File size: 3,513 Bytes
8660f0c
 
 
 
 
 
 
7042140
 
 
 
 
8660f0c
7042140
8660f0c
4862e1b
 
 
 
8660f0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7042140
 
8660f0c
 
 
 
 
7042140
8660f0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6f3caa
ab9cce6
c6f3caa
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
pretty_name: Wind Tunnel dataset
size_categories:
- 10K<n<100K
---

# Wind Tunnel Dataset
The Wind Tunnel Dataset contains 20,000 [OpenFOAM](https://www.openfoam.com/) simulations of 1,000 unique automobile-like objects placed in a virtual wind tunnel. 
Each object is simulated under 20 distinct conditions: 4 random wind speeds ranging from 10 to 50 m/s, and 5 rotation angles (0°, 180° and 3 random angles).
To ensure stable and reliable results, each simulation runs for 300 iterations.
The meshes for these automobile-like objects were generated using the [Instant Mesh model](https://github.com/TencentARC/InstantMesh) and sourced from the [Stanford Cars Dataset](https://www.kaggle.com/datasets/jessicali9530/stanford-cars-dataset).
The entire dataset of 20,000 simulations is organized into three subsets: 70% for training, 20% for validation, and 10% for testing.

The data generation process itself was orchestrated using the [Inductiva API](https://inductiva.ai/), which allowed us to run hundreds of OpenFOAM simulations in parallel on the cloud. 

<p align="center">
  <img src="https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/example.png", width="500px">
</p>

### Dataset Structure
```
data
├── train
│   ├── <SIMULATION_ID>
│   │   ├── input_mesh.obj
│   │   ├── openfoam_mesh.obj
│   │   ├── pressure_field_mesh.vtk
│   │   ├── simulation_metadata.json
│   │   └── streamlines_mesh.ply
│   └── ...
├── validation
│   └── ...
└── test
    └── ...
```

### Dataset Files
Each simulation in the Wind Tunnel Dataset is accompanied by several key files that provide both input and output data. 
Here’s a breakdown of the files included in each simulation:

- **input_mesh.obj**: OBJ file with the input mesh.
- **openfoam_mesh.obj**: OBJ file with the OpenFOAM mesh.
- **pressure_field_mesh.vtk**: VTK file with the pressure field data.
- **streamlines_mesh.ply**: PLY file with the streamlines.
- **metadata.json**: JSON with metadata about the input parameters and about some output results such as the force coefficients (obtained via simulation) and the path of the output files.


## Downloading the Dataset:


### 1. Using snapshot_download()

```python
from huggingface_hub import snapshot_download

dataset_name = "inductiva/windtunnel"

# Download the entire dataset
snapshot_download(repo_id=dataset_name)

# Download to a specific local directory
snapshot_download(repo_id=dataset_name, local_dir="local_folder")

# Download only the input mesh files across all simulations
snapshot_download(allow_patterns=["*/*/*/input_mesh.obj"], repo_id=dataset_name)
```

### 2. Using load_dataset()

```python
from datasets import load_dataset

# Load the dataset (streaming is supported)
dataset = load_dataset("inductiva/windtunnel", streaming=False)

# Display dataset information
print(dataset)

# Access a sample from the training set
sample = dataset["train"][0]
print("Sample from training set:", sample)
```

## What's next?
If you have any issues using this dataset, feel free to reach out to us at [support@intuctiva.ai](support@intuctiva.ai)

To learn more about how we created this dataset—or how you can generate synthetic datasets for Physics-AI models—visit [Inductiva.AI](inductiva.ai) or check out our blog post on [transforming complex simulation workflows into easy-to-use Python classes](https://inductiva.ai/blog/article/transform-complex-simulations).