Datasets:
Languages:
English
Size:
10K - 100K
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pretty_name: Wind Tunnel dataset
|
3 |
+
size_categories:
|
4 |
+
- 10K<n<100K
|
5 |
+
---
|
6 |
+
|
7 |
+
# Wind Tunnel Dataset
|
8 |
+
|
9 |
+
The Wind Tunnel Dataset contains 20,000 wind tunnel simulations, organized into three subsets: 70% training, 20% validation, and 10% test.
|
10 |
+
The simulations were generated using [OpenFOAM](https://www.openfoam.com/) and [Inductiva](https://inductiva.ai/) and are based on 1,000 unique objects, each with 20 variations.
|
11 |
+
The simulations cover 4 wind speeds and 5 different rotation angles, with each simulation running for 300 iterations.
|
12 |
+
The input object meshes were generated using the [Instant Meshes model](https://github.com/TencentARC/InstantMesh) and the [Stanford Cars Dataset](https://www.kaggle.com/datasets/jessicali9530/stanford-cars-dataset).
|
13 |
+
|
14 |
+
|
15 |
+
### Dataset Structure
|
16 |
+
```
|
17 |
+
data
|
18 |
+
├── train
|
19 |
+
│ ├── <SIMULATION_ID>
|
20 |
+
│ │ ├── input_mesh.obj
|
21 |
+
│ │ ├── openfoam_mesh.obj
|
22 |
+
│ │ ├── pressure_field_mesh.vtk
|
23 |
+
│ │ ├── simulation_metadata.json
|
24 |
+
│ │ └── streamlines_mesh.ply
|
25 |
+
│ └── ...
|
26 |
+
├── validation
|
27 |
+
│ └── ...
|
28 |
+
└── test
|
29 |
+
└── ...
|
30 |
+
```
|
31 |
+
|
32 |
+
### Dataset Files
|
33 |
+
|
34 |
+
- **input_mesh.obj**: OBJ file with the input mesh.
|
35 |
+
- **openfoam_mesh.obj**: OBJ file with the OpenFOAM mesh.
|
36 |
+
- **pressure_field_mesh.vtk**: VTK file with the pressure field data.
|
37 |
+
- **streamlines_mesh.ply**: PLY file with the streamlines.
|
38 |
+
- **metadata.json**: JSON with metadata such as input parameters and some output results.
|
39 |
+
|
40 |
+
|
41 |
+
## Downloading the Dataset:
|
42 |
+
|
43 |
+
|
44 |
+
### 1. Using snapshot_download()
|
45 |
+
|
46 |
+
```python
|
47 |
+
from huggingface_hub import snapshot_download
|
48 |
+
|
49 |
+
dataset_name = "inductiva/windtunnel"
|
50 |
+
|
51 |
+
# Download the entire dataset
|
52 |
+
snapshot_download(repo_id=dataset_name)
|
53 |
+
|
54 |
+
# Download to a specific local directory
|
55 |
+
snapshot_download(repo_id=dataset_name, local_dir="local_folder")
|
56 |
+
|
57 |
+
# Download only the input mesh files across all simulations
|
58 |
+
snapshot_download(allow_patterns=["*/*/*/input_mesh.obj"], repo_id=dataset_name)
|
59 |
+
```
|
60 |
+
|
61 |
+
### 2. Using load_dataset()
|
62 |
+
|
63 |
+
```python
|
64 |
+
from datasets import load_dataset
|
65 |
+
|
66 |
+
# Load the dataset (streaming is supported)
|
67 |
+
dataset = load_dataset("inductiva/windtunnel", streaming=False)
|
68 |
+
|
69 |
+
# Display dataset information
|
70 |
+
print(dataset)
|
71 |
+
|
72 |
+
# Access a sample from the training set
|
73 |
+
sample = dataset["train"][0]
|
74 |
+
print("Sample from training set:", sample)
|
75 |
+
```
|