/train_lm.py", "max_forks_repo_name": "SamuelPhang/uci-statnlp", "max_forks_repo_head_hexsha": "799e95daa1cbdfe00f501b3068df24eb90c0d351", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 82, "max_forks_repo_forks_event_min_datetime": "2017-01-22T00:06:51.000Z", "max_forks_repo_forks_event_max_datetime": "2021-10-07T11:45:48.000Z", "avg_line_length": 30.9625, "max_line_length": 81, "alphanum_fraction": 0.623334679, "include": true, "reason": "import numpy", "num_tokens": 532}
import sys import os import pyflann import params import numpy as np import draw_func2 as df2 import helpers np.random.seed(5) # Parameters tdim = 2; # Target viewing dimensions dim = 2; # Calculation dimension if len(sys.argv) == 2: tdim = int(sys.argv[1]) dim = int(sys.argv[1]) K = 4; checks = 128; nQuery = 8; nData = 1024; # Script def quick_flann_index(data): data_flann = pyflann.FLANN() flann_params = params.VSMANY_FLANN_PARAMS checks = flann_params['checks'] data_flann.build_index(data, **flann_params) return data_flann def reciprocal_nearest_neighbors(query, data, data_flann, checks): nQuery, dim = query.shape # Assign query features to K nearest database features (qfx2_dx, qfx2_dists) = data_flann.nn_index(query, K, checks=checks) # Assign those nearest neighbors to K nearest database features qx2_nn = data[qfx2_dx] qx2_nn.shape = (nQuery*K, dim) (_nn2_dx, nn2_dists) = data_flann.nn_index(qx2_nn, K, checks=checks) # Get the maximum distance of the reciprocal neighbors nn2_dists.shape = (nQuery, K, K) qfx2_maxdist = nn2_dists.max(2) # Test if nearest neighbor distance is less than reciprocal distance isReciprocal = qfx2_dists < qfx2_maxdist return qfx2_dx, qfx2_dists, isReciprocal data = np.random.rand(nData, dim) query = np.random.rand(nQuery, dim) nQuery = len(query) # Find query's Nearest Neighbors in data data_flann = quick_flann_index(data) (qfx2_dx, qfx2_dists) = data_flann.nn_index(query, K, checks=checks) qx2_nn = data[qfx2_dx] # get k-reciprocal nearest neighbors max distance qx2_nn.shape = (nQuery*K, dim) (nn2_dx, nn2_dists) = data_flann.nn_index(qx2_nn, K, checks=checks) nn2_data = data[nn2_dx] # data's nearest neighbors nn2_dists.shape = (nQuery, K, K) qx2_nn.shape = (nQuery, K, dim) qfx2_maxdist = nn2_dists.max(2) # A neighbor is a K reciprocal if you are within the # max distance of the assigned points K nearest neighbors isReciprocal = qfx2_dists < qfx2_maxdist krx2_nn = qx2_nn[isReciprocal] krx2_qfx = helpers.tiled_range(nQuery, K)[isReciprocal] krx2_query = query[krx2_qfx] # Enforce viewable dimensionality if dim != tdim: import sklearn.decomposition print('Plotting pca.transform dimensionality') pca = sklearn.decomposition.PCA(copy=True, n_components=tdim, whiten=False) pca.fit(data) query_ = pca.transform(query) data_ = pca.transform(data) nn2_data_ = pca.transform(nn2_data) qx2_nn_ = pca.transform(qx2_nn) krx2_query_ = pca.transform(krx2_query) krx2_nn_ = pca.transform(krx2_nn) else: print('Plotting full dimensionality') query_ = (query) data_ = (data) qx2_nn_ = (qx2_nn) krx2_query_ = (krx2_query) krx2_nn_ = (krx2_nn) # Figure and Axis plt = df2.plt df2.reset() fig = plt.figure(1) if tdim == 2: ax = fig.add_subplot(111) elif tdim > 2: from mpl_toolkits.mplot3d import Axes3D ax = fig.add_subplot(111, projection='3d') def plot_points(data, color, marker): dataT = data.T if len(dataT) == 2: ax.plot(dataT[0], dataT[1], color=color, marker=marker, linestyle='None') elif len(dataT) == 3: ax.scatter(dataT[0], dataT[1], dataT[2], color=color, marker=marker) def plot_lines(point_pairs, color): for pair in point_pairs: dataT = pair.T if len(dataT) == 2: ax.plot(dataT[0], dataT[1], color=color) elif len(dataT) == 3: ax.plot(dataT[0], dataT[1], dataT[2], color=color) #plt.scatter(dataT[0], dataT[1], dataT[2], s=20, color=color) # Plot query / data plot_points(data_, 'b', 'x') plot_points(query_,'b', 'o') # Plot KNN qx2_nn_.shape = (nQuery, K, tdim) point_pairs = [np.vstack((query_[qx], qx2_nn_[qx,k])) for qx in xrange(nQuery) for k in xrange(K)] plot_lines(point_pairs, (1, 0, 0, .8)) # Plot NN's KNN qx2_nn_.shape = (nQuery*K, tdim) nRes = len(qx2_nn_) point_pairs3 = [np.vstack((qx2_nn_[nnx], nn2_data_[nnx,k])) for nnx in xrange(nRes) for k in xrange(K)] plot_lines(point_pairs3, (1, .8, .8, .5)) # Plot KRNN point_pairs2 = map(np.vstack, zip(krx2_query_, krx2_nn_)) plot_lines(point_pairs2, (0, 1, 0, .9)) df2.update() # Show df2.set_figtitle('KRNN=(Green), NN=(Red), NNR=(Pink), dims=%r, K=%r' % (dim, K)) exec(df2.present())
{"hexsha": "351ec4cc9af99e6ff463624cae8f19671ea65acd", "size": 4308, "ext": "py", "lang": "Python", "max_stars_repo_path": "_scripts/k_reciprocal_nearest_neighbors.py", "max_stars_repo_name": "Erotemic/hotspotter", "max_stars_repo_head_hexsha": "3cfa4015798e21385455b937f9083405c4b3cf53", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 2, "max_stars_repo_stars_event_min_datetime": "2015-07-19T02:55:06.000Z", "max_stars_repo_stars_event_max_datetime": "2021-07-07T02:38:26.000Z", "max_issues_repo_path": "_scripts/k_reciprocal_nearest_neighbors.py", "max_issues_repo_name": "Erotemic/hotspotter", "max_issues_repo_head_hexsha": "3cfa4015798e21385455b937f9083405c4b3cf53", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 5, "max_issues_repo_issues_event_min_datetime": "2017-03-11T16:30:26.000Z", "max_issues_repo_issues_event_max_datetime": "2021-04-10T16:42:10.000Z", "max_forks_repo_path": "_scripts/k_reciprocal_nearest_neighbors.py", "max_forks_repo_name": "Erotemic/hotspotter", "max_forks_repo_head_hexsha": "3cfa4015798e21385455b937f9083405c4b3cf53", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 10, "max_forks_repo_forks_event_min_datetime": "2015-07-19T03:05:42.000Z", "max_forks_repo_forks_event_max_datetime": "2021-08-24T14:48:59.000Z", "avg_line_length": 32.3909774436, "max_line_length": 103, "alphanum_fraction": 0.6901114206, "include": true, "reason": "import numpy", "num_tokens": 1406}
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/12/23 10:01 AM # @Author : zhangzhen # @Site : # @File : torch_tutorial.py # @Software: PyCharm import torch import math import numpy as np import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt def act_functions(): """ draw the activation function :return: """ # generate data x = torch.linspace(-5, 5, 200) x = Variable(x) x_np = x.data.numpy() y_relu = F.relu(x).data.numpy() y_sigmoid = F.sigmoid(x).data.numpy() y_tanh = F.tanh(x).data.numpy() y_softplus = F.softplus(x).data.numpy() plt.figure(1, figsize=(10, 8)) # sub fig -- relu plt.subplot(221) plt.plot(x_np, y_relu, c='red', label='relu') plt.ylim(-1, 5) plt.legend(loc='best') # sub fig -- sigmoid plt.subplot(222) plt.plot(x_np, y_sigmoid, c='blue', label='sigmoid') plt.ylim(-0.2, 1.2) plt.legend(loc='best') # sub fig -- tanh plt.subplot(223) plt.plot(x_np, y_tanh, c='green', label='tanh') plt.ylim(-1.2, 1.2) plt.legend(loc='best') plt.subplot(224) plt.plot(x_np, y_softplus, c='cyan', label='softplus') plt.ylim(-0.2, 6) plt.legend(loc='best') plt.show() def loss_functions(): # head plt.figure(figsize=(20, 16)) plt.title(u"损失函数") # sub fig -- sigmoid plt.subplot(331) x_sig = np.linspace(start=-15, stop=15, dtype=np.float) loss_sigmoid = 1 / (1 + np.exp(-x_sig)) plt.plot(x_sig, loss_sigmoid, c='red', label='sigmoid') plt.ylim(-0.2, 1.2) plt.legend(loc='best') plt.grid() # sub fig -- logistics plt.subplot(332) x_logi = np.linspace(start=-5, stop=10, dtype=np.float) loss_logistics = np.log((1 + np.exp(-x_logi))) / np.log(2) plt.plot(x_logi, loss_logistics, c='blue', label='logistics') plt.ylim(-0.5, 8) plt.legend(loc='best') plt.grid() # sub fig -- boost plt.subplot(333) x_boost = np.linspace(start=-3, stop=10, dtype=np.float) loss_boost = np.exp(-x_boost) plt.plot(x_boost, loss_boost, c='cyan', label='boost') plt.ylim(-0.2, 15) plt.legend(loc='best') plt.grid() # sub fig -- 0/1 plt.subplot(334) x_0_1 = np.linspace(start=-10, stop=10, num=1001, dtype=np.float) loss_0_1 = x_0_1 < 0 plt.plot(x_0_1, loss_0_1, c='olive', label='0/1') plt.ylim(-0.2, 1.2) plt.legend(loc='best') plt.grid() # sub fig -- hinge plt.subplot(335) x_hinge = np.linspace(-5, 10, num=1001, dtype=np.float) loss_hinge = 1.0 - x_hinge loss_hinge[loss_hinge < 0] = 0 plt.plot(x_hinge, loss_hinge, c='navy', label='hinge') plt.ylim(-0.2, 5) plt.legend(loc='best') plt.grid() # sub fig -- mse and mae plt.subplot(336) x_mse_mae = np.linspace(-2.5, 2.5, num=1001, dtype=np.float) loss_mse = np.square(x_mse_mae) loss_mae = np.abs(x_mse_mae) plt.plot(x_mse_mae, loss_mse, c='yellowgreen', label='mse') plt.plot(x_mse_mae, loss_mae, c='tan', label='mae') plt.ylim(-0.2, 4) plt.legend(loc='upper right') plt.grid() # sub fig -- log cosh plt.subplot(337) x_log_cosh = np.linspace(-4, 4, num=1001, dtype=np.float) loss_log_cosh = np.log2(np.cosh(x_log_cosh)) plt.plot(x_log_cosh, np.cos(x_log_cosh), c='olivedrab', label='cos') plt.plot(x_log_cosh, np.cosh(x_log_cosh), c='maroon', label='cosh') plt.plot(x_log_cosh, np.log2(np.cosh(x_log_cosh)), c='palegreen', label='logcosh') plt.ylim(-1.5, 10) plt.legend(loc='upper right') plt.grid() # sub fig -- huber plt.subplot(338) x_huber = np.linspace(-100, 100, num=1001, dtype=np.float) plt.plot(x_huber, np.square(x_huber) / 2, c='violet', label='squared loss', lw=2) for d in (10, 5, 3, 2, 1): plt.plot(x_huber, (abs(x_huber) <= d) * x_huber ** 2 / 2 + (abs(x_huber) > d) * d * (abs(x_huber) - d / 2), label=r'huber loss: $\delta$={}'.format(d), lw=2) plt.ylim(-1, 1000) plt.legend(loc='upper right') plt.grid() # sub fig -- all loss function plt.subplot(339) x = np.linspace(-2, 3, 1001, dtype=float) plt.plot(x, np.log((1 + np.exp(-x))) / np.log(2), 'r--', label='Logistics Loss', lw=2) plt.plot(x, np.exp(-x), 'k-', label='Adaboost Loss', lw=1) plt.plot(x, x < 0, 'y-', label='0/1 Loss', lw=1) tmp_hinge = 1.0 - x tmp_hinge[tmp_hinge < 0] = 0 plt.plot(x, tmp_hinge, 'b-', label='Hinge Loss', lw=1) plt.legend(loc='best') plt.grid() # save plt.savefig("loss_function.png") # show plt.show() if __name__ == '__main__': # act_functions() loss_functions()
{"hexsha": "271e15451543bb08b2bf002df319d15cca225fb7", "size": 4696, "ext": "py", "lang": "Python", "max_stars_repo_path": "dl_tutorials/torch_tutorial.py", "max_stars_repo_name": "learnerzhang/AnalyticsVidhya", "max_stars_repo_head_hexsha": "697689a24a9d73785164512cab8ac4ee5494afe8", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2018-07-04T09:14:26.000Z", "max_stars_repo_stars_event_max_datetime": "2018-07-04T09:14:26.000Z", "max_issues_repo_path": "dl_tutorials/torch_tutorial.py", "max_issues_repo_name": "learnerzhang/AnalyticsVidhya", "max_issues_repo_head_hexsha": "697689a24a9d73785164512cab8ac4ee5494afe8", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "dl_tutorials/torch_tutorial.py", "max_forks_repo_name": "learnerzhang/AnalyticsVidhya", "max_forks_repo_head_hexsha": "697689a24a9d73785164512cab8ac4ee5494afe8", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 27.1445086705, "max_line_length": 165, "alphanum_fraction": 0.5973168654, "include": true, "reason": "import numpy", "num_tokens": 1608}
/* -*- Mode: C++; tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- */ /* * Copyright 2018 Couchbase, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "engine_error.h" #include "types.h" #include <gsl/gsl> namespace cb { namespace audit { namespace document { enum class Operation; } } // namespace audit } // namespace cb struct ServerDocumentIface { virtual ~ServerDocumentIface() = default; /** * This callback is called from the underlying engine right before * it is linked into the list of available documents (it is currently * not visible to anyone). The engine should have validated all * properties set in the document by the client and the core, and * assigned a new CAS number for the document (and sequence number if * the underlying engine use those). * * The callback may at this time do post processing of the document * content (it is allowed to modify the content data, but not * reallocate or change the size of the data in any way). * * Given that the engine MAY HOLD LOCKS when calling this function * the core is *NOT* allowed to acquire *ANY* locks (except for doing * some sort of memory allocation for a temporary buffer). * * @param cookie The cookie provided to the engine for the storage * command which may (which may hold more context) * @param info the items underlying data * @return ENGINE_SUCCESS means that the underlying engine should * proceed to link the item. All other * error codes means that the engine should * *NOT* link the item */ virtual ENGINE_ERROR_CODE pre_link(gsl::not_null<const void*> cookie, item_info& info) = 0; /** * This callback is called from the underlying engine right before * a particular document expires. The callback is responsible examining * the value and possibly returning a new and modified value. * * @param itm_info info pertaining to the item that is to be expired. * @return std::string empty if the value required no modification, not * empty then the string contains the modified value. When not empty * the datatype of the new value is datatype xattr only. * * @throws std::bad_alloc in case of memory allocation failure */ virtual std::string pre_expiry(const item_info& itm_info) = 0; /** * Add an entry to the audit trail for access to the document specified * in the key for this cookie. * * @param cookie The cookie representing the operation * @param operation The type of access for the operation */ virtual void audit_document_access( gsl::not_null<const void*> cookie, cb::audit::document::Operation operation) = 0; };
{"hexsha": "d6ea0c7208fa1f3c304a500243ce2b008586588a", "size": 3478, "ext": "h", "lang": "C", "max_stars_repo_path": "include/memcached/server_document_iface.h", "max_stars_repo_name": "hrajput89/kv_engine", "max_stars_repo_head_hexsha": "33fb1ab2c9787f55555e5f7edea38807b3dbc371", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 1.0, "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:33:09.000Z", "max_stars_repo_stars_event_max_datetime": "2019-06-13T07:33:09.000Z", "max_issues_repo_path": "include/memcached/server_document_iface.h", "max_issues_repo_name": "paolococchi/kv_engine", "max_issues_repo_head_hexsha": "40256dca6bf77fb4bcc18e8ef7d9b8f991bf4e45", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "include/memcached/server_document_iface.h", "max_forks_repo_name": "paolococchi/kv_engine", "max_forks_repo_head_hexsha": "40256dca6bf77fb4bcc18e8ef7d9b8f991bf4e45", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": 2.0, "max_forks_repo_forks_event_min_datetime": "2019-10-11T14:00:49.000Z", "max_forks_repo_forks_event_max_datetime": "2020-04-06T09:20:15.000Z", "avg_line_length": 39.5227272727, "max_line_length": 80, "alphanum_fraction": 0.6627372053, "num_tokens": 758}
import numpy as np from util import util from config.draco3_lb_config import PnCConfig, WBCConfig from pnc.wbc.ihwbc.ihwbc import IHWBC from pnc.wbc.ihwbc.joint_integrator import JointIntegrator class Draco3LBController(object): def __init__(self, tci_container, robot): self._tci_container = tci_container self._robot = robot # Initialize WBC l_jp_idx, l_jd_idx, r_jp_idx, r_jd_idx = self._robot.get_q_dot_idx( ['l_knee_fe_jp', 'l_knee_fe_jd', 'r_knee_fe_jp', 'r_knee_fe_jd']) act_list = [False] * robot.n_floating + [True] * robot.n_a act_list[l_jd_idx] = False act_list[r_jd_idx] = False n_q_dot = len(act_list) n_active = np.count_nonzero(np.array(act_list)) n_passive = n_q_dot - n_active - 6 self._sa = np.zeros((n_active, n_q_dot)) self._sv = np.zeros((n_passive, n_q_dot)) j, k = 0, 0 for i in range(n_q_dot): if i >= 6: if act_list[i]: self._sa[j, i] = 1. j += 1 else: self._sv[k, i] = 1. k += 1 self._sf = np.zeros((6, n_q_dot)) self._sf[0:6, 0:6] = np.eye(6) self._ihwbc = IHWBC(self._sf, self._sa, self._sv, PnCConfig.SAVE_DATA) if WBCConfig.B_TRQ_LIMIT: self._ihwbc.trq_limit = np.dot(self._sa[:, 6:], self._robot.joint_trq_limit) self._ihwbc.lambda_q_ddot = WBCConfig.LAMBDA_Q_DDOT self._ihwbc.lambda_rf = WBCConfig.LAMBDA_RF # Initialize Joint Integrator self._joint_integrator = JointIntegrator(robot.n_a, PnCConfig.CONTROLLER_DT) self._joint_integrator.pos_cutoff_freq = WBCConfig.POS_CUTOFF_FREQ self._joint_integrator.vel_cutoff_freq = WBCConfig.VEL_CUTOFF_FREQ self._joint_integrator.max_pos_err = WBCConfig.MAX_POS_ERR self._joint_integrator.joint_pos_limit = self._robot.joint_pos_limit self._joint_integrator.joint_vel_limit = self._robot.joint_vel_limit self._b_first_visit = True def get_command(self): if self._b_first_visit: self.first_visit() # Dynamics properties mass_matrix = self._robot.get_mass_matrix() mass_matrix_inv = np.linalg.inv(mass_matrix) coriolis = self._robot.get_coriolis() gravity = self._robot.get_gravity() self._ihwbc.update_setting(mass_matrix, mass_matrix_inv, coriolis, gravity) # Task, Contact, and Internal Constraint Setup w_hierarchy_list = [] for task in self._tci_container.task_list: task.update_jacobian() task.update_cmd() w_hierarchy_list.append(task.w_hierarchy) self._ihwbc.w_hierarchy = np.array(w_hierarchy_list) for contact in self._tci_container.contact_list: contact.update_contact() for internal_constraint in self._tci_container.internal_constraint_list: internal_constraint.update_internal_constraint() # WBC commands joint_trq_cmd, joint_acc_cmd, rf_cmd = self._ihwbc.solve( self._tci_container.task_list, self._tci_container.contact_list, self._tci_container.internal_constraint_list) joint_trq_cmd = np.dot(self._sa[:, 6:].transpose(), joint_trq_cmd) joint_acc_cmd = np.dot(self._sa[:, 6:].transpose(), joint_acc_cmd) # Double integration joint_vel_cmd, joint_pos_cmd = self._joint_integrator.integrate( joint_acc_cmd, self._robot.joint_velocities, self._robot.joint_positions) command = self._robot.create_cmd_ordered_dict(joint_pos_cmd, joint_vel_cmd, joint_trq_cmd) return command def first_visit(self): joint_pos_ini = self._robot.joint_positions self._joint_integrator.initialize_states(np.zeros(self._robot.n_a), joint_pos_ini) self._b_first_visit = False
{"hexsha": "f713ea8db528032ad33727686296727e18b4ed76", "size": 4232, "ext": "py", "lang": "Python", "max_stars_repo_path": "pnc/draco3_lb_pnc/draco3_lb_controller.py", "max_stars_repo_name": "MaxxWilson/ASE389Project", "max_stars_repo_head_hexsha": "13c3c72887e27fbed2eef63c1e27b4a185036a39", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 17, "max_stars_repo_stars_event_min_datetime": "2021-05-31T10:55:48.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-30T10:09:37.000Z", "max_issues_repo_path": "pnc/draco3_lb_pnc/draco3_lb_controller.py", "max_issues_repo_name": "MaxxWilson/ASE389Project", "max_issues_repo_head_hexsha": "13c3c72887e27fbed2eef63c1e27b4a185036a39", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 2, "max_issues_repo_issues_event_min_datetime": "2021-10-01T22:11:43.000Z", "max_issues_repo_issues_event_max_datetime": "2021-12-06T02:34:33.000Z", "max_forks_repo_path": "pnc/draco3_lb_pnc/draco3_lb_controller.py", "max_forks_repo_name": "MaxxWilson/ASE389Project", "max_forks_repo_head_hexsha": "13c3c72887e27fbed2eef63c1e27b4a185036a39", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 3, "max_forks_repo_forks_event_min_datetime": "2021-08-24T00:53:18.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-31T17:29:07.000Z", "avg_line_length": 41.900990099, "max_line_length": 80, "alphanum_fraction": 0.6176748582, "include": true, "reason": "import numpy", "num_tokens": 1038}
\chapter{Results}\label{chap:results} Clustering for \bslong{} and investigating the \krap{} led us to focus on a volley of metrics in order to understand the nature of the data. For clustering, we were interested in both the nature of the clusters --- the size, purity, and unique \spec{} within each --- as well as the clustering coverage --- how many \cplop{} \isols{} made it into a cluster, given a specific \minneigh{} value. For \krap{}, we adjusted the values of \k{} and \a{} for each resolution strategy to gauge how effective each were at classification. \input{chapters/results/clustering} \input{chapters/results/classifying}
{"hexsha": "3041b97e66a058af94610f4127b6087bcb029447", "size": 639, "ext": "tex", "lang": "TeX", "max_stars_repo_path": "chapters/results/000.tex", "max_stars_repo_name": "jmcgover/thesis", "max_stars_repo_head_hexsha": "25664684158d00864dbe697276d2691ba84461cb", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "chapters/results/000.tex", "max_issues_repo_name": "jmcgover/thesis", "max_issues_repo_head_hexsha": "25664684158d00864dbe697276d2691ba84461cb", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "chapters/results/000.tex", "max_forks_repo_name": "jmcgover/thesis", "max_forks_repo_head_hexsha": "25664684158d00864dbe697276d2691ba84461cb", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 91.2857142857, "max_line_length": 252, "alphanum_fraction": 0.7589984351, "num_tokens": 152}
#!/usr/bin/python3 #-*-coding:utf-8-*- import json import sys import functools import math import numpy as np import matplotlib.pyplot as plt import csv import os from tablet import * from bootstrap import * from plot import * #Parse all the files pairData = {} files = [] outputDir = os.getcwd() argv = sys.argv[1:] i = 0 while i < len(argv): #Read file names arg = argv[i] if not arg.startswith("--"): files.append(arg) i+=1 else: while i < len(argv): arg = argv[i] if arg == "--output": if i < len(argv)-1: outputDir = argv[i+1] i+=1 else: print("Missing directory path value to '--output' parameter") sys.exit(-1) else: print("Unknown parameter {}".format(arg)) sys.exit(-1) i+=1 #Check length of the command line arguments if len(files) == 0: print("Run ./extractCHI20Data.py <jsonPath1> [jsonPathN...] [--output dirOutput] [--show]") sys.exit(-1) try: for fileName in files: print("Opening {}".format(fileName)) with open(fileName, "r") as f: try: tabletData = [TabletData(0, None), TabletData(1, None)] jsonData = json.load(f) #The JSON data currentStudyID = -1 currentTrial = -1 #current trial ID currentTargetPosition = None #current target position for this trial currentTabletID = -1 #current tablet ID for this trial currentTrialOffset = 0 #time offset for when this trial started currentDatasetScaling = np.array([1.0, 1.0, 1.0]) #The current dataset scaling #Look over all the json object saved by the server for obj in jsonData["data"]: name = obj["type"] offset = obj["timeOffset"] sender = obj["sender"] headsetIP = obj["headsetIP"].split(':') #Track the tablets' ID if name == "HeadsetBindingInfo" and headsetIP[1] == "Tablet": if bool(obj["tabletConnected"]): #Update the tablet information tabletID = int(obj["tabletID"]) ip = headsetIP[0] for tablet in tabletData: if tablet.tabletID == tabletID: tablet.headsetIP = ip break if name == "SetPairID": pairID = obj["pairID"] for t in tabletData: t.pairID = pairID #Track the trial ID and annotation's target position elif name == "SendNextTrial" and sender == "Server": currentTrial = obj["currentTrialID"] currentTargetPosition = np.array(obj["annotationPos"]) currentTabletID = obj["currentTabletID"] currentTrialOffset = offset currentStudyID = obj["currentStudyID"] elif name == "ScaleDataset": #Take account of the scaling if obj["datasetID"] == 0 and obj["subDatasetID"] == 0 and sender == "Server" and obj["inPublic"] == 1: #Correct dataset, correct sender, in public space currentDatasetScaling = np.array(obj["scale"]) #When the study is running (i.e., no training) if currentTrial != -1 and currentStudyID != -1: #Track when an annotation started #This will initialize a new annotation. We track the server sending message. if name == "StartAnnotation" and sender == "Server": if obj["datasetID"] == 0 and obj["subDatasetID"] == 0 and obj["inPublic"] == 1: #Only the main dataset counts pointingID = obj["pointingID"] for tablet in tabletData: if tablet.headsetIP == headsetIP[0] and tablet.tabletID == currentTabletID: tablet.initAnnotation(currentStudyID, currentTrial, pointingID, currentTargetPosition, currentTrialOffset, offset) break #Anchor the annotation #This will finalize the initialized annotation. We track the server sending message. elif name == "AnchorAnnotation" and sender == "Server": if obj["datasetID"] == 0 and obj["subDatasetID"] == 0 and obj["inPublic"] == 1: #Only the main dataset counts for tablet in tabletData: if tablet.headsetIP == headsetIP[0] and tablet.tabletID == currentTabletID: anchorPos = np.array(obj["localPos"]) tablet.commitAnnotation(anchorPos, offset, currentDatasetScaling) break pairData[fileName] = tabletData except json.JSONDecodeError as jsonErr: print("Could not parse the json file. Error : {0}".format(jsonErr)) sys.exit(-1) except IOError as err: print("Could not open the file {0}. Error : {1}".format(sys.argv[1], err)) sys.exit(-1) def getAnnotationsStudy2(pair): """Get the list of the annotations for a pair of participants in study 2 @param pair the pair of participant""" annotations = functools.reduce(lambda x, y : x + y, [y.annotations + z.annotations for y, z in zip(pair[0].study2Data, pair[1].study2Data)], []) return annotations def computeStudy2Data(pairData, pointingID): """Compute the data for a giving pointing technique. @param pairData the data of pairs (dict) @param pointingID the pointingID to look at @return a tuple (pIDs, accs, annotTCTs, trialTCTs)""" #Annotations annots = functools.reduce(lambda x, y: x+y, [getAnnotationsStudy2(pair) for pair in pairData.values()], []) #Participant IDs pIDs = [ann.pID for ann in annots if ann.pointingID==pointingID] #Trial IDs trialIDs = [ann.trialID for ann in annots if ann.pointingID==pointingID] #Accuracy in World Space accs = [ann.worldAccuracy for ann in annots if ann.pointingID==pointingID] #TCT from the start of the annotation annotTCTs = [ann.annotTCT for ann in annots if ann.pointingID==pointingID] #TCT from the start of the trial trialTCTs = [ann.trialTCT for ann in annots if ann.pointingID==pointingID] return (np.array(pIDs), np.array(trialIDs), np.array(accs), np.array(annotTCTs), np.array(trialTCTs)) def computeBootstrap(data, pointingID): """Compute the 95% Bootstrap CI from a list of annotations @param data tuple of np.array containing (accs, annotTCTs, trialTCTs) @param pointingID the pointingID to look at @return a tuple (acc_avg, acc_std, tct_trial_avg, tct_trial_std, tct_annot_avg, tct_annot_std). Each value of the tuple contains a list containing two values. The first one containing the annotation TCT and the second one containing the trial TCT""" accs, annotTCTs, trialTCTs = data #Accuracy accBootstrap = bootstrap(accs, 5000) accAvg, accStd = getMeanAndStd(accBootstrap(0.95)) #TCT annotTCTBootstrap = bootstrap(annotTCTs, 5000) trialTCTBootstrap = bootstrap(trialTCTs, 5000) tctBootstrap = [annotTCTBootstrap(0.95), trialTCTBootstrap(0.95)] tctAvgs, tctStds = getMeansAndStds(tctBootstrap) return (accAvg, accStd, #Avg tctAvgs[1], tctStds[1], #Trial TCT tctAvgs[0], tctStds[0]) #Annot TCT def study2Pipeline(pairData): """Compute the data for the second part of the study This will generate a list of PDFs permitting to visualize the dataset @param pairData the data of pairs of participants""" #Get the pointingData and the maximum axis for the TCT values pointingData = {} maxAxisTCT = 0 maxAxisAcc = 0 pointingITs = [POINTINGID_GOGO, POINTINGID_WIM, POINTINGID_MANUAL] for p in pointingITs: data = computeStudy2Data(pairData, p) csvFilePath = "{}/pointing_{}.csv".format(outputDir, p) print("Saving {}".format(csvFilePath)) with open(csvFilePath, "w") as csvFile: writer = csv.writer(csvFile, delimiter=',') writer.writerow(["pID", "trialID", "acc", "annotTCT", "trialTCT"]) for r in zip(*data): writer.writerow(r) cis = computeBootstrap(data[-3:], p) pointingData[p] = cis maxAxisTCT = max(maxAxisTCT, cis[2]+cis[3]) #Compute the maximum TCT axis length based on the trial parameter (which is bigger than the annotation parameter) maxAxisAcc = max(maxAxisAcc, cis[0]+cis[1]) #Compute the maximum Acc axis length #Print the PDFs for p in pointingITs: #Print the time completion task graphs tctAvgs = [pointingData[p][4], pointingData[p][2]] tctStds = [pointingData[p][5], pointingData[p][3]] filePathTCT = "{}/tct_{}.pdf".format(outputDir, p) filePathAcc = "{}/acc_{}.pdf".format(outputDir, p) print("Saving {}".format(filePathTCT)) drawCIs(filePathTCT, tctAvgs, tctStds, ["Annotation TCT", "Trial TCT"], "#CCCCCC", maxAxis=maxAxisTCT) print("Saving {}".format(filePathAcc)) drawCIs(filePathAcc, [pointingData[p][0]], [pointingData[p][1]], ["Accuracy"], "#CCCCCC", maxAxis=maxAxisAcc) study2Pipeline(pairData)
{"hexsha": "2a2ee5cd52ff6358747655e5e696d8d7d6e6bd09", "size": 10010, "ext": "py", "lang": "Python", "max_stars_repo_path": "scripts/extractCHI20Data/extractCHI20Data.py", "max_stars_repo_name": "MickaelSERENO/SciVis_Server", "max_stars_repo_head_hexsha": "35b07c832d053b49e4f3f9f85b5168dddedcaf5e", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "scripts/extractCHI20Data/extractCHI20Data.py", "max_issues_repo_name": "MickaelSERENO/SciVis_Server", "max_issues_repo_head_hexsha": "35b07c832d053b49e4f3f9f85b5168dddedcaf5e", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "scripts/extractCHI20Data/extractCHI20Data.py", "max_forks_repo_name": "MickaelSERENO/SciVis_Server", "max_forks_repo_head_hexsha": "35b07c832d053b49e4f3f9f85b5168dddedcaf5e", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 43.5217391304, "max_line_length": 176, "alphanum_fraction": 0.5712287712, "include": true, "reason": "import numpy", "num_tokens": 2349}
import Arena from MCTS import MCTS from ataxx.AtaxxGame import AtaxxGame from ataxx.AtaxxPlayers import * from ataxx.pytorch.NNet import NNetWrapper as NNet import numpy as np from utils import * import argparse """ use this script to play any two agents against each other, or play manually with any agent. """ parser = argparse.ArgumentParser() parser.add_argument('-f', '--model-file', default='./temp/best.pth.tar', metavar='PATH', help='Path to model file. Default is ./temp/best.pth.tar') parser.add_argument('-m', '--mcts', default=300, type=int, metavar='N', help='Number of MCTS simulation per turn') parser.add_argument('-p', '--player', default='human', metavar='P', help='AI vs PLAYER. Default P is human', choices=['human', 'random', 'greedy', 'ai']) parser.add_argument('-g', '--model-file-p2', default='./temp/best.pth.tar', metavar='PATH', help='Path to model file of second ai player.') # parser.add_argument('') a = parser.parse_args() path = a.model_file.split('/') model_dir = '/'.join(path[:-1]) model_file = path[-1] path2 = a.model_file_p2.split('/') model_dir2 = '/'.join(path2[:-1]) model_file2 = path2[-1] g = AtaxxGame(7) # all players rp = RandomPlayer(g).play gp = GreedyAtaxxPlayer(g).play hp = HumanAtaxxPlayer(g).play # nnet players n1 = NNet(g) n1.load_checkpoint(model_dir, model_file) args1 = dotdict({'numMCTSSims': a.mcts, 'cpuct':1.0}) mcts1 = MCTS(g, n1, args1) n1p = lambda x: np.argmax(mcts1.getActionProb(x, temp=0)) if a.player == 'human': player2 = hp elif a.player == 'random': player2 = rp elif a.player == 'greedy': player2 = gp else: n2 = NNet(g) n2.load_checkpoint(model_dir2, model_file2) args2 = dotdict({'numMCTSSims': a.mcts, 'cpuct': 1.0}) mcts2 = MCTS(g, n2, args2) n2p = lambda x: np.argmax(mcts2.getActionProb(x, temp=0)) player2 = n2p # Player 2 is neural network if it's cpu vs cpu. arena = Arena.Arena(n1p, player2, g, display=AtaxxGame.display) print(arena.playGames(2, verbose=True))
{"hexsha": "11ab1d191acd1688481e5224ae3d73301c5fee38", "size": 1999, "ext": "py", "lang": "Python", "max_stars_repo_path": "pit.py", "max_stars_repo_name": "2JS/alpha-zero-general", "max_stars_repo_head_hexsha": "d172ee5b20b80fb3a9eacd4a8b8437e570131a7e", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "pit.py", "max_issues_repo_name": "2JS/alpha-zero-general", "max_issues_repo_head_hexsha": "d172ee5b20b80fb3a9eacd4a8b8437e570131a7e", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 6, "max_issues_repo_issues_event_min_datetime": "2020-09-06T10:20:42.000Z", "max_issues_repo_issues_event_max_datetime": "2020-09-16T00:10:41.000Z", "max_forks_repo_path": "pit.py", "max_forks_repo_name": "2JS/alpha-zero-general", "max_forks_repo_head_hexsha": "d172ee5b20b80fb3a9eacd4a8b8437e570131a7e", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 29.3970588235, "max_line_length": 153, "alphanum_fraction": 0.6923461731, "include": true, "reason": "import numpy", "num_tokens": 605}
from jesse.helpers import get_candle_source, slice_candles, np_shift import numpy as np from numba import njit import talib from typing import Union from jesse.helpers import get_config from collections import namedtuple ''' https://www.tradingview.com/script/NgLjvBWA-RedK-Compound-Ratio-Moving-Average-CoRa-Wave/#chart-view-comments ''' def compma(candles: np.ndarray, length: int= 20, ratio: float=2.0,smooth: bool = True,man_smooth:int=1, source_type: str = "close", sequential: bool = False ) -> Union[float, np.ndarray]: candles = slice_candles(candles, sequential) source = get_candle_source(candles, source_type=source_type) cora_raw = fast_comp(source,length,0.01,ratio) s = np.maximum(np.round(np.sqrt(length)),1) if smooth else man_smooth cora_wave = pine_wma(cora_raw,s) if sequential: return cora_wave else: return cora_wave[-1] @njit def fast_comp(source,length,start_wt,ratio): r = np.full_like(source,0) base = np.full_like(source,0) res = np.full_like(source,0) for i in range(source.shape[0]): r[i] = np.power((length/start_wt),(1/(length - 1)))-1 base[i] = 1 + r[i] * ratio c_weight = 0.0 numerator = 0.0 denom = 0.0 for j in range(length): c_weight = start_wt * np.power(base[i-j],(length - j)) numerator = numerator + source[i-j] * c_weight denom = denom + c_weight res[i] = numerator/denom return res @njit def pine_wma(source,length): res = np.full_like(source,length) for i in range(source.shape[0]): weight = 0.0 norm = 0.0 sum1 = 0.0 for j in range(length): weight = (length - j)*length norm = norm + weight sum1 = sum1 + source[i-j] * weight res[i] = sum1/norm return res
{"hexsha": "456bcb9dda3e26676ac876dab9ab99d062a70f40", "size": 1871, "ext": "py", "lang": "Python", "max_stars_repo_path": "Indicators/compound_ratio_ma.py", "max_stars_repo_name": "Desil-sketch/Indicators-for-Jesse", "max_stars_repo_head_hexsha": "ffe33a217002ea3034696fe38acfa72611d52b4f", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2021-12-08T06:34:48.000Z", "max_stars_repo_stars_event_max_datetime": "2021-12-08T06:34:48.000Z", "max_issues_repo_path": "Indicators/compound_ratio_ma.py", "max_issues_repo_name": "Desil-sketch/Indicators-for-Jesse", "max_issues_repo_head_hexsha": "ffe33a217002ea3034696fe38acfa72611d52b4f", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "Indicators/compound_ratio_ma.py", "max_forks_repo_name": "Desil-sketch/Indicators-for-Jesse", "max_forks_repo_head_hexsha": "ffe33a217002ea3034696fe38acfa72611d52b4f", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2021-11-04T17:40:19.000Z", "max_forks_repo_forks_event_max_datetime": "2021-11-04T17:40:19.000Z", "avg_line_length": 33.4107142857, "max_line_length": 191, "alphanum_fraction": 0.6328166756, "include": true, "reason": "import numpy,from numba", "num_tokens": 528}
module spectral_wave_data_def use, intrinsic :: iso_fortran_env, only: int64 use kind_values, only: knd => kind_swd_interface, wp => kind_swd_internal use spectral_wave_data_error, only: swd_error implicit none private ! This module provides the abstract base class for spectral_wave_data_X objects. ! ! Written by Jens Bloch Helmers, August, 2. 2019 ! !------------------------------------------------------------------------------ !############################################################################## ! ! B E G I N P U B L I C Q U A N T I T I E S ! !------------------------------------------------------------------------------ ! public :: spectral_wave_data ! !------------------------------------------------------------------------------ ! ! E N D P U B L I C Q U A N T I T I E S ! !############################################################################## type, abstract :: spectral_wave_data ! Common attributes for all shape classes character(len=30) :: prog ! Name of the program who created this swd file including version. character(len=20) :: date ! Date and time this swd file was created character(len=200) :: file ! Name of swd file integer :: unit ! Unit number associated with swd file integer :: fmt ! Code to identify format of swd file. integer :: shp ! Index of actual spectral shape class integer :: amp ! Index of which spectral amplitudes are available character(len=:), allocatable :: cid ! Identification text in swd file integer :: nstrip ! Number of initial time steps removed from original simulation integer :: nsteps ! Total number of time steps in swd file. integer :: order ! Order of perturbation (<0 if fully nonlinear) applied in wave generator integer :: norder ! Expansion order to apply in kinematics for z>0 ! <0: apply exp(kj z) ! 0: apply expansion order specified on swd file ! >0: apply expansion order = norder integer :: ipol ! Index defining the temporal interpolation scheme real(wp) :: dt ! Constant time step in swd file real(wp) :: t0 ! Input seed for time (t0>=0) real(wp) :: x0,y0 ! Input seed for spatial location real(wp) :: tswd ! Current swd time real(wp) :: grav ! Acceleration of gravity real(wp) :: lscale ! Number of length units in wave generator per meter. real(wp) :: rho ! Density of water real(wp) :: cbeta ! cos(beta), beta=angle between swd and application x-axis real(wp) :: sbeta ! sin(beta), beta=angle between swd and application x-axis real(wp) :: tmax ! Maximum allowed simulation time (user system) integer :: size_complex ! On most systems size_complex=8 for c_float based numbers integer :: size_step ! Fortran storage size per time step integer(int64) :: ipos0 ! File postion where temporal functions starts logical :: eof ! End-of-file detected for SWD file logical :: dc_bias ! True: apply zero frequency amplitudes from SWD file. ! False: Suppress contribution from zero frequency amplitudes (Default) type(swd_error) :: error ! Abort free error handler contains procedure(update_time), deferred :: update_time ! Obtain spectral data for current time procedure(phi), deferred :: phi ! Calculate potential at location for current time procedure(stream), deferred :: stream ! Calculate stream function procedure(phi_t), deferred :: phi_t ! Calculate d(potential)/dt (Euler) at location for current time procedure(grad_phi), deferred :: grad_phi ! Calculate particle velocity at location for current time procedure(grad_phi_2nd),deferred :: grad_phi_2nd ! Calculate second order spatial gradients of potential procedure(acc_euler), deferred :: acc_euler ! Calculate Euler acceleration (grad(phi_t)) at location for current time procedure(acc_particle),deferred :: acc_particle ! Calculate particle acceleration at location for current time procedure(elev), deferred :: elev ! Calculate surface elevation at location for current time procedure(elev_t), deferred :: elev_t ! Calculate d(surface elevation)/dt (Euler) at location for current time procedure(grad_elev), deferred :: grad_elev ! Calculate gradient of surface elevation at location for current time procedure(grad_elev_2nd),deferred:: grad_elev_2nd ! Calculate second order spatial gradients of elevation procedure(pressure), deferred :: pressure ! Fully nonlinear Bernoulli pressure procedure(bathymetry), deferred :: bathymetry ! Return local depth at application position (x, y) procedure(bathymetry_nvec),deferred :: bathymetry_nvec ! Unit normal vector of sea floor into the ocean at (x,y) procedure(convergence), deferred :: convergence ! For a specific (t,x,y,z) return a csv-file on how particle velocity, elevation ! and pressure converge as a function of number of spectral components procedure(strip), deferred :: strip ! Create a new SWD file based on a time window of current SWD file. procedure(get_int), deferred :: get_int ! Extract a specified int parameter procedure(get_logical), deferred :: get_logical ! Extract a specified logical parameter procedure(get_real), deferred :: get_real ! Extract a specified float parameter procedure(get_chr), deferred :: get_chr ! Extract a specified char parameter procedure(close), deferred :: close ! Manual destructor procedure :: error_raised ! Return .true. if error has been signaled procedure :: error_id ! Return error id procedure :: error_msg ! Return error message procedure :: error_clear ! Clear error signal (id=0) end type spectral_wave_data abstract interface ! subroutine update_time(self, time) import class(spectral_wave_data), intent(inout) :: self ! Update data in memory (if needed) real(knd), intent(in) :: time ! Current time in simulation program end subroutine update_time function phi(self, x, y, z) result(res) import class(spectral_wave_data), intent(in) :: self ! Actual class real(knd), intent(in) :: x,y,z ! Position application program real(knd) :: res ! Potential at (x,y,z) end function phi function stream(self, x, y, z) result(res) import class(spectral_wave_data), intent(in) :: self ! Actual class real(knd), intent(in) :: x,y,z ! Position application program real(knd) :: res ! Stream function value at (x,y,z) end function stream function phi_t(self, x, y, z) result(res) import class(spectral_wave_data), intent(in) :: self ! Actual class real(knd), intent(in) :: x,y,z ! Position application program real(knd) :: res ! Euler time derivative of potential at (x,y,z) end function phi_t function grad_phi(self, x, y, z) result(res) import class(spectral_wave_data), intent(in) :: self ! Actual class real(knd), intent(in) :: x,y,z ! Position application program real(knd) :: res(3) ! Particle velocity at (x,y,z) end function grad_phi function grad_phi_2nd(self, x, y, z) result(res) import class(spectral_wave_data), intent(in) :: self ! Actual class real(knd), intent(in) :: x,y,z ! Position application program real(knd) :: res(6) ! Second order gradients of potential at (x,y,z) ! res(1) = d^2(potential) / dx^2 ! res(2) = d^2(potential) / dx dy ! res(3) = d^2(potential) / dx dz ! res(4) = d^2(potential) / dy^2 ! res(5) = d^2(potential) / dy dz ! res(6) = d^2(potential) / dz^2 end function grad_phi_2nd function acc_euler(self, x, y, z) result(res) import class(spectral_wave_data), intent(in) :: self ! Actual class real(knd), intent(in) :: x,y,z ! Position application program real(knd) :: res(3) ! Euler acceleration at (x,y,z) end function acc_euler function acc_particle(self, x, y, z) result(res) import class(spectral_wave_data), intent(in) :: self ! Actual class real(knd), intent(in) :: x,y,z ! Position application program real(knd) :: res(3) ! Particle acceleration at (x,y,z) end function acc_particle function elev(self, x, y) result(res) import class(spectral_wave_data), intent(in) :: self ! Actual class real(knd), intent(in) :: x,y ! Position application program real(knd) :: res ! Surface elevation at (x,y) end function elev function elev_t(self, x, y) result(res) import class(spectral_wave_data), intent(in) :: self ! Actual class real(knd), intent(in) :: x,y ! Position application program real(knd) :: res ! d/dt of surface elevation at (x,y) end function elev_t function grad_elev(self, x, y) result(res) import class(spectral_wave_data), intent(in) :: self ! Actual class real(knd), intent(in) :: x,y ! Position application program real(knd) :: res(3) ! x, y and z gradients of surface elevation at (x,y) end function grad_elev function grad_elev_2nd(self, x, y) result(res) import class(spectral_wave_data), intent(in) :: self ! Actual class real(knd), intent(in) :: x,y ! Position application program real(knd) :: res(3) ! Second order gradients of surface elevation ! res(1) = d^2(elevation) / dx^2 ! res(2) = d^2(elevation) / dx dy ! res(3) = d^2(elevation) / dy^2 end function grad_elev_2nd function pressure(self, x, y, z) result(res) import class(spectral_wave_data), intent(in) :: self ! Actual class real(knd), intent(in) :: x,y,z ! Position application program real(knd) :: res ! Nonlinear pressure end function pressure function bathymetry(self, x, y) result(res) import class(spectral_wave_data), intent(in) :: self ! Actual class real(knd), intent(in) :: x,y ! Position application program real(knd) :: res ! Local depth at (x,y) end function bathymetry function bathymetry_nvec(self, x, y) result(res) import class(spectral_wave_data), intent(in) :: self ! Actual class real(knd), intent(in) :: x,y ! Position application program real(knd) :: res(3) ! Unit normal vector of sea floor into the ocean at (x,y) end function bathymetry_nvec subroutine convergence(self, x, y, z, csv) import class(spectral_wave_data), intent(inout) :: self ! Actual class real(knd), intent(in) :: x,y,z ! Position application program character(len=*), intent(in) :: csv ! Name of output csv-file end subroutine convergence subroutine strip(self, tmin, tmax, file_swd) ! Create a new swd file containing the spectral information limited ! to the application time window: tmin <= t <= tmax. import class(spectral_wave_data), intent(inout) :: self ! Actual class real(knd), intent(in) :: tmin, tmax ! Time window application program character(len=*), intent(in) :: file_swd ! Name of new swd file end subroutine strip function get_int(self, name) result(res) import class(spectral_wave_data), intent(inout) :: self ! Actual class character(len=*), intent(in) :: name ! Name of int parameter integer :: res ! Value of name parameter end function get_int function get_logical(self, name) result(res) import class(spectral_wave_data), intent(inout) :: self ! Actual class character(len=*), intent(in) :: name ! Name of logical parameter logical :: res ! Value of name parameter end function get_logical function get_real(self, name) result(res) import class(spectral_wave_data), intent(inout) :: self ! Actual class character(len=*), intent(in) :: name ! Name of real parameter real(knd) :: res ! Value of name parameter end function get_real function get_chr(self, name) result(res) import class(spectral_wave_data), intent(inout) :: self ! Actual class character(len=*), intent(in) :: name ! Name of char parameter character(len=:), allocatable :: res ! Value of name parameter end function get_chr subroutine close(self) import class(spectral_wave_data) :: self ! Object to destruct end subroutine close end interface contains !============================================================================== function error_raised(self) result(res) class(spectral_wave_data), intent(in) :: self ! Error handler logical :: res ! .true. if error has been signaled ! res = self % error % raised() ! end function error_raised !============================================================================== function error_id(self) result(res) class(spectral_wave_data), intent(in) :: self ! Error handler integer :: res ! Return error code ! res = self % error % id ! end function error_id !============================================================================== function error_msg(self) result(res) class(spectral_wave_data), intent(in) :: self ! Error handler character(len=len_trim(self%error%msg)) :: res ! Return error code ! res = self % error % msg ! end function error_msg !============================================================================== subroutine error_clear(self) class(spectral_wave_data), intent(inout) :: self ! Error handler ! call self % error % clear() ! end subroutine error_clear !============================================================================== end module spectral_wave_data_def
{"hexsha": "c1ee465f59877733f89527b3d0a227d378518613", "size": 15864, "ext": "f90", "lang": "FORTRAN", "max_stars_repo_path": "src/api/fortran/spectral_wave_data.f90", "max_stars_repo_name": "TormodLandet/spectral_wave_data", "max_stars_repo_head_hexsha": "c43710e769c3d7d3c4f832ab74e456706b361493", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 6, "max_stars_repo_stars_event_min_datetime": "2020-03-01T19:49:39.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-29T10:21:56.000Z", "max_issues_repo_path": "src/api/fortran/spectral_wave_data.f90", "max_issues_repo_name": "TormodLandet/spectral_wave_data", "max_issues_repo_head_hexsha": "c43710e769c3d7d3c4f832ab74e456706b361493", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/api/fortran/spectral_wave_data.f90", "max_forks_repo_name": "TormodLandet/spectral_wave_data", "max_forks_repo_head_hexsha": "c43710e769c3d7d3c4f832ab74e456706b361493", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 5, "max_forks_repo_forks_event_min_datetime": "2020-09-01T12:23:30.000Z", "max_forks_repo_forks_event_max_datetime": "2020-11-24T17:50:40.000Z", "avg_line_length": 51.674267101, "max_line_length": 138, "alphanum_fraction": 0.5481593545, "num_tokens": 3387}
# Copyright 2020 The PyMC Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import aesara import numpy as np from aesara import tensor as at from aesara.graph.basic import Variable from aesara.tensor.var import TensorVariable from arviz import InferenceData import pymc as pm from pymc.blocking import DictToArrayBijection from pymc.distributions.dist_math import rho2sigma from pymc.variational import opvi from pymc.variational.opvi import ( Approximation, Group, NotImplementedInference, node_property, ) __all__ = ["MeanField", "FullRank", "Empirical", "sample_approx"] @Group.register class MeanFieldGroup(Group): R"""Mean Field approximation to the posterior where spherical Gaussian family is fitted to minimize KL divergence from True posterior. It is assumed that latent space variables are uncorrelated that is the main drawback of the method """ __param_spec__ = dict(mu=("d",), rho=("d",)) short_name = "mean_field" alias_names = frozenset(["mf"]) @node_property def mean(self): return self.params_dict["mu"] @node_property def rho(self): return self.params_dict["rho"] @node_property def cov(self): var = rho2sigma(self.rho) ** 2 return at.diag(var) @node_property def std(self): return rho2sigma(self.rho) @aesara.config.change_flags(compute_test_value="off") def __init_group__(self, group): super().__init_group__(group) if not self._check_user_params(): self.shared_params = self.create_shared_params(self._kwargs.get("start", None)) self._finalize_init() def create_shared_params(self, start=None): start = self._prepare_start(start) rho = np.zeros((self.ddim,)) return { "mu": aesara.shared(pm.floatX(start), "mu"), "rho": aesara.shared(pm.floatX(rho), "rho"), } @node_property def symbolic_random(self): initial = self.symbolic_initial sigma = self.std mu = self.mean return sigma * initial + mu @node_property def symbolic_logq_not_scaled(self): z0 = self.symbolic_initial std = rho2sigma(self.rho) logdet = at.log(std) quaddist = -0.5 * z0**2 - at.log((2 * np.pi) ** 0.5) logq = quaddist - logdet return logq.sum(range(1, logq.ndim)) @Group.register class FullRankGroup(Group): """Full Rank approximation to the posterior where Multivariate Gaussian family is fitted to minimize KL divergence from True posterior. In contrast to MeanField approach correlations between variables are taken in account. The main drawback of the method is computational cost. """ __param_spec__ = dict(mu=("d",), L_tril=("int(d * (d + 1) / 2)",)) short_name = "full_rank" alias_names = frozenset(["fr"]) @aesara.config.change_flags(compute_test_value="off") def __init_group__(self, group): super().__init_group__(group) if not self._check_user_params(): self.shared_params = self.create_shared_params(self._kwargs.get("start", None)) self._finalize_init() def create_shared_params(self, start=None): start = self._prepare_start(start) n = self.ddim L_tril = np.eye(n)[np.tril_indices(n)].astype(aesara.config.floatX) return {"mu": aesara.shared(start, "mu"), "L_tril": aesara.shared(L_tril, "L_tril")} @node_property def L(self): L = at.zeros((self.ddim, self.ddim)) L = at.set_subtensor(L[self.tril_indices], self.params_dict["L_tril"]) Ld = L[..., np.arange(self.ddim), np.arange(self.ddim)] L = at.set_subtensor(Ld, rho2sigma(Ld)) return L @node_property def mean(self): return self.params_dict["mu"] @node_property def cov(self): L = self.L return L.dot(L.T) @node_property def std(self): return at.sqrt(at.diag(self.cov)) @property def num_tril_entries(self): n = self.ddim return int(n * (n + 1) / 2) @property def tril_indices(self): return np.tril_indices(self.ddim) @node_property def symbolic_logq_not_scaled(self): z0 = self.symbolic_initial diag = at.diagonal(self.L, 0, self.L.ndim - 2, self.L.ndim - 1) logdet = at.log(diag) quaddist = -0.5 * z0**2 - at.log((2 * np.pi) ** 0.5) logq = quaddist - logdet return logq.sum(range(1, logq.ndim)) @node_property def symbolic_random(self): initial = self.symbolic_initial L = self.L mu = self.mean return initial.dot(L.T) + mu @Group.register class EmpiricalGroup(Group): """Builds Approximation instance from a given trace, it has the same interface as variational approximation """ has_logq = False __param_spec__ = dict(histogram=("s", "d")) short_name = "empirical" @aesara.config.change_flags(compute_test_value="off") def __init_group__(self, group): super().__init_group__(group) self._check_trace() if not self._check_user_params(spec_kw=dict(s=-1)): self.shared_params = self.create_shared_params( trace=self._kwargs.get("trace", None), size=self._kwargs.get("size", None), jitter=self._kwargs.get("jitter", 1), start=self._kwargs.get("start", None), ) self._finalize_init() def create_shared_params(self, trace=None, size=None, jitter=1, start=None): if trace is None: if size is None: raise opvi.ParametrizationError("Need `trace` or `size` to initialize") else: start = self._prepare_start(start) # Initialize particles histogram = np.tile(start, (size, 1)) histogram += pm.floatX(np.random.normal(0, jitter, histogram.shape)) else: histogram = np.empty((len(trace) * len(trace.chains), self.ddim)) i = 0 for t in trace.chains: for j in range(len(trace)): histogram[i] = DictToArrayBijection.map(trace.point(j, t)).data i += 1 return dict(histogram=aesara.shared(pm.floatX(histogram), "histogram")) def _check_trace(self): trace = self._kwargs.get("trace", None) if isinstance(trace, InferenceData): raise NotImplementedError( "The `Empirical` approximation does not yet support `InferenceData` inputs." " Pass `pm.sample(return_inferencedata=False)` to get a `MultiTrace` to use with `Empirical`." " Please help us to refactor: https://github.com/pymc-devs/pymc/issues/5884" ) elif trace is not None and not all( [self.model.rvs_to_values[var].name in trace.varnames for var in self.group] ): raise ValueError("trace has not all free RVs in the group") def randidx(self, size=None): if size is None: size = (1,) elif isinstance(size, TensorVariable): if size.ndim < 1: size = size[None] elif size.ndim > 1: raise ValueError("size ndim should be no more than 1d") else: pass else: size = tuple(np.atleast_1d(size)) return self._rng.uniform( size=size, low=pm.floatX(0), high=pm.floatX(self.histogram.shape[0]) - pm.floatX(1e-16) ).astype("int32") def _new_initial(self, size, deterministic, more_replacements=None): aesara_condition_is_here = isinstance(deterministic, Variable) if size is None: size = 1 size = at.as_tensor(size) if aesara_condition_is_here: return at.switch( deterministic, at.repeat(self.mean.reshape((1, -1)), size, -1), self.histogram[self.randidx(size)], ) else: if deterministic: raise NotImplementedInference( "Deterministic sampling from a Histogram is broken in v4" ) return at.repeat(self.mean.reshape((1, -1)), size, -1) else: return self.histogram[self.randidx(size)] @property def symbolic_random(self): return self.symbolic_initial @property def histogram(self): return self.params_dict["histogram"] @node_property def mean(self): return self.histogram.mean(0) @node_property def cov(self): x = self.histogram - self.mean return x.T.dot(x) / pm.floatX(self.histogram.shape[0]) @node_property def std(self): return at.sqrt(at.diag(self.cov)) def __str__(self): if isinstance(self.histogram, aesara.compile.SharedVariable): shp = ", ".join(map(str, self.histogram.shape.eval())) else: shp = "None, " + str(self.ddim) return f"{self.__class__.__name__}[{shp}]" def sample_approx(approx, draws=100, include_transformed=True): """Draw samples from variational posterior. Parameters ---------- approx: :class:`Approximation` Approximation to sample from draws: `int` Number of random samples. include_transformed: `bool` If True, transformed variables are also sampled. Default is True. Returns ------- trace: class:`pymc.backends.base.MultiTrace` Samples drawn from variational posterior. """ return approx.sample(draws=draws, include_transformed=include_transformed) # single group shortcuts exported to user class SingleGroupApproximation(Approximation): """Base class for Single Group Approximation""" _group_class = None def __init__(self, *args, **kwargs): local_rv = kwargs.get("local_rv") groups = [self._group_class(None, *args, **kwargs)] if local_rv is not None: groups.extend( [ Group([v], params=p, local=True, model=kwargs.get("model")) for v, p in local_rv.items() ] ) super().__init__(groups, model=kwargs.get("model")) def __getattr__(self, item): return getattr(self.groups[0], item) def __dir__(self): d = set(super().__dir__()) d.update(self.groups[0].__dir__()) return list(sorted(d)) class MeanField(SingleGroupApproximation): __doc__ = """**Single Group Mean Field Approximation** """ + str( MeanFieldGroup.__doc__ ) _group_class = MeanFieldGroup class FullRank(SingleGroupApproximation): __doc__ = """**Single Group Full Rank Approximation** """ + str( FullRankGroup.__doc__ ) _group_class = FullRankGroup class Empirical(SingleGroupApproximation): __doc__ = """**Single Group Full Rank Approximation** """ + str( EmpiricalGroup.__doc__ ) _group_class = EmpiricalGroup def __init__(self, trace=None, size=None, **kwargs): if kwargs.get("local_rv", None) is not None: raise opvi.LocalGroupError("Empirical approximation does not support local variables") super().__init__(trace=trace, size=size, **kwargs) def evaluate_over_trace(self, node): R""" This allows to statically evaluate any symbolic expression over the trace. Parameters ---------- node: Aesara Variables (or Aesara expressions) Returns ------- evaluated node(s) over the posterior trace contained in the empirical approximation """ node = self.to_flat_input(node) def sample(post, node): return aesara.clone_replace(node, {self.input: post}) nodes, _ = aesara.scan(sample, self.histogram, non_sequences=[node]) return nodes
{"hexsha": "90f25c3631a775a0781b82ba5c167c5e68482183", "size": 12502, "ext": "py", "lang": "Python", "max_stars_repo_path": "pymc/variational/approximations.py", "max_stars_repo_name": "cluhmann/pymc", "max_stars_repo_head_hexsha": "562be3781c9d37d3300c4efd4cf6598e5739c32d", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 2, "max_stars_repo_stars_event_min_datetime": "2022-03-01T16:45:14.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-01T16:45:19.000Z", "max_issues_repo_path": "pymc/variational/approximations.py", "max_issues_repo_name": "cluhmann/pymc", "max_issues_repo_head_hexsha": "562be3781c9d37d3300c4efd4cf6598e5739c32d", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "pymc/variational/approximations.py", "max_forks_repo_name": "cluhmann/pymc", "max_forks_repo_head_hexsha": "562be3781c9d37d3300c4efd4cf6598e5739c32d", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2021-12-10T21:43:24.000Z", "max_forks_repo_forks_event_max_datetime": "2021-12-10T21:43:24.000Z", "avg_line_length": 32.3886010363, "max_line_length": 110, "alphanum_fraction": 0.6196608543, "include": true, "reason": "import numpy", "num_tokens": 2946}
[STATEMENT] lemma complex_roots_complex_prod [simp]: assumes "f \<noteq> 0" "g \<noteq> 0" shows "mset (complex_roots_complex (f * g)) = mset (complex_roots_complex f) + mset (complex_roots_complex g)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. mset (complex_roots_complex (f * g)) = mset (complex_roots_complex f) + mset (complex_roots_complex g) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. mset (complex_roots_complex (f * g)) = mset (complex_roots_complex f) + mset (complex_roots_complex g) [PROOF STEP] let ?p = "f * g" [PROOF STATE] proof (state) goal (1 subgoal): 1. mset (complex_roots_complex (f * g)) = mset (complex_roots_complex f) + mset (complex_roots_complex g) [PROOF STEP] let "?lc v" = "(lead_coeff (v:: complex poly))" [PROOF STATE] proof (state) goal (1 subgoal): 1. mset (complex_roots_complex (f * g)) = mset (complex_roots_complex f) + mset (complex_roots_complex g) [PROOF STEP] have nonzero_prod:"?lc ?p \<noteq> 0" [PROOF STATE] proof (prove) goal (1 subgoal): 1. lead_coeff (f * g) \<noteq> 0 [PROOF STEP] using assms [PROOF STATE] proof (prove) using this: f \<noteq> 0 g \<noteq> 0 goal (1 subgoal): 1. lead_coeff (f * g) \<noteq> 0 [PROOF STEP] by auto [PROOF STATE] proof (state) this: lead_coeff (f * g) \<noteq> 0 goal (1 subgoal): 1. mset (complex_roots_complex (f * g)) = mset (complex_roots_complex f) + mset (complex_roots_complex g) [PROOF STEP] from reconstruct_prod[of "?lc f" "complex_roots_complex f" "?lc g" "complex_roots_complex g"] [PROOF STATE] proof (chain) picking this: reconstruct_poly (lead_coeff f) (complex_roots_complex f) * reconstruct_poly (lead_coeff g) (complex_roots_complex g) = reconstruct_poly (lead_coeff f * lead_coeff g) (complex_roots_complex f @ complex_roots_complex g) [PROOF STEP] have "reconstruct_poly (?lc ?p) (complex_roots_complex ?p) = reconstruct_poly (?lc ?p) (complex_roots_complex f @ complex_roots_complex g)" [PROOF STATE] proof (prove) using this: reconstruct_poly (lead_coeff f) (complex_roots_complex f) * reconstruct_poly (lead_coeff g) (complex_roots_complex g) = reconstruct_poly (lead_coeff f * lead_coeff g) (complex_roots_complex f @ complex_roots_complex g) goal (1 subgoal): 1. reconstruct_poly (lead_coeff (f * g)) (complex_roots_complex (f * g)) = reconstruct_poly (lead_coeff (f * g)) (complex_roots_complex f @ complex_roots_complex g) [PROOF STEP] unfolding lead_coeff_mult[symmetric] reconstruct_is_original_poly [PROOF STATE] proof (prove) using this: f * g = reconstruct_poly (lead_coeff (f * g)) (complex_roots_complex f @ complex_roots_complex g) goal (1 subgoal): 1. f * g = reconstruct_poly (lead_coeff (f * g)) (complex_roots_complex f @ complex_roots_complex g) [PROOF STEP] by auto [PROOF STATE] proof (state) this: reconstruct_poly (lead_coeff (f * g)) (complex_roots_complex (f * g)) = reconstruct_poly (lead_coeff (f * g)) (complex_roots_complex f @ complex_roots_complex g) goal (1 subgoal): 1. mset (complex_roots_complex (f * g)) = mset (complex_roots_complex f) + mset (complex_roots_complex g) [PROOF STEP] from reconstruct_poly_defines_mset_of_argument[OF nonzero_prod this] [PROOF STATE] proof (chain) picking this: mset (complex_roots_complex (f * g)) = mset (complex_roots_complex f @ complex_roots_complex g) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: mset (complex_roots_complex (f * g)) = mset (complex_roots_complex f @ complex_roots_complex g) goal (1 subgoal): 1. mset (complex_roots_complex (f * g)) = mset (complex_roots_complex f) + mset (complex_roots_complex g) [PROOF STEP] by simp [PROOF STATE] proof (state) this: mset (complex_roots_complex (f * g)) = mset (complex_roots_complex f) + mset (complex_roots_complex g) goal: No subgoals! [PROOF STEP] qed
{"llama_tokens": 1544, "file": "Berlekamp_Zassenhaus_Mahler_Measure", "length": 14}
/* * Copyright (c) 2019, 2020, 2021 SiKol Ltd. * * Boost Software License - Version 1.0 - August 17th, 2003 * * Permission is hereby granted, free of charge, to any person or organization * obtaining a copy of the software and accompanying documentation covered by * this license (the "Software") to use, reproduce, display, distribute, * execute, and transmit the Software, and to prepare derivative works of the * Software, and to permit third-parties to whom the Software is furnished to * do so, all subject to the following: * * The copyright notices in the Software and this entire statement, including * the above license grant, this restriction and the following disclaimer, * must be included in all copies of the Software, in whole or in part, and * all derivative works of the Software, unless such copies or derivative * works are solely in the form of machine-executable object code generated by * a source language processor. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT * SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE * FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #ifndef SK_CONFIG_PARSER_VARIANT_HXX_INCLUDED #define SK_CONFIG_PARSER_VARIANT_HXX_INCLUDED #include <variant> #include <boost/spirit/home/x3/core/parser.hpp> #include <boost/spirit/home/x3/operator/alternative.hpp> #include <sk/config/parser_for.hxx> namespace sk::config { namespace detail { template <typename... Parsers> struct variant_parser : boost::spirit::x3::parser<variant_parser<Parsers...>> { typedef std::variant<typename Parsers::attribute_type...> attribute_type; static bool const has_attribute = true; template <typename Iterator, typename Context, typename Attribute> bool parse(Iterator &first, Iterator const &last, Context const &context, boost::spirit::x3::unused_type, Attribute &attr) const { namespace x3 = boost::spirit::x3; static auto const parser = (... | Parsers()); return parser.parse(first, last, context, x3::unused, attr); } }; template <typename... Ts> void propagate_value(auto & /*ctx*/, std::variant<Ts...> &to, std::variant<Ts...> &from) { to = std::move(from); } } // namespace detail template <typename... Ts> struct parser_for<std::variant<Ts...>> { using parser_type = detail::variant_parser<typename parser_for<Ts>::parser_type...>; using rule_type = std::variant<Ts...>; static constexpr char const name[] = "a value"; }; } // namespace sk::config #endif // SK_CONFIG_PARSER_VARIANT_HXX_INCLUDED
{"hexsha": "785879ac92ff2d169d11bed9ba1c40c02856a2d4", "size": 3138, "ext": "hxx", "lang": "C++", "max_stars_repo_path": "include/sk/config/parser/variant.hxx", "max_stars_repo_name": "sikol/sk-config", "max_stars_repo_head_hexsha": "ada0c72ac5703763b1f1d9aadc2cc3850bf11acc", "max_stars_repo_licenses": ["BSL-1.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "include/sk/config/parser/variant.hxx", "max_issues_repo_name": "sikol/sk-config", "max_issues_repo_head_hexsha": "ada0c72ac5703763b1f1d9aadc2cc3850bf11acc", "max_issues_repo_licenses": ["BSL-1.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "include/sk/config/parser/variant.hxx", "max_forks_repo_name": "sikol/sk-config", "max_forks_repo_head_hexsha": "ada0c72ac5703763b1f1d9aadc2cc3850bf11acc", "max_forks_repo_licenses": ["BSL-1.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 39.7215189873, "max_line_length": 78, "alphanum_fraction": 0.6743148502, "num_tokens": 671}
[STATEMENT] lemma invariance_of_domain_homeomorphism: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" assumes "open S" "continuous_on S f" "DIM('b) \<le> DIM('a)" "inj_on f S" obtains g where "homeomorphism S (f ` S) f g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>g. homeomorphism S (f ` S) f g \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] proof [PROOF STATE] proof (state) goal (1 subgoal): 1. (\<And>g. homeomorphism S (f ` S) f g \<Longrightarrow> thesis) \<Longrightarrow> homeomorphism S (f ` S) f ?g2 [PROOF STEP] show "homeomorphism S (f ` S) f (inv_into S f)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. homeomorphism S (f ` S) f (inv_into S f) [PROOF STEP] by (simp add: assms continuous_on_inverse_open homeomorphism_def) [PROOF STATE] proof (state) this: homeomorphism S (f ` S) f (inv_into S f) goal: No subgoals! [PROOF STEP] qed
{"llama_tokens": 363, "file": null, "length": 4}
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def plot_ellipsoid(m, s2, *, r=2, alpha=None, beta=None, plot_axes=True, line_color='r', line_width=2, plot_ellip=True, ellip_color=(.8, .8, .8), ellip_alpha = 0.5, n_points=1000, point_color='b'): """For details, see here. Parameters ---------- m : array, shape (3,) s2 : array, shape (3, 3) r : scalar, optional alpha : array, shape (n,) beta : array, shape (n,) plot_axes : boolean, optional line_color : char or tuple, optional line_width : scalar, optional plot_ellip : boolean, optional ellip_color : char or tuple, optional ellip_alpha : scalar, optional n_points : scalar, optional point_color : char or tuple, optional Returns ------- f : matplotlib figure handle ax : matplotlib axis handle """ lambda2, e = np.linalg.eigh(s2) s = e * np.sqrt(lambda2) plt.style.use('arpm') f, ax = plt.subplots(1, 1, subplot_kw={'projection':'3d'}, figsize=(14, 10)) if n_points > 0: points = np.random.multivariate_normal(m, s2, n_points) ax.plot(points[:, 0], points[:, 1], points[:, 2], '.', color=point_color) if plot_axes is True: x_axes_ = np.array([[0, r], [0, 0], [0, 0]]) y_axes_ = np.array([[0, 0], [0, r], [0, 0]]) z_axes_ = np.array([[0, 0], [0, 0], [0, r]]) x_axes = s[0, 0] * x_axes_ + s[0, 1] * y_axes_ + s[0, 2] * z_axes_ y_axes = s[1, 0] * x_axes_ + s[1, 1] * y_axes_ + s[1, 2] * z_axes_ z_axes = s[2, 0] * x_axes_ + s[2, 1] * y_axes_ + s[2, 2] * z_axes_ ax.plot(x_axes[0, :], y_axes[0, :], z_axes[0, :], color=line_color, lw=line_width) ax.plot(x_axes[1, :], y_axes[1, :], z_axes[1, :], color=line_color, lw=line_width) ax.plot(x_axes[2, :], y_axes[2, :], z_axes[2, :], color=line_color, lw=line_width) if plot_ellip is True: if alpha is None: alpha = np.linspace(0, 2*np.pi, 50) if beta is None: beta = np.linspace(0, np.pi, 50) # Cartesian coordinates that correspond to the spherical angles x_ball = r * np.outer(np.cos(alpha), np.sin(beta)) y_ball = r * np.outer(np.sin(alpha), np.sin(beta)) z_ball = r * np.outer(np.ones_like(alpha), np.cos(beta)) x_ellip = s[0, 0] * x_ball + s[0, 1] * y_ball + s[0, 2] * z_ball y_ellip = s[1, 0] * x_ball + s[1, 1] * y_ball + s[1, 2] * z_ball z_ellip = s[2, 0] * x_ball + s[2, 1] * y_ball + s[2, 2] * z_ball ax.plot_surface(x_ellip, y_ellip, z_ellip, color=ellip_color, alpha=ellip_alpha) return f, ax
{"hexsha": "6a58d417f6ed1e86cdef4dee07a8fc11d1b3ac2e", "size": 2900, "ext": "py", "lang": "Python", "max_stars_repo_path": "arpym/tools/plot_ellipsoid.py", "max_stars_repo_name": "dpopadic/arpmRes", "max_stars_repo_head_hexsha": "ddcc4de713b46e3e9dcb77cc08c502ce4df54f76", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 6, "max_stars_repo_stars_event_min_datetime": "2021-04-10T13:24:30.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-26T08:20:42.000Z", "max_issues_repo_path": "arpym/tools/plot_ellipsoid.py", "max_issues_repo_name": "dpopadic/arpmRes", "max_issues_repo_head_hexsha": "ddcc4de713b46e3e9dcb77cc08c502ce4df54f76", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "arpym/tools/plot_ellipsoid.py", "max_forks_repo_name": "dpopadic/arpmRes", "max_forks_repo_head_hexsha": "ddcc4de713b46e3e9dcb77cc08c502ce4df54f76", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 6, "max_forks_repo_forks_event_min_datetime": "2019-08-13T22:02:17.000Z", "max_forks_repo_forks_event_max_datetime": "2022-02-09T17:49:12.000Z", "avg_line_length": 34.9397590361, "max_line_length": 88, "alphanum_fraction": 0.5365517241, "include": true, "reason": "import numpy", "num_tokens": 927}
module ESValues using GLM using StatsBase # package code goes here include("iterators.jl") export esvalues, ESValuesEstimator typealias MaskType Float64 type ESValuesEstimator{T} x f::Function X link featureGroups::Vector{Vector{Int64}} weights nsamples::Int64 varyingInds::Vector{Int64} varyingFeatureGroups::Vector{Vector{Int64}} data::Matrix{T} maskMatrix::Matrix{MaskType} kernelWeights::Vector{MaskType} y::Vector{Float64} ey::Vector{Float64} lastMask::Vector{Float64} P::Int64 N::Int64 M::Int64 nsamplesAdded::Int64 nsamplesRun::Int64 fx::Float64 fnull::Float64 end "Designed to determine the ES values (importance) of each feature for f(x)." function esvalues(x, f::Function, X, link=identity; featureGroups=nothing, weights=nothing, nsamples=0) esvalues(ESValuesEstimator(f, X, link; featureGroups=featureGroups, weights=weights, nsamples=nsamples), x) end function esvalues(e::ESValuesEstimator, x) @assert length(x) == e.P "Provided 'x' length must match the data matrix features count ($(length(x)) != $(e.P))!" e.x = x # find the feature groups we will test. If a feature does not change from its # current value then we know it doesn't impact the model e.varyingInds = varying_groups(e.x, e.X, e.featureGroups) e.varyingFeatureGroups = e.featureGroups[e.varyingInds] e.M = length(e.varyingFeatureGroups) # find f(x) and E_x[f(x)] e.fx = e.f(x)[1] e.fnull = sum(vec(e.f(e.X)) .* e.weights) # if no features vary then there no feature has an effect if e.M == 0 return e.fx,zeros(length(e.featureGroups)),zeros(length(e.featureGroups)) # if only one feature varies then it has all the effect elseif e.M == 1 fx = mean(e.f(x)) fnull = sum(vec(e.f(e.X)) .* e.weights) φ = zeros(length(e.featureGroups)) φ[e.varyingInds[1]] = e.link(e.fx) - e.link(e.fnull) return e.fnull,φ,zeros(length(e.featureGroups)) end # pick a reasonable number of samples if the user didn't specify how many they wanted if e.nsamples == 0 e.nsamples = 2*e.M+1000 end if e.M <= 30 && e.nsamples > 2^e.M-2 e.nsamples = 2^e.M-2 end @assert e.nsamples >= min(2*e.M, 2^e.M-2) "'nsamples' must be at least 2 times the number of varying feature groups!" # add the singleton samples allocate!(e) for (m,w) in take(drop(eskernelsubsets(collect(1:e.M), ones(e.M)), 2), 2*e.M) addsample!(e, x, m, w) end run!(e) # if there might be more samples then enumarate them if length(e.y) >= 2*e.M # estimate the variance of each ES value estimate variances = zeros(e.M) for i in 1:2:2*e.M variances[div(i+1,2)] = var([e.y[i] - e.fnull, e.fx - e.y[i+1]]) end # now add the rest of the samples giving priority to ES values with high estimated variance for (m,w) in take(drop(eskernelsubsets(collect(1:e.M), variances), 2*e.M+2), e.nsamples-(2*e.M)) addsample!(e, x, m, w) end run!(e) end # solve then expand the ES values vector to contain the non-varying features as well vφ,vφVar = solve!(e) φ = zeros(length(e.featureGroups)) φ[e.varyingInds] = vφ φVar = zeros(length(e.featureGroups)) φVar[e.varyingInds] = vφVar # return the Shapley values along with variances of the estimates e.fnull,φ,φVar end function ESValuesEstimator{T}(f::Function, X::Matrix{T}, link=identity; featureGroups=nothing, weights=nothing, nsamples=0) P,N = size(X) # give default values to omitted arguments weights != nothing || (weights = ones(N)) weights ./= sum(weights) featureGroups != nothing || (featureGroups = Array{Int64,1}[Int64[i] for i in 1:size(X)[1]]) featureGroups = convert(Array{Array{Int64,1},1}, featureGroups) @assert length(weights) == N "Provided 'weights' must match the number of representative data points (size(X)[2])!" ESValuesEstimator( zeros(1), f, X, link, featureGroups, weights, nsamples, Int64[], Vector{Int64}[], zeros(T, 1, 1), zeros(MaskType, 1, 1), zeros(MaskType, 1), zeros(Float64, 1), zeros(Float64, 1), zeros(Float64, 1), P, N, 0, 0, 0, 0.0, 0.0 ) end function allocate!{T}(e::ESValuesEstimator{T}) e.data = zeros(T, e.P, e.nsamples * e.N) e.maskMatrix = zeros(MaskType, e.M-1, e.nsamples) e.kernelWeights = zeros(MaskType, e.nsamples) e.y = zeros(Float64, e.nsamples * e.N) e.ey = zeros(Float64, e.nsamples) e.lastMask = zeros(Float64, e.nsamples) end function addsample!(e::ESValuesEstimator, x, m, w) offset = e.nsamplesAdded * e.N e.nsamplesAdded += 1 for i in 1:e.N for j in 1:e.M for k in e.varyingFeatureGroups[j] if m[j] == 1.0 e.data[k,offset+i] = x[k] else e.data[k,offset+i] = e.X[k,i] end end end end e.maskMatrix[:,e.nsamplesAdded] = m[1:end-1] - m[end] e.lastMask[e.nsamplesAdded] = m[end] e.kernelWeights[e.nsamplesAdded] = w end function run!(e::ESValuesEstimator) e.y[e.nsamplesRun*e.N+1:e.nsamplesAdded*e.N] = e.f(e.data[:,e.nsamplesRun*e.N+1:e.nsamplesAdded*e.N]) # find the expected value of each output for i in e.nsamplesRun+1:e.nsamplesAdded eyVal = 0.0 for j in 1:e.N eyVal += e.y[(i-1)*e.N + j] * e.weights[j] end e.ey[i] = eyVal e.nsamplesRun += 1 end end function solve!(e::ESValuesEstimator) # adjust the y value according to the constraints for the offset and sum eyAdj = e.link.(e.ey) .- e.lastMask*(e.link(e.fx) - e.link(e.fnull)) - e.link(e.fnull) # solve a weighted least squares equation to estimate φ tmp = e.maskMatrix .* e.kernelWeights' tmp2 = inv(tmp*e.maskMatrix') w = tmp2*(tmp*eyAdj) wlast = (e.link(e.fx) - e.link(e.fnull)) - sum(w) φ = [w; wlast] yHat = e.maskMatrix'w φVar = var(yHat .- eyAdj) * diag(tmp2) φVar = [φVar; maximum(φVar)] # since the last weight is inferred we use a pessimistic guess of its variance # a finite sample adjustment based on how much of the weight is left in the sample space fractionWeightLeft = 1 - sum(e.kernelWeights)/sum([(e.M-1)/(s*(e.M-s)) for s in 1:e.M-1]) φ,φVar*fractionWeightLeft end "Identify which feature groups vary." function varying_groups(x, X, featureGroups) varying = zeros(length(featureGroups)) for (i,inds) in enumerate(featureGroups) varying[i] = sum(vec(sum(x[inds] .== X[inds,:],1) .!= length(inds))) end find(varying) end end # module
{"hexsha": "07d40665cf7965d0c36c078081ac0c6899317520", "size": 6893, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/ESValues.jl", "max_stars_repo_name": "slundberg/ESValues.jl", "max_stars_repo_head_hexsha": "0a3d6400915951d2c9a3d60f6b180224df922598", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2017-03-13T09:09:20.000Z", "max_stars_repo_stars_event_max_datetime": "2017-03-13T09:09:20.000Z", "max_issues_repo_path": "src/ESValues.jl", "max_issues_repo_name": "slundberg/ESValues.jl", "max_issues_repo_head_hexsha": "0a3d6400915951d2c9a3d60f6b180224df922598", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/ESValues.jl", "max_forks_repo_name": "slundberg/ESValues.jl", "max_forks_repo_head_hexsha": "0a3d6400915951d2c9a3d60f6b180224df922598", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 30.7723214286, "max_line_length": 123, "alphanum_fraction": 0.6172929058, "num_tokens": 2088}
"""Prepare data for plotting""" from lcmap_tap.logger import exc_handler, log from lcmap_tap.Plotting import plot_functions from lcmap_tap.RetrieveData.retrieve_ccd import CCDReader from lcmap_tap.RetrieveData.retrieve_classes import SegmentClasses import sys import numpy as np import datetime as dt from collections import OrderedDict from typing import Union sys.excepthook = exc_handler index_functions = {'ndvi': {'func': plot_functions.ndvi, 'bands': ('reds', 'nirs'), 'inds': (2, 3)}, 'msavi': {'func': plot_functions.msavi, 'bands': ('reds', 'nirs'), 'inds': (2, 3)}, 'evi': {'func': plot_functions.evi, 'bands': ('blues', 'reds', 'nirs'), 'inds': (0, 2, 3)}, 'savi': {'func': plot_functions.savi, 'bands': ('reds', 'nirs'), 'inds': (2, 3)}, 'ndmi': {'func': plot_functions.ndmi, 'bands': ('nirs', 'swir1s'), 'inds': (3, 4)}, 'nbr': {'func': plot_functions.nbr, 'bands': ('nirs', 'swir2s'), 'inds': (3, 5)}, 'nbr2': {'func': plot_functions.nbr2, 'bands': ('swir1s', 'swir2s'), 'inds': (4, 5)} } class PlotSpecs: """ Generate and retain the data required for plotting """ bands = ('blue', 'green', 'red', 'nir', 'swir1', 'swir2', 'thermal') def __init__(self, ard: dict, change: CCDReader, segs: SegmentClasses, items: list, begin: dt.date = dt.date(year=1982, month=1, day=1), end: dt.date = dt.date(year=2017, month=12, day=31)): """ Args: ard: The ARD observations for a given point (ARDData.pixel_ard) change: PyCCD results for a given point (CCDReader.results) segs: Classification results (SegmentClasses.results) begin: Beginning day of PyCCD end: Ending day of PyCCD """ self.begin = begin self.end = end self.items = items self.ard = self.make_arrays(ard) self.dates = self.ard['dates'] try: self.results = change.results self.ccd_mask = np.array(self.results['processing_mask'], dtype=np.bool) except (AttributeError, TypeError) as e: # log.debug('Exception: %s' % e, exc_info=True) log.info('No CCD results were found') self.results = None self.ccd_mask = [] try: self.segment_classes = segs.results except (AttributeError, TypeError) as e: # log.debug('Exception: %s' % e, exc_info=True) log.info('No classification results were found') self.segment_classes = None self.date_mask = self.mask_daterange(dates=self.dates, start=begin, stop=end) self.dates_in = self.ard['dates'][self.date_mask] self.dates_out = self.ard['dates'][~self.date_mask] self.qa_mask = np.isin(self.ard['qas'], [66, 68, 322, 324]) self.fill_mask = np.isin(self.ard['qas'], [n for n in np.unique(self.ard['qas']) if n != 1]) self.fill_in = self.fill_mask[self.date_mask] self.fill_out = self.fill_mask[~self.date_mask] # # self.total_mask = np.logical_and(self.ccd_mask, self.fill_in) # self.total_mask = np.logical_and(self.qa_mask[date_mask], self.fill_in) # Check for presence of thermals, rescale if present if 'thermals' in self.ard.keys(): self.rescale_thermal() self.index_to_observations() if self.results is not None: self.predicted_values, \ self.prediction_dates, \ self.break_dates, \ self.start_dates, \ self.end_dates = self.get_modelled_specs(self.results) else: self.predicted_values = [] self.prediction_dates = [] self.break_dates = [] self.start_dates = [] self.end_dates = [] self.index_lookup, self.band_lookup, self.all_lookup = self.get_lookups(results=self.results, predicted_values=self.predicted_values) def get_modelled_specs(self, results): band_info = {b: {'coefs': [], 'inter': [], 'pred': []} for b in self.bands} predicted_values = [] prediction_dates = [] break_dates = [] start_dates = [] end_dates = [] for num, result in enumerate(results['change_models']): days = np.arange(result['start_day'], result['end_day'] + 1) break_dates.append(result['break_day']) start_dates.append(result['start_day']) end_dates.append(result['end_day']) for b in self.bands: band_info[b]['inter'] = result[b]['intercept'] band_info[b]['coefs'] = result[b]['coefficients'] band_info[b]['pred'] = self.predicts(days, result[b]['coefficients'], result[b]['intercept']) prediction_dates.append(days) predicted_values.append(band_info[b]['pred']) return predicted_values, prediction_dates, break_dates, start_dates, end_dates def get_lookups(self, results, predicted_values): # Calculate indices from observed values # Calculate indices from the results' change models # The change models are stored by order of model, then # band number. For example, the band values for the first change model are represented by indices 0-5, # the second model by indices 6-11, and so on. index_modeled = self.get_modeled_index(ard=self.ard, results=results, predicted_values=predicted_values) index_lookup = OrderedDict([('NDVI', ('ndvi', 'ndvi-modeled')), ('MSAVI', ('msavi', 'msavi-modeled')), ('EVI', ('evi', 'evi-modeled')), ('SAVI', ('savi', 'savi-modeled')), ('NDMI', ('ndmi', 'ndmi-modeled')), ('NBR', ('nbr', 'nbr-modeled')), ('NBR-2', ('nbr2', 'nbr2-modeled'))]) index_lookup = [(key, (self.ard[index_lookup[key][0]], index_modeled[index_lookup[key][1]])) for key in index_lookup.keys() if index_lookup[key][0] in self.ard.keys()] index_lookup = OrderedDict(index_lookup) lookup = OrderedDict([("Blue", ('blues', 0)), ("Green", ('greens', 1)), ("Red", ('reds', 2)), ("NIR", ('nirs', 3)), ("SWIR-1", ('swir1s', 4)), ("SWIR-2", ('swir2s', 5)), ("Thermal", ('thermals', 6))]) band_lookup = [(key, (self.ard[lookup[key][0]], self.get_predicts(num=lookup[key][1], bands=self.bands, predicted_values=predicted_values, results=results))) for key in lookup.keys() if lookup[key][0] in self.ard.keys()] # Example of how the band_lookup is structured: # self.band_lookup = [("Blue", (self.ard['blues'], self.get_predicts(0))), # ("Green", (self.ard['greens'], self.get_predicts(1))), # ("Red", (self.ard['reds'], self.get_predicts(2))), # ("NIR", (self.ard['nirs'], self.get_predicts(3))), # ("SWIR-1", (self.ard['swir1s'], self.get_predicts(4))), # ("SWIR-2", (self.ard['swir2s'], self.get_predicts(5))), # ("Thermal", (self.ard['thermals'], self.get_predicts(6)))] band_lookup = OrderedDict(band_lookup) # Combine these two dictionaries all_lookup = plot_functions.merge_dicts(band_lookup, index_lookup) return index_lookup, band_lookup, all_lookup @staticmethod def mask_daterange(dates: np.array, start: dt.date, stop: dt.date) -> np.array: """ Create a mask for values outside of the global BEGIN_DATE and END_DATE Args: dates: List or array of dates to check against start: Begin date stored as a datetime.date object stop: End date stored as a datetime.date object Returns: Array containing the locations of the truth condition """ return np.logical_and(dates >= start.toordinal(), dates < stop.toordinal()) @staticmethod def predicts(days, coef, intercept): """ Calculate change segment curves Args: days: coef: intercept: Returns: """ return (intercept + coef[0] * days + coef[1] * np.cos(days * 1 * 2 * np.pi / 365.25) + coef[2] * np.sin(days * 1 * 2 * np.pi / 365.25) + coef[3] * np.cos(days * 2 * 2 * np.pi / 365.25) + coef[4] * np.sin(days * 2 * 2 * np.pi / 365.25) + coef[5] * np.cos(days * 3 * 2 * np.pi / 365.25) + coef[6] * np.sin(days * 3 * 2 * np.pi / 365.25)) @staticmethod def get_predicts(num: Union[int, list], bands: tuple, predicted_values: list, results: dict) -> list: """ Return the model prediction values in the time series for a particular band or bands Args: num: Returns: A list of segment models """ # Check for type int, create list if true if isinstance(num, int): num = [num] try: _predicts = [predicted_values[m * len(bands) + n] for n in num for m in range(len(results["change_models"]))] except (IndexError, TypeError) as e: log.error('Exception: %s' % e, exc_info=True) _predicts = [] return _predicts @staticmethod def make_arrays(in_dict: dict) -> dict: """ Convert a dict of lists into arrays Args: in_dict: Returns: """ for key in in_dict.keys(): if isinstance(in_dict[key], list): in_dict[key] = np.array(in_dict[key]) return in_dict def rescale_thermal(self): """ Fix the scaling of the Brightness Temperature, if it was selected for plotting """ temp_thermal = np.copy(self.ard['thermals']) temp_thermal[self.fill_mask] = temp_thermal[self.fill_mask] * 10 - 27315 self.ard['thermals'] = np.copy(temp_thermal) return None def index_to_observations(self): """ Add index calculated observations to the timeseries pixel rod Returns: """ indices = ['NDVI', 'MSAVI', 'EVI', 'SAVI', 'NDMI', 'NBR', 'NBR-2'] selected_indices = [i for i in indices if i in self.items or 'All Indices' in self.items] for i in selected_indices: key = i.lower().replace('-', '') call = index_functions[key]['func'] args = tuple([self.ard[band] for band in index_functions[key]['bands']]) self.ard[key] = call(*args) return None @staticmethod def get_modeled_index(ard, results, predicted_values): """ Calculate the model-predicted index curves Returns: """ bands = ('blue', 'green', 'red', 'nir', 'swir1', 'swir2', 'thermal') indices = ('ndvi', 'msavi', 'evi', 'savi', 'ndmi', 'nbr', 'nbr2') modeled = dict() for key in ard.keys(): if key in indices: new_key = f'{key}-modeled' modeled[new_key] = list() call = index_functions[key]['func'] inds = index_functions[key]['inds'] try: for m in range(len(results['change_models'])): args = tuple([predicted_values[m * len(bands) + ind] for ind in inds]) modeled[new_key].append(call(*args)) except (AttributeError, TypeError) as e: log.error('Exception: %s' % e, exc_info=True) modeled[new_key].append([]) return modeled
{"hexsha": "32066e444a20db59132c8cc993f7c14668437a33", "size": 12832, "ext": "py", "lang": "Python", "max_stars_repo_path": "lcmap_tap/Plotting/plot_specs.py", "max_stars_repo_name": "danzelenak-usgs/TAP_Tool", "max_stars_repo_head_hexsha": "4ae3f4105df47efaa57283b25019e398b32de7b9", "max_stars_repo_licenses": ["Unlicense"], "max_stars_count": 2, "max_stars_repo_stars_event_min_datetime": "2018-09-05T04:29:27.000Z", "max_stars_repo_stars_event_max_datetime": "2020-01-08T19:18:50.000Z", "max_issues_repo_path": "lcmap_tap/Plotting/plot_specs.py", "max_issues_repo_name": "danzelenak-usgs/TAP_Tool", "max_issues_repo_head_hexsha": "4ae3f4105df47efaa57283b25019e398b32de7b9", "max_issues_repo_licenses": ["Unlicense"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2018-08-10T18:32:50.000Z", "max_issues_repo_issues_event_max_datetime": "2018-08-10T18:32:50.000Z", "max_forks_repo_path": "lcmap_tap/Plotting/plot_specs.py", "max_forks_repo_name": "danzelenak-usgs/TAP_Tool", "max_forks_repo_head_hexsha": "4ae3f4105df47efaa57283b25019e398b32de7b9", "max_forks_repo_licenses": ["Unlicense"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2018-04-25T14:01:07.000Z", "max_forks_repo_forks_event_max_datetime": "2018-04-25T14:01:07.000Z", "avg_line_length": 36.6628571429, "max_line_length": 120, "alphanum_fraction": 0.5175342893, "include": true, "reason": "import numpy", "num_tokens": 2973}
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Discriminative Layer Training Manager for TensorFlow.""" import tensorflow as tf import numpy as np from tensorflow_addons.optimizers.discriminative_layer_training import ( DiscriminativeLayerOptimizer, ) import itertools import os import tempfile import pytest import sys def toy_cnn(): """Consistently create model with same random weights. Skip head activation to allow both bce with logits and cce with logits. The model returned by this function should have identical weights to all other models returned by this function, for the duration of that continuous integration run. Run this function within a test, but make sure it runs before other tests. Model is intended to work with x = np.ones(shape = (None, 32, 32, 3), dtype = np.float32) y = np.zeros(shape = (None, 5), dtype = np.float32) y[:, 0] = 1. """ cnn_model_path = os.path.join(tempfile.gettempdir(), "cnn.h5") if not os.path.exists(cnn_model_path): bignet = tf.keras.applications.mobilenet_v2.MobileNetV2( include_top=False, weights=None, input_shape=(32, 32, 3), pooling="avg" ) # Take the first few layers so we cover BN, Conv, Pooling ops for testing. net = tf.keras.models.Model( inputs=bignet.input, outputs=bignet.get_layer("block_2_add").output ) model = tf.keras.Sequential( [ tf.keras.layers.InputLayer(input_shape=(32, 32, 3)), net, tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(5, name="head"), ] ) model.save(cnn_model_path) # This creates a model with set weights for testing purposes. # Most tests will assert equivalency between a model with discriminative training and a model without. return tf.keras.models.load_model(cnn_model_path) else: assert os.path.exists((cnn_model_path)), ( "Could not find h5 file at path %s " % cnn_model_path ) # Load the variable initialized model from the disk. return tf.keras.models.load_model(cnn_model_path) def toy_rnn(): """Consistently create model with same random weights. Skip head activation to allow both bce with logits and cce with logits. The model returned by this function should have identical weights to all other models returned by this function, for the duration of that continuous integration run. Run this function within a test, but make sure it runs before other tests. Model is intended to work with x = np.ones(shape = (None, 32, 32, 3), dtype = np.float32) y = np.zeros(shape = (None, 5), dtype = np.float32) y[:, 0] = 1. """ rnn_model_path = os.path.join(tempfile.gettempdir(), "rnn.h5") if not os.path.exists(rnn_model_path): # Pretend this net is a pretrained lstm of some sort. net = tf.keras.Sequential() # Crop the input shape so the lstm runs faster. # Pretrained need inputshape for weights to be initialized. net.add( tf.keras.layers.Cropping2D( cropping=((8, 8), (12, 12)), input_shape=(32, 32, 3) ) ) # Reshape into a timeseries. net.add(tf.keras.layers.Reshape(target_shape=(16, 8 * 3))) # Reduce the length of the time series. net.add(tf.keras.layers.Cropping1D(cropping=(0, 5))) # We are primarily interested in the bidir lstm layer and its behavior. net.add(tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(4))) model = tf.keras.Sequential( [ tf.keras.layers.InputLayer(input_shape=(32, 32, 3)), net, tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(5, name="head"), ] ) model.save(rnn_model_path) # This creates a model with set weights for testing purposes. # Most tests will assert equivalency between a model with discriminative training and a model without. return tf.keras.models.load_model(rnn_model_path) else: assert os.path.exists((rnn_model_path)), ( "Could not find h5 file at path %s " % rnn_model_path ) # Load the variable initialized model from the disk return tf.keras.models.load_model(rnn_model_path) def _get_train_results(model, verbose=False, epochs=10): """Run a training loop and return the results for analysis. Model must be compiled first. Training data sizes reduced. """ tf.random.set_seed(1) x = np.ones(shape=(8, 32, 32, 3), dtype=np.float32) y = np.zeros(shape=(8, 5), dtype=np.float32) y[:, 0] = 1.0 return model.fit(x, y, epochs=epochs, batch_size=4, verbose=verbose, shuffle=False) def _zipped_permutes(): model_fns = [ # Generally, we want to test that common layers function correctly with discriminative layer training. # Dense, conv2d, batch norm, lstm, pooling, should cover the majority of layer types. # We also assume that if it works for conv2d, it should work for conv3d by extension. # Apply the same extension logic for all layers tested and it should cover maybe 90% of layers in use? toy_cnn, toy_rnn, ] losses = [ # Additional loss types do not need to be tested. # This is because losses affect the gradient tape, which is computed before # the apply_gradients step. This means that the some gradient value is passed on to each opt # and the gradient calculation is unaffected by which optimizer you are using. tf.keras.losses.CategoricalCrossentropy(from_logits=True), ] optimzers = [ # Additional optimizers can be added for testing. # However, testing adam should cover most optimizer behaviours because it uses momentum. tf.keras.optimizers.Adam, ] return list(itertools.product(model_fns, losses, optimzers)) def get_losses(hist): return np.array(hist.__dict__["history"]["loss"]) def _assert_losses_are_close(hist, hist_lr): """Higher tolerance for graph and distributed bc unable to run deterministically.""" if not tf.executing_eagerly() or tf.distribute.has_strategy(): rtol, atol = 0.05, 1.00 # print('graph or dist') else: rtol, atol = 0.01, 0.01 return np.testing.assert_allclose( get_losses(hist), get_losses(hist_lr), rtol=rtol, atol=atol ) def _assert_training_losses_are_close(model, model_lr, epochs=10): """Easy way to check if two models train in almost the same way. Epochs set to 10 by default to allow momentum methods to pick up momentum and diverge, if the disc training is not working. """ hist = _get_train_results(model, verbose=False, epochs=epochs) hist_lr = _get_train_results(model_lr, verbose=False, epochs=epochs) _assert_losses_are_close(hist, hist_lr) def test_a_initialize_model_weights(): """This test should run first to initialize the model weights. There seem to be major issues in initializing model weights on the fly when testing, so we initialize them and save them to an h5 file and reload them each time. This ensures that when comparing two runs, they start at the same place. This is not actually testing anything, so it does not need to run in eager and graph. This needs to run distributed or else it will cause the cannot modify virtual devices error.""" toy_cnn() toy_rnn() @pytest.mark.parametrize("model_fn,loss,opt", _zipped_permutes()) @pytest.mark.usefixtures("maybe_run_functions_eagerly") def test_equal_with_no_layer_lr(model_fn, loss, opt): """Confirm that discriminative learning is almost the same as regular learning.""" learning_rate = 0.01 model = model_fn() model.compile(loss=loss, optimizer=opt(learning_rate)) model_lr = model_fn() d_opt = DiscriminativeLayerOptimizer( opt, model_lr, verbose=False, learning_rate=learning_rate ) model_lr.compile(loss=loss, optimizer=d_opt) _assert_training_losses_are_close(model, model_lr) @pytest.mark.parametrize("model_fn,loss,opt", _zipped_permutes()) @pytest.mark.usefixtures("maybe_run_functions_eagerly") def _test_equal_0_sub_layer_lr_to_sub_layer_trainable_false(model_fn, loss, opt): """Confirm 0 lr_mult for the a specific layer is the same as setting layer to not trainable. This also confirms that lr_mult propagates into that layer's trainable variables. This also confirms that lr_mult does not propagate to the rest of the layers unintentionally. """ learning_rate = 0.01 model = model_fn() # Layers 0 represents the pretrained network model.layers[0].trainable = False model.compile(loss=loss, optimizer=opt(learning_rate)) model_lr = model_fn() model_lr.layers[0].lr_mult = 0.0 d_opt = DiscriminativeLayerOptimizer( opt, model_lr, verbose=False, learning_rate=learning_rate ) model_lr.compile(loss=loss, optimizer=d_opt) _assert_training_losses_are_close(model, model_lr) @pytest.mark.parametrize("model_fn,loss,opt", _zipped_permutes()) @pytest.mark.usefixtures("maybe_run_functions_eagerly") def _test_equal_0_layer_lr_to_trainable_false(model_fn, loss, opt): """Confirm 0 lr_mult for the model is the same as model not trainable. This also confirms that lr_mult on the model level is propagated to all sublayers and their variables. """ learning_rate = 0.01 model = model_fn() model.trainable = False model.compile(loss=loss, optimizer=opt(learning_rate)) model_lr = model_fn() model_lr.lr_mult = 0.0 d_opt = DiscriminativeLayerOptimizer( opt, model_lr, verbose=False, learning_rate=learning_rate ) model_lr.compile(loss=loss, optimizer=d_opt) # Only two epochs because we expect no training to occur, thus losses shouldn't change anyways. _assert_training_losses_are_close(model, model_lr, epochs=2) @pytest.mark.parametrize("model_fn,loss,opt", _zipped_permutes()) @pytest.mark.usefixtures("maybe_run_functions_eagerly") def _test_equal_half_layer_lr_to_half_lr_of_opt(model_fn, loss, opt): """Confirm 0.5 lr_mult for the model is the same as optim with 0.5 lr. This also confirms that lr_mult on the model level is propagated to all sublayers and their variables. """ mult = 0.5 learning_rate = 0.01 model = model_fn() model.compile(loss=loss, optimizer=opt(learning_rate * mult)) model_lr = model_fn() model_lr.lr_mult = mult d_opt = DiscriminativeLayerOptimizer( opt, model_lr, verbose=False, learning_rate=learning_rate ) model_lr.compile(loss=loss, optimizer=d_opt) _assert_training_losses_are_close(model, model_lr) @pytest.mark.parametrize("model_fn,loss,opt", _zipped_permutes()) @pytest.mark.usefixtures("maybe_run_functions_eagerly") def _test_sub_layers_keep_lr_mult(model_fn, loss, opt): """Confirm that model trains with lower lr on specific layer, while a different lr_mult is applied everywhere else. Also confirms that sub layers with an lr mult do not get overridden. """ learning_rate = 0.01 model_lr = model_fn() # We set model to lrmult 0 and layer one to lrmult 5. # If layer one is trainable, then the loss should decrease. model_lr.lr_mult = 0.00 model_lr.layers[-1].lr_mult = 3 d_opt = DiscriminativeLayerOptimizer( opt, model_lr, verbose=False, learning_rate=learning_rate ) model_lr.compile(loss=loss, optimizer=d_opt) loss_values = get_losses(_get_train_results(model_lr, epochs=5)) np.testing.assert_array_less([loss_values[-1]], [loss_values[0]]) @pytest.mark.parametrize("model_fn,loss,opt", _zipped_permutes()) @pytest.mark.usefixtures("maybe_run_functions_eagerly") def _test_variables_get_assigned(model_fn, loss, opt): """Confirm that variables do get an lr_mult attribute and that they get the correct one. """ learning_rate = 0.01 model_lr = model_fn() # set lr mults. model_lr.layers[0].lr_mult = 0.3 model_lr.layers[0].layers[-1].lr_mult = 0.1 model_lr.layers[-1].lr_mult = 0.5 d_opt = DiscriminativeLayerOptimizer( opt, model_lr, verbose=False, learning_rate=learning_rate ) model_lr.compile(loss=loss, optimizer=d_opt) # We expect trainable vars at 0.3 to be reduced by the amount at 0.1. # This tests that the 0.3 lr mult does not override the 0.1 lr mult. np.testing.assert_equal( len(model_lr.layers[0].trainable_variables) - len(model_lr.layers[0].layers[-1].trainable_variables), len([var for var in model_lr.trainable_variables if var.lr_mult == 0.3]), ) # We expect trainable vars of model with lr_mult 0.1 to equal trainable vars of that layer. np.testing.assert_equal( len(model_lr.layers[0].layers[-1].trainable_variables), len([var for var in model_lr.trainable_variables if var.lr_mult == 0.1]), ) # Same logic as above. np.testing.assert_equal( len(model_lr.layers[-1].trainable_variables), len([var for var in model_lr.trainable_variables if var.lr_mult == 0.5]), ) @pytest.mark.parametrize("model_fn,loss,opt", _zipped_permutes()) @pytest.mark.usefixtures("maybe_run_functions_eagerly") def _test_model_checkpoint(model_fn, loss, opt): """Confirm that model does save checkpoints and can load them properly.""" learning_rate = 0.01 model_lr = model_fn() model_lr.layers[0].lr_mult = 0.3 model_lr.layers[0].layers[-1].lr_mult = 0.1 model_lr.layers[-1].lr_mult = 0.5 d_opt = DiscriminativeLayerOptimizer( opt, model_lr, verbose=False, learning_rate=learning_rate ) model_lr.compile(loss=loss, optimizer=d_opt) x = np.ones(shape=(8, 32, 32, 3), dtype=np.float32) y = np.zeros(shape=(8, 5), dtype=np.float32) y[:, 0] = 1.0 filepath = os.path.join(tempfile.gettempdir(), model_fn.__name__ + "_cp.ckpt") callbacks = [ tf.keras.callbacks.ModelCheckpoint( filepath=filepath, save_weights_only=True, verbose=1 ) ] model_lr.fit( x, y, epochs=2, batch_size=4, verbose=False, shuffle=False, callbacks=callbacks, ) # If this doesn't error out, then loading and checkpointing should be fine. model_lr.load_weights(filepath=filepath) @pytest.mark.parametrize("model_fn,loss,opt", _zipped_permutes()) @pytest.mark.usefixtures("maybe_run_functions_eagerly") def _test_config_tofrom(model_fn, loss, opt): """Confirm that optimizer saves config and loads config.""" # build model and save the opt to a config as c. learning_rate = 0.01 model_lr = model_fn() model_lr.layers[0].lr_mult = 0.3 model_lr.layers[0].layers[-1].lr_mult = 0.1 model_lr.layers[-1].lr_mult = 0.5 d_opt = DiscriminativeLayerOptimizer( opt, model_lr, verbose=False, learning_rate=learning_rate ) model_lr.compile(loss=loss, optimizer=d_opt) c = d_opt.get_config() # reconstruct the model and then build the opt from config. model_lr = model_fn() model_lr.layers[0].lr_mult = 0.3 model_lr.layers[0].layers[-1].lr_mult = 0.1 model_lr.layers[-1].lr_mult = 0.5 d_opt_from_config = DiscriminativeLayerOptimizer.from_config(c, model_lr) model_lr.compile(loss=loss, optimizer=d_opt_from_config) # we expect both optimizers to have the same optimizer group and base optimizer. np.testing.assert_equal( len(d_opt.optimizer_group), len(d_opt_from_config.optimizer_group) ) np.testing.assert_equal(d_opt.opt_class, d_opt_from_config.opt_class) # we also expect the lr for each opt in the opt groups to be the same. Also confirms same lr mult. np.testing.assert_array_equal( [opt.learning_rate for opt in d_opt.optimizer_group], [opt.learning_rate for opt in d_opt_from_config.optimizer_group], ) if __name__ == "__main__": sys.exit(pytest.main([__file__]))
{"hexsha": "dc7643de84162e65ebe24a743b7a5c4f448d7a3b", "size": 16829, "ext": "py", "lang": "Python", "max_stars_repo_path": "tensorflow_addons/optimizers/discriminative_layer_training_test.py", "max_stars_repo_name": "dkamotsky/addons", "max_stars_repo_head_hexsha": "56ff850785c6caa8c18c2859e32a32c8902defea", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "tensorflow_addons/optimizers/discriminative_layer_training_test.py", "max_issues_repo_name": "dkamotsky/addons", "max_issues_repo_head_hexsha": "56ff850785c6caa8c18c2859e32a32c8902defea", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "tensorflow_addons/optimizers/discriminative_layer_training_test.py", "max_forks_repo_name": "dkamotsky/addons", "max_forks_repo_head_hexsha": "56ff850785c6caa8c18c2859e32a32c8902defea", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 37.9887133183, "max_line_length": 110, "alphanum_fraction": 0.6943965773, "include": true, "reason": "import numpy", "num_tokens": 4065}
############################################################################################### # # Extract raw Markdown from source files and turn them into docs # # - Use `names(module)` to get a list of exported symbols from the module # - Use __META__ to get all documented symbols along with path to the sourcefile # - Use `grep` to get line number in file # - because MD.meta only has line for Function and not Module or DataType # - because even when there is a line number, it is off by one # - Use readlines to read in the source file and pull out docs & end line number # - because julia compiles docs to incorrect Markdown objects, and discards the raw MD # - Re-execute all docstrings because they may include external files # - Write .md files and a TOC, add links back to repo with start/end lines for each object # - Create mkdocs.yml # - Run `mkdocs` to build html docs # - Cleanup (optional) # # # -- Because julia's own documentation libraries cannot handle all of markdown # ############################################################################################### ############################################################################################### ### ### The following constants may be modified for based on your own config ### # Module to be documented const mod = "mPulseAPI" # Temporary location for generated files, change this if you already have a directory called src/ const doc_src = "src" # YAML config file for mkdocs. This will be generated. const mkdocsy = "mkdocs.yml" # Prefix configuration for mkdocs. Page names will be appended to this const mkdocs_config = Dict( :site_name => "$(mod).jl Documentation", :site_url => "https://akamai.github.com/$(mod).jl/", :repo_url => "https://github.com/akamai/$(mod).jl/", :site_favicon => "favicon.ico", :extra_css => ["css/mkdocs.css"], :site_description => "Communicate with the mPulse Query & Repository REST APIs to fetch information about tenants and apps.", :copyright => "Akamai, Inc.", :docs_dir => "src", :use_directory_urls => false, :theme => "readthedocs", :markdown_extensions => [:admonition, :def_list, :attr_list, "toc:\n permalink: True"], ) # Don't change this immutable Page name::AbstractString title::AbstractString pregenerated::Bool Page(name::AbstractString, title::AbstractString, pregenerated::Bool=false) = new(name, title, pregenerated) end # Pages to build: # - name # - title const pages = Page[ Page("index", mod), Page("apiToken", "How to generate an API Token", true), Page("RepositoryAPI", "Repository API"), Page("QueryAPI", "Query API"), Page("exceptions", "Exceptions"), Page("cache_utilities", "Internal Cache Utilities"), ] ### ### End of user configurable section ### ############################################################################################### using Formatting eval(parse("using $mod")) Mod = eval(parse(mod)) function getSymbols(mod::Module; order=[Module, DataType, Function]) exported = Dict( map( n -> (string(n) => getfield(mod, n)), names(mod) ) ) declarator = Dict(Function => "(function )?", DataType => "(abstract|immutable|type) ", Module => "module ") # Now get all the symbols and mark the exported ones function symbol2dict(k) k_doc = Docs.doc(k) name = replace(string(k), Regex("^$mod\."), "") typ = typeof(k) file = haskey(k_doc.meta, :path) ? k_doc.meta[:path] : length(k_doc.content) == 1 && haskey(k_doc.content[1].meta, :path) ? k_doc.content[1].meta[:path] : "" api_doc = "" if file != "" lines = open(readlines, file) line = find(x -> ismatch(Regex("^$(declarator[typ])$(name)"), x), lines) if length(line) == 0 println(Regex("^$(declarator[typ]) +$(name)")) println(lines) end line = line[1] if typ == Module endline = line api_doc_start = findnext(lines, "\"\"\"\n", line+1) api_doc_end = findnext(lines, "\"\"\"\n", api_doc_start+1) if api_doc_end - api_doc_start > 0 api_doc = eval(parse(join(lines[api_doc_start:api_doc_end], ""))) end else endline = findnext(lines, "end\n", line) api_doc = findprev(lines, "\"\"\"\n", line-2) if api_doc > 0 api_doc = eval(parse(join(lines[api_doc:line-1], ""))) end end else line = 0 end api_doc = replace(api_doc, r"^ \*"m, " *") return Dict( :name => name, :type => typ, :exported => haskey(exported, replace(string(k), Regex("^$mod\."), "")), :file => replace(file, r"^.*/", ""), :line => line, :endline => endline, :doc => api_doc ) end symbols = map( symbol2dict, filter( k -> !isa(k, ObjectIdDict), collect( keys(mod.__META__) ) ) ) expo_order = Dict(true => "1", false => "2") type_order = Dict(zip(order, 1:length(order))) sort!(symbols, by = x -> format("{1}.{2}.{3}.{4:04d}.{5}", expo_order[x[:exported]], type_order[x[:type]], x[:file], x[:line], x[:name])) return symbols end labels = Pair[Module => "", DataType => "Type", Function => "Function"] exps = Pair[true => "Exported", false => "Namespaced"] symbols = getSymbols(Mod) refids = Dict(map(s -> (s[:name] => replace(s[:file], r"\.jl$", ".md") * lowercase(string("#", s[:type], "-", s[:name]))), symbols)) function replace_refs(m) ref = match(Regex("^\\[(`?(?:$mod\\.)?(\\w+)`?)\\]"), m) if ref == nothing return m end txt = ref.captures[1] ref = ref.captures[2] return "[$txt]($(refids[ref])){: .x-ref}" end cd(dirname(@__FILE__)) do dir_existed = true if !isdir(doc_src) mkdir(doc_src) dir_existed = false end open(mkdocsy, "w") do yml for (k, v) in mkdocs_config print(yml, k, ": ") if isa(v, AbstractArray) println(yml, mapfoldl(x -> "\n - $x", *, v)) else println(yml, v) end end println(yml, "pages:") for page in pages println("INFO - Processing $(page.name)") # Only generate pages that are not pre-generated page.pregenerated || open(joinpath(doc_src, page.name * ".md"), "w") do f println(f, """ # $(page.title) """) local file_symbs = filter(x -> x[:file] == (page.name == "index" ? mod : page.name) * ".jl", symbols) if page.name != "index" for s in file_symbs println(f, "* [$(s[:name])]($(refids[s[:name]]))") end end for (exported, ex_label) in exps for (typ, ty_label) in labels local symbs = filter(x -> x[:exported] == exported && x[:type] == typ, file_symbs) if length(symbs) > 0 !isempty(ty_label) && println(f, "## $ex_label $(ty_label)s") exported || println(f, """ !!! note The following methods are not exported by default. You may use them by explicitly importing them or by prefixing them with the `$(mod).` namespace. """) for s in symbs println(f, """ ##$(typ == Module ? "" : "#") $(lowercase(string(s[:type]))) `$(s[:name])` [$(s[:file])#$(s[:line])$(s[:endline] != s[:line] ? "-$(s[:endline])" : "")]($(mkdocs_config[:repo_url])tree/master/src/$(s[:file])#L$(s[:line])-L$(s[:endline])){: .source-link} """) # Replace references with links to actual functions s_doc = replace(s[:doc], Regex("\\[`?(?:$mod\\.)?\\w+`?\\]\\(@ref\\)"), replace_refs) s_doc = replace(s_doc, r"^`(\w+)`"m, m -> (r = replace(m, "`", ""); haskey(refids, r) ? "[$m]($(refids[r]))" : m)) # Remove `docs/src/` from any links since we might have that in raw md in our functions s_doc = replace(s_doc, r"/?docs/src/", "") println(f, s_doc, "\n---\n") end end end end if page.name == "index" println(f, """ ## API Reference """) p = Page("", "") for s in symbols (s[:file] == mod * ".jl") && continue if p.name * ".jl" != s[:file] p = filter(p -> p.name * ".jl" == s[:file], pages) if length(p) == 0 continue else p = p[1] end println(f, """ * [$(p.title)]($(p.name).md) """) end println(f, " * [$(s[:name])]($(refids[s[:name]]))") end end end println(yml, " - \"$(page.title)\": \"$(page.name).md\"") end end run(`mkdocs build -c -f $mkdocsy`) if any(x -> x=="--delete", ARGS) for p in pages path = joinpath(doc_src, p.name * ".md") println("INFO - Removing $path") rm(path) end if !dir_existed println("INFO - Removing $doc_src/") rm(doc_src) end println("INFO - Removing $mkdocsy") rm(mkdocsy) end if any(x -> x=="--add", ARGS) info("Adding all documentation changes in $(doc_src) to this commit.") success(`git add $(doc_src)`) end end
{"hexsha": "310c071f2078898eab06ade401a8ad54c94d1f38", "size": 10695, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "docs/build-docs.jl", "max_stars_repo_name": "UnofficialJuliaMirrorSnapshots/mPulseAPI.jl-9f4a2347-a52b-52c3-b18a-5631cfb5128d", "max_stars_repo_head_hexsha": "1c55c1d5f3c0b9b3d3e4067cf3797ef522c4f2f7", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2021-02-25T00:57:25.000Z", "max_stars_repo_stars_event_max_datetime": "2021-02-25T00:57:25.000Z", "max_issues_repo_path": "docs/build-docs.jl", "max_issues_repo_name": "UnofficialJuliaMirrorSnapshots/mPulseAPI.jl-9f4a2347-a52b-52c3-b18a-5631cfb5128d", "max_issues_repo_head_hexsha": "1c55c1d5f3c0b9b3d3e4067cf3797ef522c4f2f7", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 2, "max_issues_repo_issues_event_min_datetime": "2017-08-19T06:17:26.000Z", "max_issues_repo_issues_event_max_datetime": "2018-05-14T19:14:45.000Z", "max_forks_repo_path": "docs/build-docs.jl", "max_forks_repo_name": "UnofficialJuliaMirrorSnapshots/mPulseAPI.jl-9f4a2347-a52b-52c3-b18a-5631cfb5128d", "max_forks_repo_head_hexsha": "1c55c1d5f3c0b9b3d3e4067cf3797ef522c4f2f7", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 4, "max_forks_repo_forks_event_min_datetime": "2016-10-02T07:59:26.000Z", "max_forks_repo_forks_event_max_datetime": "2018-02-26T18:27:24.000Z", "avg_line_length": 34.5, "max_line_length": 213, "alphanum_fraction": 0.4636746143, "num_tokens": 2507}
/************************************************************** * Copyright (c) 2008-2009 Daniel Pfeifer * * * * Distributed under the Boost Software License, Version 1.0. * **************************************************************/ #ifndef BOOST_SQL_FIREBIRD_CONNECTION_HPP #define BOOST_SQL_FIREBIRD_CONNECTION_HPP #include <boost/sql/firebird/detail/service.hpp> #include <boost/sql/detail/connection_base.hpp> #include <string> #include <stdexcept> #include <boost/assert.hpp> #include <sstream> #include <ibase.h> namespace boost { namespace sql { namespace firebird { class connection: sql::detail::connection_base<detail::service> { public: connection(asio::io_service& io_service) : sql::detail::connection_base<detail::service>(io_service), impl(0) { } ~connection() { isc_detach_database(service.status, &impl); } void open(std::string const& db_name, std::string const& parm_buffer) { if (!isc_attach_database(service.status, db_name.length(), db_name.c_str(), &impl, parm_buffer.length(), parm_buffer.c_str())) { service.throw_error(); } } unsigned long client_version() { return 100 * isc_get_client_major_version() + isc_get_client_minor_version(); } unsigned long server_version() { return 0; } void execute(const std::string& query) { } private: isc_db_handle impl; }; } // end namespace firebird } // end namespace sql } // end namespace boost #endif /*BOOST_SQL_MYSQL_CONNECTION_HPP*/
{"hexsha": "aa0c27a1e0fcb2a87d1f2abd0d74f8376e6ffc21", "size": 1551, "ext": "hpp", "lang": "C++", "max_stars_repo_path": "include/boost/sql/firebird/connection.hpp", "max_stars_repo_name": "purpleKarrot/async-db", "max_stars_repo_head_hexsha": "172124e5657e3085e8ac7729c4e578c0d766bf7b", "max_stars_repo_licenses": ["BSL-1.0"], "max_stars_count": 5.0, "max_stars_repo_stars_event_min_datetime": "2016-09-19T01:02:33.000Z", "max_stars_repo_stars_event_max_datetime": "2019-10-23T07:15:00.000Z", "max_issues_repo_path": "include/boost/sql/firebird/connection.hpp", "max_issues_repo_name": "purpleKarrot/async-db", "max_issues_repo_head_hexsha": "172124e5657e3085e8ac7729c4e578c0d766bf7b", "max_issues_repo_licenses": ["BSL-1.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "include/boost/sql/firebird/connection.hpp", "max_forks_repo_name": "purpleKarrot/async-db", "max_forks_repo_head_hexsha": "172124e5657e3085e8ac7729c4e578c0d766bf7b", "max_forks_repo_licenses": ["BSL-1.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 21.5416666667, "max_line_length": 70, "alphanum_fraction": 0.6305609284, "num_tokens": 342}
\\ Count down from x : cnt_down ( x -- ) DUP 0 > IF 1- DUP . RECURSE THEN ;
{"hexsha": "700a3a7f1c4094a85a0c688ba7665624b89e2fae", "size": 100, "ext": "f", "lang": "FORTRAN", "max_stars_repo_path": "release/cnt_down.f", "max_stars_repo_name": "jpoirier/meusForth", "max_stars_repo_head_hexsha": "db7ba3c17f1c672c4c35415a6a4e2e45e79b19ac", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 2, "max_stars_repo_stars_event_min_datetime": "2017-08-03T08:47:07.000Z", "max_stars_repo_stars_event_max_datetime": "2020-08-16T23:10:35.000Z", "max_issues_repo_path": "release/cnt_down.f", "max_issues_repo_name": "jpoirier/meusForth", "max_issues_repo_head_hexsha": "db7ba3c17f1c672c4c35415a6a4e2e45e79b19ac", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2019-03-02T12:14:08.000Z", "max_issues_repo_issues_event_max_datetime": "2020-06-28T18:25:43.000Z", "max_forks_repo_path": "release/cnt_down.f", "max_forks_repo_name": "jpoirier/meusForth", "max_forks_repo_head_hexsha": "db7ba3c17f1c672c4c35415a6a4e2e45e79b19ac", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 10.0, "max_line_length": 32, "alphanum_fraction": 0.44, "num_tokens": 35}
{-# OPTIONS --without-K #-} module sets.list.properties where open import level open import equality.core open import sets.list.core module _ {i}{A : Set i} where data all {j}(P : A → Set j) : List A → Set (i ⊔ j) where mk-all : ∀ {x xs} → P x → all P xs → all P (x ∷ xs) data any {j}(P : A → Set j) : List A → Set (i ⊔ j) where hd-any : ∀ {x xs} → P x → any P (x ∷ xs) tl-any : ∀ {x xs} → any P xs → any P (x ∷ xs) elem : A → List A → Set i elem x = any (λ x' → x ≡ x')
{"hexsha": "e80a524abddfd57ad0d2b7fa1632b1125678f138", "size": 495, "ext": "agda", "lang": "Agda", "max_stars_repo_path": "src/sets/list/properties.agda", "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 20, "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_issues_repo_path": "src/sets/list/properties.agda", "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": 4, "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_forks_repo_path": "src/sets/list/properties.agda", "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": 4, "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "avg_line_length": 27.5, "max_line_length": 58, "alphanum_fraction": 0.5373737374, "num_tokens": 185}