File size: 6,249 Bytes
fbcaf70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e78acc5
 
fbcaf70
 
 
 
 
 
 
 
70d554c
fbcaf70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82fee29
fbcaf70
 
 
 
 
 
 
 
 
 
437c8f5
fbcaf70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437c8f5
fbcaf70
 
 
 
 
 
 
68d1e5c
fbcaf70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6e4227
82fee29
70d554c
 
 
 
82fee29
 
70d554c
b8c4805
fbcaf70
 
 
70d554c
ecf5fed
70d554c
82fee29
70d554c
fbcaf70
 
70d554c
fbcaf70
 
 
 
 
fd75b8b
 
fbcaf70
 
 
 
 
fd75b8b
 
 
437c8f5
fbcaf70
 
 
 
 
 
fd75b8b
 
fbcaf70
 
 
 
 
2feaf29
fd75b8b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" LibriVox-Indonesia Dataset"""

import csv
import os

import datasets
from datasets.utils.py_utils import size_str

from .languages import LANGUAGES
from .release_stats import STATS

_CITATION = """\
"""

_HOMEPAGE = "https://huggingface.co/indonesian-nlp/librivox-indonesia"

_LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/"

_DATA_URL = "https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia/resolve/main/data"


class LibriVoxIndonesiaConfig(datasets.BuilderConfig):
    """BuilderConfig for LibriVoxIndonesia."""

    def __init__(self, name, version, **kwargs):
        self.language = kwargs.pop("language", None)
        self.release_date = kwargs.pop("release_date", None)
        self.num_clips = kwargs.pop("num_clips", None)
        self.num_speakers = kwargs.pop("num_speakers", None)
        self.total_hr = kwargs.pop("total_hr", None)
        self.size_bytes = kwargs.pop("size_bytes", None)
        self.size_human = size_str(self.size_bytes)
        description = (
            f"LibriVox-Indonesia speech to text dataset in {self.language} released on {self.release_date}. "
            f"The dataset comprises {self.total_hr} hours of transcribed speech data"
        )
        super(LibriVoxIndonesiaConfig, self).__init__(
            name=name,
            version=datasets.Version(version),
            description=description,
            **kwargs,
        )


class LibriVoxIndonesia(datasets.GeneratorBasedBuilder):
    DEFAULT_CONFIG_NAME = "_all_"

    BUILDER_CONFIGS = [
        LibriVoxIndonesiaConfig(
            name=lang,
            version=STATS["version"],
            language=LANGUAGES[lang],
            release_date=STATS["date"],
            num_clips=lang_stats["clips"],
            num_speakers=lang_stats["users"],
            total_hr=float(lang_stats["totalHrs"]) if lang_stats["totalHrs"] else None,
            size_bytes=int(lang_stats["size"]) if lang_stats["size"] else None,
        )
        for lang, lang_stats in STATS["locales"].items()
    ]

    def _info(self):
        total_languages = len(STATS["locales"])
        total_hours = self.config.total_hr
        description = (
            "LibriVox-Indonesia is a speech dataset generated from LibriVox with only languages from Indonesia."
            f"The dataset currently consists of {total_hours} hours of speech "
            f"in {total_languages} languages, but more voices and languages are always added."
        )
        features = datasets.Features(
            {
                "path": datasets.Value("string"),
                "language": datasets.Value("string"),
                "reader": datasets.Value("string"),
                "sentence": datasets.Value("string"),
                "audio": datasets.features.Audio(sampling_rate=44100)
            }
        )

        return datasets.DatasetInfo(
            description=description,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
            version=self.config.version,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # dl_manager.download_config.ignore_url_params = True
        audio_path = {}
        local_extracted_archive = {}
        metadata_path = {}
        split_type = {"train": datasets.Split.TRAIN, "test": datasets.Split.TEST}
        for split in split_type:
            audio_path[split] = dl_manager.download(f"{_DATA_URL}/audio_{split}.tgz")
            local_extracted_archive[split] = dl_manager.extract(audio_path[split]) if not dl_manager.is_streaming else None
            metadata_path[split] = dl_manager.download_and_extract(f"{_DATA_URL}/metadata_{split}.csv.gz")
        path_to_clips = "librivox-indonesia"

        return [
            datasets.SplitGenerator(
                name=split_type[split],
                gen_kwargs={
                    "local_extracted_archive": local_extracted_archive[split],
                    "audio_files": dl_manager.iter_archive(audio_path[split]),
                    "metadata_path": dl_manager.download_and_extract(metadata_path[split]),
                    "path_to_clips": path_to_clips,
                },
            ) for split in split_type
        ]

    def _generate_examples(
        self,
        local_extracted_archive,
        audio_files,
        metadata_path,
        path_to_clips,
    ):
        """Yields examples."""
        data_fields = list(self._info().features.keys())
        metadata = {}
        with open(metadata_path, "r", encoding="utf-8") as f:
            reader = csv.DictReader(f)
            for row in reader:
                if self.config.name == "_all_" or self.config.name == row["language"]:
                    row["path"] = os.path.join(path_to_clips, row["path"])
                    # if data is incomplete, fill with empty values
                    for field in data_fields:
                        if field not in row:
                            row[field] = ""
                    metadata[row["path"]] = row
        id_ = 0
        for path, f in audio_files:
            if path in metadata:
                result = dict(metadata[path])
                # set the audio feature and the path to the extracted file
                path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
                result["audio"] = {"path": path, "bytes": f.read()}
                result["path"] = path
                yield id_, result
                id_ += 1