File size: 39,514 Bytes
5f6190a
9fbfc78
 
 
 
 
 
5f6190a
d55873b
5f6190a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca0fb7d
 
5f6190a
 
ca0fb7d
5f6190a
ca0fb7d
 
d55873b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fbfc78
d55873b
9fbfc78
 
5f6190a
 
 
 
 
d55873b
 
 
 
5f6190a
3b1dd3f
 
 
 
 
046bfaf
a6fc8ef
3b1dd3f
 
 
 
 
 
046bfaf
 
3b1dd3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ed6f6b
5f6190a
3ed6f6b
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
---
language:
- en
size_categories:
- 1M<n<10M
task_categories:
- token-classification
dataset_info:
- config_name: articles
  features:
  - name: title
    dtype: string
  - name: author
    dtype: string
  - name: datetime
    dtype: string
  - name: url
    dtype: string
  - name: month
    dtype: string
  - name: day
    dtype: string
  - name: doc_id
    dtype: string
  - name: text
    dtype: string
  - name: year
    dtype: string
  - name: doc_title
    dtype: string
  splits:
  - name: train
    num_bytes: 1313871812
    num_examples: 446809
  download_size: 791316510
  dataset_size: 1313871812
- config_name: entities
  features:
  - name: doc_id
    dtype: string
  - name: sent_num
    dtype: int32
  - name: sentence
    dtype: string
  - name: doc_title
    dtype: string
  - name: spans
    sequence:
    - name: Score
      dtype: float32
    - name: Type
      dtype: string
    - name: Text
      dtype: string
    - name: BeginOffset
      dtype: int32
    - name: EndOffset
      dtype: int32
  - name: tags
    struct:
    - name: tokens
      sequence: string
    - name: raw_tags
      sequence: string
    - name: ner_tags
      sequence:
        class_label:
          names:
            '0': B-DATE
            '1': I-DATE
            '2': L-DATE
            '3': U-DATE
            '4': B-DUC
            '5': I-DUC
            '6': L-DUC
            '7': U-DUC
            '8': B-EVE
            '9': I-EVE
            '10': L-EVE
            '11': U-EVE
            '12': B-LOC
            '13': I-LOC
            '14': L-LOC
            '15': U-LOC
            '16': B-MISC
            '17': I-MISC
            '18': L-MISC
            '19': U-MISC
            '20': B-ORG
            '21': I-ORG
            '22': L-ORG
            '23': U-ORG
            '24': B-PER
            '25': I-PER
            '26': L-PER
            '27': U-PER
            '28': B-QTY
            '29': I-QTY
            '30': L-QTY
            '31': U-QTY
            '32': B-TTL
            '33': I-TTL
            '34': L-TTL
            '35': U-TTL
            '36': O
  splits:
  - name: train
    num_bytes: 3665237140
    num_examples: 3515149
  download_size: 967133582
  dataset_size: 3665237140
configs:
- config_name: articles
  data_files:
  - split: train
    path: articles/train-*
- config_name: entities
  data_files:
  - split: train
    path: entities/train-*
---
# Large Weak Labelled NER corpus


### Dataset Summary

The dataset is generated through weak labelling of the scraped and preprocessed news corpus (bloomberg's news). so, only to research purpose.
In order of the tokenization, news were splitted into sentences using `nltk.PunktSentenceTokenizer` (so, sometimes, tokenization might be not perfect)  

### Usage

```python
from datasets import load_dataset

articles_ds = load_dataset("imvladikon/english_news_weak_ner", "articles") # just articles with metadata
entities_ds = load_dataset("imvladikon/english_news_weak_ner", "entities")
```


#### NER tags 

Tags description:    
* O Outside of a named entity
* PER Person
* LOC Location
* ORG Organization
* MISC Miscellaneous
* DATE Date and time expression
* QTY Quantity
* EVE Event
* TTL Title
* DUC Commercial item

    

Tags:    
```json
['B-DATE', 'I-DATE', 'L-DATE', 'U-DATE', 'B-DUC', 'I-DUC', 'L-DUC', 'U-DUC', 'B-EVE', 'I-EVE', 'L-EVE', 'U-EVE', 'B-LOC', 'I-LOC', 'L-LOC', 'U-LOC', 'B-MISC', 'I-MISC', 'L-MISC', 'U-MISC', 'B-ORG', 'I-ORG', 'L-ORG', 'U-ORG', 'B-PER', 'I-PER', 'L-PER', 'U-PER', 'B-QTY', 'I-QTY', 'L-QTY', 'U-QTY', 'B-TTL', 'I-TTL', 'L-TTL', 'U-TTL', 'O']
```

Tags statistics:   
```json
{
    "O": 281586813,
    "B-QTY": 2675754,
    "L-QTY": 2675754,
    "I-QTY": 2076724,
    "U-ORG": 1459628,
    "I-ORG": 1407875,
    "B-ORG": 1318711,
    "L-ORG": 1318711,
    "B-PER": 1254037,
    "L-PER": 1254037,
    "U-MISC": 1195204,
    "U-LOC": 1084052,
    "U-DATE": 1010118,
    "B-DATE": 919815,
    "L-DATE": 919815,
    "I-DATE": 650064,
    "U-PER": 607212,
    "U-QTY": 559523,
    "B-LOC": 425431,
    "L-LOC": 425431,
    "I-PER": 262887,
    "I-LOC": 201532,
    "I-MISC": 190576,
    "B-MISC": 162978,
    "L-MISC": 162978,
    "I-TTL": 64641,
    "B-TTL": 53330,
    "L-TTL": 53330,
    "B-EVE": 43329,
    "L-EVE": 43329,
    "U-TTL": 41568,
    "I-EVE": 35316,
    "U-DUC": 33457,
    "U-EVE": 19103,
    "I-DUC": 15622,
    "B-DUC": 15580,
    "L-DUC": 15580
}
```




#### Sample:

![display]()

Articles:

```json
{'title': 'Watson Reports Positive Findings for Prostate Drug',
 'author': 'RobertSimison',
 'datetime': '2007-01-16T14:16:56Z',
 'url': 'http://www.bloomberg.com/news/2007-01-16/watson-reports-positive-findings-for-prostate-drug-update1-.html',
 'month': '1',
 'day': '16',
 'doc_id': 'a5c7c556bd112ac22874492c4cdb18eb46a30905',
 'text': 'Watson Pharmaceuticals Inc. (WPI) , the\nlargest U.S. maker of generic drugs, reported positive results\nfor its experimental prostate treatment in two late-state trials.  \n The drug, silodosin, was more effective than a placebo in\ntreating enlarged prostates, or benign prostatic hyperplasia, the\nCorona, California-based company said today in a statement on PR\nNewswire. The tests were in the final of three phases of trials\nnormally needed for regulatory approval.  \n Non-cancerous enlarged prostate affects more than half of\nAmerican men in their 60s and as many as 90 percent of them by\nage 85, Watson said. Prescription drug sales to treat the\ndisorder total $1.7 billion a year, the company said.  \n Watson plans to apply for U.S. approval to market the drug\nin the first half of 2008, after completion later this year of a\none-year safety trial, the company said. The two studies reported\ntoday showed that cardiovascular and blood-pressure side effects\nwere low, Watson said.  \n To contact the reporter on this story:\nRobert Simison in  Washington  at \n rsimison@bloomberg.net .  \n To contact the editor responsible for this story:\nRobert Simison at   rsimison@bloomberg.net .',
 'year': '2007',
 'doc_title': 'watson-reports-positive-findings-for-prostate-drug-update1-'}
```

Entities:

```json
{'doc_id': '806fe637ed51e03d9ef7a8889fc84f63f8fc8569',
 'sent_num': 9,
 'sentence': 'Spain and Portugal together accounted for 45\npercent of group profit in 2010.',
 'doc_title': 'bbva-may-post-lower-first-quarter-profit-hurt-by-spain-decline',
 'spans': {'Score': [0.7858654856681824,
   0.7856822609901428,
   0.9990736246109009,
   0.999079704284668],
  'Type': ['ORGANIZATION', 'ORGANIZATION', 'QUANTITY', 'DATE'],
  'Text': ['Spain', 'Portugal', '45\npercent', '2010'],
  'BeginOffset': [0, 10, 42, 72],
  'EndOffset': [5, 18, 52, 76]},
 'tags': {'tokens': ['Spain',
   'Spain',
   'and',
   'Portugal',
   'Spain',
   'and',
   'Portugal',
   'together',
   'accounted',
   'for',
   '45',
   '\n',
   'percent',
   'Spain',
   'and',
   'Portugal',
   'together',
   'accounted',
   'for',
   '45',
   '\n',
   'percent',
   'of',
   'group',
   'profit',
   'in',
   '2010',
   '.'],
  'raw_tags': ['U-ORG',
   'O',
   'O',
   'U-ORG',
   'O',
   'O',
   'O',
   'O',
   'O',
   'O',
   'B-QTY',
   'I-QTY',
   'L-QTY',
   'O',
   'O',
   'O',
   'O',
   'O',
   'O',
   'O',
   'O',
   'O',
   'O',
   'O',
   'O',
   'O',
   'U-DATE',
   'O'],
  'ner_tags': [23,
   36,
   36,
   23,
   36,
   36,
   36,
   36,
   36,
   36,
   28,
   29,
   30,
   36,
   36,
   36,
   36,
   36,
   36,
   36,
   36,
   36,
   36,
   36,
   36,
   36,
   3,
   36]}}
```




### Data splits


|  name   |train|
|---------|----:|
|entities|3515149|
|articles|446809|


### Citation Information

```
@misc{imvladikon2023bb_news_weak_ner,
  author = {Gurevich, Vladimir},
  title = {Weakly Labelled Large English NER corpus},
  year = {2022},
  howpublished = \url{https://huggingface.co/datasets/imvladikon/bloomberg_news_weak_ner},
}

```