File size: 3,068 Bytes
1e12018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import collections
import io
import zstandard
import json

from dataclasses import dataclass

import datasets


logger = datasets.logging.get_logger(__name__)


@dataclass
class Identification:
    label: str
    prob: float


_DESCRIPTION = """
"""

_URL = ""

_LICENSE = """
"""

_CITATION = """
"""

_BASE_DATA_PAT_FORMAT_STR = ""
_BASE_CHECKSUM_FILE_NAME = "checksum.sha256"

class Oscar2301JAConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        """BuilderConfig for OSCAR.
        Args:
            language (str): It has to contain 2-letter or 3-letter coded strings. For example: "se", "hu", "eml"
            **kwargs: Keyword arguments forwarded to super.
        """
            
        description = (
            f"filter OSCAR 2023 dataset ja"
        )
        super(Oscar2301JAConfig, self).__init__(
            name="oscar_2023_ja_filtered", description=description, **kwargs
        )


class Oscar2301(datasets.GeneratorBasedBuilder):    
    BUILDER_CONFIGS = [
        Oscar2301JAConfig(
            version=datasets.Version("2023.1.0"),
        )
    ]
    BUILDER_CONFIG_CLASS = Oscar2301JAConfig

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("int64"),
                    "text": datasets.Value("string")                  
                }
            ),
            supervised_keys=None,
            homepage=_URL,
            citation=_CITATION,
            license=_LICENSE,
        )

    def _split_generators(self, dl_manager):
        checksum_path = self.config.base_data_path + _BASE_CHECKSUM_FILE_NAME
        checksum_file = dl_manager.download(checksum_path)
        with open(checksum_file, encoding="utf-8") as f:
            data_filenames = [line.split()[1] for line in f if line]
            data_urls = [
                self.config.base_data_path + data_filename
                for data_filename in data_filenames
            ]
        doc_files = dl_manager.download(
            [url for url in data_urls if url.endswith(".jsonl.zst")]
        )
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"doc_files": doc_files}
            ),
        ]

    def _generate_examples(self, doc_files):
        """This function returns the examples in the raw (text) form by iterating on all the files."""
        id_ = 0
        for doc_path in doc_files:
            logger.info("generating examples from = %s", doc_path)

            with open(doc_path, "rb") as fh:
                dctx = zstandard.ZstdDecompressor()
                stream_reader = dctx.stream_reader(fh)
                buffered_reader = io.BufferedReader(stream_reader)
                text_stream = io.TextIOWrapper(buffered_reader, encoding="utf-8")
                for line in text_stream:
                    doc = json.loads(line)
                    yield id_, {"id": id_, "text": doc["text"]}
                    id_ += 1