code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.json'''} __snake_case = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } __snake_case = {'''mgp-str''': 2_7} class __lowerCamelCase (_a ): _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self: Any,A_: Union[str, Any],A_: int="[GO]",A_: List[Any]="[GO]",A_: Tuple="[s]",A_: Dict="[GO]",**A_: Union[str, Any] ): '''simple docstring''' super().__init__( unk_token=A_,bos_token=A_,eos_token=A_,pad_token=A_,**A_,) with open(A_,encoding='utf-8' ) as vocab_handle: __UpperCamelCase = json.load(A_ ) __UpperCamelCase = {v: k for k, v in self.vocab.items()} @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return len(self.vocab ) def snake_case_ ( self: Any ): '''simple docstring''' return dict(self.vocab,**self.added_tokens_encoder ) def snake_case_ ( self: Union[str, Any],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = [] for s in text: char_tokens.extend(A_ ) return char_tokens def snake_case_ ( self: Dict,A_: str ): '''simple docstring''' return self.vocab.get(A_,self.vocab.get(self.unk_token ) ) def snake_case_ ( self: str,A_: str ): '''simple docstring''' return self.decoder.get(A_ ) def snake_case_ ( self: str,A_: str,A_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(A_ ): logger.error('Vocabulary path ({}) should be a directory'.format(A_ ) ) return __UpperCamelCase = os.path.join( A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(A_,'w',encoding='utf-8' ) as f: f.write(json.dumps(self.vocab,indent=2,sort_keys=A_,ensure_ascii=A_ ) + '\n' ) return (vocab_file,)
1
import pytest import datasets # Import fixture modules as plugins __snake_case = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def _A ( _lowercase ) -> str: """simple docstring""" config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = tmp_path_factory.getbasetemp() / 'cache' __UpperCamelCase = test_hf_cache_home / 'datasets' __UpperCamelCase = test_hf_cache_home / 'metrics' __UpperCamelCase = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(_lowercase ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(_lowercase ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(_lowercase ) ) __UpperCamelCase = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(_lowercase ) ) __UpperCamelCase = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_lowercase ) ) @pytest.fixture(autouse=_lowercase , scope='session' ) def _A ( ) -> Dict: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_lowercase ) def _A ( _lowercase ) -> Tuple: """simple docstring""" monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , _lowercase ) @pytest.fixture def _A ( _lowercase ) -> Any: """simple docstring""" monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , _lowercase )
1
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = { '''post_extract_proj''': '''feature_projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.upsample.0''': '''encoder.upsample.projection''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" for attribute in key.split('.' ): __UpperCamelCase = getattr(_lowercase , _lowercase ) if weight_type is not None: __UpperCamelCase = getattr(_lowercase , _lowercase ).shape else: __UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCamelCase = value elif weight_type == "weight_g": __UpperCamelCase = value elif weight_type == "weight_v": __UpperCamelCase = value elif weight_type == "bias": __UpperCamelCase = value else: __UpperCamelCase = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _A ( _lowercase , _lowercase , _lowercase ) -> str: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase = fairseq_model.state_dict() __UpperCamelCase = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == 'group' , ) __UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): __UpperCamelCase = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __UpperCamelCase = True if "*" in mapped_key: __UpperCamelCase = name.split(_lowercase )[0].split('.' )[-2] __UpperCamelCase = mapped_key.replace('*' , _lowercase ) if "weight_g" in name: __UpperCamelCase = 'weight_g' elif "weight_v" in name: __UpperCamelCase = 'weight_v' elif "weight" in name: __UpperCamelCase = 'weight' elif "bias" in name: __UpperCamelCase = 'bias' else: __UpperCamelCase = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = full_name.split('conv_layers.' )[-1] __UpperCamelCase = name.split('.' ) __UpperCamelCase = int(items[0] ) __UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = SEWConfig() if is_finetuned: __UpperCamelCase = model.wav_encoder.wav_model.cfg else: __UpperCamelCase = model.cfg __UpperCamelCase = fs_config.conv_bias __UpperCamelCase = eval(fs_config.conv_feature_layers ) __UpperCamelCase = [x[0] for x in conv_layers] __UpperCamelCase = [x[1] for x in conv_layers] __UpperCamelCase = [x[2] for x in conv_layers] __UpperCamelCase = 'gelu' __UpperCamelCase = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' __UpperCamelCase = 0.0 __UpperCamelCase = fs_config.activation_fn.name __UpperCamelCase = fs_config.encoder_embed_dim __UpperCamelCase = 0.02 __UpperCamelCase = fs_config.encoder_ffn_embed_dim __UpperCamelCase = 1e-5 __UpperCamelCase = fs_config.encoder_layerdrop __UpperCamelCase = fs_config.encoder_attention_heads __UpperCamelCase = fs_config.conv_pos_groups __UpperCamelCase = fs_config.conv_pos __UpperCamelCase = len(_lowercase ) __UpperCamelCase = fs_config.encoder_layers __UpperCamelCase = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __UpperCamelCase = model.cfg __UpperCamelCase = fs_config.final_dropout __UpperCamelCase = fs_config.layerdrop __UpperCamelCase = fs_config.activation_dropout __UpperCamelCase = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __UpperCamelCase = fs_config.attention_dropout __UpperCamelCase = fs_config.dropout_input __UpperCamelCase = fs_config.dropout __UpperCamelCase = fs_config.mask_channel_length __UpperCamelCase = fs_config.mask_channel_prob __UpperCamelCase = fs_config.mask_length __UpperCamelCase = fs_config.mask_prob __UpperCamelCase = 'Wav2Vec2FeatureExtractor' __UpperCamelCase = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def _A ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=True ) -> Optional[Any]: """simple docstring""" if is_finetuned: __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __UpperCamelCase = SEWConfig.from_pretrained(_lowercase ) else: __UpperCamelCase = convert_config(model[0] , _lowercase ) __UpperCamelCase = model[0].eval() __UpperCamelCase = True if config.feat_extract_norm == 'layer' else False __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) if is_finetuned: if dict_path: __UpperCamelCase = Dictionary.load(_lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase = target_dict.pad_index __UpperCamelCase = target_dict.bos_index __UpperCamelCase = target_dict.pad_index __UpperCamelCase = target_dict.bos_index __UpperCamelCase = target_dict.eos_index __UpperCamelCase = len(target_dict.symbols ) __UpperCamelCase = os.path.join(_lowercase , 'vocab.json' ) if not os.path.isdir(_lowercase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_lowercase ) ) return os.makedirs(_lowercase , exist_ok=_lowercase ) with open(_lowercase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , _lowercase ) __UpperCamelCase = WavaVecaCTCTokenizer( _lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_lowercase , ) __UpperCamelCase = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase ) processor.save_pretrained(_lowercase ) __UpperCamelCase = SEWForCTC(_lowercase ) else: __UpperCamelCase = SEWModel(_lowercase ) feature_extractor.save_pretrained(_lowercase ) recursively_load_weights(_lowercase , _lowercase , _lowercase ) hf_model.save_pretrained(_lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--is_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __snake_case = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = VideoToVideoSDPipeline _lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} _lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} _lowercase = PipelineTesterMixin.required_optional_params - {"""latents"""} _lowercase = False # No `output_type`. _lowercase = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def snake_case_ ( self: List[str] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'),up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'),cross_attention_dim=32,attention_head_dim=4,) __UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,beta_schedule='scaled_linear',clip_sample=A_,set_alpha_to_one=A_,) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=128,) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act='gelu',projection_dim=512,) __UpperCamelCase = CLIPTextModel(A_ ) __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def snake_case_ ( self: Union[str, Any],A_: Any,A_: Any=0 ): '''simple docstring''' __UpperCamelCase = floats_tensor((1, 3, 3, 32, 32),rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = VideoToVideoSDPipeline(**A_ ) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = 'np' __UpperCamelCase = sd_pipe(**A_ ).frames __UpperCamelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __UpperCamelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',) def snake_case_ ( self: Any ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_,expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case_ ( self: str ): '''simple docstring''' pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def snake_case_ ( self: int ): '''simple docstring''' pass def snake_case_ ( self: Any ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL',torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase = torch.randn((1, 10, 3, 1024, 576),generator=A_ ) __UpperCamelCase = video.to('cuda' ) __UpperCamelCase = 'Spiderman is surfing' __UpperCamelCase = pipe(A_,video=A_,generator=A_,num_inference_steps=3,output_type='pt' ).frames __UpperCamelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
1
1
import inspect import unittest class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int ): '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def snake_case_ ( self: Optional[Any] ): '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps __UpperCamelCase = inspect.getmembers(A_,inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": __UpperCamelCase = 'k-diffusion' elif backend == "invisible_watermark": __UpperCamelCase = 'invisible-watermark' assert backend in deps, F'''{backend} is not in the deps table!'''
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) __snake_case = parser.parse_args() __snake_case = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __snake_case = CLIPImageProcessor() __snake_case = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') __snake_case = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
1
1
def _A ( _lowercase = 10**9 ) -> int: """simple docstring""" __UpperCamelCase = 1 __UpperCamelCase = 2 __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __UpperCamelCase = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
1
1
from __future__ import annotations def _A ( _lowercase , _lowercase ) -> list[list[int]]: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = 0 __UpperCamelCase = sum(_lowercase ) create_state_space_tree(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) return result def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> None: """simple docstring""" if sum(_lowercase ) > max_sum or (remaining_nums_sum + sum(_lowercase )) < max_sum: return if sum(_lowercase ) == max_sum: result.append(_lowercase ) return for index in range(_lowercase , len(_lowercase ) ): create_state_space_tree( _lowercase , _lowercase , index + 1 , [*path, nums[index]] , _lowercase , remaining_nums_sum - nums[index] , ) __snake_case = [3, 3_4, 4, 1_2, 5, 2] __snake_case = 9 __snake_case = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __snake_case = '''src/diffusers''' # Matches is_xxx_available() __snake_case = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla __snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') __snake_case = ''' {0} = None ''' __snake_case = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' __snake_case = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = _re_backend.findall(_lowercase ) if len(_lowercase ) == 0: return None return "_and_".join(_lowercase ) def _A ( ) -> Tuple: """simple docstring""" with open(os.path.join(_lowercase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: __UpperCamelCase = f.readlines() # Get to the point we do the actual imports for type checking __UpperCamelCase = 0 __UpperCamelCase = {} # Go through the end of the file while line_index < len(_lowercase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __UpperCamelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 __UpperCamelCase = [] # Until we unindent, add backend objects to the list while line_index < len(_lowercase ) and len(lines[line_index] ) > 1: __UpperCamelCase = lines[line_index] __UpperCamelCase = _re_single_line_import.search(_lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_lowercase ) > 0: __UpperCamelCase = objects else: line_index += 1 return backend_specific_objects def _A ( _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(_lowercase ) elif name.islower(): return DUMMY_FUNCTION.format(_lowercase , _lowercase ) else: return DUMMY_CLASS.format(_lowercase , _lowercase ) def _A ( _lowercase=None ) -> Optional[Any]: """simple docstring""" if backend_specific_objects is None: __UpperCamelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename __UpperCamelCase = {} for backend, objects in backend_specific_objects.items(): __UpperCamelCase = '[' + ', '.join(f'''"{b}"''' for b in backend.split('_and_' ) ) + ']' __UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_lowercase , _lowercase ) for o in objects] ) __UpperCamelCase = dummy_file return dummy_files def _A ( _lowercase=False ) -> List[str]: """simple docstring""" __UpperCamelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __UpperCamelCase = {'torch': 'pt'} # Locate actual dummy modules and read their content. __UpperCamelCase = os.path.join(_lowercase , 'utils' ) __UpperCamelCase = { backend: os.path.join(_lowercase , f'''dummy_{short_names.get(_lowercase , _lowercase )}_objects.py''' ) for backend in dummy_files.keys() } __UpperCamelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_lowercase ): with open(_lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f: __UpperCamelCase = f.read() else: __UpperCamelCase = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py as the main ''' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' f'''diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py. Run `make fix-copies` ''' 'to fix this.' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __snake_case = parser.parse_args() check_dummies(args.fix_and_overwrite)
1
1
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-random-t5' __UpperCamelCase = AutoTokenizer.from_pretrained(A_ ) __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(A_ ) __UpperCamelCase = tokenizer('This is me',return_tensors='pt' ) __UpperCamelCase = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __UpperCamelCase = model.generate(**A_ ) __UpperCamelCase = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ ) __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(A_ ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __UpperCamelCase = model_reloaded.generate(**A_ ) self.assertTrue(torch.allclose(A_,A_ ) ) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-random-t5' __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(A_ ) __UpperCamelCase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(A_ ): model.save_pretrained(A_ ) __UpperCamelCase = model.reverse_bettertransformer() model.save_pretrained(A_ )
1
import string def _A ( _lowercase ) -> None: """simple docstring""" for key in range(len(string.ascii_uppercase ) ): __UpperCamelCase = '' for symbol in message: if symbol in string.ascii_uppercase: __UpperCamelCase = string.ascii_uppercase.find(_lowercase ) __UpperCamelCase = num - key if num < 0: __UpperCamelCase = num + len(string.ascii_uppercase ) __UpperCamelCase = translated + string.ascii_uppercase[num] else: __UpperCamelCase = translated + symbol print(f'''Decryption using Key #{key}: {translated}''' ) def _A ( ) -> None: """simple docstring""" __UpperCamelCase = input('Encrypted message: ' ) __UpperCamelCase = message.upper() decrypt(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : def __init__( self: Dict,A_: List[str],A_: List[Any]=3,A_: Union[str, Any]=32,A_: List[str]=3,A_: List[str]=10,A_: Any=[10, 20, 30, 40],A_: List[str]=[1, 1, 2, 1],A_: Optional[int]=True,A_: Tuple=True,A_: str="relu",A_: Any=3,A_: Tuple=None,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = num_channels __UpperCamelCase = embeddings_size __UpperCamelCase = hidden_sizes __UpperCamelCase = depths __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_act __UpperCamelCase = num_labels __UpperCamelCase = scope __UpperCamelCase = len(A_ ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size],self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels def snake_case_ ( self: Dict ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels,embeddings_size=self.embeddings_size,hidden_sizes=self.hidden_sizes,depths=self.depths,hidden_act=self.hidden_act,num_labels=self.num_labels,image_size=self.image_size,) def snake_case_ ( self: str,A_: Union[str, Any],A_: int,A_: str ): '''simple docstring''' __UpperCamelCase = TFResNetModel(config=A_ ) __UpperCamelCase = model(A_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32),) def snake_case_ ( self: Tuple,A_: Dict,A_: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = TFResNetForImageClassification(A_ ) __UpperCamelCase = model(A_,labels=A_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _lowercase = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = TFResNetModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,has_text_modality=A_ ) def snake_case_ ( self: Dict ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_ ( self: Tuple ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(A_ ) __UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1],A_ ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def snake_case_ ( self: Dict ): '''simple docstring''' def check_hidden_states_output(A_: Union[str, Any],A_: Optional[Any],A_: Union[str, Any] ): __UpperCamelCase = model_class(A_ ) __UpperCamelCase = model(**self._prepare_for_class(A_,A_ ) ) __UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(A_ ),expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[self.model_tester.image_size // 4, self.model_tester.image_size // 4],) __UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __UpperCamelCase = layer_type __UpperCamelCase = True check_hidden_states_output(A_,A_,A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase = True check_hidden_states_output(A_,A_,A_ ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def snake_case_ ( self: List[str] ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFResNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _A ( ) -> List[Any]: """simple docstring""" __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCamelCase (unittest.TestCase ): @cached_property def snake_case_ ( self: List[str] ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=A_,return_tensors='tf' ) # forward pass __UpperCamelCase = model(**A_ ) # verify the logits __UpperCamelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape,A_ ) __UpperCamelCase = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy(),A_,atol=1E-4 ) )
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = KandinskyInpaintPipeline _lowercase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _lowercase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _lowercase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowercase = False @property def snake_case_ ( self: int ): '''simple docstring''' return 32 @property def snake_case_ ( self: str ): '''simple docstring''' return 32 @property def snake_case_ ( self: Tuple ): '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' return 100 @property def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = MCLIPConfig( numDims=self.cross_attention_dim,transformerDimensions=self.text_embedder_hidden_size,hidden_size=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_hidden_layers=5,vocab_size=1005,) __UpperCamelCase = MultilingualCLIP(A_ ) __UpperCamelCase = text_encoder.eval() return text_encoder @property def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __UpperCamelCase = UNetaDConditionModel(**A_ ) return model @property def snake_case_ ( self: str ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self: str ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = self.dummy_tokenizer __UpperCamelCase = self.dummy_unet __UpperCamelCase = self.dummy_movq __UpperCamelCase = DDIMScheduler( num_train_timesteps=1000,beta_schedule='linear',beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,clip_sample=A_,set_alpha_to_one=A_,steps_offset=1,prediction_type='epsilon',thresholding=A_,) __UpperCamelCase = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def snake_case_ ( self: Tuple,A_: Optional[int],A_: Dict=0 ): '''simple docstring''' __UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(seed + 1 ) ).to(A_ ) # create init_image __UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = image.cpu().permute(0,2,3,1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) ) # create mask __UpperCamelCase = np.ones((64, 64),dtype=np.floataa ) __UpperCamelCase = 0 if str(A_ ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = 'cpu' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) ) __UpperCamelCase = output.images __UpperCamelCase = pipe( **self.get_dummy_inputs(A_ ),return_dict=A_,)[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def snake_case_ ( self: Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) __UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __UpperCamelCase = np.ones((768, 768),dtype=np.floataa ) __UpperCamelCase = 0 __UpperCamelCase = 'a hat' __UpperCamelCase = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior',torch_dtype=torch.floataa ) pipe_prior.to(A_ ) __UpperCamelCase = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint',torch_dtype=torch.floataa ) __UpperCamelCase = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase, __UpperCamelCase = pipe_prior( A_,generator=A_,num_inference_steps=5,negative_prompt='',).to_tuple() __UpperCamelCase = pipeline( A_,image=A_,mask_image=A_,image_embeds=A_,negative_image_embeds=A_,generator=A_,num_inference_steps=100,height=768,width=768,output_type='np',) __UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A_,A_ )
1
1
from statistics import mean, stdev def _A ( _lowercase , _lowercase = 3 ) -> list: """simple docstring""" __UpperCamelCase = min(_lowercase ) __UpperCamelCase = max(_lowercase ) # normalize data return [round((x - x_min) / (x_max - x_min) , _lowercase ) for x in data] def _A ( _lowercase , _lowercase = 3 ) -> list: """simple docstring""" __UpperCamelCase = mean(_lowercase ) __UpperCamelCase = stdev(_lowercase ) # standardize data return [round((x - mu) / (sigma) , _lowercase ) for x in data]
1
from typing import Any class __lowerCamelCase : def __init__( self: int,A_: Any ): '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None def __repr__( self: Any ): '''simple docstring''' return F'''Node({self.data})''' class __lowerCamelCase : def __init__( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = None def __iter__( self: int ): '''simple docstring''' __UpperCamelCase = self.head while node: yield node.data __UpperCamelCase = node.next def __len__( self: List[str] ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self: Any ): '''simple docstring''' return "->".join([str(A_ ) for item in self] ) def __getitem__( self: int,A_: int ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self: int,A_: int,A_: Any ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) __UpperCamelCase = self.head for _ in range(A_ ): __UpperCamelCase = current.next __UpperCamelCase = data def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' self.insert_nth(len(self ),A_ ) def snake_case_ ( self: List[Any],A_: Any ): '''simple docstring''' self.insert_nth(0,A_ ) def snake_case_ ( self: Optional[Any],A_: int,A_: Any ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) __UpperCamelCase = Node(A_ ) if self.head is None: __UpperCamelCase = new_node elif index == 0: __UpperCamelCase = self.head # link new_node to head __UpperCamelCase = new_node else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = new_node def snake_case_ ( self: str ): # print every node data '''simple docstring''' print(self ) def snake_case_ ( self: int ): '''simple docstring''' return self.delete_nth(0 ) def snake_case_ ( self: str ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def snake_case_ ( self: Any,A_: int = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) __UpperCamelCase = self.head # default first node if index == 0: __UpperCamelCase = self.head.next else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = temp.next.next return delete_node.data def snake_case_ ( self: Any ): '''simple docstring''' return self.head is None def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = self.head while current: # Store the current node's next node. __UpperCamelCase = current.next # Make the current node's next point backwards __UpperCamelCase = prev # Make the previous node be the current node __UpperCamelCase = current # Make the current node the next node (to progress iteration) __UpperCamelCase = next_node # Return prev in order to put the head at the end __UpperCamelCase = prev def _A ( ) -> None: """simple docstring""" __UpperCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(_lowercase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_lowercase ) == i linked_list.insert_nth(_lowercase , i + 1 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_lowercase ) == 9 assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) ) def _A ( ) -> None: """simple docstring""" __UpperCamelCase = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] __UpperCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(_lowercase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCamelCase = linked_list.delete_head() assert result == -9 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_lowercase ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_lowercase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _A ( ) -> List[str]: """simple docstring""" from doctest import testmod testmod() __UpperCamelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_lowercase ) print('\nReading/changing Node data using indexing:' ) print(f'''Element at Position 1: {linked_list[1]}''' ) __UpperCamelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_lowercase ) print(f'''length of linked_list is : {len(_lowercase )}''' ) if __name__ == "__main__": main()
1
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __snake_case = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' __snake_case = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' __snake_case = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase (datasets.Metric ): def snake_case_ ( self: List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { 'predictions': datasets.Value('string',id='sequence' ), 'references': datasets.Value('string',id='sequence' ), } ),codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'],reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ],) def snake_case_ ( self: Any,A_: Any,A_: Union[str, Any],A_: Optional[int]=None,A_: Optional[Any]=True,A_: Tuple=False ): '''simple docstring''' if rouge_types is None: __UpperCamelCase = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] __UpperCamelCase = rouge_scorer.RougeScorer(rouge_types=A_,use_stemmer=A_ ) if use_aggregator: __UpperCamelCase = scoring.BootstrapAggregator() else: __UpperCamelCase = [] for ref, pred in zip(A_,A_ ): __UpperCamelCase = scorer.score(A_,A_ ) if use_aggregator: aggregator.add_scores(A_ ) else: scores.append(A_ ) if use_aggregator: __UpperCamelCase = aggregator.aggregate() else: __UpperCamelCase = {} for key in scores[0]: __UpperCamelCase = [score[key] for score in scores] return result
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
1
1
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } __snake_case = {'''allegro/herbert-base-cased''': 5_1_4} __snake_case = {} class __lowerCamelCase (_a ): _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_INIT_CONFIGURATION _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = HerbertTokenizer def __init__( self: str,A_: str=None,A_: Optional[int]=None,A_: Union[str, Any]=None,A_: Union[str, Any]="<s>",A_: str="<unk>",A_: Optional[Any]="<pad>",A_: Optional[int]="<mask>",A_: Optional[int]="</s>",**A_: Dict,): '''simple docstring''' super().__init__( A_,A_,tokenizer_file=A_,cls_token=A_,unk_token=A_,pad_token=A_,mask_token=A_,sep_token=A_,**A_,) def snake_case_ ( self: Any,A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' __UpperCamelCase = [self.cls_token_id] __UpperCamelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case_ ( self: Tuple,A_: List[int],A_: Optional[List[int]] = None,A_: bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_,token_ids_a=A_,already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] def snake_case_ ( self: Union[str, Any],A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self: Any,A_: str,A_: Optional[str] = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(A_,name=A_ ) return tuple(A_ )
1
__snake_case = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } __snake_case = {value: key for key, value in encode_dict.items()} def _A ( _lowercase ) -> str: """simple docstring""" __UpperCamelCase = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def _A ( _lowercase ) -> str: """simple docstring""" if set(_lowercase ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) __UpperCamelCase = '' for word in coded.split(): while len(_lowercase ) != 0: decoded += decode_dict[word[:5]] __UpperCamelCase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
1
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __snake_case = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
1
from collections.abc import Generator from math import sin def _A ( _lowercase ) -> bytes: """simple docstring""" if len(_lowercase ) != 32: raise ValueError('Input must be of length 32' ) __UpperCamelCase = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _A ( _lowercase ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __UpperCamelCase = format(_lowercase , '08x' )[-8:] __UpperCamelCase = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = B'' for char in message: bit_string += format(_lowercase , '08b' ).encode('utf-8' ) __UpperCamelCase = format(len(_lowercase ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_lowercase ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _A ( _lowercase ) -> Generator[list[int], None, None]: """simple docstring""" if len(_lowercase ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(_lowercase ) , 5_12 ): __UpperCamelCase = bit_string[pos : pos + 5_12] __UpperCamelCase = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _A ( _lowercase ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __UpperCamelCase = format(_lowercase , '032b' ) __UpperCamelCase = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(_lowercase , 2 ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" return (a + b) % 2**32 def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = preprocess(_lowercase ) __UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __UpperCamelCase = 0X67_45_23_01 __UpperCamelCase = 0Xef_cd_ab_89 __UpperCamelCase = 0X98_ba_dc_fe __UpperCamelCase = 0X10_32_54_76 __UpperCamelCase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_lowercase ): __UpperCamelCase = aa __UpperCamelCase = ba __UpperCamelCase = ca __UpperCamelCase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __UpperCamelCase = d ^ (b & (c ^ d)) __UpperCamelCase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __UpperCamelCase = c ^ (d & (b ^ c)) __UpperCamelCase = (5 * i + 1) % 16 elif i <= 47: __UpperCamelCase = b ^ c ^ d __UpperCamelCase = (3 * i + 5) % 16 else: __UpperCamelCase = c ^ (b | not_aa(_lowercase )) __UpperCamelCase = (7 * i) % 16 __UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32 __UpperCamelCase = d __UpperCamelCase = c __UpperCamelCase = b __UpperCamelCase = sum_aa(_lowercase , left_rotate_aa(_lowercase , shift_amounts[i] ) ) # Add hashed chunk to running total __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
1
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = KandinskyInpaintPipeline _lowercase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _lowercase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _lowercase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowercase = False @property def snake_case_ ( self: int ): '''simple docstring''' return 32 @property def snake_case_ ( self: str ): '''simple docstring''' return 32 @property def snake_case_ ( self: Tuple ): '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' return 100 @property def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = MCLIPConfig( numDims=self.cross_attention_dim,transformerDimensions=self.text_embedder_hidden_size,hidden_size=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_hidden_layers=5,vocab_size=1005,) __UpperCamelCase = MultilingualCLIP(A_ ) __UpperCamelCase = text_encoder.eval() return text_encoder @property def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __UpperCamelCase = UNetaDConditionModel(**A_ ) return model @property def snake_case_ ( self: str ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self: str ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = self.dummy_tokenizer __UpperCamelCase = self.dummy_unet __UpperCamelCase = self.dummy_movq __UpperCamelCase = DDIMScheduler( num_train_timesteps=1000,beta_schedule='linear',beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,clip_sample=A_,set_alpha_to_one=A_,steps_offset=1,prediction_type='epsilon',thresholding=A_,) __UpperCamelCase = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def snake_case_ ( self: Tuple,A_: Optional[int],A_: Dict=0 ): '''simple docstring''' __UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(seed + 1 ) ).to(A_ ) # create init_image __UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = image.cpu().permute(0,2,3,1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) ) # create mask __UpperCamelCase = np.ones((64, 64),dtype=np.floataa ) __UpperCamelCase = 0 if str(A_ ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = 'cpu' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) ) __UpperCamelCase = output.images __UpperCamelCase = pipe( **self.get_dummy_inputs(A_ ),return_dict=A_,)[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def snake_case_ ( self: Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) __UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __UpperCamelCase = np.ones((768, 768),dtype=np.floataa ) __UpperCamelCase = 0 __UpperCamelCase = 'a hat' __UpperCamelCase = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior',torch_dtype=torch.floataa ) pipe_prior.to(A_ ) __UpperCamelCase = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint',torch_dtype=torch.floataa ) __UpperCamelCase = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase, __UpperCamelCase = pipe_prior( A_,generator=A_,num_inference_steps=5,negative_prompt='',).to_tuple() __UpperCamelCase = pipeline( A_,image=A_,mask_image=A_,image_embeds=A_,negative_image_embeds=A_,generator=A_,num_inference_steps=100,height=768,width=768,output_type='np',) __UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A_,A_ )
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __snake_case = 0 __snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __snake_case = tuple[int, int] class __lowerCamelCase : def __init__( self: str,A_: int,A_: int,A_: int,A_: int,A_: int,A_: Node | None,): '''simple docstring''' __UpperCamelCase = pos_x __UpperCamelCase = pos_y __UpperCamelCase = (pos_y, pos_x) __UpperCamelCase = goal_x __UpperCamelCase = goal_y __UpperCamelCase = g_cost __UpperCamelCase = parent __UpperCamelCase = self.calculate_heuristic() __UpperCamelCase = self.g_cost + self.h_cost def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.pos_x - self.goal_x __UpperCamelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A_ ) + abs(A_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self: int,A_: Node ): '''simple docstring''' return self.f_cost < other.f_cost class __lowerCamelCase : def __init__( self: Any,A_: TPosition,A_: TPosition ): '''simple docstring''' __UpperCamelCase = Node(start[1],start[0],goal[1],goal[0],0,A_ ) __UpperCamelCase = Node(goal[1],goal[0],goal[1],goal[0],9_9999,A_ ) __UpperCamelCase = [self.start] __UpperCamelCase = [] __UpperCamelCase = False def snake_case_ ( self: Any ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __UpperCamelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A_ ) self.closed_nodes.append(A_ ) __UpperCamelCase = self.get_successors(A_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A_ ) else: # retrieve the best current path __UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(A_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A_ ) else: self.open_nodes.append(A_ ) return [self.start.pos] def snake_case_ ( self: int,A_: Node ): '''simple docstring''' __UpperCamelCase = [] for action in delta: __UpperCamelCase = parent.pos_x + action[1] __UpperCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A_,A_,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,A_,) ) return successors def snake_case_ ( self: Any,A_: Node | None ): '''simple docstring''' __UpperCamelCase = node __UpperCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __UpperCamelCase = current_node.parent path.reverse() return path class __lowerCamelCase : def __init__( self: List[Any],A_: TPosition,A_: TPosition ): '''simple docstring''' __UpperCamelCase = AStar(A_,A_ ) __UpperCamelCase = AStar(A_,A_ ) __UpperCamelCase = False def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __UpperCamelCase = self.fwd_astar.open_nodes.pop(0 ) __UpperCamelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A_,A_ ) self.fwd_astar.closed_nodes.append(A_ ) self.bwd_astar.closed_nodes.append(A_ ) __UpperCamelCase = current_bwd_node __UpperCamelCase = current_fwd_node __UpperCamelCase = { self.fwd_astar: self.fwd_astar.get_successors(A_ ), self.bwd_astar: self.bwd_astar.get_successors(A_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A_ ) else: # retrieve the best current path __UpperCamelCase = astar.open_nodes.pop( astar.open_nodes.index(A_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A_ ) else: astar.open_nodes.append(A_ ) return [self.fwd_astar.start.pos] def snake_case_ ( self: List[str],A_: Node,A_: Node ): '''simple docstring''' __UpperCamelCase = self.fwd_astar.retrace_path(A_ ) __UpperCamelCase = self.bwd_astar.retrace_path(A_ ) bwd_path.pop() bwd_path.reverse() __UpperCamelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __snake_case = (0, 0) __snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __snake_case = time.time() __snake_case = AStar(init, goal) __snake_case = a_star.search() __snake_case = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") __snake_case = time.time() __snake_case = BidirectionalAStar(init, goal) __snake_case = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
1
1
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _A ( _lowercase , _lowercase , _lowercase ) -> str: """simple docstring""" if openai_config_file == "": __UpperCamelCase = OpenAIGPTConfig() else: __UpperCamelCase = OpenAIGPTConfig.from_json_file(_lowercase ) __UpperCamelCase = OpenAIGPTModel(_lowercase ) # Load weights from numpy load_tf_weights_in_openai_gpt(_lowercase , _lowercase , _lowercase ) # Save pytorch-model __UpperCamelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __UpperCamelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , _lowercase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_lowercase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--openai_checkpoint_folder_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--openai_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) __snake_case = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __snake_case = get_tests_dir('''fixtures''') class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = mock.Mock() __UpperCamelCase = 500 __UpperCamelCase = {} __UpperCamelCase = HTTPError __UpperCamelCase = {} # Download this model to make sure it's in the cache. __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request',return_value=A_ ) as mock_head: __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class __lowerCamelCase (unittest.TestCase ): @classmethod def snake_case_ ( cls: Tuple ): '''simple docstring''' __UpperCamelCase = TOKEN HfFolder.save_token(A_ ) @classmethod def snake_case_ ( cls: Tuple ): '''simple docstring''' try: delete_repo(token=cls._token,repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('test-feature-extractor',use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) # Reset repo delete_repo(token=self._token,repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_,repo_id='test-feature-extractor',push_to_hub=A_,use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('valid_org/test-feature-extractor',use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) # Reset repo delete_repo(token=self._token,repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_,repo_id='valid_org/test-feature-extractor-org',push_to_hub=A_,use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) def snake_case_ ( self: int ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() __UpperCamelCase = CustomFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('test-dynamic-feature-extractor',use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map,{'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'},) __UpperCamelCase = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''',trust_remote_code=A_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__,'CustomFeatureExtractor' )
1
1
def _A ( _lowercase ) -> str: """simple docstring""" if number > 0: raise ValueError('input must be a negative integer' ) __UpperCamelCase = len(bin(_lowercase )[3:] ) __UpperCamelCase = bin(abs(_lowercase ) - (1 << binary_number_length) )[3:] __UpperCamelCase = ( ( '1' + '0' * (binary_number_length - len(_lowercase )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __snake_case = 1_6 __snake_case = 3_2 def _A ( _lowercase , _lowercase = 16 , _lowercase = "bert-base-cased" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase ) __UpperCamelCase = load_dataset('glue' , 'mrpc' ) def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowercase , max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCamelCase = datasets.map( _lowercase , batched=_lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowercase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(_lowercase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) __UpperCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) return train_dataloader, eval_dataloader def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['lr'] __UpperCamelCase = int(config['num_epochs'] ) __UpperCamelCase = int(config['seed'] ) __UpperCamelCase = int(config['batch_size'] ) __UpperCamelCase = args.model_name_or_path set_seed(_lowercase ) __UpperCamelCase, __UpperCamelCase = get_dataloaders(_lowercase , _lowercase , _lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase ) # Instantiate optimizer __UpperCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __UpperCamelCase = optimizer_cls(params=model.parameters() , lr=_lowercase ) if accelerator.state.deepspeed_plugin is not None: __UpperCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: __UpperCamelCase = 1 __UpperCamelCase = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , ) else: __UpperCamelCase = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # We need to keep track of how many total steps we have iterated over __UpperCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __UpperCamelCase = 0 # Now we train the model __UpperCamelCase = evaluate.load('glue' , 'mrpc' ) __UpperCamelCase = 0 __UpperCamelCase = {} for epoch in range(_lowercase , _lowercase ): model.train() for step, batch in enumerate(_lowercase ): __UpperCamelCase = model(**_lowercase ) __UpperCamelCase = outputs.loss __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __UpperCamelCase = 0 for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**_lowercase ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __UpperCamelCase, __UpperCamelCase = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowercase ) - 1: __UpperCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __UpperCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowercase , references=_lowercase , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _lowercase ) __UpperCamelCase = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: __UpperCamelCase = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(_lowercase , _lowercase ) def _A ( ) -> List[str]: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_lowercase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowercase , ) parser.add_argument( '--output_dir' , type=_lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=_lowercase , default=_lowercase , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=_lowercase , default=3 , help='Number of train epochs.' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
1
1
import pickle import numpy as np from matplotlib import pyplot as plt class __lowerCamelCase : def __init__( self: str,A_: Optional[Any],A_: Any,A_: Optional[Any],A_: Dict,A_: Union[str, Any],A_: Optional[int]=0.2,A_: Optional[Any]=0.2 ): '''simple docstring''' __UpperCamelCase = bp_numa __UpperCamelCase = bp_numa __UpperCamelCase = bp_numa __UpperCamelCase = conva_get[:2] __UpperCamelCase = conva_get[2] __UpperCamelCase = size_pa __UpperCamelCase = rate_w __UpperCamelCase = rate_t __UpperCamelCase = [ np.mat(-1 * np.random.rand(self.conva[0],self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] __UpperCamelCase = np.mat(-1 * np.random.rand(self.num_bpa,self.num_bpa ) + 0.5 ) __UpperCamelCase = np.mat(-1 * np.random.rand(self.num_bpa,self.num_bpa ) + 0.5 ) __UpperCamelCase = -2 * np.random.rand(self.conva[1] ) + 1 __UpperCamelCase = -2 * np.random.rand(self.num_bpa ) + 1 __UpperCamelCase = -2 * np.random.rand(self.num_bpa ) + 1 def snake_case_ ( self: Union[str, Any],A_: int ): '''simple docstring''' __UpperCamelCase = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(A_,'wb' ) as f: pickle.dump(A_,A_ ) print(F'''Model saved: {save_path}''' ) @classmethod def snake_case_ ( cls: Union[str, Any],A_: int ): '''simple docstring''' with open(A_,'rb' ) as f: __UpperCamelCase = pickle.load(A_ ) # noqa: S301 __UpperCamelCase = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) __UpperCamelCase = model_dic.get('size_pooling1' ) __UpperCamelCase = model_dic.get('num_bp1' ) __UpperCamelCase = model_dic.get('num_bp2' ) __UpperCamelCase = model_dic.get('num_bp3' ) __UpperCamelCase = model_dic.get('rate_weight' ) __UpperCamelCase = model_dic.get('rate_thre' ) # create model instance __UpperCamelCase = CNN(A_,A_,A_,A_,A_,A_,A_ ) # modify model parameter __UpperCamelCase = model_dic.get('w_conv1' ) __UpperCamelCase = model_dic.get('wkj' ) __UpperCamelCase = model_dic.get('vji' ) __UpperCamelCase = model_dic.get('thre_conv1' ) __UpperCamelCase = model_dic.get('thre_bp2' ) __UpperCamelCase = model_dic.get('thre_bp3' ) return conv_ins def snake_case_ ( self: Optional[Any],A_: str ): '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def snake_case_ ( self: Tuple,A_: Tuple ): '''simple docstring''' return round(A_,3 ) def snake_case_ ( self: Dict,A_: Tuple,A_: Any,A_: Union[str, Any],A_: Optional[Any],A_: Any ): '''simple docstring''' __UpperCamelCase = convs[0] __UpperCamelCase = convs[1] __UpperCamelCase = np.shape(A_ )[0] # get the data slice of original image data, data_focus __UpperCamelCase = [] for i_focus in range(0,size_data - size_conv + 1,A_ ): for j_focus in range(0,size_data - size_conv + 1,A_ ): __UpperCamelCase = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(A_ ) # calculate the feature map of every single kernel, and saved as list of matrix __UpperCamelCase = [] __UpperCamelCase = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(A_ ): __UpperCamelCase = [] for i_focus in range(len(A_ ) ): __UpperCamelCase = ( np.sum(np.multiply(data_focus[i_focus],w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(A_ ) ) __UpperCamelCase = np.asmatrix(A_ ).reshape( A_,A_ ) data_featuremap.append(A_ ) # expanding the data slice to One dimenssion __UpperCamelCase = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(A_ ) ) __UpperCamelCase = np.asarray(A_ ) return focus_list, data_featuremap def snake_case_ ( self: List[str],A_: List[str],A_: Dict,A_: Any="average_pool" ): '''simple docstring''' __UpperCamelCase = len(featuremaps[0] ) __UpperCamelCase = int(size_map / size_pooling ) __UpperCamelCase = [] for i_map in range(len(A_ ) ): __UpperCamelCase = featuremaps[i_map] __UpperCamelCase = [] for i_focus in range(0,A_,A_ ): for j_focus in range(0,A_,A_ ): __UpperCamelCase = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(A_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(A_ ) ) __UpperCamelCase = np.asmatrix(A_ ).reshape(A_,A_ ) featuremap_pooled.append(A_ ) return featuremap_pooled def snake_case_ ( self: List[str],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = [] for i in range(len(A_ ) ): __UpperCamelCase = np.shape(data[i] ) __UpperCamelCase = data[i].reshape(1,shapes[0] * shapes[1] ) __UpperCamelCase = data_listed.getA().tolist()[0] data_expanded.extend(A_ ) __UpperCamelCase = np.asarray(A_ ) return data_expanded def snake_case_ ( self: Any,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = np.asarray(A_ ) __UpperCamelCase = np.shape(A_ ) __UpperCamelCase = data_mat.reshape(1,shapes[0] * shapes[1] ) return data_expanded def snake_case_ ( self: int,A_: str,A_: int,A_: Optional[int],A_: Any,A_: str ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = 0 for i_map in range(A_ ): __UpperCamelCase = np.ones((size_map, size_map) ) for i in range(0,A_,A_ ): for j in range(0,A_,A_ ): __UpperCamelCase = pd_pool[ i_pool ] __UpperCamelCase = i_pool + 1 __UpperCamelCase = np.multiply( A_,np.multiply(out_map[i_map],(1 - out_map[i_map]) ) ) pd_all.append(A_ ) return pd_all def snake_case_ ( self: Tuple,A_: Union[str, Any],A_: str,A_: int,A_: Union[str, Any],A_: str,A_: Tuple=bool ): '''simple docstring''' print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(A_ )) ) print((' - - Shape: Teach_Data ', np.shape(A_ )) ) __UpperCamelCase = 0 __UpperCamelCase = [] __UpperCamelCase = 1_0000 while rp < n_repeat and mse >= error_accuracy: __UpperCamelCase = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(A_ ) ): # print('------------Learning Image: %d--------------'%p) __UpperCamelCase = np.asmatrix(datas_train[p] ) __UpperCamelCase = np.asarray(datas_teach[p] ) __UpperCamelCase, __UpperCamelCase = self.convolute( A_,self.conva,self.w_conva,self.thre_conva,conv_step=self.step_conva,) __UpperCamelCase = self.pooling(A_,self.size_poolinga ) __UpperCamelCase = np.shape(A_ ) __UpperCamelCase = self._expand(A_ ) __UpperCamelCase = data_bp_input __UpperCamelCase = np.dot(A_,self.vji.T ) - self.thre_bpa __UpperCamelCase = self.sig(A_ ) __UpperCamelCase = np.dot(A_,self.wkj.T ) - self.thre_bpa __UpperCamelCase = self.sig(A_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- __UpperCamelCase = np.multiply( (data_teach - bp_outa),np.multiply(A_,(1 - bp_outa) ) ) __UpperCamelCase = np.multiply( np.dot(A_,self.wkj ),np.multiply(A_,(1 - bp_outa) ) ) __UpperCamelCase = np.dot(A_,self.vji ) __UpperCamelCase = pd_i_all / (self.size_poolinga * self.size_poolinga) __UpperCamelCase = pd_conva_pooled.T.getA().tolist() __UpperCamelCase = self._calculate_gradient_from_pool( A_,A_,shape_featuremapa[0],shape_featuremapa[1],self.size_poolinga,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): __UpperCamelCase = self._expand_mat(pd_conva_all[k_conv] ) __UpperCamelCase = self.rate_weight * np.dot(A_,A_ ) __UpperCamelCase = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) __UpperCamelCase = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer __UpperCamelCase = self.wkj + pd_k_all.T * bp_outa * self.rate_weight __UpperCamelCase = self.vji + pd_j_all.T * bp_outa * self.rate_weight __UpperCamelCase = self.thre_bpa - pd_k_all * self.rate_thre __UpperCamelCase = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image __UpperCamelCase = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) __UpperCamelCase = rp + 1 __UpperCamelCase = error_count / patterns all_mse.append(A_ ) def draw_error(): __UpperCamelCase = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(A_,'+-' ) plt.plot(A_,'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(A_,alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def snake_case_ ( self: Optional[Any],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(A_ )) ) for p in range(len(A_ ) ): __UpperCamelCase = np.asmatrix(datas_test[p] ) __UpperCamelCase, __UpperCamelCase = self.convolute( A_,self.conva,self.w_conva,self.thre_conva,conv_step=self.step_conva,) __UpperCamelCase = self.pooling(A_,self.size_poolinga ) __UpperCamelCase = self._expand(A_ ) __UpperCamelCase = data_bp_input __UpperCamelCase = bp_outa * self.vji.T - self.thre_bpa __UpperCamelCase = self.sig(A_ ) __UpperCamelCase = bp_outa * self.wkj.T - self.thre_bpa __UpperCamelCase = self.sig(A_ ) produce_out.extend(bp_outa.getA().tolist() ) __UpperCamelCase = [list(map(self.do_round,A_ ) ) for each in produce_out] return np.asarray(A_ ) def snake_case_ ( self: Tuple,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = np.asmatrix(A_ ) __UpperCamelCase, __UpperCamelCase = self.convolute( A_,self.conva,self.w_conva,self.thre_conva,conv_step=self.step_conva,) __UpperCamelCase = self.pooling(A_,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCamelCase (_a ): @slow @require_torch def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny','prajjwal1/bert-tiny' ) __UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) __UpperCamelCase = bertabert.config.encoder.vocab_size __UpperCamelCase = tokenizer.sep_token_id __UpperCamelCase = tokenizer.cls_token_id __UpperCamelCase = 128 __UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='train[:1%]' ) __UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='validation[:1%]' ) __UpperCamelCase = train_dataset.select(range(32 ) ) __UpperCamelCase = val_dataset.select(range(16 ) ) __UpperCamelCase = 4 def _map_to_encoder_decoder_inputs(A_: Dict ): # Tokenizer will automatically set [BOS] <text> [EOS] __UpperCamelCase = tokenizer(batch['article'],padding='max_length',truncation=A_,max_length=512 ) __UpperCamelCase = tokenizer(batch['highlights'],padding='max_length',truncation=A_,max_length=128 ) __UpperCamelCase = inputs.input_ids __UpperCamelCase = inputs.attention_mask __UpperCamelCase = outputs.input_ids __UpperCamelCase = outputs.input_ids.copy() __UpperCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] __UpperCamelCase = outputs.attention_mask assert all(len(A_ ) == 512 for x in inputs.input_ids ) assert all(len(A_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(A_: str ): __UpperCamelCase = pred.label_ids __UpperCamelCase = pred.predictions # all unnecessary tokens are removed __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A_ ) )] ) / len(A_ ) return {"accuracy": accuracy} # map train dataset __UpperCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],) train_dataset.set_format( type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],) # same for validation dataset __UpperCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],) val_dataset.set_format( type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],) __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = SeqaSeqTrainingArguments( output_dir=A_,per_device_train_batch_size=A_,per_device_eval_batch_size=A_,predict_with_generate=A_,evaluation_strategy='steps',do_train=A_,do_eval=A_,warmup_steps=0,eval_steps=2,logging_steps=2,) # instantiate trainer __UpperCamelCase = SeqaSeqTrainer( model=A_,args=A_,compute_metrics=_compute_metrics,train_dataset=A_,eval_dataset=A_,tokenizer=A_,) # start training trainer.train()
1
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class __lowerCamelCase : def __init__( self: Dict,A_: Optional[int],A_: Dict,A_: bool = True,A_: bool = False ): '''simple docstring''' __UpperCamelCase = scheduler __UpperCamelCase = optimizers if isinstance(A_,(list, tuple) ) else [optimizers] __UpperCamelCase = split_batches __UpperCamelCase = step_with_optimizer __UpperCamelCase = GradientState() def snake_case_ ( self: Optional[int],*A_: int,**A_: str ): '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*A_,**A_ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*A_,**A_ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __UpperCamelCase = AcceleratorState().num_processes for _ in range(A_ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler,'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*A_,**A_ ) else: self.scheduler.step(*A_,**A_ ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' return self.scheduler.get_last_lr() def snake_case_ ( self: Optional[int] ): '''simple docstring''' return self.scheduler.state_dict() def snake_case_ ( self: Optional[int],A_: Tuple ): '''simple docstring''' self.scheduler.load_state_dict(A_ ) def snake_case_ ( self: int ): '''simple docstring''' return self.scheduler.get_lr() def snake_case_ ( self: Optional[int],*A_: Union[str, Any],**A_: List[Any] ): '''simple docstring''' return self.scheduler.print_lr(*A_,**A_ )
1
def _A ( _lowercase = 1_00 ) -> int: """simple docstring""" __UpperCamelCase = 0 __UpperCamelCase = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
1
1
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class __lowerCamelCase (_a ): _lowercase = (DPMSolverSDEScheduler,) _lowercase = 10 def snake_case_ ( self: Tuple,**A_: List[str] ): '''simple docstring''' __UpperCamelCase = { 'num_train_timesteps': 1100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**A_ ) return config def snake_case_ ( self: List[Any] ): '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=A_ ) def snake_case_ ( self: str ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1],[0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=A_,beta_end=A_ ) def snake_case_ ( self: Dict ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A_ ) def snake_case_ ( self: List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCamelCase = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase = scheduler.scale_model_input(A_,A_ ) __UpperCamelCase = model(A_,A_ ) __UpperCamelCase = scheduler.step(A_,A_,A_ ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(A_ ) ) __UpperCamelCase = torch.mean(torch.abs(A_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' ) __UpperCamelCase = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCamelCase = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase = scheduler.scale_model_input(A_,A_ ) __UpperCamelCase = model(A_,A_ ) __UpperCamelCase = scheduler.step(A_,A_,A_ ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(A_ ) ) __UpperCamelCase = torch.mean(torch.abs(A_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps,device=A_ ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter.to(A_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __UpperCamelCase = scheduler.scale_model_input(A_,A_ ) __UpperCamelCase = model(A_,A_ ) __UpperCamelCase = scheduler.step(A_,A_,A_ ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(A_ ) ) __UpperCamelCase = torch.mean(torch.abs(A_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**A_,use_karras_sigmas=A_ ) scheduler.set_timesteps(self.num_inference_steps,device=A_ ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter.to(A_ ) * scheduler.init_noise_sigma __UpperCamelCase = sample.to(A_ ) for t in scheduler.timesteps: __UpperCamelCase = scheduler.scale_model_input(A_,A_ ) __UpperCamelCase = model(A_,A_ ) __UpperCamelCase = scheduler.step(A_,A_,A_ ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(A_ ) ) __UpperCamelCase = torch.mean(torch.abs(A_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
1
def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _A ( _lowercase , _lowercase=0 ) -> Dict: """simple docstring""" return sorted(_lowercase , key=lambda _lowercase : x[column] ) def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> List[Any]: """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , _lowercase ): __UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCamelCase = current_dis return min_dis def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> Tuple: """simple docstring""" for i in range(min(6 , points_counts - 1 ) , _lowercase ): for j in range(max(0 , i - 6 ) , _lowercase ): __UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCamelCase = current_dis return min_dis def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(_lowercase , _lowercase ) # recursion __UpperCamelCase = points_counts // 2 __UpperCamelCase = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[:mid] , _lowercase ) __UpperCamelCase = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[mid:] , points_counts - mid ) __UpperCamelCase = min(_lowercase , _lowercase ) __UpperCamelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowercase ) __UpperCamelCase = dis_between_closest_in_strip( _lowercase , len(_lowercase ) , _lowercase ) return min(_lowercase , _lowercase ) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = column_based_sort(_lowercase , column=0 ) __UpperCamelCase = column_based_sort(_lowercase , column=1 ) return ( closest_pair_of_points_sqr( _lowercase , _lowercase , _lowercase ) ) ** 0.5 if __name__ == "__main__": __snake_case = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
1
1
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __snake_case = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __snake_case = logging.getLogger() def _A ( ) -> Tuple: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('-f' ) __UpperCamelCase = parser.parse_args() return args.f def _A ( _lowercase , _lowercase="eval" ) -> Dict: """simple docstring""" __UpperCamelCase = os.path.join(_lowercase , f'''{split}_results.json''' ) if os.path.exists(_lowercase ): with open(_lowercase , 'r' ) as f: return json.load(_lowercase ) raise ValueError(f'''can\'t find {path}''' ) __snake_case = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCamelCase (_a ): def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(A_,'argv',A_ ): run_flax_glue.main() __UpperCamelCase = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'],0.7_5 ) @slow def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(A_,'argv',A_ ): run_clm_flax.main() __UpperCamelCase = get_results(A_ ) self.assertLess(result['eval_perplexity'],100 ) @slow def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(A_,'argv',A_ ): run_summarization_flax.main() __UpperCamelCase = get_results(A_,split='test' ) self.assertGreaterEqual(result['test_rouge1'],10 ) self.assertGreaterEqual(result['test_rouge2'],2 ) self.assertGreaterEqual(result['test_rougeL'],7 ) self.assertGreaterEqual(result['test_rougeLsum'],7 ) @slow def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(A_,'argv',A_ ): run_mlm_flax.main() __UpperCamelCase = get_results(A_ ) self.assertLess(result['eval_perplexity'],42 ) @slow def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(A_,'argv',A_ ): run_ta_mlm_flax.main() __UpperCamelCase = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'],0.4_2 ) @slow def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 7 if get_gpu_count() > 1 else 2 __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(A_,'argv',A_ ): run_flax_ner.main() __UpperCamelCase = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'],0.7_5 ) self.assertGreaterEqual(result['eval_f1'],0.3 ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(A_,'argv',A_ ): run_qa.main() __UpperCamelCase = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'],30 ) self.assertGreaterEqual(result['eval_exact'],30 )
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class __lowerCamelCase (_a ): _lowercase = """bert""" def __init__( self: Any,A_: Dict=3_0522,A_: Optional[Any]=768,A_: Union[str, Any]=12,A_: List[Any]=12,A_: Optional[int]=3072,A_: Union[str, Any]="gelu",A_: List[str]=0.1,A_: Dict=0.1,A_: Optional[int]=512,A_: Optional[Any]=2,A_: Union[str, Any]=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=0,A_: List[Any]="absolute",A_: str=True,A_: Union[str, Any]=None,**A_: int,): '''simple docstring''' super().__init__(pad_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
1
1
def _A ( _lowercase = 1_00_00_00 ) -> int: """simple docstring""" __UpperCamelCase = set(range(3 , _lowercase , 2 ) ) primes.add(2 ) for p in range(3 , _lowercase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _lowercase , _lowercase ) ) ) __UpperCamelCase = [float(_lowercase ) for n in range(limit + 1 )] for p in primes: for n in range(_lowercase , limit + 1 , _lowercase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
1
def _A ( _lowercase ) -> int: """simple docstring""" assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(_lowercase ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , _lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
1
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch __snake_case = logging.get_logger(__name__) @dataclass class __lowerCamelCase : def __init__( self: Dict,A_: Dict=False,A_: int=False,A_: Optional[int]=6.0,A_: Tuple=None,A_: Any=False,A_: Union[str, Any]=False,A_: Tuple=None,A_: Union[str, Any]="fp4",A_: Optional[int]=False,**A_: str,): '''simple docstring''' __UpperCamelCase = load_in_abit __UpperCamelCase = load_in_abit __UpperCamelCase = llm_inta_threshold __UpperCamelCase = llm_inta_skip_modules __UpperCamelCase = llm_inta_enable_fpaa_cpu_offload __UpperCamelCase = llm_inta_has_fpaa_weight __UpperCamelCase = bnb_abit_quant_type __UpperCamelCase = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: __UpperCamelCase = torch.floataa elif isinstance(A_,A_ ): __UpperCamelCase = getattr(A_,A_ ) elif isinstance(A_,torch.dtype ): __UpperCamelCase = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def snake_case_ ( self: List[str] ): '''simple docstring''' if not isinstance(self.llm_inta_threshold,A_ ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules,A_ ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload,A_ ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight,A_ ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype,torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type,A_ ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant,A_ ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def snake_case_ ( self: Dict ): '''simple docstring''' return self.load_in_abit or self.load_in_abit def snake_case_ ( self: int ): '''simple docstring''' if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def snake_case_ ( cls: str,A_: Optional[Any],A_: Optional[int],**A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = cls(**A_ ) __UpperCamelCase = [] for key, value in kwargs.items(): if hasattr(A_,A_ ): setattr(A_,A_,A_ ) to_remove.append(A_ ) for key in to_remove: kwargs.pop(A_,A_ ) if return_unused_kwargs: return config, kwargs else: return config def snake_case_ ( self: Dict,A_: Union[str, os.PathLike] ): '''simple docstring''' with open(A_,'w',encoding='utf-8' ) as writer: __UpperCamelCase = self.to_dict() __UpperCamelCase = json.dumps(A_,indent=2,sort_keys=A_ ) + '\n' writer.write(A_ ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self: Dict ): '''simple docstring''' return F'''{self.__class__.__name__} {self.to_json_string()}''' def snake_case_ ( self: Optional[Any],A_: bool = True ): '''simple docstring''' if use_diff is True: __UpperCamelCase = self.to_diff_dict() else: __UpperCamelCase = self.to_dict() return json.dumps(A_,indent=2,sort_keys=A_ ) + "\n" def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.to_dict() # get the default config dict __UpperCamelCase = BitsAndBytesConfig().to_dict() __UpperCamelCase = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: __UpperCamelCase = value return serializable_config_dict
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _A ( ) -> int: """simple docstring""" __UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' __UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('RGB' ) return image def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = dct.pop(_lowercase ) __UpperCamelCase = val def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) __UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __UpperCamelCase = torch.cat((q_bias, torch.zeros_like(_lowercase , requires_grad=_lowercase ), v_bias) ) __UpperCamelCase = qkv_bias def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = 3_64 if 'coco' in model_name else 2_24 __UpperCamelCase = BlipaVisionConfig(image_size=_lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_lowercase ).to_dict() elif "opt-6.7b" in model_name: __UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_lowercase ).to_dict() elif "t5-xl" in model_name: __UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() __UpperCamelCase = BlipaConfig(vision_config=_lowercase , text_config=_lowercase ) return config, image_size @torch.no_grad() def _A ( _lowercase , _lowercase=None , _lowercase=False ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) __UpperCamelCase = tokenizer('\n' , add_special_tokens=_lowercase ).input_ids[0] __UpperCamelCase, __UpperCamelCase = get_blipa_config(_lowercase , eos_token_id=_lowercase ) __UpperCamelCase = BlipaForConditionalGeneration(_lowercase ).eval() __UpperCamelCase = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } __UpperCamelCase, __UpperCamelCase = model_name_to_original[model_name] # load original model print('Loading original model...' ) __UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu' __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = load_model_and_preprocess( name=_lowercase , model_type=_lowercase , is_eval=_lowercase , device=_lowercase ) original_model.eval() print('Done!' ) # update state dict keys __UpperCamelCase = original_model.state_dict() __UpperCamelCase = create_rename_keys(_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __UpperCamelCase = state_dict.pop(_lowercase ) if key.startswith('Qformer.bert' ): __UpperCamelCase = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: __UpperCamelCase = key.replace('self' , 'attention' ) if "opt_proj" in key: __UpperCamelCase = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: __UpperCamelCase = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): __UpperCamelCase = key.replace('opt' , 'language' ) if key.startswith('t5' ): __UpperCamelCase = key.replace('t5' , 'language' ) __UpperCamelCase = val # read in qv biases read_in_q_v_bias(_lowercase , _lowercase ) __UpperCamelCase, __UpperCamelCase = hf_model.load_state_dict(_lowercase , strict=_lowercase ) assert len(_lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __UpperCamelCase = load_demo_image() __UpperCamelCase = vis_processors['eval'](_lowercase ).unsqueeze(0 ).to(_lowercase ) __UpperCamelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_lowercase ) # create processor __UpperCamelCase = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=_lowercase , image_std=_lowercase ) __UpperCamelCase = BlipaProcessor(image_processor=_lowercase , tokenizer=_lowercase ) __UpperCamelCase = processor(images=_lowercase , return_tensors='pt' ).pixel_values.to(_lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowercase , _lowercase ) original_model.to(_lowercase ) hf_model.to(_lowercase ) with torch.no_grad(): if "opt" in model_name: __UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits __UpperCamelCase = hf_model(_lowercase , _lowercase ).logits else: __UpperCamelCase = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits __UpperCamelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) __UpperCamelCase = hf_model(_lowercase , _lowercase , labels=_lowercase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __UpperCamelCase = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=_lowercase ) assert torch.allclose(logits[0, :3, :3] , _lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": __UpperCamelCase = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=_lowercase ) else: # cast to same type __UpperCamelCase = logits.dtype assert torch.allclose(original_logits.to(_lowercase ) , _lowercase , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) __UpperCamelCase = '' __UpperCamelCase = tokenizer(_lowercase , return_tensors='pt' ).input_ids.to(_lowercase ) __UpperCamelCase = original_model.generate({'image': original_pixel_values} ) __UpperCamelCase = hf_model.generate( _lowercase , _lowercase , do_sample=_lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , _lowercase ) __UpperCamelCase = input_ids.shape[1] __UpperCamelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowercase ) __UpperCamelCase = [text.strip() for text in output_text] print('HF generation:' , _lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowercase ) hf_model.save_pretrained(_lowercase ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() __snake_case = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __snake_case = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
1
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer __snake_case = ['''bert-base-uncased''', '''bert-base-cased'''] __snake_case = '''hf-internal-testing/tiny-bert-tf-only''' if is_tf_available(): class __lowerCamelCase (tf.keras.Model ): def __init__( self: Any,A_: List[str] ): '''simple docstring''' super().__init__() __UpperCamelCase = tokenizer __UpperCamelCase = AutoConfig.from_pretrained(A_ ) __UpperCamelCase = TFAutoModel.from_config(A_ ) def snake_case_ ( self: int,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.tokenizer(A_ ) __UpperCamelCase = self.bert(**A_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' super().setUp() __UpperCamelCase = [ BertTokenizer.from_pretrained(A_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false __UpperCamelCase = [TFBertTokenizer.from_pretrained(A_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(A_,use_fast_bert_tokenizer=A_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __UpperCamelCase = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] __UpperCamelCase = list(zip(self.test_sentences,self.test_sentences[::-1] ) ) def snake_case_ ( self: Tuple ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers,self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): __UpperCamelCase = tokenizer(A_,return_tensors='tf',padding='longest' ) __UpperCamelCase = tf_tokenizer(A_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key],tf.intaa ) == tf_outputs[key] ) ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __UpperCamelCase = tf_tokenizer(self.paired_sentences ) __UpperCamelCase = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences],text_pair=[sentence[1] for sentence in self.paired_sentences],) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key],tf.intaa ) == separated_outputs[key] ) ) @slow def snake_case_ ( self: List[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __UpperCamelCase = tf.function(A_ ) for test_inputs in (self.test_sentences, self.paired_sentences): __UpperCamelCase = tf.constant(A_ ) __UpperCamelCase = compiled_tokenizer(A_ ) __UpperCamelCase = tf_tokenizer(A_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def snake_case_ ( self: int ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __UpperCamelCase = ModelToSave(tokenizer=A_ ) __UpperCamelCase = tf.convert_to_tensor(self.test_sentences ) __UpperCamelCase = model(A_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __UpperCamelCase = Path(A_ ) / 'saved.model' model.save(A_ ) __UpperCamelCase = tf.keras.models.load_model(A_ ) __UpperCamelCase = loaded_model(A_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ),1E-5 )
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field(default=_a , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) _lowercase = field( default=_a , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) __UpperCamelCase = import_module('tasks' ) try: __UpperCamelCase = getattr(_lowercase , model_args.task_type ) __UpperCamelCase = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __UpperCamelCase = token_classification_task.get_labels(data_args.labels ) __UpperCamelCase = dict(enumerate(_lowercase ) ) __UpperCamelCase = len(_lowercase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , idalabel=_lowercase , labelaid={label: i for i, label in enumerate(_lowercase )} , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __UpperCamelCase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( TokenClassificationDataset( token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( TokenClassificationDataset( token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_lowercase , _lowercase ) -> Tuple[List[int], List[int]]: __UpperCamelCase = np.argmax(_lowercase , axis=2 ) __UpperCamelCase, __UpperCamelCase = preds.shape __UpperCamelCase = [[] for _ in range(_lowercase )] __UpperCamelCase = [[] for _ in range(_lowercase )] for i in range(_lowercase ): for j in range(_lowercase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase, __UpperCamelCase = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_lowercase , _lowercase ), "precision": precision_score(_lowercase , _lowercase ), "recall": recall_score(_lowercase , _lowercase ), "f1": fa_score(_lowercase , _lowercase ), } # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) # Predict if training_args.do_predict: __UpperCamelCase = TokenClassificationDataset( token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = trainer.predict(_lowercase ) __UpperCamelCase, __UpperCamelCase = align_predictions(_lowercase , _lowercase ) __UpperCamelCase = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(_lowercase , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) # Save predictions __UpperCamelCase = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(_lowercase , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(_lowercase , _lowercase , _lowercase ) return results def _A ( _lowercase ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
1
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __snake_case = logging.get_logger(__name__) __snake_case = { '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''', } # fmt: off __snake_case = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] __snake_case = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class __lowerCamelCase (_a ): _lowercase = """whisper""" _lowercase = ["""past_key_values"""] _lowercase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self: Union[str, Any],A_: List[str]=5_1865,A_: Tuple=80,A_: List[Any]=6,A_: Dict=4,A_: Dict=6,A_: List[str]=4,A_: List[str]=1536,A_: int=1536,A_: List[str]=0.0,A_: Any=0.0,A_: List[str]=5_0257,A_: Tuple=True,A_: Dict=True,A_: Optional[Any]="gelu",A_: Tuple=256,A_: Dict=0.0,A_: List[Any]=0.0,A_: Dict=0.0,A_: int=0.0_2,A_: List[Any]=False,A_: List[str]=1500,A_: int=448,A_: Dict=5_0256,A_: Dict=5_0256,A_: List[str]=5_0256,A_: Dict=None,A_: List[Any]=[220, 5_0256],A_: Dict=False,A_: str=256,A_: Tuple=False,A_: List[Any]=0.0_5,A_: Dict=10,A_: Optional[int]=2,A_: List[str]=0.0,A_: Optional[Any]=10,A_: Union[str, Any]=0,A_: Dict=7,**A_: List[Any],): '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = num_mel_bins __UpperCamelCase = d_model __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = use_cache __UpperCamelCase = encoder_layers __UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase = max_source_positions __UpperCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __UpperCamelCase = classifier_proj_size __UpperCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length __UpperCamelCase = mask_feature_min_masks __UpperCamelCase = median_filter_width super().__init__( pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,is_encoder_decoder=A_,decoder_start_token_id=A_,suppress_tokens=A_,begin_suppress_tokens=A_,**A_,) class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: __UpperCamelCase = {0: 'batch'} else: __UpperCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(A_,direction='inputs' ) return common_inputs def snake_case_ ( self: Tuple,A_: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],A_: int = -1,A_: int = -1,A_: bool = False,A_: Optional["TensorType"] = None,A_: int = 2_2050,A_: float = 5.0,A_: int = 220,): '''simple docstring''' __UpperCamelCase = OrderedDict() __UpperCamelCase = OnnxConfig.generate_dummy_inputs( self,preprocessor=preprocessor.feature_extractor,batch_size=A_,framework=A_,sampling_rate=A_,time_duration=A_,frequency=A_,) __UpperCamelCase = encoder_inputs['input_features'].shape[2] __UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __UpperCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer,A_,A_,A_,A_ ) __UpperCamelCase = encoder_inputs.pop('input_features' ) __UpperCamelCase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: __UpperCamelCase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' return 1E-3
1
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _A ( *_lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'r' ) as fh: fcntl.flock(_lowercase , fcntl.LOCK_EX ) try: print(*_lowercase ) finally: fcntl.flock(_lowercase , fcntl.LOCK_UN ) __snake_case = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) __snake_case = torch.device('''cuda''', local_rank) __snake_case = socket.gethostname() __snake_case = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __snake_case = dist.get_rank() __snake_case = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
1
1
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __snake_case = pytest.mark.integration __snake_case = {'''comet'''} __snake_case = importlib.util.find_spec('''fairseq''') is not None __snake_case = {'''code_eval'''} __snake_case = os.name == '''nt''' __snake_case = {'''bertscore''', '''frugalscore''', '''perplexity'''} __snake_case = importlib.util.find_spec('''transformers''') is not None def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" @wraps(_lowercase ) def wrapper(self , _lowercase ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self , _lowercase ) return wrapper def _A ( _lowercase ) -> List[str]: """simple docstring""" @wraps(_lowercase ) def wrapper(self , _lowercase ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self , _lowercase ) return wrapper def _A ( _lowercase ) -> List[str]: """simple docstring""" @wraps(_lowercase ) def wrapper(self , _lowercase ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self , _lowercase ) return wrapper def _A ( ) -> List[str]: """simple docstring""" __UpperCamelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _a , _a , _a ) @local class __lowerCamelCase (parameterized.TestCase ): _lowercase = {} _lowercase = None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def snake_case_ ( self: int,A_: List[Any] ): '''simple docstring''' __UpperCamelCase = '[...]' __UpperCamelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics',A_ ) ).module_path ) __UpperCamelCase = datasets.load.import_main_class(metric_module.__name__,dataset=A_ ) # check parameters __UpperCamelCase = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(A_,metric_module.__name__ ): with self.use_local_metrics(): try: __UpperCamelCase = doctest.testmod(A_,verbose=A_,raise_on_error=A_ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed,0 ) self.assertGreater(results.attempted,1 ) @slow def snake_case_ ( self: Optional[Any],A_: List[str] ): '''simple docstring''' __UpperCamelCase = '[...]' __UpperCamelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics',A_ ) ).module_path ) # run doctest with self.use_local_metrics(): __UpperCamelCase = doctest.testmod(A_,verbose=A_,raise_on_error=A_ ) self.assertEqual(results.failed,0 ) self.assertGreater(results.attempted,1 ) @contextmanager def snake_case_ ( self: Dict,A_: Optional[Any],A_: Any ): '''simple docstring''' if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](A_ ): yield else: yield @contextmanager def snake_case_ ( self: Tuple ): '''simple docstring''' def load_local_metric(A_: List[Any],*A_: str,**A_: List[Any] ): return load_metric(os.path.join('metrics',A_ ),*A_,**A_ ) with patch('datasets.load_metric' ) as mock_load_metric: __UpperCamelCase = load_local_metric yield @classmethod def snake_case_ ( cls: Any,A_: str ): '''simple docstring''' def wrapper(A_: Optional[Any] ): __UpperCamelCase = contextmanager(A_ ) __UpperCamelCase = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class __lowerCamelCase (_a ): def snake_case_ ( self: List[str],A_: List[Any] ): '''simple docstring''' assert len(input_dict['input_ids'] ) == 2 return np.array([1.0_3, 1.0_4] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: __UpperCamelCase = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" import torch def bert_cos_score_idf(_lowercase , _lowercase , *_lowercase , **_lowercase ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_lowercase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: __UpperCamelCase = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" def load_from_checkpoint(_lowercase ): class __lowerCamelCase : def snake_case_ ( self: Optional[int],A_: int,*A_: Optional[int],**A_: List[str] ): '''simple docstring''' assert len(A_ ) == 2 __UpperCamelCase = [0.1_9, 0.9_2] return scores, sum(A_ ) / len(A_ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: __UpperCamelCase = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: __UpperCamelCase = load_from_checkpoint yield def _A ( ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = load_metric(os.path.join('metrics' , 'seqeval' ) ) __UpperCamelCase = 'ERROR' __UpperCamelCase = f'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(_lowercase , match=re.escape(_lowercase ) ): metric.compute(predictions=[] , references=[] , scheme=_lowercase )
1
import pytest import datasets # Import fixture modules as plugins __snake_case = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def _A ( _lowercase ) -> str: """simple docstring""" config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = tmp_path_factory.getbasetemp() / 'cache' __UpperCamelCase = test_hf_cache_home / 'datasets' __UpperCamelCase = test_hf_cache_home / 'metrics' __UpperCamelCase = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(_lowercase ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(_lowercase ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(_lowercase ) ) __UpperCamelCase = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(_lowercase ) ) __UpperCamelCase = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_lowercase ) ) @pytest.fixture(autouse=_lowercase , scope='session' ) def _A ( ) -> Dict: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_lowercase ) def _A ( _lowercase ) -> Tuple: """simple docstring""" monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , _lowercase ) @pytest.fixture def _A ( _lowercase ) -> Any: """simple docstring""" monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , _lowercase )
1
1
import requests from bsa import BeautifulSoup def _A ( _lowercase , _lowercase ) -> str: """simple docstring""" __UpperCamelCase = BeautifulSoup(requests.get(_lowercase , params=_lowercase ).content , 'html.parser' ) __UpperCamelCase = soup.find('div' , attrs={'class': 'gs_ri'} ) __UpperCamelCase = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": __snake_case = { '''title''': ( '''Precisely geometry controlled microsupercapacitors for ultrahigh areal ''' '''capacitance, volumetric capacitance, and energy density''' ), '''journal''': '''Chem. Mater.''', '''volume''': 3_0, '''pages''': '''3979-3990''', '''year''': 2_0_1_8, '''hl''': '''en''', } print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = VideoToVideoSDPipeline _lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} _lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} _lowercase = PipelineTesterMixin.required_optional_params - {"""latents"""} _lowercase = False # No `output_type`. _lowercase = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def snake_case_ ( self: List[str] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'),up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'),cross_attention_dim=32,attention_head_dim=4,) __UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,beta_schedule='scaled_linear',clip_sample=A_,set_alpha_to_one=A_,) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=128,) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act='gelu',projection_dim=512,) __UpperCamelCase = CLIPTextModel(A_ ) __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def snake_case_ ( self: Union[str, Any],A_: Any,A_: Any=0 ): '''simple docstring''' __UpperCamelCase = floats_tensor((1, 3, 3, 32, 32),rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = VideoToVideoSDPipeline(**A_ ) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = 'np' __UpperCamelCase = sd_pipe(**A_ ).frames __UpperCamelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __UpperCamelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',) def snake_case_ ( self: Any ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_,expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case_ ( self: str ): '''simple docstring''' pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def snake_case_ ( self: int ): '''simple docstring''' pass def snake_case_ ( self: Any ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL',torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase = torch.randn((1, 10, 3, 1024, 576),generator=A_ ) __UpperCamelCase = video.to('cuda' ) __UpperCamelCase = 'Spiderman is surfing' __UpperCamelCase = pipe(A_,video=A_,generator=A_,num_inference_steps=3,output_type='pt' ).frames __UpperCamelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
1
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case = logging.get_logger(__name__) class __lowerCamelCase (_a ): _lowercase = ["""pixel_values"""] def __init__( self: List[str],A_: bool = True,A_: Dict[str, int] = None,A_: int = 0.9,A_: PILImageResampling = PILImageResampling.BICUBIC,A_: bool = True,A_: Dict[str, int] = None,A_: Union[int, float] = 1 / 255,A_: bool = True,A_: bool = True,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,**A_: int,): '''simple docstring''' super().__init__(**A_ ) __UpperCamelCase = size if size is not None else {'shortest_edge': 224} __UpperCamelCase = get_size_dict(A_,default_to_square=A_ ) __UpperCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} __UpperCamelCase = get_size_dict(A_,param_name='crop_size' ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = crop_pct __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def snake_case_ ( self: Union[str, Any],A_: np.ndarray,A_: Dict[str, int],A_: Optional[float] = None,A_: PILImageResampling = PILImageResampling.BICUBIC,A_: Optional[Union[str, ChannelDimension]] = None,**A_: List[Any],): '''simple docstring''' __UpperCamelCase = get_size_dict(A_,default_to_square=A_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: __UpperCamelCase = int(size['shortest_edge'] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCamelCase = int(size['height'] / crop_pct ) else: __UpperCamelCase = (int(size['height'] / crop_pct ), int(size['width'] / crop_pct )) else: raise ValueError('Invalid size for resize: {}'.format(A_ ) ) __UpperCamelCase = get_resize_output_image_size(A_,size=A_,default_to_square=A_ ) else: if "shortest_edge" in size: __UpperCamelCase = get_resize_output_image_size(A_,size=size['shortest_edge'],default_to_square=A_ ) elif "height" in size and "width" in size: __UpperCamelCase = (size['height'], size['width']) else: raise ValueError('Invalid size for resize: {}'.format(A_ ) ) return resize(A_,size=A_,resample=A_,data_format=A_,**A_ ) def snake_case_ ( self: int,A_: np.ndarray,A_: Dict[str, int],A_: Optional[Union[str, ChannelDimension]] = None,**A_: str,): '''simple docstring''' __UpperCamelCase = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(A_,size=(size['height'], size['width']),data_format=A_,**A_ ) def snake_case_ ( self: Optional[Any],A_: np.ndarray,A_: Union[int, float],A_: Optional[Union[str, ChannelDimension]] = None,**A_: Optional[int],): '''simple docstring''' return rescale(A_,scale=A_,data_format=A_,**A_ ) def snake_case_ ( self: List[Any],A_: np.ndarray,A_: Union[float, List[float]],A_: Union[float, List[float]],A_: Optional[Union[str, ChannelDimension]] = None,**A_: Any,): '''simple docstring''' return normalize(A_,mean=A_,std=A_,data_format=A_,**A_ ) def snake_case_ ( self: Tuple,A_: ImageInput,A_: bool = None,A_: Dict[str, int] = None,A_: int = None,A_: PILImageResampling = None,A_: bool = None,A_: Dict[str, int] = None,A_: bool = None,A_: float = None,A_: bool = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[str, TensorType]] = None,A_: ChannelDimension = ChannelDimension.FIRST,**A_: int,): '''simple docstring''' __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(A_,default_to_square=A_ ) __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(A_,param_name='crop_size' ) __UpperCamelCase = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_pct is None: raise ValueError('Crop_pct must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(A_ ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=A_,size=A_,crop_pct=A_,resample=A_ ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=A_,size=A_ ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=A_,scale=A_ ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=A_,mean=A_,std=A_ ) for image in images] __UpperCamelCase = [to_channel_dimension_format(A_,A_ ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=A_,tensor_type=A_ )
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) __snake_case = parser.parse_args() __snake_case = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __snake_case = CLIPImageProcessor() __snake_case = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') __snake_case = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
1
1
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata __snake_case = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class __lowerCamelCase (tr.AbstractTransform ): def __init__( self: Tuple,A_: str = " " ): '''simple docstring''' __UpperCamelCase = sentence_delimiter def snake_case_ ( self: Union[str, Any],A_: str ): '''simple docstring''' return list(A_ ) def snake_case_ ( self: Union[str, Any],A_: List[str] ): '''simple docstring''' __UpperCamelCase = [] for sent_idx, sentence in enumerate(A_ ): chars.extend(self.process_string(A_ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(A_ ) - 1: chars.append(self.sentence_delimiter ) return chars __snake_case = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __snake_case = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __snake_case = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' __snake_case = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' __snake_case = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase (datasets.Metric ): def snake_case_ ( self: int ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { 'predictions': datasets.Value('string',id='sequence' ), 'references': datasets.Value('string',id='sequence' ), } ),codebase_urls=['https://github.com/jitsi/jiwer/'],reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ],) def snake_case_ ( self: str,A_: int,A_: Optional[int],A_: List[Any]=False ): '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( A_,A_,truth_transform=A_,hypothesis_transform=A_,)["wer"] __UpperCamelCase = 0 __UpperCamelCase = 0 for prediction, reference in zip(A_,A_ ): __UpperCamelCase = jiwer.compute_measures( A_,A_,truth_transform=A_,hypothesis_transform=A_,) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
1
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __snake_case = (7_2_0, 1_2_8_0) # Height, Width __snake_case = (0.4, 0.6) # if height or width lower than this scale, drop it. __snake_case = 1 / 1_0_0 __snake_case = '''''' __snake_case = '''''' __snake_case = '''''' __snake_case = 2_5_0 def _A ( ) -> None: """simple docstring""" __UpperCamelCase, __UpperCamelCase = get_dataset(_lowercase , _lowercase ) for index in range(_lowercase ): __UpperCamelCase = random.sample(range(len(_lowercase ) ) , 4 ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = update_image_and_anno( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , filter_scale=_lowercase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCamelCase = random_chars(32 ) __UpperCamelCase = path.split(os.sep )[-1].rsplit('.' , 1 )[0] __UpperCamelCase = f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(f'''{file_root}.jpg''' , _lowercase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) __UpperCamelCase = [] for anno in new_annos: __UpperCamelCase = anno[3] - anno[1] __UpperCamelCase = anno[4] - anno[2] __UpperCamelCase = anno[1] + width / 2 __UpperCamelCase = anno[2] + height / 2 __UpperCamelCase = f'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(_lowercase ) with open(f'''{file_root}.txt''' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def _A ( _lowercase , _lowercase ) -> tuple[list, list]: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase = [] for label_file in glob.glob(os.path.join(_lowercase , '*.txt' ) ): __UpperCamelCase = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(_lowercase ) as in_file: __UpperCamelCase = in_file.readlines() __UpperCamelCase = os.path.join(_lowercase , f'''{label_name}.jpg''' ) __UpperCamelCase = [] for obj_list in obj_lists: __UpperCamelCase = obj_list.rstrip('\n' ).split(' ' ) __UpperCamelCase = float(obj[1] ) - float(obj[3] ) / 2 __UpperCamelCase = float(obj[2] ) - float(obj[4] ) / 2 __UpperCamelCase = float(obj[1] ) + float(obj[3] ) / 2 __UpperCamelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_lowercase ) labels.append(_lowercase ) return img_paths, labels def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" __UpperCamelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __UpperCamelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase = int(scale_x * output_size[1] ) __UpperCamelCase = int(scale_y * output_size[0] ) __UpperCamelCase = [] __UpperCamelCase = [] for i, index in enumerate(_lowercase ): __UpperCamelCase = all_img_list[index] path_list.append(_lowercase ) __UpperCamelCase = all_annos[index] __UpperCamelCase = cva.imread(_lowercase ) if i == 0: # top-left __UpperCamelCase = cva.resize(_lowercase , (divid_point_x, divid_point_y) ) __UpperCamelCase = img for bbox in img_annos: __UpperCamelCase = bbox[1] * scale_x __UpperCamelCase = bbox[2] * scale_y __UpperCamelCase = bbox[3] * scale_x __UpperCamelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __UpperCamelCase = cva.resize(_lowercase , (output_size[1] - divid_point_x, divid_point_y) ) __UpperCamelCase = img for bbox in img_annos: __UpperCamelCase = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase = bbox[2] * scale_y __UpperCamelCase = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __UpperCamelCase = cva.resize(_lowercase , (divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase = img for bbox in img_annos: __UpperCamelCase = bbox[1] * scale_x __UpperCamelCase = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase = bbox[3] * scale_x __UpperCamelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __UpperCamelCase = cva.resize( _lowercase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase = img for bbox in img_annos: __UpperCamelCase = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __UpperCamelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _A ( _lowercase ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCamelCase = ascii_lowercase + digits return "".join(random.choice(_lowercase ) for _ in range(_lowercase ) ) if __name__ == "__main__": main() print('''DONE ✅''')
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __snake_case = '''src/diffusers''' # Matches is_xxx_available() __snake_case = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla __snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') __snake_case = ''' {0} = None ''' __snake_case = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' __snake_case = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = _re_backend.findall(_lowercase ) if len(_lowercase ) == 0: return None return "_and_".join(_lowercase ) def _A ( ) -> Tuple: """simple docstring""" with open(os.path.join(_lowercase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: __UpperCamelCase = f.readlines() # Get to the point we do the actual imports for type checking __UpperCamelCase = 0 __UpperCamelCase = {} # Go through the end of the file while line_index < len(_lowercase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __UpperCamelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 __UpperCamelCase = [] # Until we unindent, add backend objects to the list while line_index < len(_lowercase ) and len(lines[line_index] ) > 1: __UpperCamelCase = lines[line_index] __UpperCamelCase = _re_single_line_import.search(_lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_lowercase ) > 0: __UpperCamelCase = objects else: line_index += 1 return backend_specific_objects def _A ( _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(_lowercase ) elif name.islower(): return DUMMY_FUNCTION.format(_lowercase , _lowercase ) else: return DUMMY_CLASS.format(_lowercase , _lowercase ) def _A ( _lowercase=None ) -> Optional[Any]: """simple docstring""" if backend_specific_objects is None: __UpperCamelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename __UpperCamelCase = {} for backend, objects in backend_specific_objects.items(): __UpperCamelCase = '[' + ', '.join(f'''"{b}"''' for b in backend.split('_and_' ) ) + ']' __UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_lowercase , _lowercase ) for o in objects] ) __UpperCamelCase = dummy_file return dummy_files def _A ( _lowercase=False ) -> List[str]: """simple docstring""" __UpperCamelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __UpperCamelCase = {'torch': 'pt'} # Locate actual dummy modules and read their content. __UpperCamelCase = os.path.join(_lowercase , 'utils' ) __UpperCamelCase = { backend: os.path.join(_lowercase , f'''dummy_{short_names.get(_lowercase , _lowercase )}_objects.py''' ) for backend in dummy_files.keys() } __UpperCamelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_lowercase ): with open(_lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f: __UpperCamelCase = f.read() else: __UpperCamelCase = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py as the main ''' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' f'''diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py. Run `make fix-copies` ''' 'to fix this.' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __snake_case = parser.parse_args() check_dummies(args.fix_and_overwrite)
1
1
import numpy # List of input, output pairs __snake_case = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) __snake_case = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) __snake_case = [2, 4, 1, 5] __snake_case = len(train_data) __snake_case = 0.009 def _A ( _lowercase , _lowercase="train" ) -> Union[str, Any]: """simple docstring""" return calculate_hypothesis_value(_lowercase , _lowercase ) - output( _lowercase , _lowercase ) def _A ( _lowercase ) -> str: """simple docstring""" __UpperCamelCase = 0 for i in range(len(_lowercase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _A ( _lowercase , _lowercase ) -> List[str]: """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _A ( _lowercase , _lowercase=m ) -> List[str]: """simple docstring""" __UpperCamelCase = 0 for i in range(_lowercase ): if index == -1: summation_value += _error(_lowercase ) else: summation_value += _error(_lowercase ) * train_data[i][0][index] return summation_value def _A ( _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = summation_of_cost_derivative(_lowercase , _lowercase ) / m return cost_derivative_value def _A ( ) -> Any: """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output __UpperCamelCase = 0.00_00_02 __UpperCamelCase = 0 __UpperCamelCase = 0 while True: j += 1 __UpperCamelCase = [0, 0, 0, 0] for i in range(0 , len(_lowercase ) ): __UpperCamelCase = get_cost_derivative(i - 1 ) __UpperCamelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _lowercase , _lowercase , atol=_lowercase , rtol=_lowercase , ): break __UpperCamelCase = temp_parameter_vector print(('Number of iterations:', j) ) def _A ( ) -> Optional[Any]: """simple docstring""" for i in range(len(_lowercase ) ): print(('Actual output value:', output(_lowercase , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(_lowercase , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
1
import string def _A ( _lowercase ) -> None: """simple docstring""" for key in range(len(string.ascii_uppercase ) ): __UpperCamelCase = '' for symbol in message: if symbol in string.ascii_uppercase: __UpperCamelCase = string.ascii_uppercase.find(_lowercase ) __UpperCamelCase = num - key if num < 0: __UpperCamelCase = num + len(string.ascii_uppercase ) __UpperCamelCase = translated + string.ascii_uppercase[num] else: __UpperCamelCase = translated + symbol print(f'''Decryption using Key #{key}: {translated}''' ) def _A ( ) -> None: """simple docstring""" __UpperCamelCase = input('Encrypted message: ' ) __UpperCamelCase = message.upper() decrypt(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCamelCase (_a ): @slow @require_torch def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny','prajjwal1/bert-tiny' ) __UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) __UpperCamelCase = bertabert.config.encoder.vocab_size __UpperCamelCase = tokenizer.sep_token_id __UpperCamelCase = tokenizer.cls_token_id __UpperCamelCase = 128 __UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='train[:1%]' ) __UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='validation[:1%]' ) __UpperCamelCase = train_dataset.select(range(32 ) ) __UpperCamelCase = val_dataset.select(range(16 ) ) __UpperCamelCase = 4 def _map_to_encoder_decoder_inputs(A_: Dict ): # Tokenizer will automatically set [BOS] <text> [EOS] __UpperCamelCase = tokenizer(batch['article'],padding='max_length',truncation=A_,max_length=512 ) __UpperCamelCase = tokenizer(batch['highlights'],padding='max_length',truncation=A_,max_length=128 ) __UpperCamelCase = inputs.input_ids __UpperCamelCase = inputs.attention_mask __UpperCamelCase = outputs.input_ids __UpperCamelCase = outputs.input_ids.copy() __UpperCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] __UpperCamelCase = outputs.attention_mask assert all(len(A_ ) == 512 for x in inputs.input_ids ) assert all(len(A_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(A_: str ): __UpperCamelCase = pred.label_ids __UpperCamelCase = pred.predictions # all unnecessary tokens are removed __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A_ ) )] ) / len(A_ ) return {"accuracy": accuracy} # map train dataset __UpperCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],) train_dataset.set_format( type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],) # same for validation dataset __UpperCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],) val_dataset.set_format( type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],) __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = SeqaSeqTrainingArguments( output_dir=A_,per_device_train_batch_size=A_,per_device_eval_batch_size=A_,predict_with_generate=A_,evaluation_strategy='steps',do_train=A_,do_eval=A_,warmup_steps=0,eval_steps=2,logging_steps=2,) # instantiate trainer __UpperCamelCase = SeqaSeqTrainer( model=A_,args=A_,compute_metrics=_compute_metrics,train_dataset=A_,eval_dataset=A_,tokenizer=A_,) # start training trainer.train()
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = KandinskyInpaintPipeline _lowercase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _lowercase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _lowercase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowercase = False @property def snake_case_ ( self: int ): '''simple docstring''' return 32 @property def snake_case_ ( self: str ): '''simple docstring''' return 32 @property def snake_case_ ( self: Tuple ): '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' return 100 @property def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = MCLIPConfig( numDims=self.cross_attention_dim,transformerDimensions=self.text_embedder_hidden_size,hidden_size=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_hidden_layers=5,vocab_size=1005,) __UpperCamelCase = MultilingualCLIP(A_ ) __UpperCamelCase = text_encoder.eval() return text_encoder @property def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __UpperCamelCase = UNetaDConditionModel(**A_ ) return model @property def snake_case_ ( self: str ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self: str ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = self.dummy_tokenizer __UpperCamelCase = self.dummy_unet __UpperCamelCase = self.dummy_movq __UpperCamelCase = DDIMScheduler( num_train_timesteps=1000,beta_schedule='linear',beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,clip_sample=A_,set_alpha_to_one=A_,steps_offset=1,prediction_type='epsilon',thresholding=A_,) __UpperCamelCase = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def snake_case_ ( self: Tuple,A_: Optional[int],A_: Dict=0 ): '''simple docstring''' __UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(seed + 1 ) ).to(A_ ) # create init_image __UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = image.cpu().permute(0,2,3,1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) ) # create mask __UpperCamelCase = np.ones((64, 64),dtype=np.floataa ) __UpperCamelCase = 0 if str(A_ ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = 'cpu' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) ) __UpperCamelCase = output.images __UpperCamelCase = pipe( **self.get_dummy_inputs(A_ ),return_dict=A_,)[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def snake_case_ ( self: Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) __UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __UpperCamelCase = np.ones((768, 768),dtype=np.floataa ) __UpperCamelCase = 0 __UpperCamelCase = 'a hat' __UpperCamelCase = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior',torch_dtype=torch.floataa ) pipe_prior.to(A_ ) __UpperCamelCase = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint',torch_dtype=torch.floataa ) __UpperCamelCase = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase, __UpperCamelCase = pipe_prior( A_,generator=A_,num_inference_steps=5,negative_prompt='',).to_tuple() __UpperCamelCase = pipeline( A_,image=A_,mask_image=A_,image_embeds=A_,negative_image_embeds=A_,generator=A_,num_inference_steps=100,height=768,width=768,output_type='np',) __UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A_,A_ )
1
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" __UpperCamelCase = torch.load(_lowercase , map_location='cpu' ) __UpperCamelCase = chkpt['model'] # We have the base model one level deeper than the original XLM repository __UpperCamelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: __UpperCamelCase = v else: __UpperCamelCase = v __UpperCamelCase = chkpt['params'] __UpperCamelCase = {n: v for n, v in config.items() if not isinstance(_lowercase , (torch.FloatTensor, numpy.ndarray) )} __UpperCamelCase = chkpt['dico_word2id'] __UpperCamelCase = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model __UpperCamelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __UpperCamelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME __UpperCamelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(_lowercase , _lowercase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowercase , indent=2 ) + '\n' ) print(f'''Save vocab file to {pytorch_config_dump_path}''' ) with open(_lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowercase , indent=2 ) + '\n' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
1
from typing import Any class __lowerCamelCase : def __init__( self: int,A_: Any ): '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None def __repr__( self: Any ): '''simple docstring''' return F'''Node({self.data})''' class __lowerCamelCase : def __init__( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = None def __iter__( self: int ): '''simple docstring''' __UpperCamelCase = self.head while node: yield node.data __UpperCamelCase = node.next def __len__( self: List[str] ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self: Any ): '''simple docstring''' return "->".join([str(A_ ) for item in self] ) def __getitem__( self: int,A_: int ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self: int,A_: int,A_: Any ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) __UpperCamelCase = self.head for _ in range(A_ ): __UpperCamelCase = current.next __UpperCamelCase = data def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' self.insert_nth(len(self ),A_ ) def snake_case_ ( self: List[Any],A_: Any ): '''simple docstring''' self.insert_nth(0,A_ ) def snake_case_ ( self: Optional[Any],A_: int,A_: Any ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) __UpperCamelCase = Node(A_ ) if self.head is None: __UpperCamelCase = new_node elif index == 0: __UpperCamelCase = self.head # link new_node to head __UpperCamelCase = new_node else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = new_node def snake_case_ ( self: str ): # print every node data '''simple docstring''' print(self ) def snake_case_ ( self: int ): '''simple docstring''' return self.delete_nth(0 ) def snake_case_ ( self: str ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def snake_case_ ( self: Any,A_: int = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) __UpperCamelCase = self.head # default first node if index == 0: __UpperCamelCase = self.head.next else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = temp.next.next return delete_node.data def snake_case_ ( self: Any ): '''simple docstring''' return self.head is None def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = self.head while current: # Store the current node's next node. __UpperCamelCase = current.next # Make the current node's next point backwards __UpperCamelCase = prev # Make the previous node be the current node __UpperCamelCase = current # Make the current node the next node (to progress iteration) __UpperCamelCase = next_node # Return prev in order to put the head at the end __UpperCamelCase = prev def _A ( ) -> None: """simple docstring""" __UpperCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(_lowercase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_lowercase ) == i linked_list.insert_nth(_lowercase , i + 1 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_lowercase ) == 9 assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) ) def _A ( ) -> None: """simple docstring""" __UpperCamelCase = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] __UpperCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(_lowercase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCamelCase = linked_list.delete_head() assert result == -9 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_lowercase ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_lowercase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _A ( ) -> List[str]: """simple docstring""" from doctest import testmod testmod() __UpperCamelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_lowercase ) print('\nReading/changing Node data using indexing:' ) print(f'''Element at Position 1: {linked_list[1]}''' ) __UpperCamelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_lowercase ) print(f'''length of linked_list is : {len(_lowercase )}''' ) if __name__ == "__main__": main()
1
1
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def _A ( _lowercase , _lowercase , _lowercase=0 ) -> Any: """simple docstring""" if name is None: __UpperCamelCase = None else: __UpperCamelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' __UpperCamelCase = fmt.format(_lowercase ) # Print and recurse (if needed). if isinstance(_lowercase , _lowercase ): if msg is not None: print(_lowercase ) for k in val.keys(): recursive_print(_lowercase , val[k] , spaces + 2 ) elif isinstance(_lowercase , torch.Tensor ): print(_lowercase , ':' , val.size() ) else: print(_lowercase , ':' , _lowercase ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] __UpperCamelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] __UpperCamelCase = param.view(*_lowercase ) __UpperCamelCase = param.transpose(0 , 2 ) __UpperCamelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] __UpperCamelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] __UpperCamelCase = param.view(*_lowercase ) __UpperCamelCase = param.transpose(0 , 1 ).contiguous() __UpperCamelCase = param.view(*_lowercase ) return param def _A ( _lowercase , _lowercase , _lowercase ) -> List[Any]: """simple docstring""" __UpperCamelCase = {} # old versions did not store training args __UpperCamelCase = input_state_dict.get('args' , _lowercase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) __UpperCamelCase = ds_args.padded_vocab_size __UpperCamelCase = ds_args.max_position_embeddings __UpperCamelCase = ds_args.hidden_size __UpperCamelCase = ds_args.num_layers __UpperCamelCase = ds_args.num_attention_heads __UpperCamelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. __UpperCamelCase = config.n_head # The hidden_size per head. __UpperCamelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): __UpperCamelCase = input_state_dict['checkpoint_version'] else: __UpperCamelCase = 0.0 # The model. __UpperCamelCase = input_state_dict['model'] # The language model. __UpperCamelCase = model['language_model'] # The embeddings. __UpperCamelCase = lm['embedding'] # The word embeddings. __UpperCamelCase = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. __UpperCamelCase = word_embeddings[: config.vocab_size, :] __UpperCamelCase = word_embeddings # The position embeddings. __UpperCamelCase = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] __UpperCamelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. __UpperCamelCase = pos_embeddings # The transformer. __UpperCamelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. __UpperCamelCase = re.compile(r'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. __UpperCamelCase = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. __UpperCamelCase = layer_re.match(_lowercase ) # Stop if that's not a layer if m is None: break # The index of the layer. __UpperCamelCase = int(m.group(1 ) ) # The name of the operation. __UpperCamelCase = m.group(2 ) # Is it a weight or a bias? __UpperCamelCase = m.group(3 ) # The name of the layer. __UpperCamelCase = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): __UpperCamelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2' __UpperCamelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. __UpperCamelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _lowercase , _lowercase ) __UpperCamelCase = causal_mask # Insert a "dummy" tensor for masked_bias. __UpperCamelCase = torch.tensor(-1e4 , dtype=torch.floataa ) __UpperCamelCase = masked_bias __UpperCamelCase = fix_query_key_value_ordering(_lowercase , _lowercase , 3 , _lowercase , _lowercase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. __UpperCamelCase = out_val.transpose(0 , 1 ).contiguous() # Store. __UpperCamelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": __UpperCamelCase = fix_query_key_value_ordering(_lowercase , _lowercase , 3 , _lowercase , _lowercase ) # Store. No change of shape. __UpperCamelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": __UpperCamelCase = megatron_to_transformers[op_name] __UpperCamelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": __UpperCamelCase = megatron_to_transformers[op_name] __UpperCamelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. __UpperCamelCase = transformer['final_layernorm.weight'] __UpperCamelCase = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. __UpperCamelCase = word_embeddings # It should be done! return output_state_dict def _A ( ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=_lowercase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=_lowercase , help='An optional config json file describing the pre-trained model.' , ) __UpperCamelCase = parser.parse_args() # Extract the basename. __UpperCamelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: __UpperCamelCase = torch.load(_lowercase , map_location='cpu' ) else: __UpperCamelCase = torch.load(args.path_to_checkpoint , map_location='cpu' ) __UpperCamelCase = input_state_dict.get('args' , _lowercase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: __UpperCamelCase = 'gelu_fast' elif ds_args.openai_gelu: __UpperCamelCase = 'gelu_new' else: __UpperCamelCase = 'gelu' else: # in the very early days this used to be "gelu_new" __UpperCamelCase = 'gelu_new' # Spell out all parameters in case the defaults change. __UpperCamelCase = GPTaConfig( vocab_size=5_02_57 , n_positions=10_24 , n_embd=10_24 , n_layer=24 , n_head=16 , n_inner=40_96 , activation_function=_lowercase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=_lowercase , summary_activation=_lowercase , summary_proj_to_labels=_lowercase , summary_first_dropout=0.1 , scale_attn_weights=_lowercase , use_cache=_lowercase , bos_token_id=5_02_56 , eos_token_id=5_02_56 , ) else: __UpperCamelCase = GPTaConfig.from_json_file(args.config_file ) __UpperCamelCase = ['GPT2LMHeadModel'] # Convert. print('Converting' ) __UpperCamelCase = convert_megatron_checkpoint(_lowercase , _lowercase , _lowercase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_lowercase , _lowercase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: __UpperCamelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": __UpperCamelCase = 'gpt2' elif tokenizer_type == "PretrainedFromHF": __UpperCamelCase = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: __UpperCamelCase = 'gpt2' __UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase ) __UpperCamelCase = type(_lowercase ).__name__ __UpperCamelCase = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(_lowercase ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(_lowercase ) # Store the state_dict to file. __UpperCamelCase = os.path.join(_lowercase , 'pytorch_model.bin' ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(_lowercase , _lowercase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
1
1
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __lowerCamelCase (_a , _a ): @register_to_config def __init__( self: List[Any],*, A_: int = 4,A_: int = 768,A_: int,A_: Tuple,): '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.zeros(A_ ) ) # parameters for additional clip time embeddings __UpperCamelCase = nn.Linear(A_,A_ ) __UpperCamelCase = nn.Linear(A_,A_ ) # parameters for encoder hidden states __UpperCamelCase = clip_extra_context_tokens __UpperCamelCase = nn.Linear( A_,self.clip_extra_context_tokens * cross_attention_dim ) __UpperCamelCase = nn.Linear(A_,A_ ) __UpperCamelCase = nn.LayerNorm(A_ ) def snake_case_ ( self: int,*, A_: Optional[int],A_: Tuple,A_: str,A_: int ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __UpperCamelCase = image_embeddings.shape[0] __UpperCamelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __UpperCamelCase = classifier_free_guidance_embeddings.expand( A_,-1 ) __UpperCamelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings],dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __UpperCamelCase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __UpperCamelCase = self.embedding_proj(A_ ) __UpperCamelCase = self.clip_image_embeddings_project_to_time_embeddings(A_ ) __UpperCamelCase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __UpperCamelCase = self.clip_extra_context_tokens_proj(A_ ) __UpperCamelCase = clip_extra_context_tokens.reshape(A_,-1,self.clip_extra_context_tokens ) __UpperCamelCase = clip_extra_context_tokens.permute(0,2,1 ) __UpperCamelCase = self.encoder_hidden_states_proj(A_ ) __UpperCamelCase = self.text_encoder_hidden_states_norm(A_ ) __UpperCamelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states],dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
1
__snake_case = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } __snake_case = {value: key for key, value in encode_dict.items()} def _A ( _lowercase ) -> str: """simple docstring""" __UpperCamelCase = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def _A ( _lowercase ) -> str: """simple docstring""" if set(_lowercase ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) __UpperCamelCase = '' for word in coded.split(): while len(_lowercase ) != 0: decoded += decode_dict[word[:5]] __UpperCamelCase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
1
1
import glob import os import random from string import ascii_lowercase, digits import cva __snake_case = '''''' __snake_case = '''''' __snake_case = '''''' __snake_case = 1 # (0 is vertical, 1 is horizontal) def _A ( ) -> None: """simple docstring""" __UpperCamelCase, __UpperCamelCase = get_dataset(_lowercase , _lowercase ) print('Processing...' ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = update_image_and_anno(_lowercase , _lowercase , _lowercase ) for index, image in enumerate(_lowercase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCamelCase = random_chars(32 ) __UpperCamelCase = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] __UpperCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , _lowercase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(_lowercase )} with {file_name}''' ) __UpperCamelCase = [] for anno in new_annos[index]: __UpperCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(_lowercase ) with open(f'''/{file_root}.txt''' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def _A ( _lowercase , _lowercase ) -> tuple[list, list]: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase = [] for label_file in glob.glob(os.path.join(_lowercase , '*.txt' ) ): __UpperCamelCase = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(_lowercase ) as in_file: __UpperCamelCase = in_file.readlines() __UpperCamelCase = os.path.join(_lowercase , f'''{label_name}.jpg''' ) __UpperCamelCase = [] for obj_list in obj_lists: __UpperCamelCase = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_lowercase ) labels.append(_lowercase ) return img_paths, labels def _A ( _lowercase , _lowercase , _lowercase = 1 ) -> tuple[list, list, list]: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = [] for idx in range(len(_lowercase ) ): __UpperCamelCase = [] __UpperCamelCase = img_list[idx] path_list.append(_lowercase ) __UpperCamelCase = anno_list[idx] __UpperCamelCase = cva.imread(_lowercase ) if flip_type == 1: __UpperCamelCase = cva.flip(_lowercase , _lowercase ) for bbox in img_annos: __UpperCamelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCamelCase = cva.flip(_lowercase , _lowercase ) for bbox in img_annos: __UpperCamelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_lowercase ) new_imgs_list.append(_lowercase ) return new_imgs_list, new_annos_lists, path_list def _A ( _lowercase = 32 ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCamelCase = ascii_lowercase + digits return "".join(random.choice(_lowercase ) for _ in range(_lowercase ) ) if __name__ == "__main__": main() print('''DONE ✅''')
1
from collections.abc import Generator from math import sin def _A ( _lowercase ) -> bytes: """simple docstring""" if len(_lowercase ) != 32: raise ValueError('Input must be of length 32' ) __UpperCamelCase = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _A ( _lowercase ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __UpperCamelCase = format(_lowercase , '08x' )[-8:] __UpperCamelCase = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = B'' for char in message: bit_string += format(_lowercase , '08b' ).encode('utf-8' ) __UpperCamelCase = format(len(_lowercase ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_lowercase ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _A ( _lowercase ) -> Generator[list[int], None, None]: """simple docstring""" if len(_lowercase ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(_lowercase ) , 5_12 ): __UpperCamelCase = bit_string[pos : pos + 5_12] __UpperCamelCase = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _A ( _lowercase ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __UpperCamelCase = format(_lowercase , '032b' ) __UpperCamelCase = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(_lowercase , 2 ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" return (a + b) % 2**32 def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = preprocess(_lowercase ) __UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __UpperCamelCase = 0X67_45_23_01 __UpperCamelCase = 0Xef_cd_ab_89 __UpperCamelCase = 0X98_ba_dc_fe __UpperCamelCase = 0X10_32_54_76 __UpperCamelCase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_lowercase ): __UpperCamelCase = aa __UpperCamelCase = ba __UpperCamelCase = ca __UpperCamelCase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __UpperCamelCase = d ^ (b & (c ^ d)) __UpperCamelCase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __UpperCamelCase = c ^ (d & (b ^ c)) __UpperCamelCase = (5 * i + 1) % 16 elif i <= 47: __UpperCamelCase = b ^ c ^ d __UpperCamelCase = (3 * i + 5) % 16 else: __UpperCamelCase = c ^ (b | not_aa(_lowercase )) __UpperCamelCase = (7 * i) % 16 __UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32 __UpperCamelCase = d __UpperCamelCase = c __UpperCamelCase = b __UpperCamelCase = sum_aa(_lowercase , left_rotate_aa(_lowercase , shift_amounts[i] ) ) # Add hashed chunk to running total __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
1
1
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case = random.Random() if is_torch_available(): import torch def _A ( _lowercase , _lowercase=1.0 , _lowercase=None , _lowercase=None ) -> Dict: """simple docstring""" if rng is None: __UpperCamelCase = global_rng __UpperCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __lowerCamelCase (unittest.TestCase ): def __init__( self: List[Any],A_: int,A_: Optional[int]=7,A_: Tuple=400,A_: Optional[int]=2000,A_: str=1,A_: Dict=0.0,A_: Any=1_6000,A_: List[Any]=True,A_: List[Any]=True,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = min_seq_length __UpperCamelCase = max_seq_length __UpperCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCamelCase = feature_size __UpperCamelCase = padding_value __UpperCamelCase = sampling_rate __UpperCamelCase = return_attention_mask __UpperCamelCase = do_normalize def snake_case_ ( self: int ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case_ ( self: Any,A_: Tuple=False,A_: int=False ): '''simple docstring''' def _flatten(A_: Optional[int] ): return list(itertools.chain(*A_ ) ) if equal_length: __UpperCamelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __UpperCamelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length,self.max_seq_length,self.seq_length_diff ) ] if numpify: __UpperCamelCase = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = ASTFeatureExtractor def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = ASTFeatureExtractionTester(self ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCamelCase = [floats_list((1, x) )[0] for x in range(800,1400,200 )] __UpperCamelCase = [np.asarray(A_ ) for speech_input in speech_inputs] # Test not batched input __UpperCamelCase = feat_extract(speech_inputs[0],return_tensors='np' ).input_values __UpperCamelCase = feat_extract(np_speech_inputs[0],return_tensors='np' ).input_values self.assertTrue(np.allclose(A_,A_,atol=1E-3 ) ) # Test batched __UpperCamelCase = feat_extract(A_,padding=A_,return_tensors='np' ).input_values __UpperCamelCase = feat_extract(A_,padding=A_,return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(A_,A_ ): self.assertTrue(np.allclose(A_,A_,atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __UpperCamelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] __UpperCamelCase = np.asarray(A_ ) __UpperCamelCase = feat_extract(A_,return_tensors='np' ).input_values __UpperCamelCase = feat_extract(A_,return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(A_,A_ ): self.assertTrue(np.allclose(A_,A_,atol=1E-3 ) ) @require_torch def snake_case_ ( self: Optional[Any] ): '''simple docstring''' import torch __UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase = np.random.rand(100 ).astype(np.floataa ) __UpperCamelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCamelCase = feature_extractor.pad([{'input_values': inputs}],return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __UpperCamelCase = feature_extractor.pad([{'input_values': inputs}],return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def snake_case_ ( self: Any,A_: Union[str, Any] ): '''simple docstring''' from datasets import load_dataset __UpperCamelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy','clean',split='validation' ) # automatic decoding with librispeech __UpperCamelCase = ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on __UpperCamelCase = self._load_datasamples(1 ) __UpperCamelCase = ASTFeatureExtractor() __UpperCamelCase = feature_extractor(A_,return_tensors='pt' ).input_values self.assertEquals(input_values.shape,(1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30],A_,atol=1E-4 ) )
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __snake_case = 0 __snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __snake_case = tuple[int, int] class __lowerCamelCase : def __init__( self: str,A_: int,A_: int,A_: int,A_: int,A_: int,A_: Node | None,): '''simple docstring''' __UpperCamelCase = pos_x __UpperCamelCase = pos_y __UpperCamelCase = (pos_y, pos_x) __UpperCamelCase = goal_x __UpperCamelCase = goal_y __UpperCamelCase = g_cost __UpperCamelCase = parent __UpperCamelCase = self.calculate_heuristic() __UpperCamelCase = self.g_cost + self.h_cost def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.pos_x - self.goal_x __UpperCamelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A_ ) + abs(A_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self: int,A_: Node ): '''simple docstring''' return self.f_cost < other.f_cost class __lowerCamelCase : def __init__( self: Any,A_: TPosition,A_: TPosition ): '''simple docstring''' __UpperCamelCase = Node(start[1],start[0],goal[1],goal[0],0,A_ ) __UpperCamelCase = Node(goal[1],goal[0],goal[1],goal[0],9_9999,A_ ) __UpperCamelCase = [self.start] __UpperCamelCase = [] __UpperCamelCase = False def snake_case_ ( self: Any ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __UpperCamelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A_ ) self.closed_nodes.append(A_ ) __UpperCamelCase = self.get_successors(A_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A_ ) else: # retrieve the best current path __UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(A_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A_ ) else: self.open_nodes.append(A_ ) return [self.start.pos] def snake_case_ ( self: int,A_: Node ): '''simple docstring''' __UpperCamelCase = [] for action in delta: __UpperCamelCase = parent.pos_x + action[1] __UpperCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A_,A_,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,A_,) ) return successors def snake_case_ ( self: Any,A_: Node | None ): '''simple docstring''' __UpperCamelCase = node __UpperCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __UpperCamelCase = current_node.parent path.reverse() return path class __lowerCamelCase : def __init__( self: List[Any],A_: TPosition,A_: TPosition ): '''simple docstring''' __UpperCamelCase = AStar(A_,A_ ) __UpperCamelCase = AStar(A_,A_ ) __UpperCamelCase = False def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __UpperCamelCase = self.fwd_astar.open_nodes.pop(0 ) __UpperCamelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A_,A_ ) self.fwd_astar.closed_nodes.append(A_ ) self.bwd_astar.closed_nodes.append(A_ ) __UpperCamelCase = current_bwd_node __UpperCamelCase = current_fwd_node __UpperCamelCase = { self.fwd_astar: self.fwd_astar.get_successors(A_ ), self.bwd_astar: self.bwd_astar.get_successors(A_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A_ ) else: # retrieve the best current path __UpperCamelCase = astar.open_nodes.pop( astar.open_nodes.index(A_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A_ ) else: astar.open_nodes.append(A_ ) return [self.fwd_astar.start.pos] def snake_case_ ( self: List[str],A_: Node,A_: Node ): '''simple docstring''' __UpperCamelCase = self.fwd_astar.retrace_path(A_ ) __UpperCamelCase = self.bwd_astar.retrace_path(A_ ) bwd_path.pop() bwd_path.reverse() __UpperCamelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __snake_case = (0, 0) __snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __snake_case = time.time() __snake_case = AStar(init, goal) __snake_case = a_star.search() __snake_case = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") __snake_case = time.time() __snake_case = BidirectionalAStar(init, goal) __snake_case = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
1
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __snake_case = get_tests_dir('''fixtures''') class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = mock.Mock() __UpperCamelCase = 500 __UpperCamelCase = {} __UpperCamelCase = HTTPError __UpperCamelCase = {} # Download this model to make sure it's in the cache. __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request',return_value=A_ ) as mock_head: __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class __lowerCamelCase (unittest.TestCase ): @classmethod def snake_case_ ( cls: Tuple ): '''simple docstring''' __UpperCamelCase = TOKEN HfFolder.save_token(A_ ) @classmethod def snake_case_ ( cls: Tuple ): '''simple docstring''' try: delete_repo(token=cls._token,repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('test-feature-extractor',use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) # Reset repo delete_repo(token=self._token,repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_,repo_id='test-feature-extractor',push_to_hub=A_,use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('valid_org/test-feature-extractor',use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) # Reset repo delete_repo(token=self._token,repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_,repo_id='valid_org/test-feature-extractor-org',push_to_hub=A_,use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) def snake_case_ ( self: int ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() __UpperCamelCase = CustomFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('test-dynamic-feature-extractor',use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map,{'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'},) __UpperCamelCase = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''',trust_remote_code=A_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__,'CustomFeatureExtractor' )
1
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any,A_: Any ): '''simple docstring''' __UpperCamelCase = 3 __UpperCamelCase = 250 __UpperCamelCase = ids_tensor((batch_size, length),A_ ) __UpperCamelCase = torch.ones((batch_size, length),device=A_,dtype=torch.float ) / length return input_ids, scores def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = self._get_tensors(5 ) __UpperCamelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(A_,A_ ) ) __UpperCamelCase, __UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(A_,A_ ) ) __UpperCamelCase, __UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(A_,A_ ) ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = MaxLengthCriteria(max_length=10 ) __UpperCamelCase, __UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(A_,A_ ) ) __UpperCamelCase, __UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(A_,A_ ) ) __UpperCamelCase, __UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(A_,A_ ) ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = MaxNewTokensCriteria(start_length=5,max_new_tokens=5 ) __UpperCamelCase, __UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(A_,A_ ) ) __UpperCamelCase, __UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(A_,A_ ) ) __UpperCamelCase, __UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(A_,A_ ) ) __UpperCamelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length,10 ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = self._get_tensors(5 ) __UpperCamelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(A_,A_ ) ) __UpperCamelCase = MaxTimeCriteria(max_time=0.1,initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(A_,A_ ) ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ),10 ) with self.assertWarns(A_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ),11 ) __UpperCamelCase = validate_stopping_criteria(StoppingCriteriaList(),11 ) self.assertEqual(len(A_ ),1 )
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __snake_case = 1_6 __snake_case = 3_2 def _A ( _lowercase , _lowercase = 16 , _lowercase = "bert-base-cased" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase ) __UpperCamelCase = load_dataset('glue' , 'mrpc' ) def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowercase , max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCamelCase = datasets.map( _lowercase , batched=_lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowercase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(_lowercase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) __UpperCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) return train_dataloader, eval_dataloader def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['lr'] __UpperCamelCase = int(config['num_epochs'] ) __UpperCamelCase = int(config['seed'] ) __UpperCamelCase = int(config['batch_size'] ) __UpperCamelCase = args.model_name_or_path set_seed(_lowercase ) __UpperCamelCase, __UpperCamelCase = get_dataloaders(_lowercase , _lowercase , _lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase ) # Instantiate optimizer __UpperCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __UpperCamelCase = optimizer_cls(params=model.parameters() , lr=_lowercase ) if accelerator.state.deepspeed_plugin is not None: __UpperCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: __UpperCamelCase = 1 __UpperCamelCase = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , ) else: __UpperCamelCase = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # We need to keep track of how many total steps we have iterated over __UpperCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __UpperCamelCase = 0 # Now we train the model __UpperCamelCase = evaluate.load('glue' , 'mrpc' ) __UpperCamelCase = 0 __UpperCamelCase = {} for epoch in range(_lowercase , _lowercase ): model.train() for step, batch in enumerate(_lowercase ): __UpperCamelCase = model(**_lowercase ) __UpperCamelCase = outputs.loss __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __UpperCamelCase = 0 for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**_lowercase ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __UpperCamelCase, __UpperCamelCase = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowercase ) - 1: __UpperCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __UpperCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowercase , references=_lowercase , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _lowercase ) __UpperCamelCase = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: __UpperCamelCase = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(_lowercase , _lowercase ) def _A ( ) -> List[str]: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_lowercase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowercase , ) parser.add_argument( '--output_dir' , type=_lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=_lowercase , default=_lowercase , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=_lowercase , default=3 , help='Number of train epochs.' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
1
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __snake_case = None __snake_case = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __snake_case = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class __lowerCamelCase : _lowercase = True _lowercase = None # Automatically constructed _lowercase = "PIL.Image.Image" _lowercase = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) _lowercase = field(default="""Image""" , init=_a , repr=_a ) def __call__( self: Any ): '''simple docstring''' return self.pa_type def snake_case_ ( self: Dict,A_: Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(A_,A_ ): __UpperCamelCase = np.array(A_ ) if isinstance(A_,A_ ): return {"path": value, "bytes": None} elif isinstance(A_,A_ ): return {"path": None, "bytes": value} elif isinstance(A_,np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(A_ ) elif isinstance(A_,PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(A_ ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def snake_case_ ( self: str,A_: dict,A_: Dict=None ): '''simple docstring''' if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: __UpperCamelCase = {} __UpperCamelCase, __UpperCamelCase = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(F'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(A_ ): __UpperCamelCase = PIL.Image.open(A_ ) else: __UpperCamelCase = path.split('::' )[-1] try: __UpperCamelCase = string_to_dict(A_,config.HUB_DATASETS_URL )['repo_id'] __UpperCamelCase = token_per_repo_id.get(A_ ) except ValueError: __UpperCamelCase = None with xopen(A_,'rb',use_auth_token=A_ ) as f: __UpperCamelCase = BytesIO(f.read() ) __UpperCamelCase = PIL.Image.open(bytes_ ) else: __UpperCamelCase = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def snake_case_ ( self: Optional[int] ): '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def snake_case_ ( self: Tuple,A_: Union[pa.StringArray, pa.StructArray, pa.ListArray] ): '''simple docstring''' if pa.types.is_string(storage.type ): __UpperCamelCase = pa.array([None] * len(A_ ),type=pa.binary() ) __UpperCamelCase = pa.StructArray.from_arrays([bytes_array, storage],['bytes', 'path'],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __UpperCamelCase = pa.array([None] * len(A_ ),type=pa.string() ) __UpperCamelCase = pa.StructArray.from_arrays([storage, path_array],['bytes', 'path'],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: __UpperCamelCase = storage.field('bytes' ) else: __UpperCamelCase = pa.array([None] * len(A_ ),type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: __UpperCamelCase = storage.field('path' ) else: __UpperCamelCase = pa.array([None] * len(A_ ),type=pa.string() ) __UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array],['bytes', 'path'],mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __UpperCamelCase = pa.array( [encode_np_array(np.array(A_ ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()],type=pa.binary(),) __UpperCamelCase = pa.array([None] * len(A_ ),type=pa.string() ) __UpperCamelCase = pa.StructArray.from_arrays( [bytes_array, path_array],['bytes', 'path'],mask=bytes_array.is_null() ) return array_cast(A_,self.pa_type ) def snake_case_ ( self: int,A_: pa.StructArray ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(A_: int ): with xopen(A_,'rb' ) as f: __UpperCamelCase = f.read() return bytes_ __UpperCamelCase = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) __UpperCamelCase = pa.array( [os.path.basename(A_ ) if path is not None else None for path in storage.field('path' ).to_pylist()],type=pa.string(),) __UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array],['bytes', 'path'],mask=bytes_array.is_null() ) return array_cast(A_,self.pa_type ) def _A ( ) -> List[str]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __UpperCamelCase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = BytesIO() if image.format in list_image_compression_formats(): __UpperCamelCase = image.format else: __UpperCamelCase = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(_lowercase , format=_lowercase ) return buffer.getvalue() def _A ( _lowercase ) -> dict: """simple docstring""" if hasattr(_lowercase , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_lowercase )} def _A ( _lowercase ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) __UpperCamelCase = array.dtype __UpperCamelCase = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER __UpperCamelCase = dtype.kind __UpperCamelCase = dtype.itemsize __UpperCamelCase = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __UpperCamelCase = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __UpperCamelCase = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __UpperCamelCase = dtype_byteorder + dtype_kind + str(_lowercase ) __UpperCamelCase = np.dtype(_lowercase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) __UpperCamelCase = PIL.Image.fromarray(array.astype(_lowercase ) ) return {"path": None, "bytes": image_to_bytes(_lowercase )} def _A ( _lowercase ) -> List[dict]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: __UpperCamelCase, __UpperCamelCase = first_non_null_value(_lowercase ) if isinstance(_lowercase , _lowercase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_lowercase , np.ndarray ): __UpperCamelCase = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] elif isinstance(_lowercase , PIL.Image.Image ): __UpperCamelCase = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] else: return objs else: return objs
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCamelCase (_a ): @slow @require_torch def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny','prajjwal1/bert-tiny' ) __UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) __UpperCamelCase = bertabert.config.encoder.vocab_size __UpperCamelCase = tokenizer.sep_token_id __UpperCamelCase = tokenizer.cls_token_id __UpperCamelCase = 128 __UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='train[:1%]' ) __UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='validation[:1%]' ) __UpperCamelCase = train_dataset.select(range(32 ) ) __UpperCamelCase = val_dataset.select(range(16 ) ) __UpperCamelCase = 4 def _map_to_encoder_decoder_inputs(A_: Dict ): # Tokenizer will automatically set [BOS] <text> [EOS] __UpperCamelCase = tokenizer(batch['article'],padding='max_length',truncation=A_,max_length=512 ) __UpperCamelCase = tokenizer(batch['highlights'],padding='max_length',truncation=A_,max_length=128 ) __UpperCamelCase = inputs.input_ids __UpperCamelCase = inputs.attention_mask __UpperCamelCase = outputs.input_ids __UpperCamelCase = outputs.input_ids.copy() __UpperCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] __UpperCamelCase = outputs.attention_mask assert all(len(A_ ) == 512 for x in inputs.input_ids ) assert all(len(A_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(A_: str ): __UpperCamelCase = pred.label_ids __UpperCamelCase = pred.predictions # all unnecessary tokens are removed __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A_ ) )] ) / len(A_ ) return {"accuracy": accuracy} # map train dataset __UpperCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],) train_dataset.set_format( type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],) # same for validation dataset __UpperCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],) val_dataset.set_format( type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],) __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = SeqaSeqTrainingArguments( output_dir=A_,per_device_train_batch_size=A_,per_device_eval_batch_size=A_,predict_with_generate=A_,evaluation_strategy='steps',do_train=A_,do_eval=A_,warmup_steps=0,eval_steps=2,logging_steps=2,) # instantiate trainer __UpperCamelCase = SeqaSeqTrainer( model=A_,args=A_,compute_metrics=_compute_metrics,train_dataset=A_,eval_dataset=A_,tokenizer=A_,) # start training trainer.train()
1
1
from typing import Any class __lowerCamelCase : def __init__( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None class __lowerCamelCase : def __init__( self: Tuple ): '''simple docstring''' __UpperCamelCase = None def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = self.head while temp is not None: print(temp.data,end=' ' ) __UpperCamelCase = temp.next print() def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = Node(A_ ) __UpperCamelCase = self.head __UpperCamelCase = new_node def snake_case_ ( self: str,A_: Union[str, Any],A_: Optional[Any] ): '''simple docstring''' if node_data_a == node_data_a: return else: __UpperCamelCase = self.head while node_a is not None and node_a.data != node_data_a: __UpperCamelCase = node_a.next __UpperCamelCase = self.head while node_a is not None and node_a.data != node_data_a: __UpperCamelCase = node_a.next if node_a is None or node_a is None: return __UpperCamelCase, __UpperCamelCase = node_a.data, node_a.data if __name__ == "__main__": __snake_case = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
1
def _A ( _lowercase = 1_00 ) -> int: """simple docstring""" __UpperCamelCase = 0 __UpperCamelCase = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
1
1
def _A ( _lowercase ) -> list: """simple docstring""" __UpperCamelCase = len(_lowercase ) for i in range(1 , _lowercase ): __UpperCamelCase = collection[i] __UpperCamelCase = 0 __UpperCamelCase = i - 1 while low <= high: __UpperCamelCase = (low + high) // 2 if val < collection[mid]: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 for j in range(_lowercase , _lowercase , -1 ): __UpperCamelCase = collection[j - 1] __UpperCamelCase = val return collection if __name__ == "__main__": __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
1
def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _A ( _lowercase , _lowercase=0 ) -> Dict: """simple docstring""" return sorted(_lowercase , key=lambda _lowercase : x[column] ) def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> List[Any]: """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , _lowercase ): __UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCamelCase = current_dis return min_dis def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> Tuple: """simple docstring""" for i in range(min(6 , points_counts - 1 ) , _lowercase ): for j in range(max(0 , i - 6 ) , _lowercase ): __UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCamelCase = current_dis return min_dis def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(_lowercase , _lowercase ) # recursion __UpperCamelCase = points_counts // 2 __UpperCamelCase = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[:mid] , _lowercase ) __UpperCamelCase = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[mid:] , points_counts - mid ) __UpperCamelCase = min(_lowercase , _lowercase ) __UpperCamelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowercase ) __UpperCamelCase = dis_between_closest_in_strip( _lowercase , len(_lowercase ) , _lowercase ) return min(_lowercase , _lowercase ) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = column_based_sort(_lowercase , column=0 ) __UpperCamelCase = column_based_sort(_lowercase , column=1 ) return ( closest_pair_of_points_sqr( _lowercase , _lowercase , _lowercase ) ) ** 0.5 if __name__ == "__main__": __snake_case = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
1
1
import re from filelock import FileLock try: import nltk __snake_case = True except (ImportError, ModuleNotFoundError): __snake_case = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def _A ( _lowercase ) -> str: """simple docstring""" re.sub('<n>' , '' , _lowercase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowercase ) )
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class __lowerCamelCase (_a ): _lowercase = """bert""" def __init__( self: Any,A_: Dict=3_0522,A_: Optional[Any]=768,A_: Union[str, Any]=12,A_: List[Any]=12,A_: Optional[int]=3072,A_: Union[str, Any]="gelu",A_: List[str]=0.1,A_: Dict=0.1,A_: Optional[int]=512,A_: Optional[Any]=2,A_: Union[str, Any]=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=0,A_: List[Any]="absolute",A_: str=True,A_: Union[str, Any]=None,**A_: int,): '''simple docstring''' super().__init__(pad_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
1
1
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 10 def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = [1, 2, 3, 4] __UpperCamelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(A_,self.block_size,0 ),A_ ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(A_,self.block_size,0 ),A_ ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(A_,self.block_size,0 ),A_ ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' __UpperCamelCase, __UpperCamelCase = process_story(A_ ) self.assertEqual(A_,[] ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = '' __UpperCamelCase, __UpperCamelCase = process_story(A_ ) self.assertEqual(A_,[] ) self.assertEqual(A_,[] ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) __UpperCamelCase, __UpperCamelCase = process_story(A_ ) __UpperCamelCase = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(A_,A_ ) __UpperCamelCase = ['It was the best of times.'] self.assertEqual(A_,A_ ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3, 4] ) __UpperCamelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(A_,0 ).numpy(),expected.numpy() ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __UpperCamelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(A_,23 ).numpy(),expected.numpy() ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __UpperCamelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(A_,1 ).numpy(),expected.numpy() ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = 101 __UpperCamelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) __UpperCamelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __UpperCamelCase = compute_token_type_ids(A_,A_ ) np.testing.assert_array_equal(A_,A_ )
1
def _A ( _lowercase ) -> int: """simple docstring""" assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(_lowercase ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , _lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
1
1
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowerCamelCase (_a ): def __init__( self: Tuple,A_: str = "▁",A_: bool = True,A_: Union[str, AddedToken] = "<unk>",A_: Union[str, AddedToken] = "</s>",A_: Union[str, AddedToken] = "<pad>",): '''simple docstring''' __UpperCamelCase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __UpperCamelCase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __UpperCamelCase = token_dict['token'] __UpperCamelCase = Tokenizer(Unigram() ) __UpperCamelCase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ),' ' ), normalizers.Lowercase(), ] ) __UpperCamelCase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=A_,add_prefix_space=A_ ), pre_tokenizers.Digits(individual_digits=A_ ), pre_tokenizers.Punctuation(), ] ) __UpperCamelCase = decoders.Metaspace(replacement=A_,add_prefix_space=A_ ) __UpperCamelCase = TemplateProcessing( single=F'''$A {self.special_tokens['eos']['token']}''',special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])],) __UpperCamelCase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(A_,A_ ) def snake_case_ ( self: List[Any],A_: Union[str, List[str]],A_: int = 8000,A_: bool = True,): '''simple docstring''' __UpperCamelCase = trainers.UnigramTrainer( vocab_size=A_,special_tokens=self.special_tokens_list,show_progress=A_,) if isinstance(A_,A_ ): __UpperCamelCase = [files] self._tokenizer.train(A_,trainer=A_ ) self.add_unk_id() def snake_case_ ( self: str,A_: Union[Iterator[str], Iterator[Iterator[str]]],A_: int = 8000,A_: bool = True,): '''simple docstring''' __UpperCamelCase = trainers.UnigramTrainer( vocab_size=A_,special_tokens=self.special_tokens_list,show_progress=A_,) self._tokenizer.train_from_iterator(A_,trainer=A_ ) self.add_unk_id() def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = json.loads(self._tokenizer.to_str() ) __UpperCamelCase = self.special_tokens['unk']['id'] __UpperCamelCase = Tokenizer.from_str(json.dumps(A_ ) )
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _A ( ) -> int: """simple docstring""" __UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' __UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('RGB' ) return image def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = dct.pop(_lowercase ) __UpperCamelCase = val def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) __UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __UpperCamelCase = torch.cat((q_bias, torch.zeros_like(_lowercase , requires_grad=_lowercase ), v_bias) ) __UpperCamelCase = qkv_bias def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = 3_64 if 'coco' in model_name else 2_24 __UpperCamelCase = BlipaVisionConfig(image_size=_lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_lowercase ).to_dict() elif "opt-6.7b" in model_name: __UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_lowercase ).to_dict() elif "t5-xl" in model_name: __UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() __UpperCamelCase = BlipaConfig(vision_config=_lowercase , text_config=_lowercase ) return config, image_size @torch.no_grad() def _A ( _lowercase , _lowercase=None , _lowercase=False ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) __UpperCamelCase = tokenizer('\n' , add_special_tokens=_lowercase ).input_ids[0] __UpperCamelCase, __UpperCamelCase = get_blipa_config(_lowercase , eos_token_id=_lowercase ) __UpperCamelCase = BlipaForConditionalGeneration(_lowercase ).eval() __UpperCamelCase = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } __UpperCamelCase, __UpperCamelCase = model_name_to_original[model_name] # load original model print('Loading original model...' ) __UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu' __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = load_model_and_preprocess( name=_lowercase , model_type=_lowercase , is_eval=_lowercase , device=_lowercase ) original_model.eval() print('Done!' ) # update state dict keys __UpperCamelCase = original_model.state_dict() __UpperCamelCase = create_rename_keys(_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __UpperCamelCase = state_dict.pop(_lowercase ) if key.startswith('Qformer.bert' ): __UpperCamelCase = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: __UpperCamelCase = key.replace('self' , 'attention' ) if "opt_proj" in key: __UpperCamelCase = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: __UpperCamelCase = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): __UpperCamelCase = key.replace('opt' , 'language' ) if key.startswith('t5' ): __UpperCamelCase = key.replace('t5' , 'language' ) __UpperCamelCase = val # read in qv biases read_in_q_v_bias(_lowercase , _lowercase ) __UpperCamelCase, __UpperCamelCase = hf_model.load_state_dict(_lowercase , strict=_lowercase ) assert len(_lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __UpperCamelCase = load_demo_image() __UpperCamelCase = vis_processors['eval'](_lowercase ).unsqueeze(0 ).to(_lowercase ) __UpperCamelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_lowercase ) # create processor __UpperCamelCase = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=_lowercase , image_std=_lowercase ) __UpperCamelCase = BlipaProcessor(image_processor=_lowercase , tokenizer=_lowercase ) __UpperCamelCase = processor(images=_lowercase , return_tensors='pt' ).pixel_values.to(_lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowercase , _lowercase ) original_model.to(_lowercase ) hf_model.to(_lowercase ) with torch.no_grad(): if "opt" in model_name: __UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits __UpperCamelCase = hf_model(_lowercase , _lowercase ).logits else: __UpperCamelCase = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits __UpperCamelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) __UpperCamelCase = hf_model(_lowercase , _lowercase , labels=_lowercase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __UpperCamelCase = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=_lowercase ) assert torch.allclose(logits[0, :3, :3] , _lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": __UpperCamelCase = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=_lowercase ) else: # cast to same type __UpperCamelCase = logits.dtype assert torch.allclose(original_logits.to(_lowercase ) , _lowercase , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) __UpperCamelCase = '' __UpperCamelCase = tokenizer(_lowercase , return_tensors='pt' ).input_ids.to(_lowercase ) __UpperCamelCase = original_model.generate({'image': original_pixel_values} ) __UpperCamelCase = hf_model.generate( _lowercase , _lowercase , do_sample=_lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , _lowercase ) __UpperCamelCase = input_ids.shape[1] __UpperCamelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowercase ) __UpperCamelCase = [text.strip() for text in output_text] print('HF generation:' , _lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowercase ) hf_model.save_pretrained(_lowercase ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() __snake_case = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __snake_case = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
1
1
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __lowerCamelCase : def __init__( self: Optional[Any],A_: int,A_: str=3,A_: List[Any]=7,A_: List[str]=True,A_: List[str]=True,A_: Any=False,A_: int=True,A_: str=99,A_: List[str]=32,A_: Optional[Any]=5,A_: Optional[int]=4,A_: List[Any]=37,A_: List[str]="gelu",A_: Tuple=0.1,A_: Any=0.1,A_: str=512,A_: Any=16,A_: List[str]=2,A_: Dict=0.0_2,A_: Tuple=3,A_: Union[str, Any]=4,A_: Union[str, Any]=None,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size],self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size],self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=A_,initializer_range=self.initializer_range,pad_token_id=1,new_decoder_architecture=A_,) def snake_case_ ( self: int,A_: Union[str, Any],A_: Union[str, Any],A_: int,A_: Any,A_: Tuple,A_: Any,A_: Tuple ): '''simple docstring''' __UpperCamelCase = FalconModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_,attention_mask=A_ ) __UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self: Dict,A_: Any,A_: Optional[Any],A_: List[str],A_: str,A_: Optional[Any],A_: Optional[Any],A_: Dict,A_: Optional[Any],A_: str,): '''simple docstring''' __UpperCamelCase = True __UpperCamelCase = FalconModel(A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model( A_,attention_mask=A_,encoder_hidden_states=A_,encoder_attention_mask=A_,) __UpperCamelCase = model( A_,attention_mask=A_,encoder_hidden_states=A_,) __UpperCamelCase = model(A_,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self: Union[str, Any],A_: Union[str, Any],A_: List[str],A_: Tuple,A_: List[Any],A_: Tuple,A_: int,A_: int,A_: Tuple,A_: Tuple,): '''simple docstring''' __UpperCamelCase = FalconForCausalLM(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_,attention_mask=A_,labels=A_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self: str,A_: int,A_: str,A_: Optional[int],A_: Optional[int],A_: List[str],A_: str,A_: Union[str, Any],A_: Tuple,A_: Dict,): '''simple docstring''' __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = FalconForCausalLM(config=A_ ) model.to(A_ ) model.eval() # first forward pass __UpperCamelCase = model( A_,attention_mask=A_,encoder_hidden_states=A_,encoder_attention_mask=A_,use_cache=A_,) __UpperCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase = ids_tensor((self.batch_size, 3),config.vocab_size ) __UpperCamelCase = ids_tensor((self.batch_size, 3),vocab_size=2 ) # append to next input_ids and __UpperCamelCase = torch.cat([input_ids, next_tokens],dim=-1 ) __UpperCamelCase = torch.cat([input_mask, next_mask],dim=-1 ) __UpperCamelCase = model( A_,attention_mask=A_,encoder_hidden_states=A_,encoder_attention_mask=A_,output_hidden_states=A_,)['hidden_states'][0] __UpperCamelCase = model( A_,attention_mask=A_,encoder_hidden_states=A_,encoder_attention_mask=A_,past_key_values=A_,output_hidden_states=A_,)['hidden_states'][0] # select random slice __UpperCamelCase = ids_tensor((1,),output_from_past.shape[-1] ).item() __UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_,A_,atol=1E-3 ) ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase (_a , _a , _a , unittest.TestCase ): _lowercase = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) _lowercase = (FalconForCausalLM,) if is_torch_available() else () _lowercase = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) _lowercase = False _lowercase = False def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = FalconModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,hidden_size=37 ) def snake_case_ ( self: Dict ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase, *__UpperCamelCase = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: __UpperCamelCase = alibi self.model_tester.create_and_check_model(A_,*A_ ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = 3 __UpperCamelCase = input_dict['input_ids'] __UpperCamelCase = input_ids.ne(1 ).to(A_ ) __UpperCamelCase = ids_tensor([self.model_tester.batch_size],self.model_tester.type_sequence_label_size ) __UpperCamelCase = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_,attention_mask=A_,labels=A_ ) self.assertEqual(result.logits.shape,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = 3 __UpperCamelCase = 'single_label_classification' __UpperCamelCase = input_dict['input_ids'] __UpperCamelCase = input_ids.ne(1 ).to(A_ ) __UpperCamelCase = ids_tensor([self.model_tester.batch_size],self.model_tester.type_sequence_label_size ) __UpperCamelCase = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_,attention_mask=A_,labels=A_ ) self.assertEqual(result.logits.shape,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = input_dict['input_ids'] __UpperCamelCase = FalconForCausalLM(A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_,use_cache=A_ ) __UpperCamelCase = input_ids.shape[0] __UpperCamelCase = model._convert_to_rw_cache(result.past_key_values ) __UpperCamelCase = model._convert_cache_to_standard_format(A_,A_ ) for layer in range(len(A_ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = 3 __UpperCamelCase = 'multi_label_classification' __UpperCamelCase = input_dict['input_ids'] __UpperCamelCase = input_ids.ne(1 ).to(A_ ) __UpperCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels],self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCamelCase = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_,attention_mask=A_,labels=A_ ) self.assertEqual(result.logits.shape,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case_ ( self: List[str] ): '''simple docstring''' for model_class in self.all_generative_model_classes: __UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(A_,'use_cache' ): return __UpperCamelCase = model_class(A_ ).to(A_ ) if "use_cache" not in inputs: __UpperCamelCase = True __UpperCamelCase = model(**A_ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return __UpperCamelCase = ( getattr(A_,'decoder_layers',A_ ) or getattr(A_,'num_decoder_layers',A_ ) or config.num_hidden_layers ) __UpperCamelCase = getattr(A_,'num_kv_heads',config.num_attention_heads ) __UpperCamelCase = getattr(A_,'d_model',config.hidden_size ) __UpperCamelCase = embed_dim // num_attention_heads __UpperCamelCase = outputs['past_key_values'] self.assertEqual(len(A_ ),A_ ) __UpperCamelCase, __UpperCamelCase = inputs['input_ids'].shape for i in range(A_ ): if config.new_decoder_architecture: __UpperCamelCase = config.num_attention_heads elif config.multi_query: __UpperCamelCase = 1 self.assertEqual(len(past_kv[0] ),2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape,(batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape,(batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) __UpperCamelCase = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(A_ ) __UpperCamelCase = tokenizer('My favorite food is',return_tensors='pt' ).to(A_ ) __UpperCamelCase = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) __UpperCamelCase = model.generate(**A_,do_sample=A_,max_new_tokens=19 ) __UpperCamelCase = tokenizer.batch_decode(A_ )[0] self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Dict ): '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: __UpperCamelCase = AutoTokenizer.from_pretrained(A_ ) __UpperCamelCase = FalconForCausalLM.from_pretrained(A_ ) model.eval() model.to(A_ ) __UpperCamelCase = tokenizer('My favorite food is',return_tensors='pt' ).to(A_ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**A_,do_sample=A_,max_new_tokens=4 ) model.generate(**A_,do_sample=A_,max_new_tokens=4 ) model.generate(**A_,num_beams=2,max_new_tokens=4 ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: __UpperCamelCase = AutoTokenizer.from_pretrained(A_ ) __UpperCamelCase = FalconForCausalLM.from_pretrained(A_ ) model.eval() model.to(device=A_ ) __UpperCamelCase = tokenizer('My favorite food is',return_tensors='pt' ).to(A_ ) # Test results are the same with and without cache __UpperCamelCase = model.generate(**A_,do_sample=A_,max_new_tokens=20,use_cache=A_ ) __UpperCamelCase = model.generate(**A_,do_sample=A_,max_new_tokens=20,use_cache=A_ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field(default=_a , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) _lowercase = field( default=_a , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) __UpperCamelCase = import_module('tasks' ) try: __UpperCamelCase = getattr(_lowercase , model_args.task_type ) __UpperCamelCase = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __UpperCamelCase = token_classification_task.get_labels(data_args.labels ) __UpperCamelCase = dict(enumerate(_lowercase ) ) __UpperCamelCase = len(_lowercase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , idalabel=_lowercase , labelaid={label: i for i, label in enumerate(_lowercase )} , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __UpperCamelCase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( TokenClassificationDataset( token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( TokenClassificationDataset( token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_lowercase , _lowercase ) -> Tuple[List[int], List[int]]: __UpperCamelCase = np.argmax(_lowercase , axis=2 ) __UpperCamelCase, __UpperCamelCase = preds.shape __UpperCamelCase = [[] for _ in range(_lowercase )] __UpperCamelCase = [[] for _ in range(_lowercase )] for i in range(_lowercase ): for j in range(_lowercase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase, __UpperCamelCase = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_lowercase , _lowercase ), "precision": precision_score(_lowercase , _lowercase ), "recall": recall_score(_lowercase , _lowercase ), "f1": fa_score(_lowercase , _lowercase ), } # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) # Predict if training_args.do_predict: __UpperCamelCase = TokenClassificationDataset( token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = trainer.predict(_lowercase ) __UpperCamelCase, __UpperCamelCase = align_predictions(_lowercase , _lowercase ) __UpperCamelCase = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(_lowercase , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) # Save predictions __UpperCamelCase = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(_lowercase , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(_lowercase , _lowercase , _lowercase ) return results def _A ( _lowercase ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
1
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = 1 __UpperCamelCase = 3 __UpperCamelCase = (32, 32) __UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes,rng=random.Random(0 ) ).to(A_ ) return image @property def snake_case_ ( self: str ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'),up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'),cross_attention_dim=32,) return model @property def snake_case_ ( self: int ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,) return model @property def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,) return CLIPTextModel(A_ ) @property def snake_case_ ( self: Dict ): '''simple docstring''' def extract(*A_: Any,**A_: Dict ): class __lowerCamelCase : def __init__( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = torch.ones([0] ) def snake_case_ ( self: Optional[Any],A_: int ): '''simple docstring''' self.pixel_values.to(A_ ) return self return Out() return extract def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,beta_schedule='scaled_linear',clip_sample=A_,set_alpha_to_one=A_,) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=A_,scheduler=A_,vae=A_,text_encoder=A_,tokenizer=A_,safety_checker=A_,feature_extractor=self.dummy_extractor,) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = 'A painting of a squirrel eating a burger' __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(0 ) __UpperCamelCase = sd_pipe([prompt],generator=A_,guidance_scale=6.0,num_inference_steps=2,output_type='np' ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(0 ) __UpperCamelCase = sd_pipe( [prompt],generator=A_,guidance_scale=6.0,num_inference_steps=2,output_type='np',return_dict=A_,)[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=A_ ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=A_,scheduler=A_,vae=A_,text_encoder=A_,tokenizer=A_,safety_checker=A_,feature_extractor=self.dummy_extractor,) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = 'A painting of a squirrel eating a burger' __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(0 ) __UpperCamelCase = sd_pipe([prompt],generator=A_,guidance_scale=6.0,num_inference_steps=2,output_type='np' ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(0 ) __UpperCamelCase = sd_pipe( [prompt],generator=A_,guidance_scale=6.0,num_inference_steps=2,output_type='np',return_dict=A_,)[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe',safety_checker=A_ ) assert isinstance(A_,A_ ) assert isinstance(pipe.scheduler,A_ ) assert pipe.safety_checker is None __UpperCamelCase = pipe('example prompt',num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A_ ) __UpperCamelCase = StableDiffusionPipeline.from_pretrained(A_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None __UpperCamelCase = pipe('example prompt',num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda','This test requires a GPU' ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=A_ ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 __UpperCamelCase = unet.half() __UpperCamelCase = vae.half() __UpperCamelCase = bert.half() # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=A_,scheduler=A_,vae=A_,text_encoder=A_,tokenizer=A_,safety_checker=A_,feature_extractor=self.dummy_extractor,) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = 'A painting of a squirrel eating a burger' __UpperCamelCase = sd_pipe([prompt],num_inference_steps=2,output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5',safety_checker=A_ ) __UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) __UpperCamelCase = 40_0366_0346 __UpperCamelCase = 7 # without safety guidance (sld_guidance_scale = 0) __UpperCamelCase = torch.manual_seed(A_ ) __UpperCamelCase = sd_pipe( [prompt],generator=A_,guidance_scale=A_,num_inference_steps=50,output_type='np',width=512,height=512,sld_guidance_scale=0,) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) __UpperCamelCase = torch.manual_seed(A_ ) __UpperCamelCase = sd_pipe( [prompt],generator=A_,guidance_scale=A_,num_inference_steps=50,output_type='np',width=512,height=512,sld_guidance_scale=2000,sld_warmup_steps=7,sld_threshold=0.0_2_5,sld_momentum_scale=0.5,sld_mom_beta=0.7,) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5',safety_checker=A_ ) __UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = 'padme amidala taking a bath artwork, safe for work, no nudity' __UpperCamelCase = 27_3497_1755 __UpperCamelCase = 7 __UpperCamelCase = torch.manual_seed(A_ ) __UpperCamelCase = sd_pipe( [prompt],generator=A_,guidance_scale=A_,num_inference_steps=50,output_type='np',width=512,height=512,sld_guidance_scale=0,) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 __UpperCamelCase = torch.manual_seed(A_ ) __UpperCamelCase = sd_pipe( [prompt],generator=A_,guidance_scale=A_,num_inference_steps=50,output_type='np',width=512,height=512,sld_guidance_scale=2000,sld_warmup_steps=7,sld_threshold=0.0_2_5,sld_momentum_scale=0.5,sld_mom_beta=0.7,) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) __UpperCamelCase = 10_4435_5234 __UpperCamelCase = 12 __UpperCamelCase = torch.manual_seed(A_ ) __UpperCamelCase = sd_pipe( [prompt],generator=A_,guidance_scale=A_,num_inference_steps=50,output_type='np',width=512,height=512,sld_guidance_scale=0,) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 __UpperCamelCase = torch.manual_seed(A_ ) __UpperCamelCase = sd_pipe( [prompt],generator=A_,guidance_scale=A_,num_inference_steps=50,output_type='np',width=512,height=512,sld_guidance_scale=2000,sld_warmup_steps=7,sld_threshold=0.0_2_5,sld_momentum_scale=0.5,sld_mom_beta=0.7,) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
1
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _A ( *_lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'r' ) as fh: fcntl.flock(_lowercase , fcntl.LOCK_EX ) try: print(*_lowercase ) finally: fcntl.flock(_lowercase , fcntl.LOCK_UN ) __snake_case = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) __snake_case = torch.device('''cuda''', local_rank) __snake_case = socket.gethostname() __snake_case = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __snake_case = dist.get_rank() __snake_case = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
1
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def _A ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" def get_masked_lm_array(_lowercase ): __UpperCamelCase = f'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' __UpperCamelCase = tf.train.load_variable(_lowercase , _lowercase ) if "kernel" in name: __UpperCamelCase = array.transpose() return torch.from_numpy(_lowercase ) def get_encoder_array(_lowercase ): __UpperCamelCase = f'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' __UpperCamelCase = tf.train.load_variable(_lowercase , _lowercase ) if "kernel" in name: __UpperCamelCase = array.transpose() return torch.from_numpy(_lowercase ) def get_encoder_layer_array(_lowercase , _lowercase ): __UpperCamelCase = f'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' __UpperCamelCase = tf.train.load_variable(_lowercase , _lowercase ) if "kernel" in name: __UpperCamelCase = array.transpose() return torch.from_numpy(_lowercase ) def get_encoder_attention_layer_array(_lowercase , _lowercase , _lowercase ): __UpperCamelCase = f'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' __UpperCamelCase = tf.train.load_variable(_lowercase , _lowercase ) __UpperCamelCase = array.reshape(_lowercase ) if "kernel" in name: __UpperCamelCase = array.transpose() return torch.from_numpy(_lowercase ) print(f'''Loading model based on config from {config_path}...''' ) __UpperCamelCase = BertConfig.from_json_file(_lowercase ) __UpperCamelCase = BertForMaskedLM(_lowercase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __UpperCamelCase = model.bert.encoder.layer[layer_index] # Self-attention __UpperCamelCase = layer.attention.self __UpperCamelCase = get_encoder_attention_layer_array( _lowercase , '_query_dense/kernel' , self_attn.query.weight.data.shape ) __UpperCamelCase = get_encoder_attention_layer_array( _lowercase , '_query_dense/bias' , self_attn.query.bias.data.shape ) __UpperCamelCase = get_encoder_attention_layer_array( _lowercase , '_key_dense/kernel' , self_attn.key.weight.data.shape ) __UpperCamelCase = get_encoder_attention_layer_array( _lowercase , '_key_dense/bias' , self_attn.key.bias.data.shape ) __UpperCamelCase = get_encoder_attention_layer_array( _lowercase , '_value_dense/kernel' , self_attn.value.weight.data.shape ) __UpperCamelCase = get_encoder_attention_layer_array( _lowercase , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output __UpperCamelCase = layer.attention.output __UpperCamelCase = get_encoder_attention_layer_array( _lowercase , '_output_dense/kernel' , self_output.dense.weight.data.shape ) __UpperCamelCase = get_encoder_attention_layer_array( _lowercase , '_output_dense/bias' , self_output.dense.bias.data.shape ) __UpperCamelCase = get_encoder_layer_array(_lowercase , '_attention_layer_norm/gamma' ) __UpperCamelCase = get_encoder_layer_array(_lowercase , '_attention_layer_norm/beta' ) # Intermediate __UpperCamelCase = layer.intermediate __UpperCamelCase = get_encoder_layer_array(_lowercase , '_intermediate_dense/kernel' ) __UpperCamelCase = get_encoder_layer_array(_lowercase , '_intermediate_dense/bias' ) # Output __UpperCamelCase = layer.output __UpperCamelCase = get_encoder_layer_array(_lowercase , '_output_dense/kernel' ) __UpperCamelCase = get_encoder_layer_array(_lowercase , '_output_dense/bias' ) __UpperCamelCase = get_encoder_layer_array(_lowercase , '_output_layer_norm/gamma' ) __UpperCamelCase = get_encoder_layer_array(_lowercase , '_output_layer_norm/beta' ) # Embeddings __UpperCamelCase = get_encoder_array('_position_embedding_layer/embeddings' ) __UpperCamelCase = get_encoder_array('_type_embedding_layer/embeddings' ) __UpperCamelCase = get_encoder_array('_embedding_norm_layer/gamma' ) __UpperCamelCase = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head __UpperCamelCase = model.cls.predictions.transform __UpperCamelCase = get_masked_lm_array('dense/kernel' ) __UpperCamelCase = get_masked_lm_array('dense/bias' ) __UpperCamelCase = get_masked_lm_array('layer_norm/gamma' ) __UpperCamelCase = get_masked_lm_array('layer_norm/beta' ) __UpperCamelCase = get_masked_lm_array('embedding_table' ) # Pooling __UpperCamelCase = BertPooler(config=_lowercase ) __UpperCamelCase = get_encoder_array('_pooler_layer/kernel' ) __UpperCamelCase = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(_lowercase ) # Integration test - should load without any errors ;) __UpperCamelCase = BertForMaskedLM.from_pretrained(_lowercase ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model.''', ) __snake_case = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
1
import pytest import datasets # Import fixture modules as plugins __snake_case = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def _A ( _lowercase ) -> str: """simple docstring""" config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = tmp_path_factory.getbasetemp() / 'cache' __UpperCamelCase = test_hf_cache_home / 'datasets' __UpperCamelCase = test_hf_cache_home / 'metrics' __UpperCamelCase = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(_lowercase ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(_lowercase ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(_lowercase ) ) __UpperCamelCase = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(_lowercase ) ) __UpperCamelCase = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_lowercase ) ) @pytest.fixture(autouse=_lowercase , scope='session' ) def _A ( ) -> Dict: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_lowercase ) def _A ( _lowercase ) -> Tuple: """simple docstring""" monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , _lowercase ) @pytest.fixture def _A ( _lowercase ) -> Any: """simple docstring""" monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , _lowercase )
1
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __snake_case = 0 __snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __snake_case = tuple[int, int] class __lowerCamelCase : def __init__( self: str,A_: int,A_: int,A_: int,A_: int,A_: int,A_: Node | None,): '''simple docstring''' __UpperCamelCase = pos_x __UpperCamelCase = pos_y __UpperCamelCase = (pos_y, pos_x) __UpperCamelCase = goal_x __UpperCamelCase = goal_y __UpperCamelCase = g_cost __UpperCamelCase = parent __UpperCamelCase = self.calculate_heuristic() __UpperCamelCase = self.g_cost + self.h_cost def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.pos_x - self.goal_x __UpperCamelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A_ ) + abs(A_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self: int,A_: Node ): '''simple docstring''' return self.f_cost < other.f_cost class __lowerCamelCase : def __init__( self: Any,A_: TPosition,A_: TPosition ): '''simple docstring''' __UpperCamelCase = Node(start[1],start[0],goal[1],goal[0],0,A_ ) __UpperCamelCase = Node(goal[1],goal[0],goal[1],goal[0],9_9999,A_ ) __UpperCamelCase = [self.start] __UpperCamelCase = [] __UpperCamelCase = False def snake_case_ ( self: Any ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __UpperCamelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A_ ) self.closed_nodes.append(A_ ) __UpperCamelCase = self.get_successors(A_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A_ ) else: # retrieve the best current path __UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(A_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A_ ) else: self.open_nodes.append(A_ ) return [self.start.pos] def snake_case_ ( self: int,A_: Node ): '''simple docstring''' __UpperCamelCase = [] for action in delta: __UpperCamelCase = parent.pos_x + action[1] __UpperCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A_,A_,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,A_,) ) return successors def snake_case_ ( self: Any,A_: Node | None ): '''simple docstring''' __UpperCamelCase = node __UpperCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __UpperCamelCase = current_node.parent path.reverse() return path class __lowerCamelCase : def __init__( self: List[Any],A_: TPosition,A_: TPosition ): '''simple docstring''' __UpperCamelCase = AStar(A_,A_ ) __UpperCamelCase = AStar(A_,A_ ) __UpperCamelCase = False def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __UpperCamelCase = self.fwd_astar.open_nodes.pop(0 ) __UpperCamelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A_,A_ ) self.fwd_astar.closed_nodes.append(A_ ) self.bwd_astar.closed_nodes.append(A_ ) __UpperCamelCase = current_bwd_node __UpperCamelCase = current_fwd_node __UpperCamelCase = { self.fwd_astar: self.fwd_astar.get_successors(A_ ), self.bwd_astar: self.bwd_astar.get_successors(A_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A_ ) else: # retrieve the best current path __UpperCamelCase = astar.open_nodes.pop( astar.open_nodes.index(A_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A_ ) else: astar.open_nodes.append(A_ ) return [self.fwd_astar.start.pos] def snake_case_ ( self: List[str],A_: Node,A_: Node ): '''simple docstring''' __UpperCamelCase = self.fwd_astar.retrace_path(A_ ) __UpperCamelCase = self.bwd_astar.retrace_path(A_ ) bwd_path.pop() bwd_path.reverse() __UpperCamelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __snake_case = (0, 0) __snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __snake_case = time.time() __snake_case = AStar(init, goal) __snake_case = a_star.search() __snake_case = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") __snake_case = time.time() __snake_case = BidirectionalAStar(init, goal) __snake_case = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = VideoToVideoSDPipeline _lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} _lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} _lowercase = PipelineTesterMixin.required_optional_params - {"""latents"""} _lowercase = False # No `output_type`. _lowercase = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def snake_case_ ( self: List[str] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'),up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'),cross_attention_dim=32,attention_head_dim=4,) __UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,beta_schedule='scaled_linear',clip_sample=A_,set_alpha_to_one=A_,) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=128,) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act='gelu',projection_dim=512,) __UpperCamelCase = CLIPTextModel(A_ ) __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def snake_case_ ( self: Union[str, Any],A_: Any,A_: Any=0 ): '''simple docstring''' __UpperCamelCase = floats_tensor((1, 3, 3, 32, 32),rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = VideoToVideoSDPipeline(**A_ ) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = 'np' __UpperCamelCase = sd_pipe(**A_ ).frames __UpperCamelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __UpperCamelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',) def snake_case_ ( self: Any ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_,expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case_ ( self: str ): '''simple docstring''' pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def snake_case_ ( self: int ): '''simple docstring''' pass def snake_case_ ( self: Any ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL',torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase = torch.randn((1, 10, 3, 1024, 576),generator=A_ ) __UpperCamelCase = video.to('cuda' ) __UpperCamelCase = 'Spiderman is surfing' __UpperCamelCase = pipe(A_,video=A_,generator=A_,num_inference_steps=3,output_type='pt' ).frames __UpperCamelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
1
1
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __snake_case = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def _A ( _lowercase , _lowercase=None ) -> List[Any]: """simple docstring""" require_version(deps[pkg] , _lowercase )
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) __snake_case = parser.parse_args() __snake_case = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __snake_case = CLIPImageProcessor() __snake_case = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') __snake_case = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
1
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } __snake_case = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = {} with open(_lowercase , 'r' ) as file: for line_number, line in enumerate(_lowercase ): __UpperCamelCase = line.strip() if line: __UpperCamelCase = line.split() __UpperCamelCase = line_number __UpperCamelCase = words[0] __UpperCamelCase = value return result def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: """simple docstring""" for attribute in key.split('.' ): __UpperCamelCase = getattr(_lowercase , _lowercase ) __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowercase ): __UpperCamelCase = PARAM_MAPPING[full_name.split('.' )[-1]] __UpperCamelCase = 'param' if weight_type is not None and weight_type != "param": __UpperCamelCase = getattr(_lowercase , _lowercase ).shape elif weight_type is not None and weight_type == "param": __UpperCamelCase = hf_pointer for attribute in hf_param_name.split('.' ): __UpperCamelCase = getattr(_lowercase , _lowercase ) __UpperCamelCase = shape_pointer.shape # let's reduce dimension __UpperCamelCase = value[0] else: __UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCamelCase = value elif weight_type == "weight_g": __UpperCamelCase = value elif weight_type == "weight_v": __UpperCamelCase = value elif weight_type == "bias": __UpperCamelCase = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): __UpperCamelCase = getattr(_lowercase , _lowercase ) __UpperCamelCase = value else: __UpperCamelCase = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: """simple docstring""" __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowercase ): __UpperCamelCase = PARAM_MAPPING[full_name.split('.' )[-1]] __UpperCamelCase = 'param' if weight_type is not None and weight_type != "param": __UpperCamelCase = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __UpperCamelCase = '.'.join([key, hf_param_name] ) else: __UpperCamelCase = key __UpperCamelCase = value if 'lm_head' in full_key else value[0] __snake_case = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def _A ( _lowercase , _lowercase , _lowercase=None , _lowercase=None ) -> List[Any]: """simple docstring""" __UpperCamelCase = False for key, mapped_key in MAPPING.items(): __UpperCamelCase = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __UpperCamelCase = True if "*" in mapped_key: __UpperCamelCase = name.split(_lowercase )[0].split('.' )[-2] __UpperCamelCase = mapped_key.replace('*' , _lowercase ) if "weight_g" in name: __UpperCamelCase = 'weight_g' elif "weight_v" in name: __UpperCamelCase = 'weight_v' elif "bias" in name: __UpperCamelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCamelCase = 'weight' else: __UpperCamelCase = None if hf_dict is not None: rename_dict(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) else: set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) return is_used return is_used def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase = fairseq_model.state_dict() __UpperCamelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == 'group' , ) __UpperCamelCase = True else: __UpperCamelCase = load_wavaveca_layer(_lowercase , _lowercase , _lowercase ) if not is_used: unused_weights.append(_lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = full_name.split('conv_layers.' )[-1] __UpperCamelCase = name.split('.' ) __UpperCamelCase = int(items[0] ) __UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowercase ) @torch.no_grad() def _A ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=True , _lowercase=False ) -> Dict: """simple docstring""" if config_path is not None: __UpperCamelCase = WavaVecaConfig.from_pretrained(_lowercase ) else: __UpperCamelCase = WavaVecaConfig() if is_seq_class: __UpperCamelCase = read_txt_into_dict(_lowercase ) __UpperCamelCase = idalabel __UpperCamelCase = WavaVecaForSequenceClassification(_lowercase ) __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) feature_extractor.save_pretrained(_lowercase ) elif is_finetuned: if dict_path: __UpperCamelCase = Dictionary.load(_lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase = target_dict.pad_index __UpperCamelCase = target_dict.bos_index __UpperCamelCase = target_dict.eos_index __UpperCamelCase = len(target_dict.symbols ) __UpperCamelCase = os.path.join(_lowercase , 'vocab.json' ) if not os.path.isdir(_lowercase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_lowercase ) ) return os.makedirs(_lowercase , exist_ok=_lowercase ) __UpperCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCamelCase = 0 __UpperCamelCase = 1 with open(_lowercase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(_lowercase , _lowercase ) __UpperCamelCase = WavaVecaCTCTokenizer( _lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_lowercase , ) __UpperCamelCase = True if config.feat_extract_norm == 'layer' else False __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) __UpperCamelCase = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase ) processor.save_pretrained(_lowercase ) __UpperCamelCase = WavaVecaForCTC(_lowercase ) else: __UpperCamelCase = WavaVecaForPreTraining(_lowercase ) if is_finetuned or is_seq_class: __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: __UpperCamelCase = argparse.Namespace(task='audio_pretraining' ) __UpperCamelCase = fairseq.tasks.setup_task(_lowercase ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowercase ) __UpperCamelCase = model[0].eval() recursively_load_weights(_lowercase , _lowercase , not is_finetuned ) hf_wavavec.save_pretrained(_lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) __snake_case = parser.parse_args() __snake_case = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
1
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = ShapEImgaImgPipeline _lowercase = ["""image"""] _lowercase = ["""image"""] _lowercase = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] _lowercase = False @property def snake_case_ ( self: Dict ): '''simple docstring''' return 32 @property def snake_case_ ( self: Any ): '''simple docstring''' return 32 @property def snake_case_ ( self: Any ): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' return 8 @property def snake_case_ ( self: List[Any] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size,image_size=64,projection_dim=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_channels=3,num_hidden_layers=5,patch_size=1,) __UpperCamelCase = CLIPVisionModel(A_ ) return model @property def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = CLIPImageProcessor( crop_size=224,do_center_crop=A_,do_normalize=A_,do_resize=A_,image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],resample=3,size=224,) return image_processor @property def snake_case_ ( self: int ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __UpperCamelCase = PriorTransformer(**A_ ) return model @property def snake_case_ ( self: List[Any] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __UpperCamelCase = ShapERenderer(**A_ ) return model def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = self.dummy_prior __UpperCamelCase = self.dummy_image_encoder __UpperCamelCase = self.dummy_image_processor __UpperCamelCase = self.dummy_renderer __UpperCamelCase = HeunDiscreteScheduler( beta_schedule='exp',num_train_timesteps=1024,prediction_type='sample',use_karras_sigmas=A_,clip_sample=A_,clip_sample_range=1.0,) __UpperCamelCase = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def snake_case_ ( self: Union[str, Any],A_: Optional[Any],A_: str=0 ): '''simple docstring''' __UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 'cpu' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) ) __UpperCamelCase = output.images[0] __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __UpperCamelCase = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self: Any ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = torch_device == 'cpu' __UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2,test_max_difference=A_,relax_max_difference=A_,) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = 1 __UpperCamelCase = 2 __UpperCamelCase = self.get_dummy_inputs(A_ ) for key in inputs.keys(): if key in self.batch_params: __UpperCamelCase = batch_size * [inputs[key]] __UpperCamelCase = pipe(**A_,num_images_per_prompt=A_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) __UpperCamelCase = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(0 ) __UpperCamelCase = pipe( A_,generator=A_,guidance_scale=3.0,num_inference_steps=64,frame_size=64,output_type='np',).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(A_,A_ )
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __snake_case = '''src/diffusers''' # Matches is_xxx_available() __snake_case = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla __snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') __snake_case = ''' {0} = None ''' __snake_case = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' __snake_case = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = _re_backend.findall(_lowercase ) if len(_lowercase ) == 0: return None return "_and_".join(_lowercase ) def _A ( ) -> Tuple: """simple docstring""" with open(os.path.join(_lowercase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: __UpperCamelCase = f.readlines() # Get to the point we do the actual imports for type checking __UpperCamelCase = 0 __UpperCamelCase = {} # Go through the end of the file while line_index < len(_lowercase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __UpperCamelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 __UpperCamelCase = [] # Until we unindent, add backend objects to the list while line_index < len(_lowercase ) and len(lines[line_index] ) > 1: __UpperCamelCase = lines[line_index] __UpperCamelCase = _re_single_line_import.search(_lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_lowercase ) > 0: __UpperCamelCase = objects else: line_index += 1 return backend_specific_objects def _A ( _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(_lowercase ) elif name.islower(): return DUMMY_FUNCTION.format(_lowercase , _lowercase ) else: return DUMMY_CLASS.format(_lowercase , _lowercase ) def _A ( _lowercase=None ) -> Optional[Any]: """simple docstring""" if backend_specific_objects is None: __UpperCamelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename __UpperCamelCase = {} for backend, objects in backend_specific_objects.items(): __UpperCamelCase = '[' + ', '.join(f'''"{b}"''' for b in backend.split('_and_' ) ) + ']' __UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_lowercase , _lowercase ) for o in objects] ) __UpperCamelCase = dummy_file return dummy_files def _A ( _lowercase=False ) -> List[str]: """simple docstring""" __UpperCamelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __UpperCamelCase = {'torch': 'pt'} # Locate actual dummy modules and read their content. __UpperCamelCase = os.path.join(_lowercase , 'utils' ) __UpperCamelCase = { backend: os.path.join(_lowercase , f'''dummy_{short_names.get(_lowercase , _lowercase )}_objects.py''' ) for backend in dummy_files.keys() } __UpperCamelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_lowercase ): with open(_lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f: __UpperCamelCase = f.read() else: __UpperCamelCase = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py as the main ''' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' f'''diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py. Run `make fix-copies` ''' 'to fix this.' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __snake_case = parser.parse_args() check_dummies(args.fix_and_overwrite)
1
1
from typing import Any class __lowerCamelCase : def __init__( self: int,A_: Any ): '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None def __repr__( self: Any ): '''simple docstring''' return F'''Node({self.data})''' class __lowerCamelCase : def __init__( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = None def __iter__( self: int ): '''simple docstring''' __UpperCamelCase = self.head while node: yield node.data __UpperCamelCase = node.next def __len__( self: List[str] ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self: Any ): '''simple docstring''' return "->".join([str(A_ ) for item in self] ) def __getitem__( self: int,A_: int ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self: int,A_: int,A_: Any ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) __UpperCamelCase = self.head for _ in range(A_ ): __UpperCamelCase = current.next __UpperCamelCase = data def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' self.insert_nth(len(self ),A_ ) def snake_case_ ( self: List[Any],A_: Any ): '''simple docstring''' self.insert_nth(0,A_ ) def snake_case_ ( self: Optional[Any],A_: int,A_: Any ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) __UpperCamelCase = Node(A_ ) if self.head is None: __UpperCamelCase = new_node elif index == 0: __UpperCamelCase = self.head # link new_node to head __UpperCamelCase = new_node else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = new_node def snake_case_ ( self: str ): # print every node data '''simple docstring''' print(self ) def snake_case_ ( self: int ): '''simple docstring''' return self.delete_nth(0 ) def snake_case_ ( self: str ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def snake_case_ ( self: Any,A_: int = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) __UpperCamelCase = self.head # default first node if index == 0: __UpperCamelCase = self.head.next else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = temp.next.next return delete_node.data def snake_case_ ( self: Any ): '''simple docstring''' return self.head is None def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = self.head while current: # Store the current node's next node. __UpperCamelCase = current.next # Make the current node's next point backwards __UpperCamelCase = prev # Make the previous node be the current node __UpperCamelCase = current # Make the current node the next node (to progress iteration) __UpperCamelCase = next_node # Return prev in order to put the head at the end __UpperCamelCase = prev def _A ( ) -> None: """simple docstring""" __UpperCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(_lowercase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_lowercase ) == i linked_list.insert_nth(_lowercase , i + 1 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_lowercase ) == 9 assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) ) def _A ( ) -> None: """simple docstring""" __UpperCamelCase = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] __UpperCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(_lowercase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCamelCase = linked_list.delete_head() assert result == -9 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_lowercase ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_lowercase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _A ( ) -> List[str]: """simple docstring""" from doctest import testmod testmod() __UpperCamelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_lowercase ) print('\nReading/changing Node data using indexing:' ) print(f'''Element at Position 1: {linked_list[1]}''' ) __UpperCamelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_lowercase ) print(f'''length of linked_list is : {len(_lowercase )}''' ) if __name__ == "__main__": main()
1
import string def _A ( _lowercase ) -> None: """simple docstring""" for key in range(len(string.ascii_uppercase ) ): __UpperCamelCase = '' for symbol in message: if symbol in string.ascii_uppercase: __UpperCamelCase = string.ascii_uppercase.find(_lowercase ) __UpperCamelCase = num - key if num < 0: __UpperCamelCase = num + len(string.ascii_uppercase ) __UpperCamelCase = translated + string.ascii_uppercase[num] else: __UpperCamelCase = translated + symbol print(f'''Decryption using Key #{key}: {translated}''' ) def _A ( ) -> None: """simple docstring""" __UpperCamelCase = input('Encrypted message: ' ) __UpperCamelCase = message.upper() decrypt(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
1
__snake_case = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __snake_case = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __snake_case = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def _A ( _lowercase , _lowercase , _lowercase ) -> str: """simple docstring""" assert len(str(_lowercase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __UpperCamelCase = year // 1_00 __UpperCamelCase = (5 * (century % 4) + 2) % 7 __UpperCamelCase = year % 1_00 __UpperCamelCase = centurian % 12 __UpperCamelCase = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __UpperCamelCase = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) __UpperCamelCase = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = KandinskyInpaintPipeline _lowercase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _lowercase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _lowercase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowercase = False @property def snake_case_ ( self: int ): '''simple docstring''' return 32 @property def snake_case_ ( self: str ): '''simple docstring''' return 32 @property def snake_case_ ( self: Tuple ): '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' return 100 @property def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = MCLIPConfig( numDims=self.cross_attention_dim,transformerDimensions=self.text_embedder_hidden_size,hidden_size=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_hidden_layers=5,vocab_size=1005,) __UpperCamelCase = MultilingualCLIP(A_ ) __UpperCamelCase = text_encoder.eval() return text_encoder @property def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __UpperCamelCase = UNetaDConditionModel(**A_ ) return model @property def snake_case_ ( self: str ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self: str ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = self.dummy_tokenizer __UpperCamelCase = self.dummy_unet __UpperCamelCase = self.dummy_movq __UpperCamelCase = DDIMScheduler( num_train_timesteps=1000,beta_schedule='linear',beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,clip_sample=A_,set_alpha_to_one=A_,steps_offset=1,prediction_type='epsilon',thresholding=A_,) __UpperCamelCase = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def snake_case_ ( self: Tuple,A_: Optional[int],A_: Dict=0 ): '''simple docstring''' __UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(seed + 1 ) ).to(A_ ) # create init_image __UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = image.cpu().permute(0,2,3,1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) ) # create mask __UpperCamelCase = np.ones((64, 64),dtype=np.floataa ) __UpperCamelCase = 0 if str(A_ ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = 'cpu' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) ) __UpperCamelCase = output.images __UpperCamelCase = pipe( **self.get_dummy_inputs(A_ ),return_dict=A_,)[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def snake_case_ ( self: Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) __UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __UpperCamelCase = np.ones((768, 768),dtype=np.floataa ) __UpperCamelCase = 0 __UpperCamelCase = 'a hat' __UpperCamelCase = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior',torch_dtype=torch.floataa ) pipe_prior.to(A_ ) __UpperCamelCase = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint',torch_dtype=torch.floataa ) __UpperCamelCase = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase, __UpperCamelCase = pipe_prior( A_,generator=A_,num_inference_steps=5,negative_prompt='',).to_tuple() __UpperCamelCase = pipeline( A_,image=A_,mask_image=A_,image_embeds=A_,negative_image_embeds=A_,generator=A_,num_inference_steps=100,height=768,width=768,output_type='np',) __UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A_,A_ )
1
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __lowerCamelCase (_a ): _lowercase = """roformer""" def __init__( self: List[Any],A_: Union[str, Any]=5_0000,A_: List[str]=None,A_: List[Any]=768,A_: List[Any]=12,A_: List[str]=12,A_: Any=3072,A_: Tuple="gelu",A_: List[str]=0.1,A_: int=0.1,A_: str=1536,A_: Dict=2,A_: List[str]=0.0_2,A_: int=1E-12,A_: List[str]=0,A_: Optional[Any]=False,A_: str=True,**A_: Optional[int],): '''simple docstring''' super().__init__(pad_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size if embedding_size is None else embedding_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = rotary_value __UpperCamelCase = use_cache class __lowerCamelCase (_a ): @property def snake_case_ ( self: str ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
1
from typing import Any class __lowerCamelCase : def __init__( self: int,A_: Any ): '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None def __repr__( self: Any ): '''simple docstring''' return F'''Node({self.data})''' class __lowerCamelCase : def __init__( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = None def __iter__( self: int ): '''simple docstring''' __UpperCamelCase = self.head while node: yield node.data __UpperCamelCase = node.next def __len__( self: List[str] ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self: Any ): '''simple docstring''' return "->".join([str(A_ ) for item in self] ) def __getitem__( self: int,A_: int ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self: int,A_: int,A_: Any ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) __UpperCamelCase = self.head for _ in range(A_ ): __UpperCamelCase = current.next __UpperCamelCase = data def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' self.insert_nth(len(self ),A_ ) def snake_case_ ( self: List[Any],A_: Any ): '''simple docstring''' self.insert_nth(0,A_ ) def snake_case_ ( self: Optional[Any],A_: int,A_: Any ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) __UpperCamelCase = Node(A_ ) if self.head is None: __UpperCamelCase = new_node elif index == 0: __UpperCamelCase = self.head # link new_node to head __UpperCamelCase = new_node else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = new_node def snake_case_ ( self: str ): # print every node data '''simple docstring''' print(self ) def snake_case_ ( self: int ): '''simple docstring''' return self.delete_nth(0 ) def snake_case_ ( self: str ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def snake_case_ ( self: Any,A_: int = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) __UpperCamelCase = self.head # default first node if index == 0: __UpperCamelCase = self.head.next else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = temp.next.next return delete_node.data def snake_case_ ( self: Any ): '''simple docstring''' return self.head is None def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = self.head while current: # Store the current node's next node. __UpperCamelCase = current.next # Make the current node's next point backwards __UpperCamelCase = prev # Make the previous node be the current node __UpperCamelCase = current # Make the current node the next node (to progress iteration) __UpperCamelCase = next_node # Return prev in order to put the head at the end __UpperCamelCase = prev def _A ( ) -> None: """simple docstring""" __UpperCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(_lowercase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_lowercase ) == i linked_list.insert_nth(_lowercase , i + 1 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_lowercase ) == 9 assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) ) def _A ( ) -> None: """simple docstring""" __UpperCamelCase = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] __UpperCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(_lowercase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCamelCase = linked_list.delete_head() assert result == -9 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_lowercase ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_lowercase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _A ( ) -> List[str]: """simple docstring""" from doctest import testmod testmod() __UpperCamelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_lowercase ) print('\nReading/changing Node data using indexing:' ) print(f'''Element at Position 1: {linked_list[1]}''' ) __UpperCamelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_lowercase ) print(f'''length of linked_list is : {len(_lowercase )}''' ) if __name__ == "__main__": main()
1
1
def _A ( _lowercase ) -> bool: """simple docstring""" return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def _A ( _lowercase ) -> bool: """simple docstring""" __UpperCamelCase = credit_card_number __UpperCamelCase = 0 __UpperCamelCase = len(_lowercase ) - 2 for i in range(_lowercase , -1 , -2 ): # double the value of every second digit __UpperCamelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 __UpperCamelCase = cc_number[:i] + str(_lowercase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_lowercase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def _A ( _lowercase ) -> bool: """simple docstring""" __UpperCamelCase = f'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(f'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(_lowercase ) <= 16: print(f'''{error_message} of its length.''' ) return False if not validate_initial_digits(_lowercase ): print(f'''{error_message} of its first two digits.''' ) return False if not luhn_validation(_lowercase ): print(f'''{error_message} it fails the Luhn check.''' ) return False print(f'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('''4111111111111111''') validate_credit_card_number('''32323''')
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
1
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __snake_case = logging.get_logger(__name__) @add_end_docstrings(_a ) class __lowerCamelCase (_a ): def __init__( self: str,*A_: List[Any],**A_: Optional[int] ): '''simple docstring''' super().__init__(*A_,**A_ ) requires_backends(self,'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def snake_case_ ( self: Dict,A_: Tuple=None ): '''simple docstring''' __UpperCamelCase = {} if top_k is not None: __UpperCamelCase = top_k return {}, {}, postprocess_params def __call__( self: List[Any],A_: Union[str, List[str], "Image.Image", List["Image.Image"]],**A_: Optional[int] ): '''simple docstring''' return super().__call__(A_,**A_ ) def snake_case_ ( self: Optional[Any],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = load_image(A_ ) __UpperCamelCase = self.image_processor(images=A_,return_tensors=self.framework ) return model_inputs def snake_case_ ( self: str,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = self.model(**A_ ) return model_outputs def snake_case_ ( self: Optional[Any],A_: Dict,A_: Optional[int]=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: __UpperCamelCase = self.model.config.num_labels if self.framework == "pt": __UpperCamelCase = model_outputs.logits.softmax(-1 )[0] __UpperCamelCase, __UpperCamelCase = probs.topk(A_ ) elif self.framework == "tf": __UpperCamelCase = stable_softmax(model_outputs.logits,axis=-1 )[0] __UpperCamelCase = tf.math.top_k(A_,k=A_ ) __UpperCamelCase, __UpperCamelCase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) __UpperCamelCase = scores.tolist() __UpperCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(A_,A_ )]
1
__snake_case = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } __snake_case = {value: key for key, value in encode_dict.items()} def _A ( _lowercase ) -> str: """simple docstring""" __UpperCamelCase = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def _A ( _lowercase ) -> str: """simple docstring""" if set(_lowercase ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) __UpperCamelCase = '' for word in coded.split(): while len(_lowercase ) != 0: decoded += decode_dict[word[:5]] __UpperCamelCase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
1
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __snake_case = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' __snake_case = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' __snake_case = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase (datasets.Metric ): def snake_case_ ( self: Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string',id='token' ),id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string',id='token' ),id='sequence' ),id='references' ), } ),) def snake_case_ ( self: Union[str, Any],A_: List[List[List[str]]],A_: List[List[str]],A_: int = 1,A_: int = 4,): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=A_,hypotheses=A_,min_len=A_,max_len=A_ ) }
1
from collections.abc import Generator from math import sin def _A ( _lowercase ) -> bytes: """simple docstring""" if len(_lowercase ) != 32: raise ValueError('Input must be of length 32' ) __UpperCamelCase = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _A ( _lowercase ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __UpperCamelCase = format(_lowercase , '08x' )[-8:] __UpperCamelCase = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = B'' for char in message: bit_string += format(_lowercase , '08b' ).encode('utf-8' ) __UpperCamelCase = format(len(_lowercase ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_lowercase ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _A ( _lowercase ) -> Generator[list[int], None, None]: """simple docstring""" if len(_lowercase ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(_lowercase ) , 5_12 ): __UpperCamelCase = bit_string[pos : pos + 5_12] __UpperCamelCase = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _A ( _lowercase ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __UpperCamelCase = format(_lowercase , '032b' ) __UpperCamelCase = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(_lowercase , 2 ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" return (a + b) % 2**32 def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = preprocess(_lowercase ) __UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __UpperCamelCase = 0X67_45_23_01 __UpperCamelCase = 0Xef_cd_ab_89 __UpperCamelCase = 0X98_ba_dc_fe __UpperCamelCase = 0X10_32_54_76 __UpperCamelCase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_lowercase ): __UpperCamelCase = aa __UpperCamelCase = ba __UpperCamelCase = ca __UpperCamelCase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __UpperCamelCase = d ^ (b & (c ^ d)) __UpperCamelCase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __UpperCamelCase = c ^ (d & (b ^ c)) __UpperCamelCase = (5 * i + 1) % 16 elif i <= 47: __UpperCamelCase = b ^ c ^ d __UpperCamelCase = (3 * i + 5) % 16 else: __UpperCamelCase = c ^ (b | not_aa(_lowercase )) __UpperCamelCase = (7 * i) % 16 __UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32 __UpperCamelCase = d __UpperCamelCase = c __UpperCamelCase = b __UpperCamelCase = sum_aa(_lowercase , left_rotate_aa(_lowercase , shift_amounts[i] ) ) # Add hashed chunk to running total __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
1
1
from PIL import Image def _A ( _lowercase ) -> Image: """simple docstring""" __UpperCamelCase, __UpperCamelCase = image.size __UpperCamelCase = 0 __UpperCamelCase = image.load() for i in range(_lowercase ): for j in range(_lowercase ): __UpperCamelCase = pixels[j, i] mean += pixel mean //= width * height for j in range(_lowercase ): for i in range(_lowercase ): __UpperCamelCase = 2_55 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __snake_case = mean_threshold(Image.open('''path_to_image''').convert('''L''')) image.save('''output_image_path''')
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __snake_case = 0 __snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __snake_case = tuple[int, int] class __lowerCamelCase : def __init__( self: str,A_: int,A_: int,A_: int,A_: int,A_: int,A_: Node | None,): '''simple docstring''' __UpperCamelCase = pos_x __UpperCamelCase = pos_y __UpperCamelCase = (pos_y, pos_x) __UpperCamelCase = goal_x __UpperCamelCase = goal_y __UpperCamelCase = g_cost __UpperCamelCase = parent __UpperCamelCase = self.calculate_heuristic() __UpperCamelCase = self.g_cost + self.h_cost def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.pos_x - self.goal_x __UpperCamelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A_ ) + abs(A_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self: int,A_: Node ): '''simple docstring''' return self.f_cost < other.f_cost class __lowerCamelCase : def __init__( self: Any,A_: TPosition,A_: TPosition ): '''simple docstring''' __UpperCamelCase = Node(start[1],start[0],goal[1],goal[0],0,A_ ) __UpperCamelCase = Node(goal[1],goal[0],goal[1],goal[0],9_9999,A_ ) __UpperCamelCase = [self.start] __UpperCamelCase = [] __UpperCamelCase = False def snake_case_ ( self: Any ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __UpperCamelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A_ ) self.closed_nodes.append(A_ ) __UpperCamelCase = self.get_successors(A_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A_ ) else: # retrieve the best current path __UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(A_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A_ ) else: self.open_nodes.append(A_ ) return [self.start.pos] def snake_case_ ( self: int,A_: Node ): '''simple docstring''' __UpperCamelCase = [] for action in delta: __UpperCamelCase = parent.pos_x + action[1] __UpperCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A_,A_,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,A_,) ) return successors def snake_case_ ( self: Any,A_: Node | None ): '''simple docstring''' __UpperCamelCase = node __UpperCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __UpperCamelCase = current_node.parent path.reverse() return path class __lowerCamelCase : def __init__( self: List[Any],A_: TPosition,A_: TPosition ): '''simple docstring''' __UpperCamelCase = AStar(A_,A_ ) __UpperCamelCase = AStar(A_,A_ ) __UpperCamelCase = False def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __UpperCamelCase = self.fwd_astar.open_nodes.pop(0 ) __UpperCamelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A_,A_ ) self.fwd_astar.closed_nodes.append(A_ ) self.bwd_astar.closed_nodes.append(A_ ) __UpperCamelCase = current_bwd_node __UpperCamelCase = current_fwd_node __UpperCamelCase = { self.fwd_astar: self.fwd_astar.get_successors(A_ ), self.bwd_astar: self.bwd_astar.get_successors(A_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A_ ) else: # retrieve the best current path __UpperCamelCase = astar.open_nodes.pop( astar.open_nodes.index(A_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A_ ) else: astar.open_nodes.append(A_ ) return [self.fwd_astar.start.pos] def snake_case_ ( self: List[str],A_: Node,A_: Node ): '''simple docstring''' __UpperCamelCase = self.fwd_astar.retrace_path(A_ ) __UpperCamelCase = self.bwd_astar.retrace_path(A_ ) bwd_path.pop() bwd_path.reverse() __UpperCamelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __snake_case = (0, 0) __snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __snake_case = time.time() __snake_case = AStar(init, goal) __snake_case = a_star.search() __snake_case = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") __snake_case = time.time() __snake_case = BidirectionalAStar(init, goal) __snake_case = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
1
1
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def _A ( _lowercase ) -> str: """simple docstring""" if "model" in orig_key: __UpperCamelCase = orig_key.replace('model.' , '' ) if "norm1" in orig_key: __UpperCamelCase = orig_key.replace('norm1' , 'attention.output.LayerNorm' ) if "norm2" in orig_key: __UpperCamelCase = orig_key.replace('norm2' , 'output.LayerNorm' ) if "norm" in orig_key: __UpperCamelCase = orig_key.replace('norm' , 'LayerNorm' ) if "transformer" in orig_key: __UpperCamelCase = orig_key.split('.' )[0].split('_' )[-1] __UpperCamelCase = orig_key.replace(f'''transformer_{layer_num}''' , f'''encoder.layer.{layer_num}''' ) if "mha.attn" in orig_key: __UpperCamelCase = orig_key.replace('mha.attn' , 'attention.self' ) if "mha" in orig_key: __UpperCamelCase = orig_key.replace('mha' , 'attention' ) if "W_q" in orig_key: __UpperCamelCase = orig_key.replace('W_q' , 'self.query' ) if "W_k" in orig_key: __UpperCamelCase = orig_key.replace('W_k' , 'self.key' ) if "W_v" in orig_key: __UpperCamelCase = orig_key.replace('W_v' , 'self.value' ) if "ff1" in orig_key: __UpperCamelCase = orig_key.replace('ff1' , 'intermediate.dense' ) if "ff2" in orig_key: __UpperCamelCase = orig_key.replace('ff2' , 'output.dense' ) if "ff" in orig_key: __UpperCamelCase = orig_key.replace('ff' , 'output.dense' ) if "mlm_class" in orig_key: __UpperCamelCase = orig_key.replace('mlm.mlm_class' , 'cls.predictions.decoder' ) if "mlm" in orig_key: __UpperCamelCase = orig_key.replace('mlm' , 'cls.predictions.transform' ) if "cls" not in orig_key: __UpperCamelCase = 'yoso.' + orig_key return orig_key def _A ( _lowercase , _lowercase ) -> List[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): __UpperCamelCase = orig_state_dict.pop(_lowercase ) if ("pooler" in key) or ("sen_class" in key): continue else: __UpperCamelCase = val __UpperCamelCase = orig_state_dict['cls.predictions.decoder.bias'] __UpperCamelCase = torch.arange(_lowercase ).expand((1, -1) ) + 2 return orig_state_dict def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = torch.load(_lowercase , map_location='cpu' )['model_state_dict'] __UpperCamelCase = YosoConfig.from_json_file(_lowercase ) __UpperCamelCase = YosoForMaskedLM(_lowercase ) __UpperCamelCase = convert_checkpoint_helper(config.max_position_embeddings , _lowercase ) print(model.load_state_dict(_lowercase ) ) model.eval() model.save_pretrained(_lowercase ) print(f'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __snake_case = get_tests_dir('''fixtures''') class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = mock.Mock() __UpperCamelCase = 500 __UpperCamelCase = {} __UpperCamelCase = HTTPError __UpperCamelCase = {} # Download this model to make sure it's in the cache. __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request',return_value=A_ ) as mock_head: __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class __lowerCamelCase (unittest.TestCase ): @classmethod def snake_case_ ( cls: Tuple ): '''simple docstring''' __UpperCamelCase = TOKEN HfFolder.save_token(A_ ) @classmethod def snake_case_ ( cls: Tuple ): '''simple docstring''' try: delete_repo(token=cls._token,repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('test-feature-extractor',use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) # Reset repo delete_repo(token=self._token,repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_,repo_id='test-feature-extractor',push_to_hub=A_,use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('valid_org/test-feature-extractor',use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) # Reset repo delete_repo(token=self._token,repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_,repo_id='valid_org/test-feature-extractor-org',push_to_hub=A_,use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) def snake_case_ ( self: int ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() __UpperCamelCase = CustomFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('test-dynamic-feature-extractor',use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map,{'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'},) __UpperCamelCase = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''',trust_remote_code=A_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__,'CustomFeatureExtractor' )
1
1
def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = generate_pascal_triangle(_lowercase ) for row_idx in range(_lowercase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def _A ( _lowercase ) -> list[list[int]]: """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) __UpperCamelCase = [] for current_row_idx in range(_lowercase ): __UpperCamelCase = populate_current_row(_lowercase , _lowercase ) triangle.append(_lowercase ) return triangle def _A ( _lowercase , _lowercase ) -> list[int]: """simple docstring""" __UpperCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase, __UpperCamelCase = 1, 1 for current_col_idx in range(1 , _lowercase ): calculate_current_element( _lowercase , _lowercase , _lowercase , _lowercase ) return current_row def _A ( _lowercase , _lowercase , _lowercase , _lowercase , ) -> None: """simple docstring""" __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase = above_to_left_elt + above_to_right_elt def _A ( _lowercase ) -> list[list[int]]: """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) __UpperCamelCase = [[1]] for row_index in range(1 , _lowercase ): __UpperCamelCase = [0] + result[-1] + [0] __UpperCamelCase = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase = sum(divmod(_lowercase , 2 ) ) __UpperCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase = row_first_half + row_second_half result.append(_lowercase ) return result def _A ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowercase , _lowercase ) -> None: __UpperCamelCase = f'''{func.__name__}({value})''' __UpperCamelCase = timeit(f'''__main__.{call}''' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_lowercase , _lowercase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __snake_case = 1_6 __snake_case = 3_2 def _A ( _lowercase , _lowercase = 16 , _lowercase = "bert-base-cased" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase ) __UpperCamelCase = load_dataset('glue' , 'mrpc' ) def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowercase , max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCamelCase = datasets.map( _lowercase , batched=_lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowercase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(_lowercase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) __UpperCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) return train_dataloader, eval_dataloader def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['lr'] __UpperCamelCase = int(config['num_epochs'] ) __UpperCamelCase = int(config['seed'] ) __UpperCamelCase = int(config['batch_size'] ) __UpperCamelCase = args.model_name_or_path set_seed(_lowercase ) __UpperCamelCase, __UpperCamelCase = get_dataloaders(_lowercase , _lowercase , _lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase ) # Instantiate optimizer __UpperCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __UpperCamelCase = optimizer_cls(params=model.parameters() , lr=_lowercase ) if accelerator.state.deepspeed_plugin is not None: __UpperCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: __UpperCamelCase = 1 __UpperCamelCase = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , ) else: __UpperCamelCase = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # We need to keep track of how many total steps we have iterated over __UpperCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __UpperCamelCase = 0 # Now we train the model __UpperCamelCase = evaluate.load('glue' , 'mrpc' ) __UpperCamelCase = 0 __UpperCamelCase = {} for epoch in range(_lowercase , _lowercase ): model.train() for step, batch in enumerate(_lowercase ): __UpperCamelCase = model(**_lowercase ) __UpperCamelCase = outputs.loss __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __UpperCamelCase = 0 for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**_lowercase ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __UpperCamelCase, __UpperCamelCase = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowercase ) - 1: __UpperCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __UpperCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowercase , references=_lowercase , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _lowercase ) __UpperCamelCase = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: __UpperCamelCase = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(_lowercase , _lowercase ) def _A ( ) -> List[str]: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_lowercase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowercase , ) parser.add_argument( '--output_dir' , type=_lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=_lowercase , default=_lowercase , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=_lowercase , default=3 , help='Number of train epochs.' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
1
1
import os import sys import unittest __snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __snake_case = os.path.join(git_repo_path, '''src''', '''diffusers''') class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = find_backend(' if not is_torch_available():' ) self.assertEqual(A_,'torch' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __UpperCamelCase = find_backend(' if not (is_torch_available() and is_transformers_available()):' ) self.assertEqual(A_,'torch_and_transformers' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __UpperCamelCase = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' ) self.assertEqual(A_,'torch_and_transformers_and_onnx' ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch',A_ ) self.assertIn('torch_and_transformers',A_ ) self.assertIn('flax_and_transformers',A_ ) self.assertIn('torch_and_transformers_and_onnx',A_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel',objects['torch'] ) self.assertIn('FlaxUNet2DConditionModel',objects['flax'] ) self.assertIn('StableDiffusionPipeline',objects['torch_and_transformers'] ) self.assertIn('FlaxStableDiffusionPipeline',objects['flax_and_transformers'] ) self.assertIn('LMSDiscreteScheduler',objects['torch_and_scipy'] ) self.assertIn('OnnxStableDiffusionPipeline',objects['torch_and_transformers_and_onnx'] ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = create_dummy_object('CONSTANT','\'torch\'' ) self.assertEqual(A_,'\nCONSTANT = None\n' ) __UpperCamelCase = create_dummy_object('function','\'torch\'' ) self.assertEqual( A_,'\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) __UpperCamelCase = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' __UpperCamelCase = create_dummy_object('FakeClass','\'torch\'' ) self.assertEqual(A_,A_ ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' __UpperCamelCase = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'],A_ )
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCamelCase (_a ): @slow @require_torch def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny','prajjwal1/bert-tiny' ) __UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) __UpperCamelCase = bertabert.config.encoder.vocab_size __UpperCamelCase = tokenizer.sep_token_id __UpperCamelCase = tokenizer.cls_token_id __UpperCamelCase = 128 __UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='train[:1%]' ) __UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='validation[:1%]' ) __UpperCamelCase = train_dataset.select(range(32 ) ) __UpperCamelCase = val_dataset.select(range(16 ) ) __UpperCamelCase = 4 def _map_to_encoder_decoder_inputs(A_: Dict ): # Tokenizer will automatically set [BOS] <text> [EOS] __UpperCamelCase = tokenizer(batch['article'],padding='max_length',truncation=A_,max_length=512 ) __UpperCamelCase = tokenizer(batch['highlights'],padding='max_length',truncation=A_,max_length=128 ) __UpperCamelCase = inputs.input_ids __UpperCamelCase = inputs.attention_mask __UpperCamelCase = outputs.input_ids __UpperCamelCase = outputs.input_ids.copy() __UpperCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] __UpperCamelCase = outputs.attention_mask assert all(len(A_ ) == 512 for x in inputs.input_ids ) assert all(len(A_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(A_: str ): __UpperCamelCase = pred.label_ids __UpperCamelCase = pred.predictions # all unnecessary tokens are removed __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A_ ) )] ) / len(A_ ) return {"accuracy": accuracy} # map train dataset __UpperCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],) train_dataset.set_format( type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],) # same for validation dataset __UpperCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],) val_dataset.set_format( type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],) __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = SeqaSeqTrainingArguments( output_dir=A_,per_device_train_batch_size=A_,per_device_eval_batch_size=A_,predict_with_generate=A_,evaluation_strategy='steps',do_train=A_,do_eval=A_,warmup_steps=0,eval_steps=2,logging_steps=2,) # instantiate trainer __UpperCamelCase = SeqaSeqTrainer( model=A_,args=A_,compute_metrics=_compute_metrics,train_dataset=A_,eval_dataset=A_,tokenizer=A_,) # start training trainer.train()
1
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class __lowerCamelCase (_a , _a ): _lowercase = """convnextv2""" def __init__( self: int,A_: List[str]=3,A_: str=4,A_: int=4,A_: List[str]=None,A_: Any=None,A_: List[str]="gelu",A_: Any=0.0_2,A_: int=1E-12,A_: List[Any]=0.0,A_: List[Any]=224,A_: List[Any]=None,A_: List[Any]=None,**A_: int,): '''simple docstring''' super().__init__(**A_ ) __UpperCamelCase = num_channels __UpperCamelCase = patch_size __UpperCamelCase = num_stages __UpperCamelCase = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __UpperCamelCase = [3, 3, 9, 3] if depths is None else depths __UpperCamelCase = hidden_act __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = drop_path_rate __UpperCamelCase = image_size __UpperCamelCase = ['stem'] + [F'''stage{idx}''' for idx in range(1,len(self.depths ) + 1 )] __UpperCamelCase, __UpperCamelCase = get_aligned_output_features_output_indices( out_features=A_,out_indices=A_,stage_names=self.stage_names )
1
def _A ( _lowercase = 1_00 ) -> int: """simple docstring""" __UpperCamelCase = 0 __UpperCamelCase = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
1
1
import string def _A ( _lowercase ) -> None: """simple docstring""" for key in range(len(string.ascii_uppercase ) ): __UpperCamelCase = '' for symbol in message: if symbol in string.ascii_uppercase: __UpperCamelCase = string.ascii_uppercase.find(_lowercase ) __UpperCamelCase = num - key if num < 0: __UpperCamelCase = num + len(string.ascii_uppercase ) __UpperCamelCase = translated + string.ascii_uppercase[num] else: __UpperCamelCase = translated + symbol print(f'''Decryption using Key #{key}: {translated}''' ) def _A ( ) -> None: """simple docstring""" __UpperCamelCase = input('Encrypted message: ' ) __UpperCamelCase = message.upper() decrypt(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _A ( _lowercase , _lowercase=0 ) -> Dict: """simple docstring""" return sorted(_lowercase , key=lambda _lowercase : x[column] ) def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> List[Any]: """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , _lowercase ): __UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCamelCase = current_dis return min_dis def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> Tuple: """simple docstring""" for i in range(min(6 , points_counts - 1 ) , _lowercase ): for j in range(max(0 , i - 6 ) , _lowercase ): __UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCamelCase = current_dis return min_dis def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(_lowercase , _lowercase ) # recursion __UpperCamelCase = points_counts // 2 __UpperCamelCase = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[:mid] , _lowercase ) __UpperCamelCase = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[mid:] , points_counts - mid ) __UpperCamelCase = min(_lowercase , _lowercase ) __UpperCamelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowercase ) __UpperCamelCase = dis_between_closest_in_strip( _lowercase , len(_lowercase ) , _lowercase ) return min(_lowercase , _lowercase ) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = column_based_sort(_lowercase , column=0 ) __UpperCamelCase = column_based_sort(_lowercase , column=1 ) return ( closest_pair_of_points_sqr( _lowercase , _lowercase , _lowercase ) ) ** 0.5 if __name__ == "__main__": __snake_case = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
1
1
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = LEDTokenizer _lowercase = LEDTokenizerFast _lowercase = True def snake_case_ ( self: str ): '''simple docstring''' super().setUp() __UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __UpperCamelCase = {'unk_token': '<unk>'} __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file,'w',encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def snake_case_ ( self: Union[str, Any],**A_: Union[str, Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],**A_: int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: int,A_: Tuple ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def snake_case_ ( self: Tuple ): '''simple docstring''' return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def snake_case_ ( self: Any ): '''simple docstring''' return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __UpperCamelCase = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase = tokenizer(A_,max_length=len(A_ ),padding=A_,return_tensors='pt' ) self.assertIsInstance(A_,A_ ) self.assertEqual((2, 9),batch.input_ids.shape ) self.assertEqual((2, 9),batch.attention_mask.shape ) __UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(A_,A_ ) @require_torch def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase = tokenizer(A_,padding=A_,return_tensors='pt' ) self.assertIn('input_ids',A_ ) self.assertIn('attention_mask',A_ ) self.assertNotIn('labels',A_ ) self.assertNotIn('decoder_attention_mask',A_ ) @require_torch def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase = tokenizer(text_target=A_,max_length=32,padding='max_length',return_tensors='pt' ) self.assertEqual(32,targets['input_ids'].shape[1] ) @require_torch def snake_case_ ( self: Any ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'],padding=A_,truncation=A_,return_tensors='pt' ) self.assertIsInstance(A_,A_ ) self.assertEqual(batch.input_ids.shape,(2, 5122) ) @require_torch def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = ['A long paragraph for summarization.'] __UpperCamelCase = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase = tokenizer(A_,return_tensors='pt' ) __UpperCamelCase = tokenizer(text_target=A_,return_tensors='pt' ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case_ ( self: List[Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase = ['Summary of the text.', 'Another summary.'] __UpperCamelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __UpperCamelCase = tokenizer(A_,padding=A_ ) __UpperCamelCase = [[0] * len(A_ ) for x in encoded_output['input_ids']] __UpperCamelCase = tokenizer.pad(A_ ) self.assertSequenceEqual(outputs['global_attention_mask'],A_ ) def snake_case_ ( self: Dict ): '''simple docstring''' pass def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCamelCase = self.rust_tokenizer_class.from_pretrained(A_,**A_ ) __UpperCamelCase = self.tokenizer_class.from_pretrained(A_,**A_ ) __UpperCamelCase = 'A, <mask> AllenNLP sentence.' __UpperCamelCase = tokenizer_r.encode_plus(A_,add_special_tokens=A_,return_token_type_ids=A_ ) __UpperCamelCase = tokenizer_p.encode_plus(A_,add_special_tokens=A_,return_token_type_ids=A_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ),sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ),sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ),) __UpperCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) __UpperCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'],[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'],[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( A_,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( A_,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class __lowerCamelCase (_a ): _lowercase = """bert""" def __init__( self: Any,A_: Dict=3_0522,A_: Optional[Any]=768,A_: Union[str, Any]=12,A_: List[Any]=12,A_: Optional[int]=3072,A_: Union[str, Any]="gelu",A_: List[str]=0.1,A_: Dict=0.1,A_: Optional[int]=512,A_: Optional[Any]=2,A_: Union[str, Any]=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=0,A_: List[Any]="absolute",A_: str=True,A_: Union[str, Any]=None,**A_: int,): '''simple docstring''' super().__init__(pad_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
1
1
from datetime import datetime import requests def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __UpperCamelCase = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(_lowercase ).content if __name__ == "__main__": __snake_case = input('''Enter Video/IGTV url: ''').strip() __snake_case = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
1
def _A ( _lowercase ) -> int: """simple docstring""" assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(_lowercase ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , _lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
1
1
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput __snake_case = '''scheduler_config.json''' class __lowerCamelCase (_a ): _lowercase = 1 _lowercase = 2 _lowercase = 3 _lowercase = 4 _lowercase = 5 @dataclass class __lowerCamelCase (_a ): _lowercase = 42 class __lowerCamelCase : _lowercase = SCHEDULER_CONFIG_NAME _lowercase = ["""dtype"""] _lowercase = [] _lowercase = True @classmethod def snake_case_ ( cls: Any,A_: Dict[str, Any] = None,A_: Optional[str] = None,A_: Union[str, Any]=False,**A_: List[str],): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = cls.load_config( pretrained_model_name_or_path=A_,subfolder=A_,return_unused_kwargs=A_,**A_,) __UpperCamelCase, __UpperCamelCase = cls.from_config(A_,return_unused_kwargs=A_,**A_ ) if hasattr(A_,'create_state' ) and getattr(A_,'has_state',A_ ): __UpperCamelCase = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def snake_case_ ( self: str,A_: Union[str, os.PathLike],A_: bool = False,**A_: Any ): '''simple docstring''' self.save_config(save_directory=A_,push_to_hub=A_,**A_ ) @property def snake_case_ ( self: int ): '''simple docstring''' return self._get_compatibles() @classmethod def snake_case_ ( cls: Optional[int] ): '''simple docstring''' __UpperCamelCase = list(set([cls.__name__] + cls._compatibles ) ) __UpperCamelCase = importlib.import_module(__name__.split('.' )[0] ) __UpperCamelCase = [ getattr(A_,A_ ) for c in compatible_classes_str if hasattr(A_,A_ ) ] return compatible_classes def _A ( _lowercase , _lowercase ) -> jnp.ndarray: """simple docstring""" assert len(_lowercase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_lowercase ) - x.ndim) ) , _lowercase ) def _A ( _lowercase , _lowercase=0.9_99 , _lowercase=jnp.floataa ) -> jnp.ndarray: """simple docstring""" def alpha_bar(_lowercase ): return math.cos((time_step + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 __UpperCamelCase = [] for i in range(_lowercase ): __UpperCamelCase = i / num_diffusion_timesteps __UpperCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_lowercase ) / alpha_bar(_lowercase ) , _lowercase ) ) return jnp.array(_lowercase , dtype=_lowercase ) @flax.struct.dataclass class __lowerCamelCase : _lowercase = 42 _lowercase = 42 _lowercase = 42 @classmethod def snake_case_ ( cls: Any,A_: Tuple ): '''simple docstring''' __UpperCamelCase = scheduler.config if config.trained_betas is not None: __UpperCamelCase = jnp.asarray(config.trained_betas,dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __UpperCamelCase = jnp.linspace(config.beta_start,config.beta_end,config.num_train_timesteps,dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __UpperCamelCase = ( jnp.linspace( config.beta_start**0.5,config.beta_end**0.5,config.num_train_timesteps,dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __UpperCamelCase = betas_for_alpha_bar(config.num_train_timesteps,dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) __UpperCamelCase = 1.0 - betas __UpperCamelCase = jnp.cumprod(A_,axis=0 ) return cls( alphas=A_,betas=A_,alphas_cumprod=A_,) def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = state.alphas_cumprod __UpperCamelCase = alphas_cumprod[timesteps] ** 0.5 __UpperCamelCase = sqrt_alpha_prod.flatten() __UpperCamelCase = broadcast_to_shape_from_left(_lowercase , original_samples.shape ) __UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 __UpperCamelCase = sqrt_one_minus_alpha_prod.flatten() __UpperCamelCase = broadcast_to_shape_from_left(_lowercase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase, __UpperCamelCase = get_sqrt_alpha_prod(_lowercase , _lowercase , _lowercase , _lowercase ) __UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: """simple docstring""" __UpperCamelCase, __UpperCamelCase = get_sqrt_alpha_prod(_lowercase , _lowercase , _lowercase , _lowercase ) __UpperCamelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _A ( ) -> int: """simple docstring""" __UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' __UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('RGB' ) return image def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = dct.pop(_lowercase ) __UpperCamelCase = val def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) __UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __UpperCamelCase = torch.cat((q_bias, torch.zeros_like(_lowercase , requires_grad=_lowercase ), v_bias) ) __UpperCamelCase = qkv_bias def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = 3_64 if 'coco' in model_name else 2_24 __UpperCamelCase = BlipaVisionConfig(image_size=_lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_lowercase ).to_dict() elif "opt-6.7b" in model_name: __UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_lowercase ).to_dict() elif "t5-xl" in model_name: __UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() __UpperCamelCase = BlipaConfig(vision_config=_lowercase , text_config=_lowercase ) return config, image_size @torch.no_grad() def _A ( _lowercase , _lowercase=None , _lowercase=False ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) __UpperCamelCase = tokenizer('\n' , add_special_tokens=_lowercase ).input_ids[0] __UpperCamelCase, __UpperCamelCase = get_blipa_config(_lowercase , eos_token_id=_lowercase ) __UpperCamelCase = BlipaForConditionalGeneration(_lowercase ).eval() __UpperCamelCase = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } __UpperCamelCase, __UpperCamelCase = model_name_to_original[model_name] # load original model print('Loading original model...' ) __UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu' __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = load_model_and_preprocess( name=_lowercase , model_type=_lowercase , is_eval=_lowercase , device=_lowercase ) original_model.eval() print('Done!' ) # update state dict keys __UpperCamelCase = original_model.state_dict() __UpperCamelCase = create_rename_keys(_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __UpperCamelCase = state_dict.pop(_lowercase ) if key.startswith('Qformer.bert' ): __UpperCamelCase = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: __UpperCamelCase = key.replace('self' , 'attention' ) if "opt_proj" in key: __UpperCamelCase = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: __UpperCamelCase = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): __UpperCamelCase = key.replace('opt' , 'language' ) if key.startswith('t5' ): __UpperCamelCase = key.replace('t5' , 'language' ) __UpperCamelCase = val # read in qv biases read_in_q_v_bias(_lowercase , _lowercase ) __UpperCamelCase, __UpperCamelCase = hf_model.load_state_dict(_lowercase , strict=_lowercase ) assert len(_lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __UpperCamelCase = load_demo_image() __UpperCamelCase = vis_processors['eval'](_lowercase ).unsqueeze(0 ).to(_lowercase ) __UpperCamelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_lowercase ) # create processor __UpperCamelCase = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=_lowercase , image_std=_lowercase ) __UpperCamelCase = BlipaProcessor(image_processor=_lowercase , tokenizer=_lowercase ) __UpperCamelCase = processor(images=_lowercase , return_tensors='pt' ).pixel_values.to(_lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowercase , _lowercase ) original_model.to(_lowercase ) hf_model.to(_lowercase ) with torch.no_grad(): if "opt" in model_name: __UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits __UpperCamelCase = hf_model(_lowercase , _lowercase ).logits else: __UpperCamelCase = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits __UpperCamelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) __UpperCamelCase = hf_model(_lowercase , _lowercase , labels=_lowercase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __UpperCamelCase = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=_lowercase ) assert torch.allclose(logits[0, :3, :3] , _lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": __UpperCamelCase = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=_lowercase ) else: # cast to same type __UpperCamelCase = logits.dtype assert torch.allclose(original_logits.to(_lowercase ) , _lowercase , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) __UpperCamelCase = '' __UpperCamelCase = tokenizer(_lowercase , return_tensors='pt' ).input_ids.to(_lowercase ) __UpperCamelCase = original_model.generate({'image': original_pixel_values} ) __UpperCamelCase = hf_model.generate( _lowercase , _lowercase , do_sample=_lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , _lowercase ) __UpperCamelCase = input_ids.shape[1] __UpperCamelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowercase ) __UpperCamelCase = [text.strip() for text in output_text] print('HF generation:' , _lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowercase ) hf_model.save_pretrained(_lowercase ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() __snake_case = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __snake_case = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
1
1
from __future__ import annotations __snake_case = '''#''' class __lowerCamelCase : def __init__( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = {} def snake_case_ ( self: str,A_: str ): '''simple docstring''' __UpperCamelCase = self._trie for char in text: if char not in trie: __UpperCamelCase = {} __UpperCamelCase = trie[char] __UpperCamelCase = True def snake_case_ ( self: Union[str, Any],A_: str ): '''simple docstring''' __UpperCamelCase = self._trie for char in prefix: if char in trie: __UpperCamelCase = trie[char] else: return [] return self._elements(A_ ) def snake_case_ ( self: Any,A_: dict ): '''simple docstring''' __UpperCamelCase = [] for c, v in d.items(): __UpperCamelCase = [' '] if c == END else [(c + s) for s in self._elements(A_ )] result.extend(A_ ) return tuple(A_ ) __snake_case = Trie() __snake_case = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def _A ( _lowercase ) -> tuple: """simple docstring""" __UpperCamelCase = trie.find_word(_lowercase ) return tuple(string + word for word in suffixes ) def _A ( ) -> None: """simple docstring""" print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field(default=_a , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) _lowercase = field( default=_a , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) __UpperCamelCase = import_module('tasks' ) try: __UpperCamelCase = getattr(_lowercase , model_args.task_type ) __UpperCamelCase = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __UpperCamelCase = token_classification_task.get_labels(data_args.labels ) __UpperCamelCase = dict(enumerate(_lowercase ) ) __UpperCamelCase = len(_lowercase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , idalabel=_lowercase , labelaid={label: i for i, label in enumerate(_lowercase )} , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __UpperCamelCase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( TokenClassificationDataset( token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( TokenClassificationDataset( token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_lowercase , _lowercase ) -> Tuple[List[int], List[int]]: __UpperCamelCase = np.argmax(_lowercase , axis=2 ) __UpperCamelCase, __UpperCamelCase = preds.shape __UpperCamelCase = [[] for _ in range(_lowercase )] __UpperCamelCase = [[] for _ in range(_lowercase )] for i in range(_lowercase ): for j in range(_lowercase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase, __UpperCamelCase = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_lowercase , _lowercase ), "precision": precision_score(_lowercase , _lowercase ), "recall": recall_score(_lowercase , _lowercase ), "f1": fa_score(_lowercase , _lowercase ), } # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) # Predict if training_args.do_predict: __UpperCamelCase = TokenClassificationDataset( token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = trainer.predict(_lowercase ) __UpperCamelCase, __UpperCamelCase = align_predictions(_lowercase , _lowercase ) __UpperCamelCase = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(_lowercase , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) # Save predictions __UpperCamelCase = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(_lowercase , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(_lowercase , _lowercase , _lowercase ) return results def _A ( _lowercase ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
1
1
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __snake_case = '''\ ''' __snake_case = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' __snake_case = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase (datasets.Metric ): def snake_case_ ( self: Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ),reference_urls=['https://huggingface.co/docs/transformers/perplexity'],) def snake_case_ ( self: int,A_: Dict,A_: int,A_: int = 16,A_: bool = True,A_: Union[str, Any]=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __UpperCamelCase = 'cuda' else: __UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu' __UpperCamelCase = AutoModelForCausalLM.from_pretrained(A_ ) __UpperCamelCase = model.to(A_ ) __UpperCamelCase = AutoTokenizer.from_pretrained(A_ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __UpperCamelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(A_ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __UpperCamelCase = model.config.max_length - 1 else: __UpperCamelCase = model.config.max_length __UpperCamelCase = tokenizer( A_,add_special_tokens=A_,padding=A_,truncation=A_,max_length=A_,return_tensors='pt',return_attention_mask=A_,).to(A_ ) __UpperCamelCase = encodings['input_ids'] __UpperCamelCase = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __UpperCamelCase = [] __UpperCamelCase = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0,len(A_ ),A_ ) ): __UpperCamelCase = min(start_index + batch_size,len(A_ ) ) __UpperCamelCase = encoded_texts[start_index:end_index] __UpperCamelCase = attn_masks[start_index:end_index] if add_start_token: __UpperCamelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(A_ ) __UpperCamelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __UpperCamelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(A_ ), attn_mask],dim=1 ) __UpperCamelCase = encoded_batch with torch.no_grad(): __UpperCamelCase = model(A_,attention_mask=A_ ).logits __UpperCamelCase = out_logits[..., :-1, :].contiguous() __UpperCamelCase = labels[..., 1:].contiguous() __UpperCamelCase = attn_mask[..., 1:].contiguous() __UpperCamelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),A_ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(A_ )}
1
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _A ( *_lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'r' ) as fh: fcntl.flock(_lowercase , fcntl.LOCK_EX ) try: print(*_lowercase ) finally: fcntl.flock(_lowercase , fcntl.LOCK_UN ) __snake_case = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) __snake_case = torch.device('''cuda''', local_rank) __snake_case = socket.gethostname() __snake_case = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __snake_case = dist.get_rank() __snake_case = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
1
1
from __future__ import annotations from collections.abc import Callable __snake_case = list[list[float | int]] def _A ( _lowercase , _lowercase ) -> Matrix: """simple docstring""" __UpperCamelCase = len(_lowercase ) __UpperCamelCase = [[0 for _ in range(size + 1 )] for _ in range(_lowercase )] __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for row in range(_lowercase ): for col in range(_lowercase ): __UpperCamelCase = matrix[row][col] __UpperCamelCase = vector[row][0] __UpperCamelCase = 0 __UpperCamelCase = 0 while row < size and col < size: # pivoting __UpperCamelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowercase , _lowercase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __UpperCamelCase, __UpperCamelCase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowercase ): __UpperCamelCase = augmented[rowa][col] / augmented[row][col] __UpperCamelCase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowercase ): for row in range(_lowercase ): __UpperCamelCase = augmented[row][col] / augmented[col][col] for cola in range(_lowercase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowercase ) ] def _A ( _lowercase ) -> Callable[[int], int]: """simple docstring""" __UpperCamelCase = len(_lowercase ) __UpperCamelCase = [[0 for _ in range(_lowercase )] for _ in range(_lowercase )] __UpperCamelCase = [[0] for _ in range(_lowercase )] __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for x_val, y_val in enumerate(_lowercase ): for col in range(_lowercase ): __UpperCamelCase = (x_val + 1) ** (size - col - 1) __UpperCamelCase = y_val __UpperCamelCase = solve(_lowercase , _lowercase ) def interpolated_func(_lowercase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowercase ) ) return interpolated_func def _A ( _lowercase ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _A ( _lowercase = question_function , _lowercase = 10 ) -> int: """simple docstring""" __UpperCamelCase = [func(_lowercase ) for x_val in range(1 , order + 1 )] __UpperCamelCase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __UpperCamelCase = 0 __UpperCamelCase = 42 __UpperCamelCase = 42 for poly in polynomials: __UpperCamelCase = 1 while func(_lowercase ) == poly(_lowercase ): x_val += 1 ret += poly(_lowercase ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
1
import pytest import datasets # Import fixture modules as plugins __snake_case = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def _A ( _lowercase ) -> str: """simple docstring""" config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = tmp_path_factory.getbasetemp() / 'cache' __UpperCamelCase = test_hf_cache_home / 'datasets' __UpperCamelCase = test_hf_cache_home / 'metrics' __UpperCamelCase = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(_lowercase ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(_lowercase ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(_lowercase ) ) __UpperCamelCase = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(_lowercase ) ) __UpperCamelCase = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_lowercase ) ) @pytest.fixture(autouse=_lowercase , scope='session' ) def _A ( ) -> Dict: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_lowercase ) def _A ( _lowercase ) -> Tuple: """simple docstring""" monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , _lowercase ) @pytest.fixture def _A ( _lowercase ) -> Any: """simple docstring""" monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , _lowercase )
1
1
from ..utils import DummyObject, requires_backends class __lowerCamelCase (metaclass=_a ): _lowercase = ["""flax""", """transformers"""] def __init__( self: List[Any],*A_: List[str],**A_: int ): '''simple docstring''' requires_backends(self,['flax', 'transformers'] ) @classmethod def snake_case_ ( cls: Tuple,*A_: List[Any],**A_: Optional[int] ): '''simple docstring''' requires_backends(cls,['flax', 'transformers'] ) @classmethod def snake_case_ ( cls: Optional[Any],*A_: Optional[int],**A_: Tuple ): '''simple docstring''' requires_backends(cls,['flax', 'transformers'] ) class __lowerCamelCase (metaclass=_a ): _lowercase = ["""flax""", """transformers"""] def __init__( self: Optional[int],*A_: Tuple,**A_: str ): '''simple docstring''' requires_backends(self,['flax', 'transformers'] ) @classmethod def snake_case_ ( cls: Optional[int],*A_: Dict,**A_: Dict ): '''simple docstring''' requires_backends(cls,['flax', 'transformers'] ) @classmethod def snake_case_ ( cls: Any,*A_: List[str],**A_: Union[str, Any] ): '''simple docstring''' requires_backends(cls,['flax', 'transformers'] ) class __lowerCamelCase (metaclass=_a ): _lowercase = ["""flax""", """transformers"""] def __init__( self: Tuple,*A_: Dict,**A_: List[Any] ): '''simple docstring''' requires_backends(self,['flax', 'transformers'] ) @classmethod def snake_case_ ( cls: Union[str, Any],*A_: List[Any],**A_: Any ): '''simple docstring''' requires_backends(cls,['flax', 'transformers'] ) @classmethod def snake_case_ ( cls: Dict,*A_: Dict,**A_: Optional[Any] ): '''simple docstring''' requires_backends(cls,['flax', 'transformers'] ) class __lowerCamelCase (metaclass=_a ): _lowercase = ["""flax""", """transformers"""] def __init__( self: Dict,*A_: int,**A_: int ): '''simple docstring''' requires_backends(self,['flax', 'transformers'] ) @classmethod def snake_case_ ( cls: List[Any],*A_: int,**A_: int ): '''simple docstring''' requires_backends(cls,['flax', 'transformers'] ) @classmethod def snake_case_ ( cls: List[str],*A_: Union[str, Any],**A_: List[str] ): '''simple docstring''' requires_backends(cls,['flax', 'transformers'] )
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = VideoToVideoSDPipeline _lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} _lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} _lowercase = PipelineTesterMixin.required_optional_params - {"""latents"""} _lowercase = False # No `output_type`. _lowercase = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def snake_case_ ( self: List[str] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'),up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'),cross_attention_dim=32,attention_head_dim=4,) __UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,beta_schedule='scaled_linear',clip_sample=A_,set_alpha_to_one=A_,) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=128,) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act='gelu',projection_dim=512,) __UpperCamelCase = CLIPTextModel(A_ ) __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def snake_case_ ( self: Union[str, Any],A_: Any,A_: Any=0 ): '''simple docstring''' __UpperCamelCase = floats_tensor((1, 3, 3, 32, 32),rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = VideoToVideoSDPipeline(**A_ ) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = 'np' __UpperCamelCase = sd_pipe(**A_ ).frames __UpperCamelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __UpperCamelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',) def snake_case_ ( self: Any ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_,expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case_ ( self: str ): '''simple docstring''' pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def snake_case_ ( self: int ): '''simple docstring''' pass def snake_case_ ( self: Any ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL',torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase = torch.randn((1, 10, 3, 1024, 576),generator=A_ ) __UpperCamelCase = video.to('cuda' ) __UpperCamelCase = 'Spiderman is surfing' __UpperCamelCase = pipe(A_,video=A_,generator=A_,num_inference_steps=3,output_type='pt' ).frames __UpperCamelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
1
1
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __snake_case = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __snake_case = [ord(letter) for letter in string.ascii_lowercase] __snake_case = {ord(char) for char in VALID_CHARS} __snake_case = ["the", "be", "to", "of", "and", "in", "that", "have"] def _A ( _lowercase , _lowercase ) -> str | None: """simple docstring""" __UpperCamelCase = "" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(_lowercase ) , _lowercase ): __UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_lowercase ) return decoded def _A ( _lowercase ) -> list[str]: """simple docstring""" __UpperCamelCase = [] for key in product(_lowercase , repeat=3 ): __UpperCamelCase = try_key(_lowercase , _lowercase ) if encoded is not None: possibles.append(_lowercase ) return possibles def _A ( _lowercase , _lowercase ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def _A ( _lowercase = "p059_cipher.txt" ) -> int: """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = Path(_lowercase ).parent.joinpath(_lowercase ).read_text(encoding='utf-8' ) __UpperCamelCase = [int(_lowercase ) for number in data.strip().split(',' )] __UpperCamelCase = filter_valid_chars(_lowercase ) for common_word in COMMON_WORDS: __UpperCamelCase = filter_common_word(_lowercase , _lowercase ) if len(_lowercase ) == 1: break __UpperCamelCase = possibles[0] return sum(ord(_lowercase ) for char in decoded_text ) if __name__ == "__main__": print(f"""{solution() = }""")
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) __snake_case = parser.parse_args() __snake_case = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __snake_case = CLIPImageProcessor() __snake_case = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') __snake_case = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
1
1
# flake8: noqa # Lint as: python3 __snake_case = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
1
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __snake_case = '''src/diffusers''' # Matches is_xxx_available() __snake_case = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla __snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') __snake_case = ''' {0} = None ''' __snake_case = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' __snake_case = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = _re_backend.findall(_lowercase ) if len(_lowercase ) == 0: return None return "_and_".join(_lowercase ) def _A ( ) -> Tuple: """simple docstring""" with open(os.path.join(_lowercase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: __UpperCamelCase = f.readlines() # Get to the point we do the actual imports for type checking __UpperCamelCase = 0 __UpperCamelCase = {} # Go through the end of the file while line_index < len(_lowercase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __UpperCamelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 __UpperCamelCase = [] # Until we unindent, add backend objects to the list while line_index < len(_lowercase ) and len(lines[line_index] ) > 1: __UpperCamelCase = lines[line_index] __UpperCamelCase = _re_single_line_import.search(_lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_lowercase ) > 0: __UpperCamelCase = objects else: line_index += 1 return backend_specific_objects def _A ( _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(_lowercase ) elif name.islower(): return DUMMY_FUNCTION.format(_lowercase , _lowercase ) else: return DUMMY_CLASS.format(_lowercase , _lowercase ) def _A ( _lowercase=None ) -> Optional[Any]: """simple docstring""" if backend_specific_objects is None: __UpperCamelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename __UpperCamelCase = {} for backend, objects in backend_specific_objects.items(): __UpperCamelCase = '[' + ', '.join(f'''"{b}"''' for b in backend.split('_and_' ) ) + ']' __UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_lowercase , _lowercase ) for o in objects] ) __UpperCamelCase = dummy_file return dummy_files def _A ( _lowercase=False ) -> List[str]: """simple docstring""" __UpperCamelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __UpperCamelCase = {'torch': 'pt'} # Locate actual dummy modules and read their content. __UpperCamelCase = os.path.join(_lowercase , 'utils' ) __UpperCamelCase = { backend: os.path.join(_lowercase , f'''dummy_{short_names.get(_lowercase , _lowercase )}_objects.py''' ) for backend in dummy_files.keys() } __UpperCamelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_lowercase ): with open(_lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f: __UpperCamelCase = f.read() else: __UpperCamelCase = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py as the main ''' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' f'''diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py. Run `make fix-copies` ''' 'to fix this.' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __snake_case = parser.parse_args() check_dummies(args.fix_and_overwrite)
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __snake_case = '''src/diffusers''' # Matches is_xxx_available() __snake_case = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla __snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') __snake_case = ''' {0} = None ''' __snake_case = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' __snake_case = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = _re_backend.findall(_lowercase ) if len(_lowercase ) == 0: return None return "_and_".join(_lowercase ) def _A ( ) -> Tuple: """simple docstring""" with open(os.path.join(_lowercase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: __UpperCamelCase = f.readlines() # Get to the point we do the actual imports for type checking __UpperCamelCase = 0 __UpperCamelCase = {} # Go through the end of the file while line_index < len(_lowercase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __UpperCamelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 __UpperCamelCase = [] # Until we unindent, add backend objects to the list while line_index < len(_lowercase ) and len(lines[line_index] ) > 1: __UpperCamelCase = lines[line_index] __UpperCamelCase = _re_single_line_import.search(_lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_lowercase ) > 0: __UpperCamelCase = objects else: line_index += 1 return backend_specific_objects def _A ( _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(_lowercase ) elif name.islower(): return DUMMY_FUNCTION.format(_lowercase , _lowercase ) else: return DUMMY_CLASS.format(_lowercase , _lowercase ) def _A ( _lowercase=None ) -> Optional[Any]: """simple docstring""" if backend_specific_objects is None: __UpperCamelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename __UpperCamelCase = {} for backend, objects in backend_specific_objects.items(): __UpperCamelCase = '[' + ', '.join(f'''"{b}"''' for b in backend.split('_and_' ) ) + ']' __UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_lowercase , _lowercase ) for o in objects] ) __UpperCamelCase = dummy_file return dummy_files def _A ( _lowercase=False ) -> List[str]: """simple docstring""" __UpperCamelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __UpperCamelCase = {'torch': 'pt'} # Locate actual dummy modules and read their content. __UpperCamelCase = os.path.join(_lowercase , 'utils' ) __UpperCamelCase = { backend: os.path.join(_lowercase , f'''dummy_{short_names.get(_lowercase , _lowercase )}_objects.py''' ) for backend in dummy_files.keys() } __UpperCamelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_lowercase ): with open(_lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f: __UpperCamelCase = f.read() else: __UpperCamelCase = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py as the main ''' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' f'''diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py. Run `make fix-copies` ''' 'to fix this.' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __snake_case = parser.parse_args() check_dummies(args.fix_and_overwrite)
1
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
1
import string def _A ( _lowercase ) -> None: """simple docstring""" for key in range(len(string.ascii_uppercase ) ): __UpperCamelCase = '' for symbol in message: if symbol in string.ascii_uppercase: __UpperCamelCase = string.ascii_uppercase.find(_lowercase ) __UpperCamelCase = num - key if num < 0: __UpperCamelCase = num + len(string.ascii_uppercase ) __UpperCamelCase = translated + string.ascii_uppercase[num] else: __UpperCamelCase = translated + symbol print(f'''Decryption using Key #{key}: {translated}''' ) def _A ( ) -> None: """simple docstring""" __UpperCamelCase = input('Encrypted message: ' ) __UpperCamelCase = message.upper() decrypt(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
1
def _A ( _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase = set({'(', '[', '{'} ) __UpperCamelCase = set({')', ']', '}'} ) __UpperCamelCase = {'{': '}', '[': ']', '(': ')'} for i in range(len(_lowercase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_lowercase ) == 0 or (len(_lowercase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_lowercase ) == 0 def _A ( ) -> Tuple: """simple docstring""" __UpperCamelCase = input('Enter sequence of brackets: ' ) if is_balanced(_lowercase ): print(_lowercase , 'is balanced' ) else: print(_lowercase , 'is not balanced' ) if __name__ == "__main__": main()
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = KandinskyInpaintPipeline _lowercase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _lowercase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _lowercase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowercase = False @property def snake_case_ ( self: int ): '''simple docstring''' return 32 @property def snake_case_ ( self: str ): '''simple docstring''' return 32 @property def snake_case_ ( self: Tuple ): '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' return 100 @property def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = MCLIPConfig( numDims=self.cross_attention_dim,transformerDimensions=self.text_embedder_hidden_size,hidden_size=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_hidden_layers=5,vocab_size=1005,) __UpperCamelCase = MultilingualCLIP(A_ ) __UpperCamelCase = text_encoder.eval() return text_encoder @property def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __UpperCamelCase = UNetaDConditionModel(**A_ ) return model @property def snake_case_ ( self: str ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self: str ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = self.dummy_tokenizer __UpperCamelCase = self.dummy_unet __UpperCamelCase = self.dummy_movq __UpperCamelCase = DDIMScheduler( num_train_timesteps=1000,beta_schedule='linear',beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,clip_sample=A_,set_alpha_to_one=A_,steps_offset=1,prediction_type='epsilon',thresholding=A_,) __UpperCamelCase = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def snake_case_ ( self: Tuple,A_: Optional[int],A_: Dict=0 ): '''simple docstring''' __UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(seed + 1 ) ).to(A_ ) # create init_image __UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = image.cpu().permute(0,2,3,1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) ) # create mask __UpperCamelCase = np.ones((64, 64),dtype=np.floataa ) __UpperCamelCase = 0 if str(A_ ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = 'cpu' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) ) __UpperCamelCase = output.images __UpperCamelCase = pipe( **self.get_dummy_inputs(A_ ),return_dict=A_,)[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def snake_case_ ( self: Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) __UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __UpperCamelCase = np.ones((768, 768),dtype=np.floataa ) __UpperCamelCase = 0 __UpperCamelCase = 'a hat' __UpperCamelCase = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior',torch_dtype=torch.floataa ) pipe_prior.to(A_ ) __UpperCamelCase = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint',torch_dtype=torch.floataa ) __UpperCamelCase = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase, __UpperCamelCase = pipe_prior( A_,generator=A_,num_inference_steps=5,negative_prompt='',).to_tuple() __UpperCamelCase = pipeline( A_,image=A_,mask_image=A_,image_embeds=A_,negative_image_embeds=A_,generator=A_,num_inference_steps=100,height=768,width=768,output_type='np',) __UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A_,A_ )
1
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} __snake_case = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } __snake_case = { '''allenai/longformer-base-4096''': 4_0_9_6, '''allenai/longformer-large-4096''': 4_0_9_6, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4_0_9_6, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4_0_9_6, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4_0_9_6, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _A ( ) -> List[Any]: """simple docstring""" __UpperCamelCase = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) __UpperCamelCase = bs[:] __UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowercase ) cs.append(2**8 + n ) n += 1 __UpperCamelCase = [chr(_lowercase ) for n in cs] return dict(zip(_lowercase , _lowercase ) ) def _A ( _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = set() __UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCamelCase = char return pairs class __lowerCamelCase (_a ): _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ["""input_ids""", """attention_mask"""] def __init__( self: str,A_: List[Any],A_: List[str],A_: List[Any]="replace",A_: Optional[int]="<s>",A_: Union[str, Any]="</s>",A_: List[Any]="</s>",A_: int="<s>",A_: List[Any]="<unk>",A_: List[str]="<pad>",A_: str="<mask>",A_: Dict=False,**A_: Tuple,): '''simple docstring''' __UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else bos_token __UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else eos_token __UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else sep_token __UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else cls_token __UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else unk_token __UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else mask_token super().__init__( errors=A_,bos_token=A_,eos_token=A_,unk_token=A_,sep_token=A_,cls_token=A_,pad_token=A_,mask_token=A_,add_prefix_space=A_,**A_,) with open(A_,encoding='utf-8' ) as vocab_handle: __UpperCamelCase = json.load(A_ ) __UpperCamelCase = {v: k for k, v in self.encoder.items()} __UpperCamelCase = errors # how to handle errors in decoding __UpperCamelCase = bytes_to_unicode() __UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(A_,encoding='utf-8' ) as merges_handle: __UpperCamelCase = merges_handle.read().split('\n' )[1:-1] __UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = {} __UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCamelCase = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def snake_case_ ( self: Tuple ): '''simple docstring''' return len(self.encoder ) def snake_case_ ( self: Any ): '''simple docstring''' return dict(self.encoder,**self.added_tokens_encoder ) def snake_case_ ( self: Dict,A_: List[Any] ): '''simple docstring''' if token in self.cache: return self.cache[token] __UpperCamelCase = tuple(A_ ) __UpperCamelCase = get_pairs(A_ ) if not pairs: return token while True: __UpperCamelCase = min(A_,key=lambda A_ : self.bpe_ranks.get(A_,float('inf' ) ) ) if bigram not in self.bpe_ranks: break __UpperCamelCase, __UpperCamelCase = bigram __UpperCamelCase = [] __UpperCamelCase = 0 while i < len(A_ ): try: __UpperCamelCase = word.index(A_,A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCamelCase = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCamelCase = tuple(A_ ) __UpperCamelCase = new_word if len(A_ ) == 1: break else: __UpperCamelCase = get_pairs(A_ ) __UpperCamelCase = ' '.join(A_ ) __UpperCamelCase = word return word def snake_case_ ( self: Tuple,A_: List[Any] ): '''simple docstring''' __UpperCamelCase = [] for token in re.findall(self.pat,A_ ): __UpperCamelCase = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def snake_case_ ( self: Dict,A_: Union[str, Any] ): '''simple docstring''' return self.encoder.get(A_,self.encoder.get(self.unk_token ) ) def snake_case_ ( self: Union[str, Any],A_: int ): '''simple docstring''' return self.decoder.get(A_ ) def snake_case_ ( self: Tuple,A_: List[str] ): '''simple docstring''' __UpperCamelCase = ''.join(A_ ) __UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8',errors=self.errors ) return text def snake_case_ ( self: List[str],A_: str,A_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCamelCase = os.path.join( A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join( A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_,'w',encoding='utf-8' ) as f: f.write(json.dumps(self.encoder,indent=2,sort_keys=A_,ensure_ascii=A_ ) + '\n' ) __UpperCamelCase = 0 with open(A_,'w',encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(),key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) __UpperCamelCase = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def snake_case_ ( self: Union[str, Any],A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] __UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self: str,A_: List[int],A_: Optional[List[int]] = None,A_: bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_,token_ids_a=A_,already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def snake_case_ ( self: Optional[Any],A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self: List[str],A_: Optional[int],A_: Optional[int]=False,**A_: int ): '''simple docstring''' __UpperCamelCase = kwargs.pop('add_prefix_space',self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): __UpperCamelCase = ' ' + text return (text, kwargs)
1
from typing import Any class __lowerCamelCase : def __init__( self: int,A_: Any ): '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None def __repr__( self: Any ): '''simple docstring''' return F'''Node({self.data})''' class __lowerCamelCase : def __init__( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = None def __iter__( self: int ): '''simple docstring''' __UpperCamelCase = self.head while node: yield node.data __UpperCamelCase = node.next def __len__( self: List[str] ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self: Any ): '''simple docstring''' return "->".join([str(A_ ) for item in self] ) def __getitem__( self: int,A_: int ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self: int,A_: int,A_: Any ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) __UpperCamelCase = self.head for _ in range(A_ ): __UpperCamelCase = current.next __UpperCamelCase = data def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' self.insert_nth(len(self ),A_ ) def snake_case_ ( self: List[Any],A_: Any ): '''simple docstring''' self.insert_nth(0,A_ ) def snake_case_ ( self: Optional[Any],A_: int,A_: Any ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) __UpperCamelCase = Node(A_ ) if self.head is None: __UpperCamelCase = new_node elif index == 0: __UpperCamelCase = self.head # link new_node to head __UpperCamelCase = new_node else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = new_node def snake_case_ ( self: str ): # print every node data '''simple docstring''' print(self ) def snake_case_ ( self: int ): '''simple docstring''' return self.delete_nth(0 ) def snake_case_ ( self: str ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def snake_case_ ( self: Any,A_: int = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) __UpperCamelCase = self.head # default first node if index == 0: __UpperCamelCase = self.head.next else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = temp.next.next return delete_node.data def snake_case_ ( self: Any ): '''simple docstring''' return self.head is None def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = self.head while current: # Store the current node's next node. __UpperCamelCase = current.next # Make the current node's next point backwards __UpperCamelCase = prev # Make the previous node be the current node __UpperCamelCase = current # Make the current node the next node (to progress iteration) __UpperCamelCase = next_node # Return prev in order to put the head at the end __UpperCamelCase = prev def _A ( ) -> None: """simple docstring""" __UpperCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(_lowercase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_lowercase ) == i linked_list.insert_nth(_lowercase , i + 1 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_lowercase ) == 9 assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) ) def _A ( ) -> None: """simple docstring""" __UpperCamelCase = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] __UpperCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(_lowercase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCamelCase = linked_list.delete_head() assert result == -9 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_lowercase ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_lowercase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _A ( ) -> List[str]: """simple docstring""" from doctest import testmod testmod() __UpperCamelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_lowercase ) print('\nReading/changing Node data using indexing:' ) print(f'''Element at Position 1: {linked_list[1]}''' ) __UpperCamelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_lowercase ) print(f'''length of linked_list is : {len(_lowercase )}''' ) if __name__ == "__main__": main()
1
1
def _A ( _lowercase = 4_00_00_00 ) -> int: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase, __UpperCamelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_lowercase ) __UpperCamelCase, __UpperCamelCase = b, a + b return sum(_lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
1
1
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor __snake_case = logging.getLogger(__name__) __snake_case = 5_0 # max width of layer names __snake_case = 7_0 # max width of quantizer names def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_lowercase , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_lowercase , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_lowercase , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_lowercase , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_lowercase , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_lowercase , type=_lowercase , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_lowercase , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def _A ( _lowercase ) -> str: """simple docstring""" if args.calibrator == "max": __UpperCamelCase = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) __UpperCamelCase = 'histogram' elif args.calibrator == "mse": __UpperCamelCase = 'histogram' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) __UpperCamelCase = QuantDescriptor(num_bits=args.aprec , calib_method=_lowercase ) __UpperCamelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_lowercase ) quant_nn.QuantLinear.set_default_quant_desc_weight(_lowercase ) def _A ( _lowercase , _lowercase , _lowercase=False , _lowercase=False ) -> Tuple: """simple docstring""" logger.info('Configuring Model for Quantization' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_lowercase , ['embeddings'] , which='weight' , _disabled=_lowercase ) if args.quant_disable: set_quantizer_by_name(_lowercase , [''] , _disabled=_lowercase ) if args.quant_disable_keyword: set_quantizer_by_name(_lowercase , args.quant_disable_keyword , _disabled=_lowercase ) if args.quant_disable_layer_module: set_quantizer_by_name(_lowercase , [r'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_lowercase ) if args.quant_enable_layer_module: set_quantizer_by_name(_lowercase , [r'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_lowercase ) if args.recalibrate_weights: recalibrate_weights(_lowercase ) if args.fuse_qkv: fuse_qkv(_lowercase , _lowercase ) if args.clip_gelu: clip_gelu(_lowercase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_lowercase ) def _A ( _lowercase ) -> Dict: """simple docstring""" logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_lowercase ) def _A ( _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" def fusea(_lowercase , _lowercase , _lowercase ): for mod in [qq, qk, qv]: if not hasattr(_lowercase , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return __UpperCamelCase = qq._amax.detach().item() __UpperCamelCase = qk._amax.detach().item() __UpperCamelCase = qv._amax.detach().item() __UpperCamelCase = max(_lowercase , _lowercase , _lowercase ) qq._amax.fill_(_lowercase ) qk._amax.fill_(_lowercase ) qv._amax.fill_(_lowercase ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): __UpperCamelCase = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_lowercase ) __UpperCamelCase = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _A ( _lowercase ) -> Any: """simple docstring""" for name, mod in model.named_modules(): if hasattr(_lowercase , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: __UpperCamelCase = mod.weight.shape[0] __UpperCamelCase = mod._weight_quantizer._amax.detach() __UpperCamelCase = torch.ones(_lowercase , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _A ( _lowercase ) -> str: """simple docstring""" for name, mod in model.named_modules(): if hasattr(_lowercase , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) __UpperCamelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) __UpperCamelCase = set(range(len(mod.weight.size() ) ) ) - axis_set __UpperCamelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_lowercase , keepdims=_lowercase ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) __UpperCamelCase = amax def _A ( _lowercase , _lowercase=25 , _lowercase=1_80 , _lowercase=None ) -> Dict: """simple docstring""" if ignore is None: __UpperCamelCase = [] elif not isinstance(_lowercase , _lowercase ): __UpperCamelCase = [ignore] __UpperCamelCase = 0 for name, mod in model.named_modules(): if not hasattr(_lowercase , 'weight' ): continue __UpperCamelCase = max(_lowercase , len(_lowercase ) ) for name, mod in model.named_modules(): __UpperCamelCase = getattr(_lowercase , '_input_quantizer' , _lowercase ) __UpperCamelCase = getattr(_lowercase , '_weight_quantizer' , _lowercase ) if not hasattr(_lowercase , 'weight' ): continue if type(_lowercase ) in ignore: continue if [True for s in ignore if type(_lowercase ) is str and s in name]: continue __UpperCamelCase = f'''Act:{input_q.extra_repr()}''' __UpperCamelCase = f'''Wgt:{weight_q.extra_repr()}''' __UpperCamelCase = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(_lowercase ) <= line_width: logger.info(_lowercase ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{' ':{name_width}} {wgt_str}''' ) def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = 0 for name, mod in model.named_modules(): if isinstance(_lowercase , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: """simple docstring""" __UpperCamelCase = getattr(_lowercase , _lowercase , _lowercase ) if quantizer_mod is not None: assert hasattr(_lowercase , _lowercase ) setattr(_lowercase , _lowercase , _lowercase ) else: logger.warning(f'''{name} has no {quantizer}''' ) def _A ( _lowercase , _lowercase , _lowercase="both" , **_lowercase ) -> List[Any]: """simple docstring""" __UpperCamelCase = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(_lowercase , _lowercase , '_input_quantizer' , _lowercase , _lowercase ) if which in ["weight", "both"]: set_quantizer(_lowercase , _lowercase , '_weight_quantizer' , _lowercase , _lowercase ) logger.info(_lowercase ) def _A ( _lowercase , _lowercase , **_lowercase ) -> str: """simple docstring""" for name, mod in model.named_modules(): if hasattr(_lowercase , '_input_quantizer' ) or hasattr(_lowercase , '_weight_quantizer' ): for n in names: if re.search(_lowercase , _lowercase ): set_quantizers(_lowercase , _lowercase , **_lowercase ) elif name.endswith('_quantizer' ): for n in names: if re.search(_lowercase , _lowercase ): __UpperCamelCase = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(_lowercase , _lowercase , _lowercase ) logger.info(_lowercase )
1
__snake_case = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } __snake_case = {value: key for key, value in encode_dict.items()} def _A ( _lowercase ) -> str: """simple docstring""" __UpperCamelCase = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def _A ( _lowercase ) -> str: """simple docstring""" if set(_lowercase ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) __UpperCamelCase = '' for word in coded.split(): while len(_lowercase ) != 0: decoded += decode_dict[word[:5]] __UpperCamelCase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
1
1
def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _A ( _lowercase = 1_00 ) -> int: """simple docstring""" __UpperCamelCase = 1 __UpperCamelCase = 2 for i in range(2 , max_n + 1 ): __UpperCamelCase = pre_numerator __UpperCamelCase = 2 * i // 3 if i % 3 == 0 else 1 __UpperCamelCase = cur_numerator __UpperCamelCase = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
1
from collections.abc import Generator from math import sin def _A ( _lowercase ) -> bytes: """simple docstring""" if len(_lowercase ) != 32: raise ValueError('Input must be of length 32' ) __UpperCamelCase = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _A ( _lowercase ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __UpperCamelCase = format(_lowercase , '08x' )[-8:] __UpperCamelCase = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = B'' for char in message: bit_string += format(_lowercase , '08b' ).encode('utf-8' ) __UpperCamelCase = format(len(_lowercase ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_lowercase ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _A ( _lowercase ) -> Generator[list[int], None, None]: """simple docstring""" if len(_lowercase ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(_lowercase ) , 5_12 ): __UpperCamelCase = bit_string[pos : pos + 5_12] __UpperCamelCase = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _A ( _lowercase ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __UpperCamelCase = format(_lowercase , '032b' ) __UpperCamelCase = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(_lowercase , 2 ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" return (a + b) % 2**32 def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = preprocess(_lowercase ) __UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __UpperCamelCase = 0X67_45_23_01 __UpperCamelCase = 0Xef_cd_ab_89 __UpperCamelCase = 0X98_ba_dc_fe __UpperCamelCase = 0X10_32_54_76 __UpperCamelCase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_lowercase ): __UpperCamelCase = aa __UpperCamelCase = ba __UpperCamelCase = ca __UpperCamelCase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __UpperCamelCase = d ^ (b & (c ^ d)) __UpperCamelCase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __UpperCamelCase = c ^ (d & (b ^ c)) __UpperCamelCase = (5 * i + 1) % 16 elif i <= 47: __UpperCamelCase = b ^ c ^ d __UpperCamelCase = (3 * i + 5) % 16 else: __UpperCamelCase = c ^ (b | not_aa(_lowercase )) __UpperCamelCase = (7 * i) % 16 __UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32 __UpperCamelCase = d __UpperCamelCase = c __UpperCamelCase = b __UpperCamelCase = sum_aa(_lowercase , left_rotate_aa(_lowercase , shift_amounts[i] ) ) # Add hashed chunk to running total __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
1
1
def _A ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" __UpperCamelCase = set() # Replace all the whitespace in our sentence __UpperCamelCase = input_str.replace(' ' , '' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 26 def _A ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" __UpperCamelCase = [False] * 26 for char in input_str: if char.islower(): __UpperCamelCase = True elif char.isupper(): __UpperCamelCase = True return all(_lowercase ) def _A ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _A ( ) -> None: """simple docstring""" from timeit import timeit __UpperCamelCase = 'from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest' print(timeit('is_pangram()' , setup=_lowercase ) ) print(timeit('is_pangram_faster()' , setup=_lowercase ) ) print(timeit('is_pangram_fastest()' , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __snake_case = 0 __snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __snake_case = tuple[int, int] class __lowerCamelCase : def __init__( self: str,A_: int,A_: int,A_: int,A_: int,A_: int,A_: Node | None,): '''simple docstring''' __UpperCamelCase = pos_x __UpperCamelCase = pos_y __UpperCamelCase = (pos_y, pos_x) __UpperCamelCase = goal_x __UpperCamelCase = goal_y __UpperCamelCase = g_cost __UpperCamelCase = parent __UpperCamelCase = self.calculate_heuristic() __UpperCamelCase = self.g_cost + self.h_cost def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.pos_x - self.goal_x __UpperCamelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A_ ) + abs(A_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self: int,A_: Node ): '''simple docstring''' return self.f_cost < other.f_cost class __lowerCamelCase : def __init__( self: Any,A_: TPosition,A_: TPosition ): '''simple docstring''' __UpperCamelCase = Node(start[1],start[0],goal[1],goal[0],0,A_ ) __UpperCamelCase = Node(goal[1],goal[0],goal[1],goal[0],9_9999,A_ ) __UpperCamelCase = [self.start] __UpperCamelCase = [] __UpperCamelCase = False def snake_case_ ( self: Any ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __UpperCamelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A_ ) self.closed_nodes.append(A_ ) __UpperCamelCase = self.get_successors(A_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A_ ) else: # retrieve the best current path __UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(A_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A_ ) else: self.open_nodes.append(A_ ) return [self.start.pos] def snake_case_ ( self: int,A_: Node ): '''simple docstring''' __UpperCamelCase = [] for action in delta: __UpperCamelCase = parent.pos_x + action[1] __UpperCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A_,A_,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,A_,) ) return successors def snake_case_ ( self: Any,A_: Node | None ): '''simple docstring''' __UpperCamelCase = node __UpperCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __UpperCamelCase = current_node.parent path.reverse() return path class __lowerCamelCase : def __init__( self: List[Any],A_: TPosition,A_: TPosition ): '''simple docstring''' __UpperCamelCase = AStar(A_,A_ ) __UpperCamelCase = AStar(A_,A_ ) __UpperCamelCase = False def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __UpperCamelCase = self.fwd_astar.open_nodes.pop(0 ) __UpperCamelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A_,A_ ) self.fwd_astar.closed_nodes.append(A_ ) self.bwd_astar.closed_nodes.append(A_ ) __UpperCamelCase = current_bwd_node __UpperCamelCase = current_fwd_node __UpperCamelCase = { self.fwd_astar: self.fwd_astar.get_successors(A_ ), self.bwd_astar: self.bwd_astar.get_successors(A_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A_ ) else: # retrieve the best current path __UpperCamelCase = astar.open_nodes.pop( astar.open_nodes.index(A_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A_ ) else: astar.open_nodes.append(A_ ) return [self.fwd_astar.start.pos] def snake_case_ ( self: List[str],A_: Node,A_: Node ): '''simple docstring''' __UpperCamelCase = self.fwd_astar.retrace_path(A_ ) __UpperCamelCase = self.bwd_astar.retrace_path(A_ ) bwd_path.pop() bwd_path.reverse() __UpperCamelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __snake_case = (0, 0) __snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __snake_case = time.time() __snake_case = AStar(init, goal) __snake_case = a_star.search() __snake_case = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") __snake_case = time.time() __snake_case = BidirectionalAStar(init, goal) __snake_case = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
1
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class __lowerCamelCase (_a ): _lowercase = """mgp-str""" def __init__( self: int,A_: Union[str, Any]=[32, 128],A_: List[str]=4,A_: Tuple=3,A_: Union[str, Any]=27,A_: Union[str, Any]=38,A_: Optional[int]=5_0257,A_: int=3_0522,A_: Any=768,A_: int=12,A_: List[str]=12,A_: Optional[int]=4.0,A_: Optional[Any]=True,A_: Tuple=False,A_: Tuple=1E-5,A_: Dict=0.0,A_: Any=0.0,A_: Tuple=0.0,A_: int=False,A_: Union[str, Any]=0.0_2,**A_: str,): '''simple docstring''' super().__init__(**A_ ) __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = max_token_length __UpperCamelCase = num_character_labels __UpperCamelCase = num_bpe_labels __UpperCamelCase = num_wordpiece_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = mlp_ratio __UpperCamelCase = distilled __UpperCamelCase = layer_norm_eps __UpperCamelCase = drop_rate __UpperCamelCase = qkv_bias __UpperCamelCase = attn_drop_rate __UpperCamelCase = drop_path_rate __UpperCamelCase = output_aa_attentions __UpperCamelCase = initializer_range
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __snake_case = get_tests_dir('''fixtures''') class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = mock.Mock() __UpperCamelCase = 500 __UpperCamelCase = {} __UpperCamelCase = HTTPError __UpperCamelCase = {} # Download this model to make sure it's in the cache. __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request',return_value=A_ ) as mock_head: __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class __lowerCamelCase (unittest.TestCase ): @classmethod def snake_case_ ( cls: Tuple ): '''simple docstring''' __UpperCamelCase = TOKEN HfFolder.save_token(A_ ) @classmethod def snake_case_ ( cls: Tuple ): '''simple docstring''' try: delete_repo(token=cls._token,repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('test-feature-extractor',use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) # Reset repo delete_repo(token=self._token,repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_,repo_id='test-feature-extractor',push_to_hub=A_,use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('valid_org/test-feature-extractor',use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) # Reset repo delete_repo(token=self._token,repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_,repo_id='valid_org/test-feature-extractor-org',push_to_hub=A_,use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) def snake_case_ ( self: int ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() __UpperCamelCase = CustomFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('test-dynamic-feature-extractor',use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map,{'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'},) __UpperCamelCase = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''',trust_remote_code=A_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__,'CustomFeatureExtractor' )
1
1
from collections.abc import Generator from math import sin def _A ( _lowercase ) -> bytes: """simple docstring""" if len(_lowercase ) != 32: raise ValueError('Input must be of length 32' ) __UpperCamelCase = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _A ( _lowercase ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __UpperCamelCase = format(_lowercase , '08x' )[-8:] __UpperCamelCase = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = B'' for char in message: bit_string += format(_lowercase , '08b' ).encode('utf-8' ) __UpperCamelCase = format(len(_lowercase ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_lowercase ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _A ( _lowercase ) -> Generator[list[int], None, None]: """simple docstring""" if len(_lowercase ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(_lowercase ) , 5_12 ): __UpperCamelCase = bit_string[pos : pos + 5_12] __UpperCamelCase = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _A ( _lowercase ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __UpperCamelCase = format(_lowercase , '032b' ) __UpperCamelCase = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(_lowercase , 2 ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" return (a + b) % 2**32 def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = preprocess(_lowercase ) __UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __UpperCamelCase = 0X67_45_23_01 __UpperCamelCase = 0Xef_cd_ab_89 __UpperCamelCase = 0X98_ba_dc_fe __UpperCamelCase = 0X10_32_54_76 __UpperCamelCase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_lowercase ): __UpperCamelCase = aa __UpperCamelCase = ba __UpperCamelCase = ca __UpperCamelCase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __UpperCamelCase = d ^ (b & (c ^ d)) __UpperCamelCase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __UpperCamelCase = c ^ (d & (b ^ c)) __UpperCamelCase = (5 * i + 1) % 16 elif i <= 47: __UpperCamelCase = b ^ c ^ d __UpperCamelCase = (3 * i + 5) % 16 else: __UpperCamelCase = c ^ (b | not_aa(_lowercase )) __UpperCamelCase = (7 * i) % 16 __UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32 __UpperCamelCase = d __UpperCamelCase = c __UpperCamelCase = b __UpperCamelCase = sum_aa(_lowercase , left_rotate_aa(_lowercase , shift_amounts[i] ) ) # Add hashed chunk to running total __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __snake_case = 1_6 __snake_case = 3_2 def _A ( _lowercase , _lowercase = 16 , _lowercase = "bert-base-cased" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase ) __UpperCamelCase = load_dataset('glue' , 'mrpc' ) def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowercase , max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCamelCase = datasets.map( _lowercase , batched=_lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowercase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(_lowercase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) __UpperCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) return train_dataloader, eval_dataloader def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['lr'] __UpperCamelCase = int(config['num_epochs'] ) __UpperCamelCase = int(config['seed'] ) __UpperCamelCase = int(config['batch_size'] ) __UpperCamelCase = args.model_name_or_path set_seed(_lowercase ) __UpperCamelCase, __UpperCamelCase = get_dataloaders(_lowercase , _lowercase , _lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase ) # Instantiate optimizer __UpperCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __UpperCamelCase = optimizer_cls(params=model.parameters() , lr=_lowercase ) if accelerator.state.deepspeed_plugin is not None: __UpperCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: __UpperCamelCase = 1 __UpperCamelCase = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , ) else: __UpperCamelCase = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # We need to keep track of how many total steps we have iterated over __UpperCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __UpperCamelCase = 0 # Now we train the model __UpperCamelCase = evaluate.load('glue' , 'mrpc' ) __UpperCamelCase = 0 __UpperCamelCase = {} for epoch in range(_lowercase , _lowercase ): model.train() for step, batch in enumerate(_lowercase ): __UpperCamelCase = model(**_lowercase ) __UpperCamelCase = outputs.loss __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __UpperCamelCase = 0 for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**_lowercase ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __UpperCamelCase, __UpperCamelCase = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowercase ) - 1: __UpperCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __UpperCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowercase , references=_lowercase , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _lowercase ) __UpperCamelCase = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: __UpperCamelCase = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(_lowercase , _lowercase ) def _A ( ) -> List[str]: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_lowercase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowercase , ) parser.add_argument( '--output_dir' , type=_lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=_lowercase , default=_lowercase , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=_lowercase , default=3 , help='Number of train epochs.' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
1
1
from __future__ import annotations from collections.abc import Callable def _A ( _lowercase , _lowercase , _lowercase , _lowercase = 1_00 , ) -> float: """simple docstring""" __UpperCamelCase = x_start __UpperCamelCase = fnc(_lowercase ) __UpperCamelCase = 0.0 for _ in range(_lowercase ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCamelCase = (x_end - x_start) / steps + xa __UpperCamelCase = fnc(_lowercase ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCamelCase = xa __UpperCamelCase = fxa return area if __name__ == "__main__": def _A ( _lowercase ) -> Any: """simple docstring""" return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') __snake_case = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCamelCase (_a ): @slow @require_torch def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny','prajjwal1/bert-tiny' ) __UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) __UpperCamelCase = bertabert.config.encoder.vocab_size __UpperCamelCase = tokenizer.sep_token_id __UpperCamelCase = tokenizer.cls_token_id __UpperCamelCase = 128 __UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='train[:1%]' ) __UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='validation[:1%]' ) __UpperCamelCase = train_dataset.select(range(32 ) ) __UpperCamelCase = val_dataset.select(range(16 ) ) __UpperCamelCase = 4 def _map_to_encoder_decoder_inputs(A_: Dict ): # Tokenizer will automatically set [BOS] <text> [EOS] __UpperCamelCase = tokenizer(batch['article'],padding='max_length',truncation=A_,max_length=512 ) __UpperCamelCase = tokenizer(batch['highlights'],padding='max_length',truncation=A_,max_length=128 ) __UpperCamelCase = inputs.input_ids __UpperCamelCase = inputs.attention_mask __UpperCamelCase = outputs.input_ids __UpperCamelCase = outputs.input_ids.copy() __UpperCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] __UpperCamelCase = outputs.attention_mask assert all(len(A_ ) == 512 for x in inputs.input_ids ) assert all(len(A_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(A_: str ): __UpperCamelCase = pred.label_ids __UpperCamelCase = pred.predictions # all unnecessary tokens are removed __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A_ ) )] ) / len(A_ ) return {"accuracy": accuracy} # map train dataset __UpperCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],) train_dataset.set_format( type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],) # same for validation dataset __UpperCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],) val_dataset.set_format( type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],) __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = SeqaSeqTrainingArguments( output_dir=A_,per_device_train_batch_size=A_,per_device_eval_batch_size=A_,predict_with_generate=A_,evaluation_strategy='steps',do_train=A_,do_eval=A_,warmup_steps=0,eval_steps=2,logging_steps=2,) # instantiate trainer __UpperCamelCase = SeqaSeqTrainer( model=A_,args=A_,compute_metrics=_compute_metrics,train_dataset=A_,eval_dataset=A_,tokenizer=A_,) # start training trainer.train()
1
1
def _A ( _lowercase ) -> int: """simple docstring""" assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(_lowercase ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , _lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
1
def _A ( _lowercase = 1_00 ) -> int: """simple docstring""" __UpperCamelCase = 0 __UpperCamelCase = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
1
1
def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def _A ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
1
def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _A ( _lowercase , _lowercase=0 ) -> Dict: """simple docstring""" return sorted(_lowercase , key=lambda _lowercase : x[column] ) def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> List[Any]: """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , _lowercase ): __UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCamelCase = current_dis return min_dis def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> Tuple: """simple docstring""" for i in range(min(6 , points_counts - 1 ) , _lowercase ): for j in range(max(0 , i - 6 ) , _lowercase ): __UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCamelCase = current_dis return min_dis def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(_lowercase , _lowercase ) # recursion __UpperCamelCase = points_counts // 2 __UpperCamelCase = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[:mid] , _lowercase ) __UpperCamelCase = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[mid:] , points_counts - mid ) __UpperCamelCase = min(_lowercase , _lowercase ) __UpperCamelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowercase ) __UpperCamelCase = dis_between_closest_in_strip( _lowercase , len(_lowercase ) , _lowercase ) return min(_lowercase , _lowercase ) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = column_based_sort(_lowercase , column=0 ) __UpperCamelCase = column_based_sort(_lowercase , column=1 ) return ( closest_pair_of_points_sqr( _lowercase , _lowercase , _lowercase ) ) ** 0.5 if __name__ == "__main__": __snake_case = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
1
1
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCamelCase : def __init__( self: int,A_: Union[str, Any],A_: List[str]=99,A_: Dict=13,A_: Tuple=7,A_: Union[str, Any]=9,A_: str=True,A_: int=True,A_: Optional[Any]=False,A_: Union[str, Any]=32,A_: Optional[int]=5,A_: Optional[Any]=4,A_: Union[str, Any]=37,A_: List[Any]=8,A_: Optional[int]=0.1,A_: str=0.0_0_2,A_: List[Any]=1,A_: List[str]=0,A_: int=0,A_: Optional[int]=None,A_: str=None,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = encoder_seq_length __UpperCamelCase = decoder_seq_length # For common tests __UpperCamelCase = self.decoder_seq_length __UpperCamelCase = is_training __UpperCamelCase = use_attention_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = d_ff __UpperCamelCase = relative_attention_num_buckets __UpperCamelCase = dropout_rate __UpperCamelCase = initializer_factor __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = decoder_start_token_id __UpperCamelCase = None __UpperCamelCase = decoder_layers def snake_case_ ( self: Dict ): '''simple docstring''' return TaConfig.from_pretrained('google/umt5-base' ) def snake_case_ ( self: int,A_: Optional[Any],A_: Optional[int],A_: int,A_: Any=None,A_: Optional[Any]=None,A_: Optional[Any]=None,A_: Optional[Any]=None,A_: Any=None,): '''simple docstring''' if attention_mask is None: __UpperCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __UpperCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __UpperCamelCase = torch.ones(config.num_hidden_layers,config.num_attention_heads,device=A_ ) if decoder_head_mask is None: __UpperCamelCase = torch.ones(config.num_decoder_layers,config.num_attention_heads,device=A_ ) if cross_attn_head_mask is None: __UpperCamelCase = torch.ones( config.num_decoder_layers,config.num_attention_heads,device=A_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length],self.vocab_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length],self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __UpperCamelCase = input_ids.clamp(self.pad_token_id + 1 ) __UpperCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __UpperCamelCase = self.get_config() __UpperCamelCase = config.num_attention_heads __UpperCamelCase = self.prepare_inputs_dict(A_,A_,A_ ) return config, input_dict def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return TaConfig( vocab_size=166,d_model=self.hidden_size,d_ff=self.d_ff,d_kv=self.hidden_size // self.num_attention_heads,num_layers=self.num_hidden_layers,num_decoder_layers=self.decoder_layers,num_heads=self.num_attention_heads,relative_attention_num_buckets=self.relative_attention_num_buckets,dropout_rate=self.dropout_rate,initializer_factor=self.initializer_factor,eos_token_id=self.eos_token_id,bos_token_id=self.pad_token_id,pad_token_id=self.pad_token_id,decoder_start_token_id=self.decoder_start_token_id,) def snake_case_ ( self: List[str] ): '''simple docstring''' return TaConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,d_ff=self.d_ff,d_kv=self.hidden_size // self.num_attention_heads,num_layers=self.num_hidden_layers,num_decoder_layers=self.decoder_layers,num_heads=self.num_attention_heads,relative_attention_num_buckets=self.relative_attention_num_buckets,dropout_rate=self.dropout_rate,initializer_factor=self.initializer_factor,eos_token_id=self.eos_token_id,bos_token_id=self.pad_token_id,pad_token_id=self.pad_token_id,decoder_start_token_id=self.decoder_start_token_id,) def snake_case_ ( self: List[Any],A_: List[Any],A_: Tuple,A_: Any,A_: Tuple,A_: int,A_: Union[str, Any],): '''simple docstring''' __UpperCamelCase = UMTaModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model( input_ids=A_,decoder_input_ids=A_,attention_mask=A_,decoder_attention_mask=A_,) __UpperCamelCase = model(input_ids=A_,decoder_input_ids=A_ ) __UpperCamelCase = result.last_hidden_state __UpperCamelCase = result.past_key_values __UpperCamelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size(),(self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size(),(self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(A_ ),config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ),4 ) def snake_case_ ( self: Dict,A_: Optional[Any],A_: int,A_: Dict,A_: Union[str, Any],A_: str,A_: List[str],): '''simple docstring''' __UpperCamelCase = UMTaModel(config=A_ ).get_decoder().to(A_ ).eval() # first forward pass __UpperCamelCase = model(A_,use_cache=A_ ) __UpperCamelCase = model(A_ ) __UpperCamelCase = model(A_,use_cache=A_ ) self.parent.assertTrue(len(A_ ) == len(A_ ) ) self.parent.assertTrue(len(A_ ) == len(A_ ) + 1 ) __UpperCamelCase, __UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCamelCase = ids_tensor((self.batch_size, 1),config.vocab_size ) # append to next input_ids and __UpperCamelCase = torch.cat([input_ids, next_tokens],dim=-1 ) __UpperCamelCase = model(A_ )['last_hidden_state'] __UpperCamelCase = model(A_,past_key_values=A_ )['last_hidden_state'] # select random slice __UpperCamelCase = ids_tensor((1,),output_from_past.shape[-1] ).item() __UpperCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_,A_,atol=1E-3 ) ) def snake_case_ ( self: str,A_: Dict,A_: Any,): '''simple docstring''' __UpperCamelCase = UMTaModel(config=A_ ).to(A_ ).half().eval() __UpperCamelCase = model(**A_ )['last_hidden_state'] self.parent.assertFalse(torch.isnan(A_ ).any().item() ) @require_torch class __lowerCamelCase (_a , _a , _a , unittest.TestCase ): _lowercase = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _lowercase = (UMTaForConditionalGeneration,) if is_torch_available() else () _lowercase = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) _lowercase = True _lowercase = False _lowercase = False _lowercase = True _lowercase = True # The small UMT5 model needs higher percentages for CPU/MP tests _lowercase = [0.8, 0.9] def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() __UpperCamelCase = UMTaModel(config_and_inputs[0] ).to(A_ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( A_,(config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]),F'''{tmpdirname}/t5_test.onnx''',export_params=A_,opset_version=9,input_names=['input_ids', 'decoder_input_ids'],) @unittest.skipIf(torch_device == 'cpu','Cant do half precision' ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*A_ ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] __UpperCamelCase = self.model_tester.prepare_config_and_inputs() __UpperCamelCase = config_and_inputs[0] __UpperCamelCase = UMTaForConditionalGeneration(A_ ).eval() model.to(A_ ) __UpperCamelCase = { 'head_mask': torch.zeros(config.num_layers,config.num_heads,device=A_ ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers,config.num_heads,device=A_ ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers,config.num_heads,device=A_ ), } for attn_name, (name, mask) in zip(A_,head_masking.items() ): __UpperCamelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __UpperCamelCase = torch.ones( config.num_decoder_layers,config.num_heads,device=A_ ) __UpperCamelCase = model.generate( config_and_inputs[1]['input_ids'],num_beams=1,max_length=3,output_attentions=A_,return_dict_in_generate=A_,**A_,) # We check the state of decoder_attentions and cross_attentions just from the last step __UpperCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ),0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase (unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = UMTaForConditionalGeneration.from_pretrained('google/umt5-small',return_dict=A_ ).to(A_ ) __UpperCamelCase = AutoTokenizer.from_pretrained('google/umt5-small',use_fast=A_,legacy=A_ ) __UpperCamelCase = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] __UpperCamelCase = tokenizer(A_,return_tensors='pt',padding=A_ ).input_ids # fmt: off __UpperCamelCase = torch.tensor( [ [ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(A_,A_ ) __UpperCamelCase = model.generate(input_ids.to(A_ ) ) __UpperCamelCase = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] __UpperCamelCase = tokenizer.batch_decode(A_ ) self.assertEqual(A_,A_ )
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class __lowerCamelCase (_a ): _lowercase = """bert""" def __init__( self: Any,A_: Dict=3_0522,A_: Optional[Any]=768,A_: Union[str, Any]=12,A_: List[Any]=12,A_: Optional[int]=3072,A_: Union[str, Any]="gelu",A_: List[str]=0.1,A_: Dict=0.1,A_: Optional[int]=512,A_: Optional[Any]=2,A_: Union[str, Any]=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=0,A_: List[Any]="absolute",A_: str=True,A_: Union[str, Any]=None,**A_: int,): '''simple docstring''' super().__init__(pad_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
1
1
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput __snake_case = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowerCamelCase (_a ): def __init__( self: List[str],*A_: Optional[Any],A_: Tuple=None,A_: str=None,A_: str=None,**A_: List[Any] ): '''simple docstring''' super().__init__(*A_,**A_ ) __UpperCamelCase = eval_examples __UpperCamelCase = post_process_function __UpperCamelCase = quant_trainer_args __UpperCamelCase = 128 # default number of calibration samples def snake_case_ ( self: int,A_: Union[str, Any]=None ): '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError('Trainer: calibration requires an calib_dataset.' ) __UpperCamelCase = calib_dataset if calib_dataset is not None else self.calib_dataset __UpperCamelCase = self._remove_unused_columns(A_,description='Calibration' ) return DataLoader( A_,batch_size=self.args.eval_batch_size,collate_fn=self.data_collator,drop_last=self.args.dataloader_drop_last,num_workers=self.args.dataloader_num_workers,pin_memory=self.args.dataloader_pin_memory,shuffle=A_,) def snake_case_ ( self: Any,A_: Tuple=None ): '''simple docstring''' __UpperCamelCase = self.train_dataset if calib_dataset is None else calib_dataset __UpperCamelCase = self.get_calib_dataloader(A_ ) __UpperCamelCase = self.model quant_trainer.configure_model(A_,self.quant_trainer_args,calib=A_ ) model.eval() quant_trainer.enable_calibration(A_ ) logger.info('***** Running calibration *****' ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(A_ ): # Prediction step __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = self.prediction_step(A_,A_,prediction_loss_only=A_ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(A_,self.quant_trainer_args ) __UpperCamelCase = model def snake_case_ ( self: List[str],A_: str=None,A_: int=None,A_: str=None,A_: str = "eval" ): '''simple docstring''' __UpperCamelCase = self.eval_dataset if eval_dataset is None else eval_dataset __UpperCamelCase = self.get_eval_dataloader(A_ ) __UpperCamelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __UpperCamelCase = self.compute_metrics __UpperCamelCase = None __UpperCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __UpperCamelCase = eval_loop( A_,description='Evaluation',prediction_loss_only=True if compute_metrics is None else None,ignore_keys=A_,) finally: __UpperCamelCase = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: __UpperCamelCase = self.post_process_function(A_,A_,output.predictions ) __UpperCamelCase = self.compute_metrics(A_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): __UpperCamelCase = metrics.pop(A_ ) self.log(A_ ) else: __UpperCamelCase = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __UpperCamelCase = self.callback_handler.on_evaluate(self.args,self.state,self.control,A_ ) return metrics def snake_case_ ( self: List[Any],A_: Optional[int],A_: Tuple,A_: Any=None,A_: str = "test" ): '''simple docstring''' __UpperCamelCase = self.get_test_dataloader(A_ ) # Temporarily disable metric computation, we will do it in the loop here. __UpperCamelCase = self.compute_metrics __UpperCamelCase = None __UpperCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __UpperCamelCase = eval_loop( A_,description='Prediction',prediction_loss_only=True if compute_metrics is None else None,ignore_keys=A_,) finally: __UpperCamelCase = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output __UpperCamelCase = self.post_process_function(A_,A_,output.predictions,'predict' ) __UpperCamelCase = self.compute_metrics(A_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): __UpperCamelCase = metrics.pop(A_ ) return PredictionOutput(predictions=predictions.predictions,label_ids=predictions.label_ids,metrics=A_ ) def snake_case_ ( self: Dict,A_: Optional[Any]="./" ): '''simple docstring''' __UpperCamelCase = self.eval_dataset __UpperCamelCase = self.get_eval_dataloader(A_ ) __UpperCamelCase = next(iter(A_ ) ) # saving device - to make it consistent __UpperCamelCase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) # convert to tuple __UpperCamelCase = tuple(v.to(A_ ) for k, v in batch.items() ) logger.info('Converting model to be onnx compatible' ) from pytorch_quantization.nn import TensorQuantizer __UpperCamelCase = True __UpperCamelCase = self.model.to(A_ ) model.eval() model.float() __UpperCamelCase = model.module if hasattr(A_,'module' ) else model quant_trainer.configure_model(A_,self.quant_trainer_args ) __UpperCamelCase = os.path.join(A_,'model.onnx' ) logger.info(F'''exporting model to {output_model_file}''' ) __UpperCamelCase = {0: 'batch_size', 1: 'seq_len'} torch.onnx.export( A_,A_,A_,export_params=A_,opset_version=13,do_constant_folding=A_,input_names=['input_ids', 'attention_mask', 'token_type_ids'],output_names=['output_start_logits', 'output_end_logits'],dynamic_axes={ 'input_ids': axes, 'attention_mask': axes, 'token_type_ids': axes, 'output_start_logits': axes, 'output_end_logits': axes, },verbose=A_,) logger.info('onnx export finished' )
1
def _A ( _lowercase ) -> int: """simple docstring""" assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(_lowercase ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , _lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
1
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter __snake_case = '''Create a default config file for Accelerate with only a few flags set.''' def _A ( _lowercase="no" , _lowercase = default_json_config_file , _lowercase = False ) -> List[str]: """simple docstring""" __UpperCamelCase = Path(_lowercase ) path.parent.mkdir(parents=_lowercase , exist_ok=_lowercase ) if path.exists(): print( f'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False __UpperCamelCase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) __UpperCamelCase = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): __UpperCamelCase = torch.cuda.device_count() __UpperCamelCase = num_gpus __UpperCamelCase = False if num_gpus > 1: __UpperCamelCase = 'MULTI_GPU' else: __UpperCamelCase = 'NO' elif is_xpu_available() and use_xpu: __UpperCamelCase = torch.xpu.device_count() __UpperCamelCase = num_xpus __UpperCamelCase = False if num_xpus > 1: __UpperCamelCase = 'MULTI_XPU' else: __UpperCamelCase = 'NO' elif is_npu_available(): __UpperCamelCase = torch.npu.device_count() __UpperCamelCase = num_npus __UpperCamelCase = False if num_npus > 1: __UpperCamelCase = 'MULTI_NPU' else: __UpperCamelCase = 'NO' else: __UpperCamelCase = 0 __UpperCamelCase = True __UpperCamelCase = 1 __UpperCamelCase = 'NO' __UpperCamelCase = ClusterConfig(**_lowercase ) config.to_json_file(_lowercase ) return path def _A ( _lowercase , _lowercase ) -> List[Any]: """simple docstring""" __UpperCamelCase = parser.add_parser('default' , parents=_lowercase , help=_lowercase , formatter_class=_lowercase ) parser.add_argument( '--config_file' , default=_lowercase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=_lowercase , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=_lowercase ) return parser def _A ( _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f'''accelerate configuration saved at {config_file}''' )
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _A ( ) -> int: """simple docstring""" __UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' __UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('RGB' ) return image def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = dct.pop(_lowercase ) __UpperCamelCase = val def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) __UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __UpperCamelCase = torch.cat((q_bias, torch.zeros_like(_lowercase , requires_grad=_lowercase ), v_bias) ) __UpperCamelCase = qkv_bias def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = 3_64 if 'coco' in model_name else 2_24 __UpperCamelCase = BlipaVisionConfig(image_size=_lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_lowercase ).to_dict() elif "opt-6.7b" in model_name: __UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_lowercase ).to_dict() elif "t5-xl" in model_name: __UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() __UpperCamelCase = BlipaConfig(vision_config=_lowercase , text_config=_lowercase ) return config, image_size @torch.no_grad() def _A ( _lowercase , _lowercase=None , _lowercase=False ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) __UpperCamelCase = tokenizer('\n' , add_special_tokens=_lowercase ).input_ids[0] __UpperCamelCase, __UpperCamelCase = get_blipa_config(_lowercase , eos_token_id=_lowercase ) __UpperCamelCase = BlipaForConditionalGeneration(_lowercase ).eval() __UpperCamelCase = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } __UpperCamelCase, __UpperCamelCase = model_name_to_original[model_name] # load original model print('Loading original model...' ) __UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu' __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = load_model_and_preprocess( name=_lowercase , model_type=_lowercase , is_eval=_lowercase , device=_lowercase ) original_model.eval() print('Done!' ) # update state dict keys __UpperCamelCase = original_model.state_dict() __UpperCamelCase = create_rename_keys(_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __UpperCamelCase = state_dict.pop(_lowercase ) if key.startswith('Qformer.bert' ): __UpperCamelCase = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: __UpperCamelCase = key.replace('self' , 'attention' ) if "opt_proj" in key: __UpperCamelCase = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: __UpperCamelCase = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): __UpperCamelCase = key.replace('opt' , 'language' ) if key.startswith('t5' ): __UpperCamelCase = key.replace('t5' , 'language' ) __UpperCamelCase = val # read in qv biases read_in_q_v_bias(_lowercase , _lowercase ) __UpperCamelCase, __UpperCamelCase = hf_model.load_state_dict(_lowercase , strict=_lowercase ) assert len(_lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __UpperCamelCase = load_demo_image() __UpperCamelCase = vis_processors['eval'](_lowercase ).unsqueeze(0 ).to(_lowercase ) __UpperCamelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_lowercase ) # create processor __UpperCamelCase = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=_lowercase , image_std=_lowercase ) __UpperCamelCase = BlipaProcessor(image_processor=_lowercase , tokenizer=_lowercase ) __UpperCamelCase = processor(images=_lowercase , return_tensors='pt' ).pixel_values.to(_lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowercase , _lowercase ) original_model.to(_lowercase ) hf_model.to(_lowercase ) with torch.no_grad(): if "opt" in model_name: __UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits __UpperCamelCase = hf_model(_lowercase , _lowercase ).logits else: __UpperCamelCase = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits __UpperCamelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) __UpperCamelCase = hf_model(_lowercase , _lowercase , labels=_lowercase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __UpperCamelCase = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=_lowercase ) assert torch.allclose(logits[0, :3, :3] , _lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": __UpperCamelCase = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=_lowercase ) else: # cast to same type __UpperCamelCase = logits.dtype assert torch.allclose(original_logits.to(_lowercase ) , _lowercase , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) __UpperCamelCase = '' __UpperCamelCase = tokenizer(_lowercase , return_tensors='pt' ).input_ids.to(_lowercase ) __UpperCamelCase = original_model.generate({'image': original_pixel_values} ) __UpperCamelCase = hf_model.generate( _lowercase , _lowercase , do_sample=_lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , _lowercase ) __UpperCamelCase = input_ids.shape[1] __UpperCamelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowercase ) __UpperCamelCase = [text.strip() for text in output_text] print('HF generation:' , _lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowercase ) hf_model.save_pretrained(_lowercase ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() __snake_case = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __snake_case = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
1
1
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowerCamelCase (unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def snake_case_ ( self: int,A_: int ): '''simple docstring''' __UpperCamelCase = GenerationConfig( do_sample=A_,temperature=0.7,length_penalty=1.0,bad_words_ids=[[1, 2, 3], [4, 5]],) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A_,config_name=A_ ) __UpperCamelCase = GenerationConfig.from_pretrained(A_,config_name=A_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample,A_ ) self.assertEqual(loaded_config.temperature,0.7 ) self.assertEqual(loaded_config.length_penalty,1.0 ) self.assertEqual(loaded_config.bad_words_ids,[[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k,50 ) self.assertEqual(loaded_config.max_length,20 ) self.assertEqual(loaded_config.max_time,A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = AutoConfig.from_pretrained('gpt2' ) __UpperCamelCase = GenerationConfig.from_model_config(A_ ) __UpperCamelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(A_,A_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id,default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id,model_config.eos_token_id ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = GenerationConfig() __UpperCamelCase = { 'max_new_tokens': 1024, 'foo': 'bar', } __UpperCamelCase = copy.deepcopy(A_ ) __UpperCamelCase = generation_config.update(**A_ ) # update_kwargs was not modified (no side effects) self.assertEqual(A_,A_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens,1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(A_,{'foo': 'bar'} ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = GenerationConfig() __UpperCamelCase = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(A_ ) __UpperCamelCase = GenerationConfig.from_pretrained(A_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo,'bar' ) __UpperCamelCase = GenerationConfig.from_model_config(A_ ) assert not hasattr(A_,'foo' ) # no new kwargs should be initialized if from config def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = GenerationConfig() self.assertEqual(default_config.temperature,1.0 ) self.assertEqual(default_config.do_sample,A_ ) self.assertEqual(default_config.num_beams,1 ) __UpperCamelCase = GenerationConfig( do_sample=A_,temperature=0.7,length_penalty=1.0,bad_words_ids=[[1, 2, 3], [4, 5]],) self.assertEqual(config.temperature,0.7 ) self.assertEqual(config.do_sample,A_ ) self.assertEqual(config.num_beams,1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A_ ) __UpperCamelCase = GenerationConfig.from_pretrained(A_,temperature=1.0 ) self.assertEqual(loaded_config.temperature,1.0 ) self.assertEqual(loaded_config.do_sample,A_ ) self.assertEqual(loaded_config.num_beams,1 ) # default value @is_staging_test class __lowerCamelCase (unittest.TestCase ): @classmethod def snake_case_ ( cls: int ): '''simple docstring''' __UpperCamelCase = TOKEN HfFolder.save_token(A_ ) @classmethod def snake_case_ ( cls: int ): '''simple docstring''' try: delete_repo(token=cls._token,repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = GenerationConfig( do_sample=A_,temperature=0.7,length_penalty=1.0,) config.push_to_hub('test-generation-config',use_auth_token=self._token ) __UpperCamelCase = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A_,getattr(A_,A_ ) ) # Reset repo delete_repo(token=self._token,repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A_,repo_id='test-generation-config',push_to_hub=A_,use_auth_token=self._token ) __UpperCamelCase = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A_,getattr(A_,A_ ) ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = GenerationConfig( do_sample=A_,temperature=0.7,length_penalty=1.0,) config.push_to_hub('valid_org/test-generation-config-org',use_auth_token=self._token ) __UpperCamelCase = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A_,getattr(A_,A_ ) ) # Reset repo delete_repo(token=self._token,repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A_,repo_id='valid_org/test-generation-config-org',push_to_hub=A_,use_auth_token=self._token ) __UpperCamelCase = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A_,getattr(A_,A_ ) )
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field(default=_a , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) _lowercase = field( default=_a , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) __UpperCamelCase = import_module('tasks' ) try: __UpperCamelCase = getattr(_lowercase , model_args.task_type ) __UpperCamelCase = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __UpperCamelCase = token_classification_task.get_labels(data_args.labels ) __UpperCamelCase = dict(enumerate(_lowercase ) ) __UpperCamelCase = len(_lowercase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , idalabel=_lowercase , labelaid={label: i for i, label in enumerate(_lowercase )} , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __UpperCamelCase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( TokenClassificationDataset( token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( TokenClassificationDataset( token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_lowercase , _lowercase ) -> Tuple[List[int], List[int]]: __UpperCamelCase = np.argmax(_lowercase , axis=2 ) __UpperCamelCase, __UpperCamelCase = preds.shape __UpperCamelCase = [[] for _ in range(_lowercase )] __UpperCamelCase = [[] for _ in range(_lowercase )] for i in range(_lowercase ): for j in range(_lowercase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase, __UpperCamelCase = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_lowercase , _lowercase ), "precision": precision_score(_lowercase , _lowercase ), "recall": recall_score(_lowercase , _lowercase ), "f1": fa_score(_lowercase , _lowercase ), } # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) # Predict if training_args.do_predict: __UpperCamelCase = TokenClassificationDataset( token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = trainer.predict(_lowercase ) __UpperCamelCase, __UpperCamelCase = align_predictions(_lowercase , _lowercase ) __UpperCamelCase = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(_lowercase , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) # Save predictions __UpperCamelCase = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(_lowercase , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(_lowercase , _lowercase , _lowercase ) return results def _A ( _lowercase ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
1
1
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) def _A ( _lowercase ) -> List[str]: """simple docstring""" __UpperCamelCase = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) __UpperCamelCase = re.match(r'^mobilenet_v1_([^_]*)_([^_]*)$' , _lowercase ) if matches: __UpperCamelCase = float(matches[1] ) __UpperCamelCase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCamelCase = 10_01 __UpperCamelCase = 'imagenet-1k-id2label.json' __UpperCamelCase = 'huggingface/label-files' __UpperCamelCase = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase = {int(_lowercase ) + 1: v for k, v in idalabel.items()} __UpperCamelCase = 'background' __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} return config def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def _A ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = get_mobilenet_va_config(_lowercase ) # Load 🤗 model __UpperCamelCase = MobileNetVaForImageClassification(_lowercase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_lowercase , _lowercase , _lowercase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCamelCase = MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 32} , ) __UpperCamelCase = image_processor(images=prepare_img() , return_tensors='pt' ) __UpperCamelCase = model(**_lowercase ) __UpperCamelCase = outputs.logits assert logits.shape == (1, 10_01) if model_name == "mobilenet_v1_1.0_224": __UpperCamelCase = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCamelCase = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: __UpperCamelCase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowercase ) if push_to_hub: print('Pushing to the hub...' ) __UpperCamelCase = 'google/' + model_name image_processor.push_to_hub(_lowercase ) model.push_to_hub(_lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
1
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _A ( *_lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'r' ) as fh: fcntl.flock(_lowercase , fcntl.LOCK_EX ) try: print(*_lowercase ) finally: fcntl.flock(_lowercase , fcntl.LOCK_UN ) __snake_case = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) __snake_case = torch.device('''cuda''', local_rank) __snake_case = socket.gethostname() __snake_case = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __snake_case = dist.get_rank() __snake_case = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
1
1
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True ) -> Any: """simple docstring""" model.train() __UpperCamelCase = model(_lowercase ) __UpperCamelCase = F.mse_loss(_lowercase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowercase ) def _A ( _lowercase , _lowercase=False ) -> List[Any]: """simple docstring""" set_seed(42 ) __UpperCamelCase = RegressionModel() __UpperCamelCase = deepcopy(_lowercase ) __UpperCamelCase = RegressionDataset(length=80 ) __UpperCamelCase = DataLoader(_lowercase , batch_size=16 ) model.to(accelerator.device ) if sched: __UpperCamelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCamelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCamelCase = LambdaLR(_lowercase , lr_lambda=lambda _lowercase : epoch**0.65 ) __UpperCamelCase = LambdaLR(_lowercase , lr_lambda=lambda _lowercase : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare(_lowercase , _lowercase , _lowercase , _lowercase ) else: __UpperCamelCase, __UpperCamelCase = accelerator.prepare(_lowercase , _lowercase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _A ( _lowercase ) -> Tuple: """simple docstring""" __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = get_training_setup(_lowercase ) # Use a single batch __UpperCamelCase, __UpperCamelCase = next(iter(_lowercase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCamelCase, __UpperCamelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCamelCase, __UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowercase , _lowercase , _lowercase , _lowercase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowercase ): step_model(_lowercase , _lowercase , _lowercase , _lowercase ) else: # Sync grads step_model(_lowercase , _lowercase , _lowercase , _lowercase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowercase , _lowercase , _lowercase , _lowercase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) __UpperCamelCase = ddp_input[torch.randperm(len(_lowercase ) )] def _A ( _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = get_training_setup(_lowercase ) # Use a single batch __UpperCamelCase, __UpperCamelCase = next(iter(_lowercase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCamelCase, __UpperCamelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCamelCase, __UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowercase , _lowercase , _lowercase , _lowercase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowercase ): step_model(_lowercase , _lowercase , _lowercase , _lowercase ) else: # Sync grads step_model(_lowercase , _lowercase , _lowercase , _lowercase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) __UpperCamelCase = ddp_input[torch.randperm(len(_lowercase ) )] def _A ( _lowercase=False , _lowercase=False ) -> str: """simple docstring""" __UpperCamelCase = Accelerator( split_batches=_lowercase , dispatch_batches=_lowercase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = get_training_setup(_lowercase ) for iteration, batch in enumerate(_lowercase ): __UpperCamelCase, __UpperCamelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCamelCase, __UpperCamelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCamelCase, __UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowercase ): step_model(_lowercase , _lowercase , _lowercase , _lowercase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowercase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) __UpperCamelCase = ddp_input[torch.randperm(len(_lowercase ) )] GradientState._reset_state() def _A ( _lowercase=False , _lowercase=False ) -> List[str]: """simple docstring""" __UpperCamelCase = Accelerator( split_batches=_lowercase , dispatch_batches=_lowercase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = get_training_setup(_lowercase , _lowercase ) for iteration, batch in enumerate(_lowercase ): __UpperCamelCase, __UpperCamelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCamelCase, __UpperCamelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCamelCase, __UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowercase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowercase ): step_model(_lowercase , _lowercase , _lowercase , _lowercase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' __UpperCamelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowercase )) if accelerator.num_processes > 1: check_model_parameters(_lowercase , _lowercase , _lowercase , _lowercase ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = Accelerator() __UpperCamelCase = RegressionDataset(length=80 ) __UpperCamelCase = DataLoader(_lowercase , batch_size=16 ) __UpperCamelCase = RegressionDataset(length=96 ) __UpperCamelCase = DataLoader(_lowercase , batch_size=16 ) __UpperCamelCase, __UpperCamelCase = accelerator.prepare(_lowercase , _lowercase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowercase ): assert id(accelerator.gradient_state.active_dataloader ) == id(_lowercase ) if iteration < len(_lowercase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowercase ): assert id(accelerator.gradient_state.active_dataloader ) == id(_lowercase ) if batch_num < len(_lowercase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _A ( ) -> Tuple: """simple docstring""" __UpperCamelCase = Accelerator() __UpperCamelCase = accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**' ) test_noop_sync(_lowercase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**' ) test_distributed_sync(_lowercase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(_lowercase , _lowercase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(_lowercase , _lowercase ) def _A ( _lowercase ) -> str: """simple docstring""" main() if __name__ == "__main__": main()
1
import pytest import datasets # Import fixture modules as plugins __snake_case = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def _A ( _lowercase ) -> str: """simple docstring""" config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = tmp_path_factory.getbasetemp() / 'cache' __UpperCamelCase = test_hf_cache_home / 'datasets' __UpperCamelCase = test_hf_cache_home / 'metrics' __UpperCamelCase = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(_lowercase ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(_lowercase ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(_lowercase ) ) __UpperCamelCase = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(_lowercase ) ) __UpperCamelCase = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_lowercase ) ) @pytest.fixture(autouse=_lowercase , scope='session' ) def _A ( ) -> Dict: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_lowercase ) def _A ( _lowercase ) -> Tuple: """simple docstring""" monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , _lowercase ) @pytest.fixture def _A ( _lowercase ) -> Any: """simple docstring""" monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , _lowercase )
1
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __snake_case = datasets.utils.logging.get_logger(__name__) __snake_case = ['''names''', '''prefix'''] __snake_case = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] __snake_case = ['''encoding_errors''', '''on_bad_lines'''] __snake_case = ['''date_format'''] @dataclass class __lowerCamelCase (datasets.BuilderConfig ): _lowercase = "," _lowercase = None _lowercase = "infer" _lowercase = None _lowercase = None _lowercase = None _lowercase = None _lowercase = None _lowercase = True _lowercase = None _lowercase = None _lowercase = None _lowercase = None _lowercase = False _lowercase = None _lowercase = None _lowercase = None _lowercase = True _lowercase = True _lowercase = False _lowercase = True _lowercase = None _lowercase = "." _lowercase = None _lowercase = '"' _lowercase = 0 _lowercase = None _lowercase = None _lowercase = None _lowercase = None _lowercase = True _lowercase = True _lowercase = 0 _lowercase = True _lowercase = False _lowercase = None _lowercase = 1_0000 _lowercase = None _lowercase = "strict" _lowercase = "error" _lowercase = None def snake_case_ ( self: str ): '''simple docstring''' if self.delimiter is not None: __UpperCamelCase = self.delimiter if self.column_names is not None: __UpperCamelCase = self.column_names @property def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(),A_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __lowerCamelCase (datasets.ArrowBasedBuilder ): _lowercase = CsvConfig def snake_case_ ( self: Optional[int] ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def snake_case_ ( self: List[str],A_: Any ): '''simple docstring''' if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A_,(str, list, tuple) ): __UpperCamelCase = data_files if isinstance(A_,A_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(A_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN,gen_kwargs={'files': files} )] __UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(A_,A_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(A_ ) for file in files] splits.append(datasets.SplitGenerator(name=A_,gen_kwargs={'files': files} ) ) return splits def snake_case_ ( self: Dict,A_: pa.Table ): '''simple docstring''' if self.config.features is not None: __UpperCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(A_ ) for feature in self.config.features.values() ): # cheaper cast __UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema],schema=A_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __UpperCamelCase = table_cast(A_,A_ ) return pa_table def snake_case_ ( self: Optional[Any],A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __UpperCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(A_ ) else object for name, dtype, feature in zip(schema.names,schema.types,self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(A_ ) ): __UpperCamelCase = pd.read_csv(A_,iterator=A_,dtype=A_,**self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(A_ ): __UpperCamelCase = pa.Table.from_pandas(A_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(A_ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(A_ )}: {e}''' ) raise
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = VideoToVideoSDPipeline _lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} _lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} _lowercase = PipelineTesterMixin.required_optional_params - {"""latents"""} _lowercase = False # No `output_type`. _lowercase = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def snake_case_ ( self: List[str] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'),up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'),cross_attention_dim=32,attention_head_dim=4,) __UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,beta_schedule='scaled_linear',clip_sample=A_,set_alpha_to_one=A_,) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=128,) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act='gelu',projection_dim=512,) __UpperCamelCase = CLIPTextModel(A_ ) __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def snake_case_ ( self: Union[str, Any],A_: Any,A_: Any=0 ): '''simple docstring''' __UpperCamelCase = floats_tensor((1, 3, 3, 32, 32),rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = VideoToVideoSDPipeline(**A_ ) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = 'np' __UpperCamelCase = sd_pipe(**A_ ).frames __UpperCamelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __UpperCamelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',) def snake_case_ ( self: Any ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_,expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case_ ( self: str ): '''simple docstring''' pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def snake_case_ ( self: int ): '''simple docstring''' pass def snake_case_ ( self: Any ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL',torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase = torch.randn((1, 10, 3, 1024, 576),generator=A_ ) __UpperCamelCase = video.to('cuda' ) __UpperCamelCase = 'Spiderman is surfing' __UpperCamelCase = pipe(A_,video=A_,generator=A_,num_inference_steps=3,output_type='pt' ).frames __UpperCamelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
1
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_a ) class __lowerCamelCase (_a ): _lowercase = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) _lowercase = Features({"""audio""": Audio()} ) _lowercase = Features({"""labels""": ClassLabel} ) _lowercase = "audio" _lowercase = "labels" def snake_case_ ( self: str,A_: int ): '''simple docstring''' if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column],A_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) __UpperCamelCase = copy.deepcopy(self ) __UpperCamelCase = self.label_schema.copy() __UpperCamelCase = features[self.label_column] __UpperCamelCase = label_schema return task_template @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) __snake_case = parser.parse_args() __snake_case = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __snake_case = CLIPImageProcessor() __snake_case = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') __snake_case = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
1
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class __lowerCamelCase (_a ): _lowercase = """bert""" def __init__( self: Any,A_: Dict=3_0522,A_: Optional[Any]=768,A_: Union[str, Any]=12,A_: List[Any]=12,A_: Optional[int]=3072,A_: Union[str, Any]="gelu",A_: List[str]=0.1,A_: Dict=0.1,A_: Optional[int]=512,A_: Optional[Any]=2,A_: Union[str, Any]=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=0,A_: List[Any]="absolute",A_: str=True,A_: Union[str, Any]=None,**A_: int,): '''simple docstring''' super().__init__(pad_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
1
1
def _A ( _lowercase , _lowercase ) -> str: """simple docstring""" if not (isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase )): raise ValueError('longest_common_substring() takes two strings for inputs' ) __UpperCamelCase = len(_lowercase ) __UpperCamelCase = len(_lowercase ) __UpperCamelCase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __UpperCamelCase = 0 __UpperCamelCase = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __UpperCamelCase = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __UpperCamelCase = i __UpperCamelCase = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __snake_case = '''src/diffusers''' # Matches is_xxx_available() __snake_case = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla __snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') __snake_case = ''' {0} = None ''' __snake_case = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' __snake_case = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = _re_backend.findall(_lowercase ) if len(_lowercase ) == 0: return None return "_and_".join(_lowercase ) def _A ( ) -> Tuple: """simple docstring""" with open(os.path.join(_lowercase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: __UpperCamelCase = f.readlines() # Get to the point we do the actual imports for type checking __UpperCamelCase = 0 __UpperCamelCase = {} # Go through the end of the file while line_index < len(_lowercase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __UpperCamelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 __UpperCamelCase = [] # Until we unindent, add backend objects to the list while line_index < len(_lowercase ) and len(lines[line_index] ) > 1: __UpperCamelCase = lines[line_index] __UpperCamelCase = _re_single_line_import.search(_lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_lowercase ) > 0: __UpperCamelCase = objects else: line_index += 1 return backend_specific_objects def _A ( _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(_lowercase ) elif name.islower(): return DUMMY_FUNCTION.format(_lowercase , _lowercase ) else: return DUMMY_CLASS.format(_lowercase , _lowercase ) def _A ( _lowercase=None ) -> Optional[Any]: """simple docstring""" if backend_specific_objects is None: __UpperCamelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename __UpperCamelCase = {} for backend, objects in backend_specific_objects.items(): __UpperCamelCase = '[' + ', '.join(f'''"{b}"''' for b in backend.split('_and_' ) ) + ']' __UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_lowercase , _lowercase ) for o in objects] ) __UpperCamelCase = dummy_file return dummy_files def _A ( _lowercase=False ) -> List[str]: """simple docstring""" __UpperCamelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __UpperCamelCase = {'torch': 'pt'} # Locate actual dummy modules and read their content. __UpperCamelCase = os.path.join(_lowercase , 'utils' ) __UpperCamelCase = { backend: os.path.join(_lowercase , f'''dummy_{short_names.get(_lowercase , _lowercase )}_objects.py''' ) for backend in dummy_files.keys() } __UpperCamelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_lowercase ): with open(_lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f: __UpperCamelCase = f.read() else: __UpperCamelCase = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py as the main ''' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' f'''diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py. Run `make fix-copies` ''' 'to fix this.' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __snake_case = parser.parse_args() check_dummies(args.fix_and_overwrite)
1
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } __snake_case = { '''roberta-base''': 5_1_2, '''roberta-large''': 5_1_2, '''roberta-large-mnli''': 5_1_2, '''distilroberta-base''': 5_1_2, '''roberta-base-openai-detector''': 5_1_2, '''roberta-large-openai-detector''': 5_1_2, } class __lowerCamelCase (_a ): _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ["""input_ids""", """attention_mask"""] _lowercase = RobertaTokenizer def __init__( self: Any,A_: Any=None,A_: Optional[Any]=None,A_: Any=None,A_: str="replace",A_: List[Any]="<s>",A_: str="</s>",A_: Tuple="</s>",A_: str="<s>",A_: int="<unk>",A_: Optional[int]="<pad>",A_: Optional[int]="<mask>",A_: List[str]=False,A_: Dict=True,**A_: Optional[Any],): '''simple docstring''' super().__init__( A_,A_,tokenizer_file=A_,errors=A_,bos_token=A_,eos_token=A_,sep_token=A_,cls_token=A_,unk_token=A_,pad_token=A_,mask_token=A_,add_prefix_space=A_,trim_offsets=A_,**A_,) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space',A_ ) != add_prefix_space: __UpperCamelCase = getattr(A_,pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**A_ ) __UpperCamelCase = add_prefix_space __UpperCamelCase = 'post_processor' __UpperCamelCase = getattr(self.backend_tokenizer,A_,A_ ) if tokenizer_component_instance: __UpperCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __UpperCamelCase = tuple(state['sep'] ) if "cls" in state: __UpperCamelCase = tuple(state['cls'] ) __UpperCamelCase = False if state.get('add_prefix_space',A_ ) != add_prefix_space: __UpperCamelCase = add_prefix_space __UpperCamelCase = True if state.get('trim_offsets',A_ ) != trim_offsets: __UpperCamelCase = trim_offsets __UpperCamelCase = True if changes_to_apply: __UpperCamelCase = getattr(A_,state.pop('type' ) ) __UpperCamelCase = component_class(**A_ ) setattr(self.backend_tokenizer,A_,A_ ) @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def snake_case_ ( self: Dict,A_: List[str] ): '''simple docstring''' __UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else value __UpperCamelCase = value def snake_case_ ( self: Optional[int],*A_: Dict,**A_: str ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words',A_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A_,**A_ ) def snake_case_ ( self: Tuple,*A_: Dict,**A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words',A_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*A_,**A_ ) def snake_case_ ( self: Dict,A_: str,A_: Optional[str] = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(A_,name=A_ ) return tuple(A_ ) def snake_case_ ( self: Any,A_: Optional[int],A_: Optional[int]=None ): '''simple docstring''' __UpperCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case_ ( self: Union[str, Any],A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
1
import string def _A ( _lowercase ) -> None: """simple docstring""" for key in range(len(string.ascii_uppercase ) ): __UpperCamelCase = '' for symbol in message: if symbol in string.ascii_uppercase: __UpperCamelCase = string.ascii_uppercase.find(_lowercase ) __UpperCamelCase = num - key if num < 0: __UpperCamelCase = num + len(string.ascii_uppercase ) __UpperCamelCase = translated + string.ascii_uppercase[num] else: __UpperCamelCase = translated + symbol print(f'''Decryption using Key #{key}: {translated}''' ) def _A ( ) -> None: """simple docstring""" __UpperCamelCase = input('Encrypted message: ' ) __UpperCamelCase = message.upper() decrypt(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
1
def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(_lowercase , n - 1 , _lowercase ) * a) % mod else: __UpperCamelCase = binary_exponentiation(_lowercase , n / 2 , _lowercase ) return (b * b) % mod # a prime number __snake_case = 7_0_1 __snake_case = 1_0_0_0_0_0_0_0_0_0 __snake_case = 1_0 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = KandinskyInpaintPipeline _lowercase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _lowercase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _lowercase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowercase = False @property def snake_case_ ( self: int ): '''simple docstring''' return 32 @property def snake_case_ ( self: str ): '''simple docstring''' return 32 @property def snake_case_ ( self: Tuple ): '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' return 100 @property def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = MCLIPConfig( numDims=self.cross_attention_dim,transformerDimensions=self.text_embedder_hidden_size,hidden_size=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_hidden_layers=5,vocab_size=1005,) __UpperCamelCase = MultilingualCLIP(A_ ) __UpperCamelCase = text_encoder.eval() return text_encoder @property def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __UpperCamelCase = UNetaDConditionModel(**A_ ) return model @property def snake_case_ ( self: str ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self: str ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = self.dummy_tokenizer __UpperCamelCase = self.dummy_unet __UpperCamelCase = self.dummy_movq __UpperCamelCase = DDIMScheduler( num_train_timesteps=1000,beta_schedule='linear',beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,clip_sample=A_,set_alpha_to_one=A_,steps_offset=1,prediction_type='epsilon',thresholding=A_,) __UpperCamelCase = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def snake_case_ ( self: Tuple,A_: Optional[int],A_: Dict=0 ): '''simple docstring''' __UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(seed + 1 ) ).to(A_ ) # create init_image __UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = image.cpu().permute(0,2,3,1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) ) # create mask __UpperCamelCase = np.ones((64, 64),dtype=np.floataa ) __UpperCamelCase = 0 if str(A_ ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = 'cpu' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) ) __UpperCamelCase = output.images __UpperCamelCase = pipe( **self.get_dummy_inputs(A_ ),return_dict=A_,)[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def snake_case_ ( self: Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) __UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __UpperCamelCase = np.ones((768, 768),dtype=np.floataa ) __UpperCamelCase = 0 __UpperCamelCase = 'a hat' __UpperCamelCase = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior',torch_dtype=torch.floataa ) pipe_prior.to(A_ ) __UpperCamelCase = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint',torch_dtype=torch.floataa ) __UpperCamelCase = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase, __UpperCamelCase = pipe_prior( A_,generator=A_,num_inference_steps=5,negative_prompt='',).to_tuple() __UpperCamelCase = pipeline( A_,image=A_,mask_image=A_,image_embeds=A_,negative_image_embeds=A_,generator=A_,num_inference_steps=100,height=768,width=768,output_type='np',) __UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A_,A_ )
1
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCamelCase (_a ): def __init__( self: Any,A_: WhisperForConditionalGeneration,A_: WhisperProcessor,A_: AutoencoderKL,A_: CLIPTextModel,A_: CLIPTokenizer,A_: UNetaDConditionModel,A_: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],A_: StableDiffusionSafetyChecker,A_: CLIPImageProcessor,): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=A_,speech_processor=A_,vae=A_,text_encoder=A_,tokenizer=A_,unet=A_,scheduler=A_,feature_extractor=A_,) def snake_case_ ( self: int,A_: Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": __UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A_ ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' self.enable_attention_slicing(A_ ) @torch.no_grad() def __call__( self: List[str],A_: List[Any],A_: int=1_6000,A_: int = 512,A_: int = 512,A_: int = 50,A_: float = 7.5,A_: Optional[Union[str, List[str]]] = None,A_: Optional[int] = 1,A_: float = 0.0,A_: Optional[torch.Generator] = None,A_: Optional[torch.FloatTensor] = None,A_: Optional[str] = "pil",A_: bool = True,A_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,A_: int = 1,**A_: str,): '''simple docstring''' __UpperCamelCase = self.speech_processor.feature_extractor( A_,return_tensors='pt',sampling_rate=A_ ).input_features.to(self.device ) __UpperCamelCase = self.speech_model.generate(A_,max_length=48_0000 ) __UpperCamelCase = self.speech_processor.tokenizer.batch_decode(A_,skip_special_tokens=A_,normalize=A_ )[ 0 ] if isinstance(A_,A_ ): __UpperCamelCase = 1 elif isinstance(A_,A_ ): __UpperCamelCase = len(A_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A_,A_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(A_ )}.''' ) # get prompt text embeddings __UpperCamelCase = self.tokenizer( A_,padding='max_length',max_length=self.tokenizer.model_max_length,return_tensors='pt',) __UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] __UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = text_embeddings.shape __UpperCamelCase = text_embeddings.repeat(1,A_,1 ) __UpperCamelCase = text_embeddings.view(bs_embed * num_images_per_prompt,A_,-1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __UpperCamelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __UpperCamelCase = 42 if negative_prompt is None: __UpperCamelCase = [''] * batch_size elif type(A_ ) is not type(A_ ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(A_ )} !=''' F''' {type(A_ )}.''' ) elif isinstance(A_,A_ ): __UpperCamelCase = [negative_prompt] elif batch_size != len(A_ ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(A_ )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.' ) else: __UpperCamelCase = negative_prompt __UpperCamelCase = text_input_ids.shape[-1] __UpperCamelCase = self.tokenizer( A_,padding='max_length',max_length=A_,truncation=A_,return_tensors='pt',) __UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __UpperCamelCase = uncond_embeddings.shape[1] __UpperCamelCase = uncond_embeddings.repeat(1,A_,1 ) __UpperCamelCase = uncond_embeddings.view(batch_size * num_images_per_prompt,A_,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __UpperCamelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __UpperCamelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __UpperCamelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __UpperCamelCase = torch.randn(A_,generator=A_,device='cpu',dtype=A_ ).to( self.device ) else: __UpperCamelCase = torch.randn(A_,generator=A_,device=self.device,dtype=A_ ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __UpperCamelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __UpperCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __UpperCamelCase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __UpperCamelCase = {} if accepts_eta: __UpperCamelCase = eta for i, t in enumerate(self.progress_bar(A_ ) ): # expand the latents if we are doing classifier free guidance __UpperCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCamelCase = self.scheduler.scale_model_input(A_,A_ ) # predict the noise residual __UpperCamelCase = self.unet(A_,A_,encoder_hidden_states=A_ ).sample # perform guidance if do_classifier_free_guidance: __UpperCamelCase, __UpperCamelCase = noise_pred.chunk(2 ) __UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __UpperCamelCase = self.scheduler.step(A_,A_,A_,**A_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A_,A_,A_ ) __UpperCamelCase = 1 / 0.1_8_2_1_5 * latents __UpperCamelCase = self.vae.decode(A_ ).sample __UpperCamelCase = (image / 2 + 0.5).clamp(0,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCamelCase = image.cpu().permute(0,2,3,1 ).float().numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(A_ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=A_,nsfw_content_detected=A_ )
1
from typing import Any class __lowerCamelCase : def __init__( self: int,A_: Any ): '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None def __repr__( self: Any ): '''simple docstring''' return F'''Node({self.data})''' class __lowerCamelCase : def __init__( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = None def __iter__( self: int ): '''simple docstring''' __UpperCamelCase = self.head while node: yield node.data __UpperCamelCase = node.next def __len__( self: List[str] ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self: Any ): '''simple docstring''' return "->".join([str(A_ ) for item in self] ) def __getitem__( self: int,A_: int ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self: int,A_: int,A_: Any ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) __UpperCamelCase = self.head for _ in range(A_ ): __UpperCamelCase = current.next __UpperCamelCase = data def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' self.insert_nth(len(self ),A_ ) def snake_case_ ( self: List[Any],A_: Any ): '''simple docstring''' self.insert_nth(0,A_ ) def snake_case_ ( self: Optional[Any],A_: int,A_: Any ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) __UpperCamelCase = Node(A_ ) if self.head is None: __UpperCamelCase = new_node elif index == 0: __UpperCamelCase = self.head # link new_node to head __UpperCamelCase = new_node else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = new_node def snake_case_ ( self: str ): # print every node data '''simple docstring''' print(self ) def snake_case_ ( self: int ): '''simple docstring''' return self.delete_nth(0 ) def snake_case_ ( self: str ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def snake_case_ ( self: Any,A_: int = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) __UpperCamelCase = self.head # default first node if index == 0: __UpperCamelCase = self.head.next else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = temp.next.next return delete_node.data def snake_case_ ( self: Any ): '''simple docstring''' return self.head is None def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = self.head while current: # Store the current node's next node. __UpperCamelCase = current.next # Make the current node's next point backwards __UpperCamelCase = prev # Make the previous node be the current node __UpperCamelCase = current # Make the current node the next node (to progress iteration) __UpperCamelCase = next_node # Return prev in order to put the head at the end __UpperCamelCase = prev def _A ( ) -> None: """simple docstring""" __UpperCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(_lowercase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_lowercase ) == i linked_list.insert_nth(_lowercase , i + 1 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_lowercase ) == 9 assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) ) def _A ( ) -> None: """simple docstring""" __UpperCamelCase = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] __UpperCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(_lowercase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCamelCase = linked_list.delete_head() assert result == -9 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_lowercase ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_lowercase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _A ( ) -> List[str]: """simple docstring""" from doctest import testmod testmod() __UpperCamelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_lowercase ) print('\nReading/changing Node data using indexing:' ) print(f'''Element at Position 1: {linked_list[1]}''' ) __UpperCamelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_lowercase ) print(f'''length of linked_list is : {len(_lowercase )}''' ) if __name__ == "__main__": main()
1
1
import math def _A ( _lowercase , _lowercase ) -> str: """simple docstring""" if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(_lowercase ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __snake_case = '''Enter the base and the power separated by a comma: ''' __snake_case , __snake_case = map(int, input(prompt).split(''',''')) __snake_case , __snake_case = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. __snake_case = res(xa, ya) __snake_case = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
1
1
import os from datetime import datetime as dt from github import Github __snake_case = [ '''good first issue''', '''feature request''', '''wip''', ] def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = Github(os.environ['GITHUB_TOKEN'] ) __UpperCamelCase = g.get_repo('huggingface/accelerate' ) __UpperCamelCase = repo.get_issues(state='open' ) for issue in open_issues: __UpperCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) __UpperCamelCase = comments[0] if len(_lowercase ) > 0 else None __UpperCamelCase = dt.utcnow() __UpperCamelCase = (current_time - issue.updated_at).days __UpperCamelCase = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
1
__snake_case = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } __snake_case = {value: key for key, value in encode_dict.items()} def _A ( _lowercase ) -> str: """simple docstring""" __UpperCamelCase = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def _A ( _lowercase ) -> str: """simple docstring""" if set(_lowercase ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) __UpperCamelCase = '' for word in coded.split(): while len(_lowercase ) != 0: decoded += decode_dict[word[:5]] __UpperCamelCase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
1
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __lowerCamelCase : _lowercase = 42 _lowercase = 42 class __lowerCamelCase : def __init__( self: List[str],A_: int ): '''simple docstring''' __UpperCamelCase = [[] for _ in range(A_ )] __UpperCamelCase = size def __getitem__( self: Any,A_: int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return self._size def snake_case_ ( self: Any,A_: int,A_: int,A_: int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(A_,A_ ) ) def snake_case_ ( self: Optional[Any],A_: int,A_: int ): '''simple docstring''' __UpperCamelCase = deque([start_vertex] ) __UpperCamelCase = [None] * self.size __UpperCamelCase = 0 while queue: __UpperCamelCase = queue.popleft() __UpperCamelCase = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: __UpperCamelCase = current_distance + edge.weight __UpperCamelCase = distances[edge.destination_vertex] if ( isinstance(A_,A_ ) and new_distance >= dest_vertex_distance ): continue __UpperCamelCase = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
1
from collections.abc import Generator from math import sin def _A ( _lowercase ) -> bytes: """simple docstring""" if len(_lowercase ) != 32: raise ValueError('Input must be of length 32' ) __UpperCamelCase = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _A ( _lowercase ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __UpperCamelCase = format(_lowercase , '08x' )[-8:] __UpperCamelCase = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = B'' for char in message: bit_string += format(_lowercase , '08b' ).encode('utf-8' ) __UpperCamelCase = format(len(_lowercase ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_lowercase ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _A ( _lowercase ) -> Generator[list[int], None, None]: """simple docstring""" if len(_lowercase ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(_lowercase ) , 5_12 ): __UpperCamelCase = bit_string[pos : pos + 5_12] __UpperCamelCase = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _A ( _lowercase ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __UpperCamelCase = format(_lowercase , '032b' ) __UpperCamelCase = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(_lowercase , 2 ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" return (a + b) % 2**32 def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = preprocess(_lowercase ) __UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __UpperCamelCase = 0X67_45_23_01 __UpperCamelCase = 0Xef_cd_ab_89 __UpperCamelCase = 0X98_ba_dc_fe __UpperCamelCase = 0X10_32_54_76 __UpperCamelCase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_lowercase ): __UpperCamelCase = aa __UpperCamelCase = ba __UpperCamelCase = ca __UpperCamelCase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __UpperCamelCase = d ^ (b & (c ^ d)) __UpperCamelCase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __UpperCamelCase = c ^ (d & (b ^ c)) __UpperCamelCase = (5 * i + 1) % 16 elif i <= 47: __UpperCamelCase = b ^ c ^ d __UpperCamelCase = (3 * i + 5) % 16 else: __UpperCamelCase = c ^ (b | not_aa(_lowercase )) __UpperCamelCase = (7 * i) % 16 __UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32 __UpperCamelCase = d __UpperCamelCase = c __UpperCamelCase = b __UpperCamelCase = sum_aa(_lowercase , left_rotate_aa(_lowercase , shift_amounts[i] ) ) # Add hashed chunk to running total __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
1
1
from copy import deepcopy class __lowerCamelCase : def __init__( self: Optional[Any],A_: list[int] | None = None,A_: int | None = None ): '''simple docstring''' if arr is None and size is not None: __UpperCamelCase = size __UpperCamelCase = [0] * size elif arr is not None: self.init(A_ ) else: raise ValueError('Either arr or size must be specified' ) def snake_case_ ( self: Any,A_: list[int] ): '''simple docstring''' __UpperCamelCase = len(A_ ) __UpperCamelCase = deepcopy(A_ ) for i in range(1,self.size ): __UpperCamelCase = self.next_(A_ ) if j < self.size: self.tree[j] += self.tree[i] def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.tree[:] for i in range(self.size - 1,0,-1 ): __UpperCamelCase = self.next_(A_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def snake_case_ ( A_: int ): '''simple docstring''' return index + (index & (-index)) @staticmethod def snake_case_ ( A_: int ): '''simple docstring''' return index - (index & (-index)) def snake_case_ ( self: Dict,A_: int,A_: int ): '''simple docstring''' if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value __UpperCamelCase = self.next_(A_ ) def snake_case_ ( self: Dict,A_: int,A_: int ): '''simple docstring''' self.add(A_,value - self.get(A_ ) ) def snake_case_ ( self: Union[str, Any],A_: int ): '''simple docstring''' if right == 0: return 0 __UpperCamelCase = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] __UpperCamelCase = self.prev(A_ ) return result def snake_case_ ( self: Any,A_: int,A_: int ): '''simple docstring''' return self.prefix(A_ ) - self.prefix(A_ ) def snake_case_ ( self: List[str],A_: int ): '''simple docstring''' return self.query(A_,index + 1 ) def snake_case_ ( self: Tuple,A_: int ): '''simple docstring''' value -= self.tree[0] if value < 0: return -1 __UpperCamelCase = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 __UpperCamelCase = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __snake_case = 0 __snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __snake_case = tuple[int, int] class __lowerCamelCase : def __init__( self: str,A_: int,A_: int,A_: int,A_: int,A_: int,A_: Node | None,): '''simple docstring''' __UpperCamelCase = pos_x __UpperCamelCase = pos_y __UpperCamelCase = (pos_y, pos_x) __UpperCamelCase = goal_x __UpperCamelCase = goal_y __UpperCamelCase = g_cost __UpperCamelCase = parent __UpperCamelCase = self.calculate_heuristic() __UpperCamelCase = self.g_cost + self.h_cost def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.pos_x - self.goal_x __UpperCamelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A_ ) + abs(A_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self: int,A_: Node ): '''simple docstring''' return self.f_cost < other.f_cost class __lowerCamelCase : def __init__( self: Any,A_: TPosition,A_: TPosition ): '''simple docstring''' __UpperCamelCase = Node(start[1],start[0],goal[1],goal[0],0,A_ ) __UpperCamelCase = Node(goal[1],goal[0],goal[1],goal[0],9_9999,A_ ) __UpperCamelCase = [self.start] __UpperCamelCase = [] __UpperCamelCase = False def snake_case_ ( self: Any ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __UpperCamelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A_ ) self.closed_nodes.append(A_ ) __UpperCamelCase = self.get_successors(A_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A_ ) else: # retrieve the best current path __UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(A_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A_ ) else: self.open_nodes.append(A_ ) return [self.start.pos] def snake_case_ ( self: int,A_: Node ): '''simple docstring''' __UpperCamelCase = [] for action in delta: __UpperCamelCase = parent.pos_x + action[1] __UpperCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A_,A_,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,A_,) ) return successors def snake_case_ ( self: Any,A_: Node | None ): '''simple docstring''' __UpperCamelCase = node __UpperCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __UpperCamelCase = current_node.parent path.reverse() return path class __lowerCamelCase : def __init__( self: List[Any],A_: TPosition,A_: TPosition ): '''simple docstring''' __UpperCamelCase = AStar(A_,A_ ) __UpperCamelCase = AStar(A_,A_ ) __UpperCamelCase = False def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __UpperCamelCase = self.fwd_astar.open_nodes.pop(0 ) __UpperCamelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A_,A_ ) self.fwd_astar.closed_nodes.append(A_ ) self.bwd_astar.closed_nodes.append(A_ ) __UpperCamelCase = current_bwd_node __UpperCamelCase = current_fwd_node __UpperCamelCase = { self.fwd_astar: self.fwd_astar.get_successors(A_ ), self.bwd_astar: self.bwd_astar.get_successors(A_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A_ ) else: # retrieve the best current path __UpperCamelCase = astar.open_nodes.pop( astar.open_nodes.index(A_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A_ ) else: astar.open_nodes.append(A_ ) return [self.fwd_astar.start.pos] def snake_case_ ( self: List[str],A_: Node,A_: Node ): '''simple docstring''' __UpperCamelCase = self.fwd_astar.retrace_path(A_ ) __UpperCamelCase = self.bwd_astar.retrace_path(A_ ) bwd_path.pop() bwd_path.reverse() __UpperCamelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __snake_case = (0, 0) __snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __snake_case = time.time() __snake_case = AStar(init, goal) __snake_case = a_star.search() __snake_case = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") __snake_case = time.time() __snake_case = BidirectionalAStar(init, goal) __snake_case = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
1
1