File size: 8,528 Bytes
6ef14cc
 
 
 
 
 
 
 
38a17b3
 
 
 
 
 
 
 
 
 
6ef14cc
 
38a17b3
 
 
6ef14cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38a17b3
 
 
 
 
 
 
 
6ef14cc
38a17b3
 
 
6ef14cc
 
 
 
 
38a17b3
 
 
 
 
6ef14cc
 
 
 
 
 
 
 
38a17b3
6ef14cc
38a17b3
 
6ef14cc
38a17b3
 
6ef14cc
38a17b3
6ef14cc
 
38a17b3
 
6ef14cc
 
 
38a17b3
 
6ef14cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38a17b3
 
6ef14cc
 
 
 
38a17b3
 
 
 
 
 
 
 
 
 
6ef14cc
38a17b3
6ef14cc
 
 
 
 
 
 
 
 
 
 
 
38a17b3
 
6ef14cc
38a17b3
 
 
 
 
 
6ef14cc
38a17b3
 
 
 
6ef14cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Built on Michelle's download script: https://huggingface.co/datasets/imageomics/Comparison-Subset-Jiggins/blob/977a934e1eef18f6b6152da430ac83ba6f7bd30f/download_jiggins_subset.py
# with modification of David's redo loop: https://github.com/Imageomics/data-fwg/blob/anomaly-data-challenge/HDR-anomaly-data-challenge/notebooks/download_images.ipynb
# and expanded logging and file checks. Further added checksum calculation for all downloaded images at end.

# Script to download Jiggins images from any of the master CSV files.
# Generates Checksum file for all images downloaded (<master filename>_checksums.csv).
# Logs image downloads and failures in json files (<master filename>_log.json & <master filename>_error_log.json).
# Logs record numbers and response codes as strings, not int64.

import requests
import shutil
import json

import pandas as pd
from checksum import get_checksums

from tqdm import tqdm
import os
import sys
import time
import argparse


EXPECTED_COLS = ["CAMID",
                 "X",
                 "Image_name",
                 "file_url",
                 "Taxonomic_Name",
                 "record_number",
                 "Dataset"
                 ]

REDO_CODE_LIST = [429, 500, 502, 503, 504]

# Reset to appropriate index if download gets interrupted.
STARTING_INDEX = 0


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--csv", required=True, help="Path to CSV file with urls.", nargs="?")
    parser.add_argument("--output", required=True, help="Main directory to download images into.", nargs="?")

    return parser.parse_args()


def log_response(log_data, index, image, url, record_number, dataset, cam_id, response_code):
    # log status
    log_entry = {}
    log_entry["Image"] = image
    log_entry["file_url"] = url
    log_entry["record_number"] = str(record_number) #int64 has problems sometimes
    log_entry["dataset"] = dataset
    log_entry["CAMID"] = cam_id
    log_entry["Response_status"] = str(response_code)
    log_data[index] = log_entry

    return log_data


def update_log(log, index, filepath):
    # save logs
    with open(filepath, "a") as log_file:
        json.dump(log[index], log_file, indent = 4)
        log_file.write("\n")


def download_images(jiggins_data, image_folder, log_filepath, error_log_filepath):
    log_data = {}
    log_errors = {}

    for i in tqdm(range(0, len(jiggins_data))) : 
        # species will really be <Genus> <species> ssp. <subspecies>, where subspecies indicated
        species = jiggins_data["Taxonomic_Name"][i]
        image_name = jiggins_data["X"][i].astype(str) + "_" + jiggins_data["Image_name"][i]
        record_number = jiggins_data["record_number"][i]

        # download the image from url if not already downloaded
        # Will attempt to download everything in CSV (image_name is unique: <X>_<Image_name>), unless download restarted
        if os.path.exists(f"{image_folder}/{species}/{image_name}") != True:
            #get image from url
            url = jiggins_data["file_url"][i]
            dataset = jiggins_data["Dataset"][i]
            cam_id = jiggins_data["CAMID"][i]

            #download the image
            redo = True
            max_redos = 2
            while redo and max_redos > 0:
                try:
                    response = requests.get(url, stream=True)
                except Exception as e:
                    redo = True
                    max_redos -= 1
                    if max_redos <= 0:
                        log_errors = log_response(log_errors,
                                        index = i,
                                        image = species + "/" + image_name,
                                        url = url,
                                        record_number = record_number,
                                        dataset = dataset,
                                        cam_id = cam_id,
                                        response_code = str(e))
                        update_log(log = log_errors, index = i, filepath = error_log_filepath)
                        
                if response.status_code == 200:
                    redo = False
                    # log status
                    log_data = log_response(log_data,
                                        index = i,
                                        image = species + "/" + image_name,
                                        url = url,
                                        record_number = record_number,
                                        dataset = dataset,
                                        cam_id = cam_id,
                                        response_code = response.status_code
                                        )
                    update_log(log = log_data, index = i, filepath = log_filepath)
                    
                    #create the species appropriate folder if necessary
                    if os.path.exists(f"{image_folder}/{species}") != True:
                        os.makedirs(f"{image_folder}/{species}", exist_ok=False)
                    
                    # save image to appropriate folder
                    with open(f"{image_folder}/{species}/{image_name}", "wb") as out_file:
                        shutil.copyfileobj(response.raw, out_file)
            
                # check for too many requests
                elif response.status_code in REDO_CODE_LIST:
                    redo = True
                    max_redos -= 1
                    if max_redos <= 0:
                        log_errors = log_response(log_errors,
                                        index = i,
                                        image = species + "/" + image_name,
                                        url = url,
                                        record_number = record_number,
                                        dataset = dataset,
                                        cam_id = cam_id,
                                        response_code = response.status_code)
                        update_log(log = log_errors, index = i, filepath = error_log_filepath)

                    else:
                        time.sleep(1)
                else: #other fail, eg. 404
                    redo = False
                    log_errors = log_response(log_errors,
                                            index = i,
                                            image = species + "/" + image_name,
                                            url = url,
                                            record_number = record_number,
                                            dataset = dataset,
                                            cam_id = cam_id,
                                            response_code = response.status_code)
                    update_log(log = log_errors, index = i, filepath = error_log_filepath)

            del response
    
        else:
            if i > STARTING_INDEX:
                # No need to print if download is restarted due to interruption (set STARTING_INDEX accordingly).
                print(f"duplicate image: {jiggins_data['X']}, {jiggins_data['Image_name']}, from record {record_number}")

    return

def main():

    #get arguments from commandline
    args = parse_args() 
    csv_path = args.csv #path to our csv with urls to download images from
    image_folder = args.output  #folder where dataset will be downloaded to

    # log file location (folder of source CSV)
    log_filepath = csv_path.split(".")[0] + "_log.json"
    error_log_filepath = csv_path.split(".")[0] + "_error_log.json"

    #load csv 
    jiggins_data = pd.read_csv(csv_path, low_memory = False)

    # Check for required columns
    missing_cols = []
    for col in EXPECTED_COLS:
        if col not in list(jiggins_data.columns):
            missing_cols.append(col)
    if len(missing_cols) > 0:
        sys.exit(f"The CSV is missing column(s): {missing_cols}")

    #dowload images from urls
    download_images(jiggins_data, image_folder, log_filepath, error_log_filepath)

    # generate checksums and save CSV to same folder as CSV used for download
    checksum_path = csv_path.split(".")[0] + "_checksums.csv"
    get_checksums(image_folder, checksum_path)

    print(f"Images downloaded from {csv_path} to {image_folder}.")
    print(f"Checksums recorded in {checksum_path} and download logs are in {log_filepath} and {error_log_filepath}.")

    return

if __name__ == "__main__":
    main()