code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
def _a ( a :int ) -> Tuple:
a = []
a = set({'''(''', '''[''', '''{'''} )
a = set({''')''', ''']''', '''}'''} )
a = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''}
for i in range(len(a ) ):
if s[i] in open_brackets:
stack.append(s[i] )
elif s[i] in closed_brackets and (
len(a ) == 0 or (len(a ) > 0 and open_to_closed[stack.pop()] != s[i])
):
return False
return len(a ) == 0
def _a ( ) -> int:
a = input('''Enter sequence of brackets: ''' )
if is_balanced(a ):
print(a , '''is balanced''' )
else:
print(a , '''is not balanced''' )
if __name__ == "__main__":
main()
| 0 |
from __future__ import annotations
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "MIT"
UpperCAmelCase__ = "1.0.0"
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "contact@muhammadumerfarooq.me"
UpperCAmelCase__ = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : str ) ->None:
"""simple docstring"""
super().__init__()
a = []
a = domain
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : list[tuple[str, str | None]] ) ->None:
"""simple docstring"""
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
a = parse.urljoin(self.domain , __UpperCAmelCase )
self.urls.append(__UpperCAmelCase )
def _a ( a :str ) -> str:
return ".".join(get_sub_domain_name(a ).split('''.''' )[-2:] )
def _a ( a :str ) -> str:
return parse.urlparse(a ).netloc
def _a ( a :str = "https://github.com" ) -> list[str]:
a = get_domain_name(a )
# Initialize the parser
a = Parser(a )
try:
# Open URL
a = requests.get(a )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
a = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
a = requests.get(a )
# Get the valid email.
a = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(a )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(a )
if __name__ == "__main__":
UpperCAmelCase__ = emails_from_url("https://github.com")
print(f"""{len(emails)} emails found:""")
print("\n".join(sorted(emails)))
| 0 | 1 |
UpperCAmelCase__ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
UpperCAmelCase__ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
UpperCAmelCase__ = {
0: "Sunday",
1: "Monday",
2: "Tuesday",
3: "Wednesday",
4: "Thursday",
5: "Friday",
6: "Saturday",
}
def _a ( a :int , a :int , a :int ) -> str:
assert len(str(a ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 12, "month should be between 1 to 12"
assert 1 <= day <= 31, "day should be between 1 to 31"
# Doomsday algorithm:
a = year // 100
a = (5 * (century % 4) + 2) % 7
a = year % 100
a = centurian % 12
a = (
(centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
a = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0)
else DOOMSDAY_LEAP[month - 1]
)
a = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 |
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
UpperCAmelCase__ = logging.getLogger()
def _a ( ) -> Optional[int]:
a = argparse.ArgumentParser()
parser.add_argument('''-f''' )
a = parser.parse_args()
return args.f
def _a ( a :Any ) -> Tuple:
a = {}
a = os.path.join(a , '''all_results.json''' )
if os.path.exists(a ):
with open(a , '''r''' ) as f:
a = json.load(a )
else:
raise ValueError(F"""can't find {path}""" )
return results
def _a ( ) -> int:
a = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
UpperCAmelCase__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowercase_ ( lowercase ):
'''simple docstring'''
@classmethod
def __lowerCAmelCase ( cls : str ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
a = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
a = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def __lowerCAmelCase ( cls : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->str:
"""simple docstring"""
a = 7 if get_gpu_count() > 1 else 2
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''translation_no_trainer''' ) ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
a = logging.StreamHandler(sys.stdout )
logger.addHandler(__UpperCAmelCase )
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''image_classification_no_trainer''' ) ) )
| 0 | 1 |
from torch import nn
def _a ( a :List[str] ) -> Any:
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(F"""Unsupported activation function: {act_fn}""" )
| 0 |
import math
def _a ( a :int ) -> list:
a = [True] * n
a = False
a = False
a = True
for i in range(3 , int(n**0.5 + 1 ) , 2 ):
a = i * 2
while index < n:
a = False
a = index + i
a = [2]
for i in range(3 , a , 2 ):
if is_prime[i]:
primes.append(a )
return primes
def _a ( a :int = 999_966_663_333 ) -> int:
a = math.floor(math.sqrt(a ) ) + 100
a = prime_sieve(a )
a = 0
a = 0
a = primes[prime_index]
while (last_prime**2) <= limit:
a = primes[prime_index + 1]
a = last_prime**2
a = next_prime**2
# Get numbers divisible by lps(current)
a = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
a = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
a = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
a = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 0 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase__ = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = ["PLBartTokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"PLBART_PRETRAINED_MODEL_ARCHIVE_LIST",
"PLBartForCausalLM",
"PLBartForConditionalGeneration",
"PLBartForSequenceClassification",
"PLBartModel",
"PLBartPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 0 |
def _a ( a :float , a :float ) -> float:
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f"""{price_plus_tax(100, 0.25) = }""")
print(f"""{price_plus_tax(125.50, 0.05) = }""")
| 0 | 1 |
def _a ( a :int ) -> list[int]:
if num <= 0:
raise ValueError('''Input must be a positive integer''' )
a = [True] * (num + 1)
a = 2
while p * p <= num:
if primes[p]:
for i in range(p * p , num + 1 , a ):
a = False
p += 1
return [prime for prime in range(2 , num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase__ = int(input("Enter a positive integer: ").strip())
print(prime_sieve_eratosthenes(user_num))
| 0 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
a = SMALL_MODEL_IDENTIFIER
a = '''pt'''
a = '''tf'''
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str ) ->Union[str, Any]:
"""simple docstring"""
a = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ) ->List[str]:
"""simple docstring"""
a = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCAmelCase )
model_tf.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = '''mock_framework'''
# Framework provided - return whatever the user provides
a = FeaturesManager.determine_framework(self.test_model , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Both in environment -> use PyTorch
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# Both not in environment -> raise error
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
| 0 | 1 |
from itertools import zip_longest
import requests
from bsa import BeautifulSoup
from pandas import DataFrame
def _a ( a :str = "laptop" ) -> DataFrame:
a = F"""https://www.amazon.in/laptop/s?k={product}"""
a = {
'''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
(KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''',
'''Accept-Language''': '''en-US, en;q=0.5''',
}
a = BeautifulSoup(requests.get(a , headers=a ).text )
# Initialize a Pandas dataframe with the column titles
a = DataFrame(
columns=[
'''Product Title''',
'''Product Link''',
'''Current Price of the product''',
'''Product Rating''',
'''MRP of the product''',
'''Discount''',
] )
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
'''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ):
try:
a = item.ha.text
a = '''https://www.amazon.in/''' + item.ha.a['''href''']
a = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text
try:
a = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text
except AttributeError:
a = '''Not available'''
try:
a = (
'''₹'''
+ item.find(
'''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1]
)
except AttributeError:
a = ''''''
try:
a = float(
(
(
float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) )
- float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) )
)
/ float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) )
)
* 100 )
except ValueError:
a = float('''nan''' )
except AttributeError:
pass
a = [
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
a = ''' '''
a = ''' '''
data_frame.index += 1
return data_frame
if __name__ == "__main__":
UpperCAmelCase__ = "headphones"
get_amazon_product_data(product).to_csv(f"""Amazon Product Data for {product}.csv""")
| 0 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ProphetNetTokenizer
__snake_case = False
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
super().setUp()
a = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str ) ->Dict:
"""simple docstring"""
a = '''UNwant\u00E9d,running'''
a = '''unwanted, running'''
return input_text, output_text
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
a = self.tokenizer_class(self.vocab_file )
a = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
a = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
a = {}
for i, token in enumerate(__UpperCAmelCase ):
a = i
a = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
@require_torch
def __lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
a = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102]
a = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='''pt''' )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
a = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
a = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase )
assert encoded_sentence == text + [102]
assert encoded_pair == text + [102] + text_a + [102]
| 0 | 1 |
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def _a ( a :Optional[Any] , a :int , a :List[str] , a :List[str] ) -> Tuple:
a = s.rsplit(a , a )
return new.join(a )
def _a ( a :Any ) -> List[Any]:
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() )
def _a ( a :Any ) -> List[Any]:
a = {}
a = ['''group_1''', '''group_2''', '''group_3''', '''group_4''']
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
a = key.replace(F"""{group_key}.""" , F"""{group_key}.group.""" )
if "res_path" in key:
a = key.replace('''res_path.''' , '''res_path.path.''' )
if key.endswith('''.w''' ):
a = rreplace(a , '''.w''' , '''.weight''' , 1 )
if key.endswith('''.b''' ):
a = rreplace(a , '''.b''' , '''.bias''' , 1 )
a = value.float()
return upgrade
@torch.no_grad()
def _a ( a :Union[str, Any] , a :Optional[Any] , a :Optional[int]=None , a :str=True ) -> Tuple:
from dall_e import Encoder
a = Encoder()
if os.path.exists(a ):
a = torch.load(a )
else:
a = torch.hub.load_state_dict_from_url(a )
if isinstance(a , a ):
a = ckpt.state_dict()
encoder.load_state_dict(a )
if config_path is not None:
a = FlavaImageCodebookConfig.from_pretrained(a )
else:
a = FlavaImageCodebookConfig()
a = FlavaImageCodebook(a ).eval()
a = encoder.state_dict()
a = upgrade_state_dict(a )
hf_model.load_state_dict(a )
a = hf_model.state_dict()
a = count_parameters(a )
a = count_parameters(a )
assert torch.allclose(a , a , atol=1e-3 )
if save_checkpoint:
hf_model.save_pretrained(a )
else:
return hf_state_dict
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
UpperCAmelCase__ = parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase__ = {
"configuration_nllb_moe": [
"NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",
"NllbMoeConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
"NllbMoeForConditionalGeneration",
"NllbMoeModel",
"NllbMoePreTrainedModel",
"NllbMoeTop2Router",
"NllbMoeSparseMLP",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 | 1 |
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
UpperCAmelCase__ = numpy.array([0, 0])
UpperCAmelCase__ = numpy.array([0.5, 0.866_0254])
UpperCAmelCase__ = numpy.array([1, 0])
UpperCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def _a ( a :list[numpy.ndarray] , a :int ) -> list[numpy.ndarray]:
a = initial_vectors
for _ in range(a ):
a = iteration_step(a )
return vectors
def _a ( a :list[numpy.ndarray] ) -> list[numpy.ndarray]:
a = []
for i, start_vector in enumerate(vectors[:-1] ):
a = vectors[i + 1]
new_vectors.append(a )
a = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def _a ( a :numpy.ndarray , a :float ) -> numpy.ndarray:
a = numpy.radians(a )
a , a = numpy.cos(a ), numpy.sin(a )
a = numpy.array(((c, -s), (s, c)) )
return numpy.dot(a , a )
def _a ( a :list[numpy.ndarray] ) -> None:
a = plt.gca()
axes.set_aspect('''equal''' )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
a , a = zip(*a )
plt.plot(a , a )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase__ = iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 0 |
def _a ( a :int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
a = gray_code_sequence_string(a )
#
# convert them to integers
for i in range(len(a ) ):
a = int(sequence[i] , 2 )
return sequence
def _a ( a :int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
a = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
a = gray_code_sequence_string(bit_count - 1 )
a = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
a = '''0''' + smaller_sequence[i]
sequence.append(a )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
a = '''1''' + smaller_sequence[i]
sequence.append(a )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
import warnings
from ...utils import logging
from .image_processing_owlvit import OwlViTImageProcessor
UpperCAmelCase__ = logging.get_logger(__name__)
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->None:
"""simple docstring"""
warnings.warn(
'''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use OwlViTImageProcessor instead.''' , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
# fmt: off
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
a = {
'''do_resize''': True,
'''size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
a = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] , **__UpperCAmelCase : List[Any] ) ->int:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] , **__UpperCAmelCase : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def __lowerCAmelCase ( self : str ) ->Dict:
"""simple docstring"""
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
a = self.get_tokenizer()
a = self.get_image_processor()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
a = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
a = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
a = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = self.prepare_image_inputs()
a = image_processor(__UpperCAmelCase , return_tensors='''np''' )
a = processor(images=__UpperCAmelCase , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = processor(text=__UpperCAmelCase )
a = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(__UpperCAmelCase ):
processor()
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__UpperCAmelCase )
a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 0 | 1 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax.numpy as jnp
from jax import random
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils_flax import FlaxSchedulerMixin
@flax.struct.dataclass
class lowercase_ :
'''simple docstring'''
__snake_case = None
__snake_case = None
__snake_case = None # sigma(t_i)
@classmethod
def __lowerCAmelCase ( cls : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return cls()
@dataclass
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = 42
__snake_case = 42
__snake_case = 42
class lowercase_ ( lowercase , lowercase ):
'''simple docstring'''
@property
def __lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
return True
@register_to_config
def __init__( self : Optional[int] , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : float = 100 , __UpperCAmelCase : float = 1.007 , __UpperCAmelCase : float = 80 , __UpperCAmelCase : float = 0.05 , __UpperCAmelCase : float = 50 , ) ->int:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
return KarrasVeSchedulerState.create()
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : KarrasVeSchedulerState , __UpperCAmelCase : int , __UpperCAmelCase : Tuple = () ) ->KarrasVeSchedulerState:
"""simple docstring"""
a = jnp.arange(0 , __UpperCAmelCase )[::-1].copy()
a = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in timesteps
]
return state.replace(
num_inference_steps=__UpperCAmelCase , schedule=jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) , timesteps=__UpperCAmelCase , )
def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : KarrasVeSchedulerState , __UpperCAmelCase : jnp.ndarray , __UpperCAmelCase : float , __UpperCAmelCase : random.KeyArray , ) ->Tuple[jnp.ndarray, float]:
"""simple docstring"""
if self.config.s_min <= sigma <= self.config.s_max:
a = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 )
else:
a = 0
# sample eps ~ N(0, S_noise^2 * I)
a = random.split(__UpperCAmelCase , num=1 )
a = self.config.s_noise * random.normal(key=__UpperCAmelCase , shape=sample.shape )
a = sigma + gamma * sigma
a = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : KarrasVeSchedulerState , __UpperCAmelCase : jnp.ndarray , __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : jnp.ndarray , __UpperCAmelCase : bool = True , ) ->Union[FlaxKarrasVeOutput, Tuple]:
"""simple docstring"""
a = sample_hat + sigma_hat * model_output
a = (sample_hat - pred_original_sample) / sigma_hat
a = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=__UpperCAmelCase , derivative=__UpperCAmelCase , state=__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : KarrasVeSchedulerState , __UpperCAmelCase : jnp.ndarray , __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : jnp.ndarray , __UpperCAmelCase : jnp.ndarray , __UpperCAmelCase : jnp.ndarray , __UpperCAmelCase : bool = True , ) ->Union[FlaxKarrasVeOutput, Tuple]:
"""simple docstring"""
a = sample_prev + sigma_prev * model_output
a = (sample_prev - pred_original_sample) / sigma_prev
a = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=__UpperCAmelCase , derivative=__UpperCAmelCase , state=__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : KarrasVeSchedulerState , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : int ) ->Union[str, Any]:
"""simple docstring"""
raise NotImplementedError()
| 0 |
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def _a ( a :List[Any] ) -> Optional[int]:
a = []
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""",
F"""stage{idx}.patch_embed.proj.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""",
F"""stage{idx}.patch_embed.proj.bias""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""",
F"""stage{idx}.patch_embed.norm.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""",
F"""stage{idx}.patch_embed.norm.bias""",
) )
return embed
def _a ( a :List[Any] , a :Optional[int] ) -> Dict:
a = []
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj.bias""",
) )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") )
return attention_weights
def _a ( a :Any ) -> List[Any]:
a = []
token.append((F"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') )
return token
def _a ( ) -> Optional[int]:
a = []
head.append(('''layernorm.weight''', '''norm.weight''') )
head.append(('''layernorm.bias''', '''norm.bias''') )
head.append(('''classifier.weight''', '''head.weight''') )
head.append(('''classifier.bias''', '''head.bias''') )
return head
def _a ( a :Tuple , a :Optional[int] , a :List[Any] , a :Union[str, Any] ) -> Optional[int]:
a = '''imagenet-1k-id2label.json'''
a = 1_000
a = '''huggingface/label-files'''
a = num_labels
a = json.load(open(cached_download(hf_hub_url(a , a , repo_type='''dataset''' ) ) , '''r''' ) )
a = {int(a ): v for k, v in idalabel.items()}
a = idalabel
a = {v: k for k, v in idalabel.items()}
a = a = CvtConfig(num_labels=a , idalabel=a , labelaid=a )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13":
a = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21":
a = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
a = [2, 2, 20]
a = [3, 12, 16]
a = [192, 768, 1_024]
a = CvtForImageClassification(a )
a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' )
a = image_size
a = torch.load(a , map_location=torch.device('''cpu''' ) )
a = OrderedDict()
a = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
a = list_of_state_dict + cls_token(a )
a = list_of_state_dict + embeddings(a )
for cnt in range(config.depth[idx] ):
a = list_of_state_dict + attention(a , a )
a = list_of_state_dict + final()
for gg in list_of_state_dict:
print(a )
for i in range(len(a ) ):
a = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(a )
model.save_pretrained(a )
image_processor.save_pretrained(a )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
UpperCAmelCase__ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 0 | 1 |
import os
from pathlib import Path
import numpy as np
import pytest
from pack_dataset import pack_data_dir
from parameterized import parameterized
from save_len_file import save_len_file
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers.models.mbart.modeling_mbart import shift_tokens_right
from transformers.testing_utils import TestCasePlus, slow
from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset
UpperCAmelCase__ = "bert-base-cased"
UpperCAmelCase__ = "google/pegasus-xsum"
UpperCAmelCase__ = [" Sam ate lunch today.", "Sams lunch ingredients."]
UpperCAmelCase__ = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
UpperCAmelCase__ = "patrickvonplaten/t5-tiny-random"
UpperCAmelCase__ = "sshleifer/bart-tiny-random"
UpperCAmelCase__ = "sshleifer/tiny-mbart"
UpperCAmelCase__ = "sshleifer/tiny-marian-en-de"
def _a ( a :Path , a :list ) -> Optional[int]:
a = '''\n'''.join(a )
Path(a ).open('''w''' ).writelines(a )
def _a ( a :Dict ) -> Dict:
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(a , F"""{split}.source""" ) , a )
_dump_articles(os.path.join(a , F"""{split}.target""" ) , a )
return tmp_dir
class lowercase_ ( lowercase ):
'''simple docstring'''
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
@slow
def __lowerCAmelCase ( self : int , __UpperCAmelCase : List[str] ) ->Tuple:
"""simple docstring"""
a = AutoTokenizer.from_pretrained(__UpperCAmelCase )
a = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
a = max(len(tokenizer.encode(__UpperCAmelCase ) ) for a in ARTICLES )
a = max(len(tokenizer.encode(__UpperCAmelCase ) ) for a in SUMMARIES )
a = 4
a = 8
assert max_len_target > max_src_len # Will be truncated
assert max_len_source > max_src_len # Will be truncated
a , a = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error.
a = SeqaSeqDataset(
__UpperCAmelCase , data_dir=__UpperCAmelCase , type_path='''train''' , max_source_length=__UpperCAmelCase , max_target_length=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , )
a = DataLoader(__UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_src_len
# show that targets are the same len
assert batch["labels"].shape[1] == max_tgt_len
if tok_name != MBART_TINY:
continue
# check language codes in correct place
a = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id )
assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]
break # No need to test every batch
@parameterized.expand([BART_TINY, BERT_BASE_CASED] )
def __lowerCAmelCase ( self : int , __UpperCAmelCase : str ) ->Optional[int]:
"""simple docstring"""
a = AutoTokenizer.from_pretrained(__UpperCAmelCase )
a = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
a = max(len(tokenizer.encode(__UpperCAmelCase ) ) for a in ARTICLES )
a = max(len(tokenizer.encode(__UpperCAmelCase ) ) for a in SUMMARIES )
a = 4
a = LegacySeqaSeqDataset(
__UpperCAmelCase , data_dir=__UpperCAmelCase , type_path='''train''' , max_source_length=20 , max_target_length=__UpperCAmelCase , )
a = DataLoader(__UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_len_source
assert 20 >= batch["input_ids"].shape[1] # trimmed significantly
# show that targets were truncated
assert batch["labels"].shape[1] == trunc_target # Truncated
assert max_len_target > trunc_target # Truncated
break # No need to test every batch
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
a = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' )
a = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
a = tmp_dir.joinpath('''train.source''' ).open().readlines()
a = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
pack_data_dir(__UpperCAmelCase , __UpperCAmelCase , 128 , __UpperCAmelCase )
a = {x.name for x in tmp_dir.iterdir()}
a = {x.name for x in save_dir.iterdir()}
a = save_dir.joinpath('''train.source''' ).open().readlines()
# orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
# desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
assert len(__UpperCAmelCase ) < len(__UpperCAmelCase )
assert len(__UpperCAmelCase ) == 1
assert len(packed_examples[0] ) == sum(len(__UpperCAmelCase ) for x in orig_examples )
assert orig_paths == new_paths
@pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' )
def __lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
if not FAIRSEQ_AVAILABLE:
return
a , a , a = self._get_dataset(max_len=64 )
a = 64
a = ds.make_dynamic_sampler(__UpperCAmelCase , required_batch_size_multiple=__UpperCAmelCase )
a = [len(__UpperCAmelCase ) for x in batch_sampler]
assert len(set(__UpperCAmelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length
assert sum(__UpperCAmelCase ) == len(__UpperCAmelCase ) # no dropped or added examples
a = DataLoader(__UpperCAmelCase , batch_sampler=__UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2 )
a = []
a = []
for batch in data_loader:
a = batch['''input_ids'''].shape
a = src_shape[0]
assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple
a = np.product(batch['''input_ids'''].shape )
num_src_per_batch.append(__UpperCAmelCase )
if num_src_tokens > (max_tokens * 1.1):
failures.append(__UpperCAmelCase )
assert num_src_per_batch[0] == max(__UpperCAmelCase )
if failures:
raise AssertionError(F"""too many tokens in {len(__UpperCAmelCase )} batches""" )
def __lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
a , a , a = self._get_dataset(max_len=512 )
a = 2
a = ds.make_sortish_sampler(__UpperCAmelCase , shuffle=__UpperCAmelCase )
a = DataLoader(__UpperCAmelCase , batch_size=__UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2 )
a = DataLoader(__UpperCAmelCase , batch_size=__UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=__UpperCAmelCase )
a = tokenizer.pad_token_id
def count_pad_tokens(__UpperCAmelCase : Any , __UpperCAmelCase : Dict="input_ids" ):
return [batch[k].eq(__UpperCAmelCase ).sum().item() for batch in data_loader]
assert sum(count_pad_tokens(__UpperCAmelCase , k='''labels''' ) ) < sum(count_pad_tokens(__UpperCAmelCase , k='''labels''' ) )
assert sum(count_pad_tokens(__UpperCAmelCase ) ) < sum(count_pad_tokens(__UpperCAmelCase ) )
assert len(__UpperCAmelCase ) == len(__UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Tuple=1_000 , __UpperCAmelCase : Dict=128 ) ->Any:
"""simple docstring"""
if os.getenv('''USE_REAL_DATA''' , __UpperCAmelCase ):
a = '''examples/seq2seq/wmt_en_ro'''
a = max_len * 2 * 64
if not Path(__UpperCAmelCase ).joinpath('''train.len''' ).exists():
save_len_file(__UpperCAmelCase , __UpperCAmelCase )
else:
a = '''examples/seq2seq/test_data/wmt_en_ro'''
a = max_len * 4
save_len_file(__UpperCAmelCase , __UpperCAmelCase )
a = AutoTokenizer.from_pretrained(__UpperCAmelCase )
a = SeqaSeqDataset(
__UpperCAmelCase , data_dir=__UpperCAmelCase , type_path='''train''' , max_source_length=__UpperCAmelCase , max_target_length=__UpperCAmelCase , n_obs=__UpperCAmelCase , )
return ds, max_tokens, tokenizer
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
a , a , a = self._get_dataset()
a = set(DistributedSortishSampler(__UpperCAmelCase , 256 , num_replicas=2 , rank=0 , add_extra_examples=__UpperCAmelCase ) )
a = set(DistributedSortishSampler(__UpperCAmelCase , 256 , num_replicas=2 , rank=1 , add_extra_examples=__UpperCAmelCase ) )
assert idsa.intersection(__UpperCAmelCase ) == set()
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str ) ->Union[str, Any]:
"""simple docstring"""
a = AutoTokenizer.from_pretrained(__UpperCAmelCase , use_fast=__UpperCAmelCase )
if tok_name == MBART_TINY:
a = SeqaSeqDataset(
__UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , )
a = train_dataset.dataset_kwargs
assert "src_lang" in kwargs and "tgt_lang" in kwargs
else:
a = SeqaSeqDataset(
__UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , )
a = train_dataset.dataset_kwargs
assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs
assert len(__UpperCAmelCase ) == 1 if tok_name == BART_TINY else len(__UpperCAmelCase ) == 0
| 0 |
from __future__ import annotations
UpperCAmelCase__ = list[list[int]]
# assigning initial values to the grid
UpperCAmelCase__ = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
UpperCAmelCase__ = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _a ( a :Matrix , a :int , a :int , a :int ) -> bool:
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _a ( a :Matrix ) -> tuple[int, int] | None:
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def _a ( a :Matrix ) -> Matrix | None:
if location := find_empty_location(a ):
a , a = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(a , a , a , a ):
a = digit
if sudoku(a ) is not None:
return grid
a = 0
return None
def _a ( a :Matrix ) -> None:
for row in grid:
for cell in row:
print(a , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("\nExample grid:\n" + "=" * 20)
print_solution(example_grid)
print("\nExample grid solution:")
UpperCAmelCase__ = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("Cannot find a solution.")
| 0 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase__ = {
"configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MegatronBertForCausalLM",
"MegatronBertForMaskedLM",
"MegatronBertForMultipleChoice",
"MegatronBertForNextSentencePrediction",
"MegatronBertForPreTraining",
"MegatronBertForQuestionAnswering",
"MegatronBertForSequenceClassification",
"MegatronBertForTokenClassification",
"MegatronBertModel",
"MegatronBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = KandinskyVaaPriorPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''', '''negative_prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''generator''',
'''num_inference_steps''',
'''latents''',
'''negative_prompt''',
'''guidance_scale''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
return 100
@property
def __lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 12,
'''embedding_dim''': self.text_embedder_hidden_size,
'''num_layers''': 1,
}
a = PriorTransformer(**__UpperCAmelCase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
a = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
a = CLIPVisionModelWithProjection(__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
a = CLIPImageProcessor(
crop_size=224 , do_center_crop=__UpperCAmelCase , do_normalize=__UpperCAmelCase , do_resize=__UpperCAmelCase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_image_encoder
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_image_processor
a = UnCLIPScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=__UpperCAmelCase , clip_sample_range=10.0 , )
a = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''scheduler''': scheduler,
'''image_processor''': image_processor,
}
return components
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str=0 ) ->int:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.image_embeds
a = pipe(
**self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0]
a = image[0, -10:]
a = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
a = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
a = False
self._test_inference_batch_single_identical(
test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
@skip_mps
def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = False
self._test_attention_slicing_forward_pass(
test_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
| 0 | 1 |
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
UpperCAmelCase__ = logging.getLogger()
def _a ( ) -> Optional[int]:
a = argparse.ArgumentParser()
parser.add_argument('''-f''' )
a = parser.parse_args()
return args.f
def _a ( a :Any ) -> Tuple:
a = {}
a = os.path.join(a , '''all_results.json''' )
if os.path.exists(a ):
with open(a , '''r''' ) as f:
a = json.load(a )
else:
raise ValueError(F"""can't find {path}""" )
return results
def _a ( ) -> int:
a = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
UpperCAmelCase__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowercase_ ( lowercase ):
'''simple docstring'''
@classmethod
def __lowerCAmelCase ( cls : str ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
a = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
a = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def __lowerCAmelCase ( cls : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->str:
"""simple docstring"""
a = 7 if get_gpu_count() > 1 else 2
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''translation_no_trainer''' ) ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
a = logging.StreamHandler(sys.stdout )
logger.addHandler(__UpperCAmelCase )
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''image_classification_no_trainer''' ) ) )
| 0 |
from math import factorial
UpperCAmelCase__ = {str(digit): factorial(digit) for digit in range(10)}
def _a ( a :int ) -> int:
if not isinstance(a , a ):
raise TypeError('''Parameter number must be int''' )
if number < 0:
raise ValueError('''Parameter number must be greater than or equal to 0''' )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(a ) )
def _a ( a :int = 60 , a :int = 1_000_000 ) -> int:
if not isinstance(a , a ) or not isinstance(a , a ):
raise TypeError('''Parameters chain_length and number_limit must be int''' )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
'''Parameters chain_length and number_limit must be greater than 0''' )
# the counter for the chains with the exact desired length
a = 0
# the cached sizes of the previous chains
a = {}
for start_chain_element in range(1 , a ):
# The temporary set will contain the elements of the chain
a = set()
a = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
a = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(a )
chain_set_length += 1
a = digit_factorial_sum(a )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
a = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution()}""")
| 0 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase__ = {
"configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"],
"feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"],
"processing_wav2vec2": ["Wav2Vec2Processor"],
"tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Wav2Vec2ForAudioFrameClassification",
"Wav2Vec2ForCTC",
"Wav2Vec2ForMaskedLM",
"Wav2Vec2ForPreTraining",
"Wav2Vec2ForSequenceClassification",
"Wav2Vec2ForXVector",
"Wav2Vec2Model",
"Wav2Vec2PreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWav2Vec2ForCTC",
"TFWav2Vec2Model",
"TFWav2Vec2PreTrainedModel",
"TFWav2Vec2ForSequenceClassification",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"FlaxWav2Vec2ForCTC",
"FlaxWav2Vec2ForPreTraining",
"FlaxWav2Vec2Model",
"FlaxWav2Vec2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
def _a ( a :int = 100 ) -> int:
a = n * (n + 1) * (2 * n + 1) / 6
a = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 0 | 1 |
import math_equivalence # From: git+https://github.com/hendrycks/math.git
import datasets
UpperCAmelCase__ = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n"
UpperCAmelCase__ = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n"
UpperCAmelCase__ = R"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n"
@datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ ( datasets.Metric ):
'''simple docstring'''
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' ),
'''references''': datasets.Value('''string''' ),
} ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , )
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : List[Any] ) ->Tuple:
"""simple docstring"""
a = 0.0
for i, j in zip(__UpperCAmelCase , __UpperCAmelCase ):
n_correct += 1.0 if math_equivalence.is_equiv(__UpperCAmelCase , __UpperCAmelCase ) else 0.0
a = n_correct / len(__UpperCAmelCase )
return {
"accuracy": accuracy,
}
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase__ = {
"configuration_groupvit": [
"GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"GroupViTConfig",
"GroupViTOnnxConfig",
"GroupViTTextConfig",
"GroupViTVisionConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GroupViTModel",
"GroupViTPreTrainedModel",
"GroupViTTextModel",
"GroupViTVisionModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFGroupViTModel",
"TFGroupViTPreTrainedModel",
"TFGroupViTTextModel",
"TFGroupViTVisionModel",
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 | 1 |
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def _a ( a :Namespace ) -> Optional[int]:
return ConvertCommand(
args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name )
UpperCAmelCase__ = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n"
class lowercase_ ( lowercase ):
'''simple docstring'''
@staticmethod
def __lowerCAmelCase ( __UpperCAmelCase : ArgumentParser ) ->List[str]:
"""simple docstring"""
a = parser.add_parser(
'''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , )
train_parser.add_argument('''--model_type''' , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''Model\'s type.''' )
train_parser.add_argument(
'''--tf_checkpoint''' , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''TensorFlow checkpoint path or folder.''' )
train_parser.add_argument(
'''--pytorch_dump_output''' , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''Path to the PyTorch saved model output.''' )
train_parser.add_argument('''--config''' , type=__UpperCAmelCase , default='''''' , help='''Configuration file path or folder.''' )
train_parser.add_argument(
'''--finetuning_task_name''' , type=__UpperCAmelCase , default=__UpperCAmelCase , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , )
train_parser.set_defaults(func=__UpperCAmelCase )
def __init__( self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : str , *__UpperCAmelCase : Optional[Any] , ) ->Optional[Any]:
"""simple docstring"""
a = logging.get_logger('''transformers-cli/converting''' )
self._logger.info(F"""Loading model {model_type}""" )
a = model_type
a = tf_checkpoint
a = pytorch_dump_output
a = config
a = finetuning_task_name
def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(__UpperCAmelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(__UpperCAmelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(__UpperCAmelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(__UpperCAmelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(__UpperCAmelCase )
if "ckpt" in self._tf_checkpoint.lower():
a = self._tf_checkpoint
a = ''''''
else:
a = self._tf_checkpoint
a = ''''''
convert_transfo_xl_checkpoint_to_pytorch(
__UpperCAmelCase , self._config , self._pytorch_dump_output , __UpperCAmelCase )
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(__UpperCAmelCase )
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(__UpperCAmelCase )
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name )
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
else:
raise ValueError(
'''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
| 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ShapEPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''num_inference_steps''',
'''generator''',
'''latents''',
'''guidance_scale''',
'''frame_size''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
return 8
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
a = PriorTransformer(**__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
a = ShapERenderer(**__UpperCAmelCase )
return model
def __lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_renderer
a = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=__UpperCAmelCase , clip_sample=__UpperCAmelCase , clip_sample_range=1.0 , )
a = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str=0 ) ->Optional[int]:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.images[0]
a = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
a = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , )
def __lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = 1
a = 2
a = self.get_dummy_inputs(__UpperCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
a = batch_size * [inputs[key]]
a = pipe(**__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
a = ShapEPipeline.from_pretrained('''openai/shap-e''' )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
a = pipe(
'''a shark''' , generator=__UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
| 0 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json",
}
class lowercase_ ( lowercase , lowercase ):
'''simple docstring'''
__snake_case = '''convnextv2'''
def __init__( self : Any , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : Optional[Any]=4 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : List[str]=1e-1_2 , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : Any=224 , __UpperCAmelCase : Any=None , __UpperCAmelCase : List[Any]=None , **__UpperCAmelCase : str , ) ->Union[str, Any]:
"""simple docstring"""
super().__init__(**__UpperCAmelCase )
a = num_channels
a = patch_size
a = num_stages
a = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes
a = [3, 3, 9, 3] if depths is None else depths
a = hidden_act
a = initializer_range
a = layer_norm_eps
a = drop_path_rate
a = image_size
a = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )]
a , a = get_aligned_output_features_output_indices(
out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
| 0 |
from __future__ import annotations
import time
import numpy as np
UpperCAmelCase__ = [8, 5, 9, 7]
UpperCAmelCase__ = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
UpperCAmelCase__ = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[list[int]] , ) ->None:
"""simple docstring"""
a = claim_vector
a = allocated_resources_table
a = maximum_claim_table
def __lowerCAmelCase ( self : Any ) ->list[int]:
"""simple docstring"""
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def __lowerCAmelCase ( self : Optional[int] ) ->list[int]:
"""simple docstring"""
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def __lowerCAmelCase ( self : Union[str, Any] ) ->list[list[int]]:
"""simple docstring"""
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def __lowerCAmelCase ( self : Tuple ) ->dict[int, list[int]]:
"""simple docstring"""
return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()}
def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->None:
"""simple docstring"""
a = self.__need()
a = self.__allocated_resources_table
a = self.__available_resources()
a = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print('''_''' * 50 + '''\n''' )
while need_list:
a = False
for each_need in need_list:
a = True
for index, need in enumerate(__UpperCAmelCase ):
if need > available_resources[index]:
a = False
break
if execution:
a = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
a = original_need_index
print(F"""Process {process_number + 1} is executing.""" )
# remove the process run from stack
need_list.remove(__UpperCAmelCase )
# update available/freed resources stack
a = np.array(__UpperCAmelCase ) + np.array(
alloc_resources_table[process_number] )
print(
'''Updated available resource stack for processes: '''
+ ''' '''.join([str(__UpperCAmelCase ) for x in available_resources] ) )
break
if safe:
print('''The process is in a safe state.\n''' )
else:
print('''System in unsafe state. Aborting...\n''' )
break
def __lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
print(''' ''' * 9 + '''Allocated Resource Table''' )
for item in self.__allocated_resources_table:
print(
F"""P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(''' ''' * 9 + '''System Resource Table''' )
for item in self.__maximum_claim_table:
print(
F"""P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(
'''Current Usage by Active Processes: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) )
print(
'''Initial Available Resources: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Dict ) ->List[Any]:
"""simple docstring"""
a = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__UpperCAmelCase , '''hidden_sizes''' ) )
self.parent.assertTrue(hasattr(__UpperCAmelCase , '''neck_hidden_sizes''' ) )
self.parent.assertTrue(hasattr(__UpperCAmelCase , '''num_attention_heads''' ) )
class lowercase_ :
'''simple docstring'''
def __init__( self : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple=13 , __UpperCAmelCase : Optional[Any]=32 , __UpperCAmelCase : int=2 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : Dict=640 , __UpperCAmelCase : str=4 , __UpperCAmelCase : int="silu" , __UpperCAmelCase : List[Any]=3 , __UpperCAmelCase : Union[str, Any]=32 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : str=True , __UpperCAmelCase : Any=10 , __UpperCAmelCase : List[str]=None , ) ->Any:
"""simple docstring"""
a = parent
a = batch_size
a = image_size
a = patch_size
a = num_channels
a = last_hidden_size
a = num_attention_heads
a = hidden_act
a = conv_kernel_size
a = output_stride
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = classifier_dropout_prob
a = use_labels
a = is_training
a = num_labels
a = initializer_range
a = scope
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.num_labels )
a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
a = self.get_config()
return config, pixel_values, labels, pixel_labels
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
return MobileViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Any:
"""simple docstring"""
a = MobileViTModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict ) ->Tuple:
"""simple docstring"""
a = self.num_labels
a = MobileViTForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
a = self.num_labels
a = MobileViTForSemanticSegmentation(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
a = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowercase_ ( lowercase , lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
__snake_case = (
{
'''feature-extraction''': MobileViTModel,
'''image-classification''': MobileViTForImageClassification,
'''image-segmentation''': MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__snake_case = False
__snake_case = False
__snake_case = False
__snake_case = False
def __lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
a = MobileViTModelTester(self )
a = MobileViTConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''MobileViT does not use inputs_embeds''' )
def __lowerCAmelCase ( self : int ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason='''MobileViT does not support input and output embeddings''' )
def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason='''MobileViT does not output attentions''' )
def __lowerCAmelCase ( self : Dict ) ->List[str]:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__UpperCAmelCase )
a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a = [*signature.parameters.keys()]
a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
def check_hidden_states_output(__UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple ):
a = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
a = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
a = outputs.hidden_states
a = 5
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
a = 2
for i in range(len(__UpperCAmelCase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = True
check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
a = True
check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->str:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase )
@slow
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = MobileViTModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def _a ( ) -> Union[str, Any]:
a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''' ) if is_vision_available() else None
@slow
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
a = MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''' ).to(__UpperCAmelCase )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
a = model(**__UpperCAmelCase )
# verify the logits
a = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
a = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
@slow
def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
a = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' )
a = model.to(__UpperCAmelCase )
a = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' )
a = prepare_img()
a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
a = model(**__UpperCAmelCase )
a = outputs.logits
# verify the logits
a = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , __UpperCAmelCase )
a = torch.tensor(
[
[[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]],
[[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]],
[[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]],
] , device=__UpperCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1e-4 ) )
@slow
def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
a = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' )
a = model.to(__UpperCAmelCase )
a = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' )
a = prepare_img()
a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
a = model(**__UpperCAmelCase )
a = outputs.logits.detach().cpu()
a = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(50, 60)] )
a = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
a = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase )
a = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
| 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase__ = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
),
"google/electra-base-generator": (
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
),
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase__ = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
UpperCAmelCase__ = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_INIT_CONFIGURATION
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = ElectraTokenizer
def __init__( self : Dict , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : str="[UNK]" , __UpperCAmelCase : Any="[SEP]" , __UpperCAmelCase : str="[PAD]" , __UpperCAmelCase : Optional[Any]="[CLS]" , __UpperCAmelCase : Union[str, Any]="[MASK]" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Optional[int] , ) ->str:
"""simple docstring"""
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
a = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars
):
a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) )
a = do_lower_case
a = strip_accents
a = tokenize_chinese_chars
a = normalizer_class(**__UpperCAmelCase )
a = do_lower_case
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple=None ) ->str:
"""simple docstring"""
a = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
a = [self.sep_token_id]
a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 0 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''timm_backbone'''
def __init__( self : Optional[Any] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Any=3 , __UpperCAmelCase : str=True , __UpperCAmelCase : int=True , __UpperCAmelCase : Optional[int]=None , **__UpperCAmelCase : Dict , ) ->Tuple:
"""simple docstring"""
super().__init__(**__UpperCAmelCase )
a = backbone
a = num_channels
a = features_only
a = use_pretrained_backbone
a = True
a = out_indices if out_indices is not None else (-1,)
| 0 |
def _a ( a :int ) -> bool:
a = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 0 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase__ = {
"configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"],
"tokenization_electra": ["ElectraTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = ["ElectraTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"ElectraForCausalLM",
"ElectraForMaskedLM",
"ElectraForMultipleChoice",
"ElectraForPreTraining",
"ElectraForQuestionAnswering",
"ElectraForSequenceClassification",
"ElectraForTokenClassification",
"ElectraModel",
"ElectraPreTrainedModel",
"load_tf_weights_in_electra",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFElectraForMaskedLM",
"TFElectraForMultipleChoice",
"TFElectraForPreTraining",
"TFElectraForQuestionAnswering",
"TFElectraForSequenceClassification",
"TFElectraForTokenClassification",
"TFElectraModel",
"TFElectraPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"FlaxElectraForCausalLM",
"FlaxElectraForMaskedLM",
"FlaxElectraForMultipleChoice",
"FlaxElectraForPreTraining",
"FlaxElectraForQuestionAnswering",
"FlaxElectraForSequenceClassification",
"FlaxElectraForTokenClassification",
"FlaxElectraModel",
"FlaxElectraPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
UpperCAmelCase__ = pytest.mark.integration
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
a = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(__UpperCAmelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
a = dset.map(
lambda __UpperCAmelCase , __UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase )
a = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
dset.drop_index('''vecs''' )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
dset.save_faiss_index('''vecs''' , tmp_file.name )
dset.load_faiss_index('''vecs2''' , tmp_file.name )
os.unlink(tmp_file.name )
a , a = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' )
dset.drop_index('''vecs''' )
self.assertRaises(__UpperCAmelCase , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
from elasticsearch import Elasticsearch
a = self._create_dummy_dataset()
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = {'''acknowledged''': True}
mocked_bulk.return_value([(True, None)] * 30 )
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}}
a = Elasticsearch()
dset.add_elasticsearch_index('''filename''' , es_client=__UpperCAmelCase )
a , a = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Any ) ->Any:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
a = np.eye(5 , dtype=np.floataa )[::-1]
a , a = index.search_batch(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search_batch , queries[0] )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , __UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
import faiss
a = FaissIndex(string_factory='''Flat''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
a = FaissIndex(string_factory='''LSH''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(__UpperCAmelCase ):
a = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) )
def __lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = faiss.IndexFlat(5 )
a = FaissIndex(custom_index=__UpperCAmelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
index.save(tmp_file.name )
a = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _a ( a :Dict ) -> Any:
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
a = '''index.faiss'''
a = F"""mock://{index_name}"""
index.save(a , storage_options=mockfs.storage_options )
a = FaissIndex.load(a , storage_options=mockfs.storage_options )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(a )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->List[Any]:
"""simple docstring"""
from elasticsearch import Elasticsearch
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = Elasticsearch()
a = {'''acknowledged''': True}
a = ElasticSearchIndex(es_client=__UpperCAmelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['''foo''', '''bar''', '''foobar'''] )
# single query
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
# batched queries with timeout
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase , request_timeout=30 )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
| 0 | 1 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class lowercase_ :
'''simple docstring'''
__snake_case = PegasusConfig
__snake_case = {}
__snake_case = '''gelu'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int]=13 , __UpperCAmelCase : List[Any]=7 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Dict=False , __UpperCAmelCase : Optional[Any]=99 , __UpperCAmelCase : Any=32 , __UpperCAmelCase : List[Any]=2 , __UpperCAmelCase : Tuple=4 , __UpperCAmelCase : int=37 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : Union[str, Any]=40 , __UpperCAmelCase : str=2 , __UpperCAmelCase : Optional[Any]=1 , __UpperCAmelCase : Dict=0 , ) ->Optional[Any]:
"""simple docstring"""
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = eos_token_id
a = pad_token_id
a = bos_token_id
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
a = tf.concat([input_ids, eos_tensor] , axis=1 )
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
a = prepare_pegasus_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return config, inputs_dict
def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] ) ->List[str]:
"""simple docstring"""
a = TFPegasusModel(config=__UpperCAmelCase ).get_decoder()
a = inputs_dict['''input_ids''']
a = input_ids[:1, :]
a = inputs_dict['''attention_mask'''][:1, :]
a = inputs_dict['''head_mask''']
a = 1
# first forward pass
a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase )
a , a = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
a = ids_tensor((self.batch_size, 3) , config.vocab_size )
a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
a = tf.concat([input_ids, next_tokens] , axis=-1 )
a = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0]
a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
a = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
a = output_from_no_past[:, -3:, random_slice_idx]
a = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1e-3 )
def _a ( a :Optional[Any] , a :List[Any] , a :Union[str, Any] , a :Optional[int]=None , a :str=None , a :str=None , a :str=None , a :Any=None , ) -> Union[str, Any]:
if attention_mask is None:
a = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
a = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
a = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
a = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
a = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class lowercase_ ( lowercase , lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
__snake_case = (TFPegasusForConditionalGeneration,) if is_tf_available() else ()
__snake_case = (
{
'''conversational''': TFPegasusForConditionalGeneration,
'''feature-extraction''': TFPegasusModel,
'''summarization''': TFPegasusForConditionalGeneration,
'''text2text-generation''': TFPegasusForConditionalGeneration,
'''translation''': TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
__snake_case = True
__snake_case = False
__snake_case = False
def __lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
a = TFPegasusModelTester(self )
a = ConfigTester(self , config_class=__UpperCAmelCase )
def __lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
__snake_case = [
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
__snake_case = [
'''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to'''
''' reduce the risk of wildfires.''',
'''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''',
] # differs slightly from pytorch, likely due to numerical differences in linear layers
__snake_case = '''google/pegasus-xsum'''
@cached_property
def __lowerCAmelCase ( self : List[str] ) ->Optional[int]:
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def __lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
a = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def __lowerCAmelCase ( self : Union[str, Any] , **__UpperCAmelCase : str ) ->int:
"""simple docstring"""
a = self.translate_src_text(**__UpperCAmelCase )
assert self.expected_text == generated_words
def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : List[Any] ) ->List[Any]:
"""simple docstring"""
a = self.tokenizer(self.src_text , **__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='''tf''' )
a = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__UpperCAmelCase , )
a = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__UpperCAmelCase )
return generated_words
@slow
def __lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
self._assert_generated_batch_equal_expected()
| 0 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''t5'''
__snake_case = ['''past_key_values''']
__snake_case = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any]=32_128 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : Dict=64 , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : int=6 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=8 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Tuple=128 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : int=1e-6 , __UpperCAmelCase : int=1.0 , __UpperCAmelCase : List[str]="relu" , __UpperCAmelCase : int=True , __UpperCAmelCase : int=True , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : int=1 , **__UpperCAmelCase : str , ) ->Optional[Any]:
"""simple docstring"""
a = vocab_size
a = d_model
a = d_kv
a = d_ff
a = num_layers
a = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
a = num_heads
a = relative_attention_num_buckets
a = relative_attention_max_distance
a = dropout_rate
a = layer_norm_epsilon
a = initializer_factor
a = feed_forward_proj
a = use_cache
a = self.feed_forward_proj.split('''-''' )
a = act_info[-1]
a = act_info[0] == '''gated'''
if len(__UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(__UpperCAmelCase ) > 2:
raise ValueError(
F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
a = '''gelu_new'''
super().__init__(
pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase , )
class lowercase_ ( lowercase ):
'''simple docstring'''
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
a = {
'''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''},
'''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''},
}
if self.use_past:
a = '''past_encoder_sequence + sequence'''
a = {0: '''batch'''}
a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
a = {0: '''batch''', 1: '''decoder_sequence'''}
a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
return common_inputs
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
return 13
| 0 | 1 |
from typing import Dict
import numpy as np
import torch
from . import residue_constants as rc
from .tensor_utils import tensor_tree_map, tree_map
def _a ( a :Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]:
a = []
a = []
a = []
for rt in rc.restypes:
a = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]]
restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] )
a = {name: i for i, name in enumerate(a )}
restype_atomaa_to_atomaa_list.append(
[(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] )
restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] )
# Add dummy mapping for restype 'UNK'
restype_atomaa_to_atomaa_list.append([0] * 14 )
restype_atomaa_to_atomaa_list.append([0] * 37 )
restype_atomaa_mask_list.append([0.0] * 14 )
a = torch.tensor(
a , dtype=torch.intaa , device=protein['''aatype'''].device , )
a = torch.tensor(
a , dtype=torch.intaa , device=protein['''aatype'''].device , )
a = torch.tensor(
a , dtype=torch.floataa , device=protein['''aatype'''].device , )
a = protein['''aatype'''].to(torch.long )
# create the mapping for (residx, atom14) --> atom37, i.e. an array
# with shape (num_res, 14) containing the atom37 indices for this protein
a = restype_atomaa_to_atomaa[protein_aatype]
a = restype_atomaa_mask[protein_aatype]
a = residx_atomaa_mask
a = residx_atomaa_to_atomaa.long()
# create the gather indices for mapping back
a = restype_atomaa_to_atomaa[protein_aatype]
a = residx_atomaa_to_atomaa.long()
# create the corresponding mask
a = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device )
for restype, restype_letter in enumerate(rc.restypes ):
a = rc.restype_atoa[restype_letter]
a = rc.residue_atoms[restype_name]
for atom_name in atom_names:
a = rc.atom_order[atom_name]
a = 1
a = restype_atomaa_mask[protein_aatype]
a = residx_atomaa_mask
return protein
def _a ( a :Dict[str, torch.Tensor] ) -> Dict[str, np.ndarray]:
a = tree_map(lambda a : torch.tensor(a , device=batch['''aatype'''].device ) , a , np.ndarray )
a = tensor_tree_map(lambda a : np.array(a ) , make_atomaa_masks(a ) )
return out
| 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''llama'''
__snake_case = ['''past_key_values''']
def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any]=32_000 , __UpperCAmelCase : str=4_096 , __UpperCAmelCase : int=11_008 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Union[str, Any]="silu" , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Any=1e-6 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Tuple , ) ->str:
"""simple docstring"""
a = vocab_size
a = max_position_embeddings
a = hidden_size
a = intermediate_size
a = num_hidden_layers
a = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
a = num_attention_heads
a = num_key_value_heads
a = hidden_act
a = initializer_range
a = rms_norm_eps
a = pretraining_tp
a = use_cache
a = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
F"""got {self.rope_scaling}""" )
a = self.rope_scaling.get('''type''' , __UpperCAmelCase )
a = self.rope_scaling.get('''factor''' , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 0 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"caidas/swin2sr-classicalsr-x2-64": (
"https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json"
),
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''swin2sr'''
__snake_case = {
'''hidden_size''': '''embed_dim''',
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self : int , __UpperCAmelCase : int=64 , __UpperCAmelCase : int=1 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Dict=180 , __UpperCAmelCase : Union[str, Any]=[6, 6, 6, 6, 6, 6] , __UpperCAmelCase : Optional[Any]=[6, 6, 6, 6, 6, 6] , __UpperCAmelCase : Union[str, Any]=8 , __UpperCAmelCase : Union[str, Any]=2.0 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=0.0 , __UpperCAmelCase : str=0.0 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Optional[Any]="gelu" , __UpperCAmelCase : str=False , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : Optional[Any]=1e-5 , __UpperCAmelCase : str=2 , __UpperCAmelCase : Union[str, Any]=1.0 , __UpperCAmelCase : List[Any]="1conv" , __UpperCAmelCase : int="pixelshuffle" , **__UpperCAmelCase : str , ) ->Tuple:
"""simple docstring"""
super().__init__(**__UpperCAmelCase )
a = image_size
a = patch_size
a = num_channels
a = embed_dim
a = depths
a = len(__UpperCAmelCase )
a = num_heads
a = window_size
a = mlp_ratio
a = qkv_bias
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = drop_path_rate
a = hidden_act
a = use_absolute_embeddings
a = layer_norm_eps
a = initializer_range
a = upscale
a = img_range
a = resi_connection
a = upsampler
| 0 |
from __future__ import annotations
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "MIT"
UpperCAmelCase__ = "1.0.0"
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "contact@muhammadumerfarooq.me"
UpperCAmelCase__ = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : str ) ->None:
"""simple docstring"""
super().__init__()
a = []
a = domain
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : list[tuple[str, str | None]] ) ->None:
"""simple docstring"""
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
a = parse.urljoin(self.domain , __UpperCAmelCase )
self.urls.append(__UpperCAmelCase )
def _a ( a :str ) -> str:
return ".".join(get_sub_domain_name(a ).split('''.''' )[-2:] )
def _a ( a :str ) -> str:
return parse.urlparse(a ).netloc
def _a ( a :str = "https://github.com" ) -> list[str]:
a = get_domain_name(a )
# Initialize the parser
a = Parser(a )
try:
# Open URL
a = requests.get(a )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
a = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
a = requests.get(a )
# Get the valid email.
a = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(a )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(a )
if __name__ == "__main__":
UpperCAmelCase__ = emails_from_url("https://github.com")
print(f"""{len(emails)} emails found:""")
print("\n".join(sorted(emails)))
| 0 | 1 |
from math import asin, atan, cos, radians, sin, sqrt, tan
UpperCAmelCase__ = 637_8137.0
UpperCAmelCase__ = 635_6752.31_4245
UpperCAmelCase__ = 6378137
def _a ( a :float , a :float , a :float , a :float ) -> float:
a = (AXIS_A - AXIS_B) / AXIS_A
a = atan((1 - flattening) * tan(radians(a ) ) )
a = atan((1 - flattening) * tan(radians(a ) ) )
a = radians(a )
a = radians(a )
# Equation
a = sin((phi_a - phi_a) / 2 )
a = sin((lambda_a - lambda_a) / 2 )
# Square both values
sin_sq_phi *= sin_sq_phi
sin_sq_lambda *= sin_sq_lambda
a = sqrt(sin_sq_phi + (cos(a ) * cos(a ) * sin_sq_lambda) )
return 2 * RADIUS * asin(a )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 |
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
UpperCAmelCase__ = logging.getLogger()
def _a ( ) -> Optional[int]:
a = argparse.ArgumentParser()
parser.add_argument('''-f''' )
a = parser.parse_args()
return args.f
def _a ( a :Any ) -> Tuple:
a = {}
a = os.path.join(a , '''all_results.json''' )
if os.path.exists(a ):
with open(a , '''r''' ) as f:
a = json.load(a )
else:
raise ValueError(F"""can't find {path}""" )
return results
def _a ( ) -> int:
a = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
UpperCAmelCase__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowercase_ ( lowercase ):
'''simple docstring'''
@classmethod
def __lowerCAmelCase ( cls : str ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
a = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
a = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def __lowerCAmelCase ( cls : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->str:
"""simple docstring"""
a = 7 if get_gpu_count() > 1 else 2
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''translation_no_trainer''' ) ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
a = logging.StreamHandler(sys.stdout )
logger.addHandler(__UpperCAmelCase )
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''image_classification_no_trainer''' ) ) )
| 0 | 1 |
from __future__ import annotations
import unittest
from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel
@require_tf
class lowercase_ :
'''simple docstring'''
__snake_case = BlenderbotSmallConfig
__snake_case = {}
__snake_case = '''gelu'''
def __init__( self : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int]=13 , __UpperCAmelCase : Union[str, Any]=7 , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : Dict=99 , __UpperCAmelCase : Union[str, Any]=32 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : Optional[int]=37 , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : List[Any]=20 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : str=1 , __UpperCAmelCase : str=0 , ) ->List[str]:
"""simple docstring"""
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = eos_token_id
a = pad_token_id
a = bos_token_id
def __lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
a = tf.concat([input_ids, eos_tensor] , axis=1 )
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
a = prepare_blenderbot_small_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return config, inputs_dict
def __lowerCAmelCase ( self : int , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] ) ->Dict:
"""simple docstring"""
a = TFBlenderbotSmallModel(config=__UpperCAmelCase ).get_decoder()
a = inputs_dict['''input_ids''']
a = input_ids[:1, :]
a = inputs_dict['''attention_mask'''][:1, :]
a = inputs_dict['''head_mask''']
a = 1
# first forward pass
a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase )
a , a = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
a = ids_tensor((self.batch_size, 3) , config.vocab_size )
a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
a = tf.concat([input_ids, next_tokens] , axis=-1 )
a = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0]
a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
a = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
a = output_from_no_past[:, -3:, random_slice_idx]
a = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1e-3 )
def _a ( a :int , a :List[str] , a :Optional[int] , a :str=None , a :Optional[Any]=None , a :List[str]=None , a :Tuple=None , a :List[Any]=None , ) -> Optional[int]:
if attention_mask is None:
a = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
a = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
a = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
a = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
a = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class lowercase_ ( lowercase , lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else ()
)
__snake_case = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else ()
__snake_case = (
{
'''conversational''': TFBlenderbotSmallForConditionalGeneration,
'''feature-extraction''': TFBlenderbotSmallModel,
'''summarization''': TFBlenderbotSmallForConditionalGeneration,
'''text2text-generation''': TFBlenderbotSmallForConditionalGeneration,
'''translation''': TFBlenderbotSmallForConditionalGeneration,
}
if is_tf_available()
else {}
)
__snake_case = True
__snake_case = False
__snake_case = False
def __lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
a = TFBlenderbotSmallModelTester(self )
a = ConfigTester(self , config_class=__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase )
@require_tokenizers
@require_tf
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
__snake_case = [
'''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like '''
''' i\'m going to throw up.\nand why is that?'''
]
__snake_case = '''facebook/blenderbot_small-90M'''
@cached_property
def __lowerCAmelCase ( self : List[Any] ) ->Optional[int]:
"""simple docstring"""
return BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
@cached_property
def __lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
a = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = self.tokenizer(self.src_text , return_tensors='''tf''' )
a = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__UpperCAmelCase , )
a = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__UpperCAmelCase )[0]
assert generated_words in (
"i don't know. i just feel like i'm going to throw up. it's not fun.",
"i'm not sure. i just feel like i've been feeling like i have to be in a certain place",
"i'm not sure. i just feel like i've been in a bad situation.",
)
| 0 |
import math
def _a ( a :int ) -> list:
a = [True] * n
a = False
a = False
a = True
for i in range(3 , int(n**0.5 + 1 ) , 2 ):
a = i * 2
while index < n:
a = False
a = index + i
a = [2]
for i in range(3 , a , 2 ):
if is_prime[i]:
primes.append(a )
return primes
def _a ( a :int = 999_966_663_333 ) -> int:
a = math.floor(math.sqrt(a ) ) + 100
a = prime_sieve(a )
a = 0
a = 0
a = primes[prime_index]
while (last_prime**2) <= limit:
a = primes[prime_index + 1]
a = last_prime**2
a = next_prime**2
# Get numbers divisible by lps(current)
a = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
a = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
a = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
a = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 0 | 1 |
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class lowercase_ :
'''simple docstring'''
__snake_case = XGLMConfig
__snake_case = {}
__snake_case = '''gelu'''
def __init__( self : str , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any]=14 , __UpperCAmelCase : List[Any]=7 , __UpperCAmelCase : Any=True , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : List[Any]=99 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : Optional[Any]=37 , __UpperCAmelCase : Tuple="gelu" , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : Dict=512 , __UpperCAmelCase : Union[str, Any]=0.02 , ) ->Any:
"""simple docstring"""
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_input_mask
a = use_labels
a = vocab_size
a = d_model
a = num_hidden_layers
a = num_attention_heads
a = ffn_dim
a = activation_function
a = activation_dropout
a = attention_dropout
a = max_position_embeddings
a = initializer_range
a = None
a = 0
a = 2
a = 1
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
return XGLMConfig.from_pretrained('''facebook/xglm-564M''' )
def __lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
a = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
a = None
if self.use_input_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = self.get_config()
a = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def __lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCAmelCase , )
def __lowerCAmelCase ( self : Any ) ->str:
"""simple docstring"""
a = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) ,
) = config_and_inputs
a = {
'''input_ids''': input_ids,
'''head_mask''': head_mask,
}
return config, inputs_dict
@require_tf
class lowercase_ ( lowercase , lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
__snake_case = (TFXGLMForCausalLM,) if is_tf_available() else ()
__snake_case = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
__snake_case = False
__snake_case = False
__snake_case = False
def __lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
a = TFXGLMModelTester(self )
a = ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37 )
def __lowerCAmelCase ( self : Optional[Any] ) ->int:
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def __lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = TFXGLMModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Any=True ) ->Optional[int]:
"""simple docstring"""
a = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
a = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
a = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581]
# fmt: on
a = model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCAmelCase )
@slow
def __lowerCAmelCase ( self : str ) ->str:
"""simple docstring"""
a = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
a = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
tf.random.set_seed(0 )
a = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' )
a = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(''':/CPU:0''' ):
a = model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , seed=[7, 0] )
a = tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase )
a = (
'''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'''
)
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
@slow
def __lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
a = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
a = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
a = '''left'''
# use different length sentences to test batching
a = [
'''This is an extremelly long sentence that only exists to test the ability of the model to cope with '''
'''left-padding, such as in batched generation. The output for the sequence below should be the same '''
'''regardless of whether left padding is applied or not. When''',
'''Hello, my dog is a little''',
]
a = tokenizer(__UpperCAmelCase , return_tensors='''tf''' , padding=__UpperCAmelCase )
a = inputs['''input_ids''']
a = model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 )
a = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids
a = model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
a = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids
a = model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
a = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
a = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase )
a = tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase )
a = [
'''This is an extremelly long sentence that only exists to test the ability of the model to cope with '''
'''left-padding, such as in batched generation. The output for the sequence below should be the same '''
'''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '''
'''a single''',
'''Hello, my dog is a little bit of a shy one, but he is very friendly''',
]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] )
| 0 |
def _a ( a :float , a :float ) -> float:
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f"""{price_plus_tax(100, 0.25) = }""")
print(f"""{price_plus_tax(125.50, 0.05) = }""")
| 0 | 1 |
def _a ( a :int ) -> int:
assert isinstance(a , a ), F"""The input value of [n={number}] is not an integer"""
if number == 1:
return 2
elif number < 1:
a = F"""The input value of [n={number}] has to be > 0"""
raise ValueError(a )
else:
a = sylvester(number - 1 )
a = num - 1
a = num
return lower * upper + 1
if __name__ == "__main__":
print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
| 0 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
a = SMALL_MODEL_IDENTIFIER
a = '''pt'''
a = '''tf'''
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str ) ->Union[str, Any]:
"""simple docstring"""
a = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ) ->List[str]:
"""simple docstring"""
a = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCAmelCase )
model_tf.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = '''mock_framework'''
# Framework provided - return whatever the user provides
a = FeaturesManager.determine_framework(self.test_model , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Both in environment -> use PyTorch
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# Both not in environment -> raise error
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
| 0 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional
from packaging import version
if TYPE_CHECKING:
from ... import PreTrainedTokenizer, TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import is_torch_available, logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json",
"bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json",
"bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json",
"bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json",
"bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json",
"bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json",
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''bloom'''
__snake_case = ['''past_key_values''']
__snake_case = {
'''num_hidden_layers''': '''n_layer''',
'''num_attention_heads''': '''n_head''',
}
def __init__( self : Optional[Any] , __UpperCAmelCase : int=250_880 , __UpperCAmelCase : Tuple=64 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : str=8 , __UpperCAmelCase : Union[str, Any]=1e-5 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : str=True , __UpperCAmelCase : List[str]=1 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Union[str, Any]=0.0 , __UpperCAmelCase : int=0.0 , __UpperCAmelCase : str=1 , __UpperCAmelCase : Optional[Any]=False , **__UpperCAmelCase : Any , ) ->Any:
"""simple docstring"""
a = vocab_size
# Backward compatibility with n_embed kwarg
a = kwargs.pop('''n_embed''' , __UpperCAmelCase )
a = hidden_size if n_embed is None else n_embed
a = n_layer
a = n_head
a = layer_norm_epsilon
a = initializer_range
a = use_cache
a = pretraining_tp
a = apply_residual_connection_post_layernorm
a = hidden_dropout
a = attention_dropout
a = bos_token_id
a = eos_token_id
a = slow_but_exact
super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = version.parse('''1.12''' )
def __init__( self : Optional[int] , __UpperCAmelCase : PretrainedConfig , __UpperCAmelCase : str = "default" , __UpperCAmelCase : List[PatchingSpec] = None , __UpperCAmelCase : bool = False , ) ->List[str]:
"""simple docstring"""
super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase )
if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ):
# TODO: how to do that better?
a = 0
@property
def __lowerCAmelCase ( self : Dict ) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
# BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' , inverted_values_shape=__UpperCAmelCase )
a = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
a = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
return self._config.n_layer
@property
def __lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
return self._config.n_head
@property
def __lowerCAmelCase ( self : Any ) ->float:
"""simple docstring"""
return 1e-3
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : "PreTrainedTokenizer" , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional["TensorType"] = None , ) ->Mapping[str, Any]:
"""simple docstring"""
a = super(__UpperCAmelCase , self ).generate_dummy_inputs(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
a , a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
a = seqlen + 2
a = self._config.hidden_size // self.num_attention_heads
a = (
batch * self.num_attention_heads,
head_dim,
past_key_values_length,
)
a = (
batch * self.num_attention_heads,
past_key_values_length,
head_dim,
)
a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers )
]
a = common_inputs['''attention_mask''']
if self.use_past:
a = ordered_inputs['''attention_mask'''].dtype
a = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
return 13
| 0 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ProphetNetTokenizer
__snake_case = False
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
super().setUp()
a = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str ) ->Dict:
"""simple docstring"""
a = '''UNwant\u00E9d,running'''
a = '''unwanted, running'''
return input_text, output_text
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
a = self.tokenizer_class(self.vocab_file )
a = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
a = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
a = {}
for i, token in enumerate(__UpperCAmelCase ):
a = i
a = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
@require_torch
def __lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
a = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102]
a = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='''pt''' )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
a = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
a = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase )
assert encoded_sentence == text + [102]
assert encoded_pair == text + [102] + text_a + [102]
| 0 | 1 |
print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase__ = {
"configuration_nllb_moe": [
"NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",
"NllbMoeConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
"NllbMoeForConditionalGeneration",
"NllbMoeModel",
"NllbMoePreTrainedModel",
"NllbMoeTop2Router",
"NllbMoeSparseMLP",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 | 1 |
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
UpperCAmelCase__ = logging.get_logger(__name__)
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : int , *__UpperCAmelCase : Any , **__UpperCAmelCase : Optional[int] ) ->None:
"""simple docstring"""
warnings.warn(
'''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use PoolFormerImageProcessor instead.''' , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 0 |
def _a ( a :int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
a = gray_code_sequence_string(a )
#
# convert them to integers
for i in range(len(a ) ):
a = int(sequence[i] , 2 )
return sequence
def _a ( a :int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
a = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
a = gray_code_sequence_string(bit_count - 1 )
a = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
a = '''0''' + smaller_sequence[i]
sequence.append(a )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
a = '''1''' + smaller_sequence[i]
sequence.append(a )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
import unittest
from transformers import AutoTokenizer, FalconConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
)
class lowercase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : str=3 , __UpperCAmelCase : Optional[Any]=7 , __UpperCAmelCase : str=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : str=False , __UpperCAmelCase : str=True , __UpperCAmelCase : Optional[int]=99 , __UpperCAmelCase : List[str]=32 , __UpperCAmelCase : List[Any]=5 , __UpperCAmelCase : Optional[Any]=4 , __UpperCAmelCase : Optional[int]=37 , __UpperCAmelCase : Tuple="gelu" , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Dict=512 , __UpperCAmelCase : Union[str, Any]=16 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Any=0.02 , __UpperCAmelCase : int=3 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : List[Any]=None , ) ->List[str]:
"""simple docstring"""
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_input_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_labels
a = num_choices
a = scope
def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_input_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
a = None
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
a = ids_tensor([self.batch_size] , self.num_choices )
a = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self : Any ) ->Optional[int]:
"""simple docstring"""
return FalconConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__UpperCAmelCase , )
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int ) ->List[str]:
"""simple docstring"""
a = FalconModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
a = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , ) ->str:
"""simple docstring"""
a = True
a = FalconModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
a = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , ) ->Optional[Any]:
"""simple docstring"""
a = FalconForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , ) ->str:
"""simple docstring"""
a = True
a = True
a = FalconForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
# first forward pass
a = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , )
a = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
a = ids_tensor((self.batch_size, 3) , config.vocab_size )
a = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
a = torch.cat([input_ids, next_tokens] , dim=-1 )
a = torch.cat([input_mask, next_mask] , dim=-1 )
a = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )['''hidden_states'''][0]
a = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )['''hidden_states'''][0]
# select random slice
a = ids_tensor((1,) , output_from_past.shape[-1] ).item()
a = output_from_no_past[:, -3:, random_slice_idx].detach()
a = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) )
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
a = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) ,
) = config_and_inputs
a = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowercase_ ( lowercase , lowercase , lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(
FalconModel,
FalconForCausalLM,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconForQuestionAnswering,
)
if is_torch_available()
else ()
)
__snake_case = (FalconForCausalLM,) if is_torch_available() else ()
__snake_case = (
{
'''feature-extraction''': FalconModel,
'''text-classification''': FalconForSequenceClassification,
'''text-generation''': FalconForCausalLM,
'''question-answering''': FalconForQuestionAnswering,
'''token-classification''': FalconForTokenClassification,
'''zero-shot''': FalconForSequenceClassification,
}
if is_torch_available()
else {}
)
__snake_case = False
__snake_case = False
def __lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
a = FalconModelTester(self )
a = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __lowerCAmelCase ( self : str ) ->Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : List[str] ) ->Tuple:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Any:
"""simple docstring"""
a , *a = self.model_tester.prepare_config_and_inputs()
for alibi in [True, False]:
a = alibi
self.model_tester.create_and_check_model(__UpperCAmelCase , *__UpperCAmelCase )
def __lowerCAmelCase ( self : Dict ) ->int:
"""simple docstring"""
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = 3
a = input_dict['''input_ids''']
a = input_ids.ne(1 ).to(__UpperCAmelCase )
a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
a = FalconForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = 3
a = '''single_label_classification'''
a = input_dict['''input_ids''']
a = input_ids.ne(1 ).to(__UpperCAmelCase )
a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
a = FalconForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = input_dict['''input_ids''']
a = FalconForCausalLM(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
a = input_ids.shape[0]
a = model._convert_to_rw_cache(result.past_key_values )
a = model._convert_cache_to_standard_format(__UpperCAmelCase , __UpperCAmelCase )
for layer in range(len(__UpperCAmelCase ) ):
for tensor_idx in range(2 ):
self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 )
self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 )
self.assertTrue(
torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) )
def __lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = 3
a = '''multi_label_classification'''
a = input_dict['''input_ids''']
a = input_ids.ne(1 ).to(__UpperCAmelCase )
a = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
a = FalconForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
for model_class in self.all_generative_model_classes:
a , a = self.model_tester.prepare_config_and_inputs_for_common()
# If it doesn't support cache, pass the test
if not hasattr(__UpperCAmelCase , '''use_cache''' ):
return
a = model_class(__UpperCAmelCase ).to(__UpperCAmelCase )
if "use_cache" not in inputs:
a = True
a = model(**__UpperCAmelCase )
# If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format)
if "past_key_values" not in outputs:
return
a = (
getattr(__UpperCAmelCase , '''decoder_layers''' , __UpperCAmelCase )
or getattr(__UpperCAmelCase , '''num_decoder_layers''' , __UpperCAmelCase )
or config.num_hidden_layers
)
a = getattr(__UpperCAmelCase , '''num_kv_heads''' , config.num_attention_heads )
a = getattr(__UpperCAmelCase , '''d_model''' , config.hidden_size )
a = embed_dim // num_attention_heads
a = outputs['''past_key_values''']
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
a , a = inputs['''input_ids'''].shape
for i in range(__UpperCAmelCase ):
if config.new_decoder_architecture:
a = config.num_attention_heads
elif config.multi_query:
a = 1
self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2
self.assertEqual(
past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) )
self.assertEqual(
past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) )
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
a = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' )
a = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' )
model.eval()
model.to(__UpperCAmelCase )
a = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__UpperCAmelCase )
a = (
'''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.'''
)
a = model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=19 )
a = tokenizer.batch_decode(__UpperCAmelCase )[0]
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
@slow
def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]:
a = AutoTokenizer.from_pretrained(__UpperCAmelCase )
a = FalconForCausalLM.from_pretrained(__UpperCAmelCase )
model.eval()
model.to(__UpperCAmelCase )
a = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__UpperCAmelCase )
# We just test that these run without errors - the models are randomly initialized
# and so the actual text outputs will be garbage
model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=4 )
model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=4 )
model.generate(**__UpperCAmelCase , num_beams=2 , max_new_tokens=4 )
@slow
def __lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
with torch.no_grad():
for repo in [
"Rocketknight1/falcon-rw-1b",
"Rocketknight1/tiny-random-falcon-7b",
"Rocketknight1/tiny-random-falcon-40b",
]:
a = AutoTokenizer.from_pretrained(__UpperCAmelCase )
a = FalconForCausalLM.from_pretrained(__UpperCAmelCase )
model.eval()
model.to(device=__UpperCAmelCase )
a = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__UpperCAmelCase )
# Test results are the same with and without cache
a = model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=20 , use_cache=__UpperCAmelCase )
a = model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=20 , use_cache=__UpperCAmelCase )
self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
| 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
# fmt: off
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
a = {
'''do_resize''': True,
'''size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
a = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] , **__UpperCAmelCase : List[Any] ) ->int:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] , **__UpperCAmelCase : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def __lowerCAmelCase ( self : str ) ->Dict:
"""simple docstring"""
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
a = self.get_tokenizer()
a = self.get_image_processor()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
a = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
a = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
a = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = self.prepare_image_inputs()
a = image_processor(__UpperCAmelCase , return_tensors='''np''' )
a = processor(images=__UpperCAmelCase , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = processor(text=__UpperCAmelCase )
a = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(__UpperCAmelCase ):
processor()
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__UpperCAmelCase )
a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 0 | 1 |
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
UpperCAmelCase__ = logging.get_logger(__name__)
@add_end_docstrings(lowercase )
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : int , **__UpperCAmelCase : Optional[int] ) ->int:
"""simple docstring"""
super().__init__(**__UpperCAmelCase )
requires_backends(self , '''vision''' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : str , __UpperCAmelCase : Union[str, List[str], "Image", List["Image"]] , **__UpperCAmelCase : Tuple ) ->Tuple:
"""simple docstring"""
return super().__call__(__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , **__UpperCAmelCase : Optional[int] ) ->Optional[int]:
"""simple docstring"""
a = {}
if "candidate_labels" in kwargs:
a = kwargs['''candidate_labels''']
if "hypothesis_template" in kwargs:
a = kwargs['''hypothesis_template''']
return preprocess_params, {}, {}
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : List[str]="This is a photo of {}." ) ->Tuple:
"""simple docstring"""
a = load_image(__UpperCAmelCase )
a = self.image_processor(images=[image] , return_tensors=self.framework )
a = candidate_labels
a = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels]
a = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase )
a = [text_inputs]
return inputs
def __lowerCAmelCase ( self : int , __UpperCAmelCase : Union[str, Any] ) ->Any:
"""simple docstring"""
a = model_inputs.pop('''candidate_labels''' )
a = model_inputs.pop('''text_inputs''' )
if isinstance(text_inputs[0] , __UpperCAmelCase ):
a = text_inputs[0]
else:
# Batching case.
a = text_inputs[0][0]
a = self.model(**__UpperCAmelCase , **__UpperCAmelCase )
a = {
'''candidate_labels''': candidate_labels,
'''logits''': outputs.logits_per_image,
}
return model_outputs
def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Union[str, Any] ) ->Dict:
"""simple docstring"""
a = model_outputs.pop('''candidate_labels''' )
a = model_outputs['''logits'''][0]
if self.framework == "pt":
a = logits.softmax(dim=-1 ).squeeze(-1 )
a = probs.tolist()
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
a = [scores]
elif self.framework == "tf":
a = stable_softmax(__UpperCAmelCase , axis=-1 )
a = probs.numpy().tolist()
else:
raise ValueError(F"""Unsupported framework: {self.framework}""" )
a = [
{'''score''': score, '''label''': candidate_label}
for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] )
]
return result
| 0 |
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def _a ( a :List[Any] ) -> Optional[int]:
a = []
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""",
F"""stage{idx}.patch_embed.proj.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""",
F"""stage{idx}.patch_embed.proj.bias""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""",
F"""stage{idx}.patch_embed.norm.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""",
F"""stage{idx}.patch_embed.norm.bias""",
) )
return embed
def _a ( a :List[Any] , a :Optional[int] ) -> Dict:
a = []
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj.bias""",
) )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") )
return attention_weights
def _a ( a :Any ) -> List[Any]:
a = []
token.append((F"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') )
return token
def _a ( ) -> Optional[int]:
a = []
head.append(('''layernorm.weight''', '''norm.weight''') )
head.append(('''layernorm.bias''', '''norm.bias''') )
head.append(('''classifier.weight''', '''head.weight''') )
head.append(('''classifier.bias''', '''head.bias''') )
return head
def _a ( a :Tuple , a :Optional[int] , a :List[Any] , a :Union[str, Any] ) -> Optional[int]:
a = '''imagenet-1k-id2label.json'''
a = 1_000
a = '''huggingface/label-files'''
a = num_labels
a = json.load(open(cached_download(hf_hub_url(a , a , repo_type='''dataset''' ) ) , '''r''' ) )
a = {int(a ): v for k, v in idalabel.items()}
a = idalabel
a = {v: k for k, v in idalabel.items()}
a = a = CvtConfig(num_labels=a , idalabel=a , labelaid=a )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13":
a = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21":
a = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
a = [2, 2, 20]
a = [3, 12, 16]
a = [192, 768, 1_024]
a = CvtForImageClassification(a )
a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' )
a = image_size
a = torch.load(a , map_location=torch.device('''cpu''' ) )
a = OrderedDict()
a = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
a = list_of_state_dict + cls_token(a )
a = list_of_state_dict + embeddings(a )
for cnt in range(config.depth[idx] ):
a = list_of_state_dict + attention(a , a )
a = list_of_state_dict + final()
for gg in list_of_state_dict:
print(a )
for i in range(len(a ) ):
a = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(a )
model.save_pretrained(a )
image_processor.save_pretrained(a )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
UpperCAmelCase__ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 0 | 1 |
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = DiTPipeline
__snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
__snake_case = PipelineTesterMixin.required_optional_params - {
'''latents''',
'''num_images_per_prompt''',
'''callback''',
'''callback_steps''',
}
__snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
__snake_case = False
def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
torch.manual_seed(0 )
a = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__UpperCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=__UpperCAmelCase , )
a = AutoencoderKL()
a = DDIMScheduler()
a = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler}
return components
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any]=0 ) ->Any:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''class_labels''': [1],
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = self.get_dummy_inputs(__UpperCAmelCase )
a = pipe(**__UpperCAmelCase ).images
a = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
a = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] )
a = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(__UpperCAmelCase , 1e-3 )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
self._test_inference_batch_single_identical(relax_max_difference=__UpperCAmelCase , expected_max_diff=1e-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@require_torch_gpu
@slow
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
a = torch.manual_seed(0 )
a = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' )
pipe.to('''cuda''' )
a = ['''vase''', '''umbrella''', '''white shark''', '''white wolf''']
a = pipe.get_label_ids(__UpperCAmelCase )
a = pipe(__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=40 , output_type='''np''' ).images
for word, image in zip(__UpperCAmelCase , __UpperCAmelCase ):
a = load_numpy(
F"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" )
assert np.abs((expected_image - image).max() ) < 1e-2
def __lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
a = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' )
a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to('''cuda''' )
a = ['''vase''', '''umbrella''']
a = pipe.get_label_ids(__UpperCAmelCase )
a = torch.manual_seed(0 )
a = pipe(__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=25 , output_type='''np''' ).images
for word, image in zip(__UpperCAmelCase , __UpperCAmelCase ):
a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
F"""/dit/{word}_512.npy""" )
assert np.abs((expected_image - image).max() ) < 1e-1
| 0 |
from __future__ import annotations
UpperCAmelCase__ = list[list[int]]
# assigning initial values to the grid
UpperCAmelCase__ = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
UpperCAmelCase__ = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _a ( a :Matrix , a :int , a :int , a :int ) -> bool:
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _a ( a :Matrix ) -> tuple[int, int] | None:
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def _a ( a :Matrix ) -> Matrix | None:
if location := find_empty_location(a ):
a , a = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(a , a , a , a ):
a = digit
if sudoku(a ) is not None:
return grid
a = 0
return None
def _a ( a :Matrix ) -> None:
for row in grid:
for cell in row:
print(a , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("\nExample grid:\n" + "=" * 20)
print_solution(example_grid)
print("\nExample grid solution:")
UpperCAmelCase__ = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("Cannot find a solution.")
| 0 | 1 |
from typing import Dict, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
UpperCAmelCase__ = logging.get_logger(__name__)
def _a ( a :str , a :Dict , a :Dict ) -> int:
return [
int(1_000 * (box[0] / width) ),
int(1_000 * (box[1] / height) ),
int(1_000 * (box[2] / width) ),
int(1_000 * (box[3] / height) ),
]
def _a ( a :np.ndarray , a :Optional[str] , a :Optional[str] = None ) -> Any:
a = tesseract_config if tesseract_config is not None else ''''''
# apply OCR
a = to_pil_image(a )
a , a = pil_image.size
a = pytesseract.image_to_data(a , lang=a , output_type='''dict''' , config=a )
a , a , a , a , a = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height''']
# filter empty words and corresponding coordinates
a = [idx for idx, word in enumerate(a ) if not word.strip()]
a = [word for idx, word in enumerate(a ) if idx not in irrelevant_indices]
a = [coord for idx, coord in enumerate(a ) if idx not in irrelevant_indices]
a = [coord for idx, coord in enumerate(a ) if idx not in irrelevant_indices]
a = [coord for idx, coord in enumerate(a ) if idx not in irrelevant_indices]
a = [coord for idx, coord in enumerate(a ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
a = []
for x, y, w, h in zip(a , a , a , a ):
a = [x, y, x + w, y + h]
actual_boxes.append(a )
# finally, normalize the bounding boxes
a = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(a , a , a ) )
assert len(a ) == len(a ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = ['''pixel_values''']
def __init__( self : int , __UpperCAmelCase : bool = True , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[str] = "" , **__UpperCAmelCase : Any , ) ->None:
"""simple docstring"""
super().__init__(**__UpperCAmelCase )
a = size if size is not None else {'''height''': 224, '''width''': 224}
a = get_size_dict(__UpperCAmelCase )
a = do_resize
a = size
a = resample
a = apply_ocr
a = ocr_lang
a = tesseract_config
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Dict[str, int] , __UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Dict , ) ->np.ndarray:
"""simple docstring"""
a = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" )
a = (size['''height'''], size['''width'''])
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : ImageInput , __UpperCAmelCase : bool = None , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : PILImageResampling = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , __UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__UpperCAmelCase : Optional[int] , ) ->PIL.Image.Image:
"""simple docstring"""
a = do_resize if do_resize is not None else self.do_resize
a = size if size is not None else self.size
a = get_size_dict(__UpperCAmelCase )
a = resample if resample is not None else self.resample
a = apply_ocr if apply_ocr is not None else self.apply_ocr
a = ocr_lang if ocr_lang is not None else self.ocr_lang
a = tesseract_config if tesseract_config is not None else self.tesseract_config
a = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
# All transformations expect numpy arrays.
a = [to_numpy_array(__UpperCAmelCase ) for image in images]
if apply_ocr:
requires_backends(self , '''pytesseract''' )
a = []
a = []
for image in images:
a , a = apply_tesseract(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
words_batch.append(__UpperCAmelCase )
boxes_batch.append(__UpperCAmelCase )
if do_resize:
a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
# flip color channels from RGB to BGR (as Detectron2 requires this)
a = [flip_channel_order(__UpperCAmelCase ) for image in images]
a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
a = BatchFeature(data={'''pixel_values''': images} , tensor_type=__UpperCAmelCase )
if apply_ocr:
a = words_batch
a = boxes_batch
return data
| 0 |
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = KandinskyVaaPriorPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''', '''negative_prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''generator''',
'''num_inference_steps''',
'''latents''',
'''negative_prompt''',
'''guidance_scale''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
return 100
@property
def __lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 12,
'''embedding_dim''': self.text_embedder_hidden_size,
'''num_layers''': 1,
}
a = PriorTransformer(**__UpperCAmelCase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
a = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
a = CLIPVisionModelWithProjection(__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
a = CLIPImageProcessor(
crop_size=224 , do_center_crop=__UpperCAmelCase , do_normalize=__UpperCAmelCase , do_resize=__UpperCAmelCase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_image_encoder
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_image_processor
a = UnCLIPScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=__UpperCAmelCase , clip_sample_range=10.0 , )
a = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''scheduler''': scheduler,
'''image_processor''': image_processor,
}
return components
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str=0 ) ->int:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.image_embeds
a = pipe(
**self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0]
a = image[0, -10:]
a = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
a = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
a = False
self._test_inference_batch_single_identical(
test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
@skip_mps
def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = False
self._test_attention_slicing_forward_pass(
test_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
| 0 | 1 |
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class lowercase_ :
'''simple docstring'''
@staticmethod
def __lowerCAmelCase ( *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->int:
"""simple docstring"""
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
__snake_case = MODEL_FOR_OBJECT_DETECTION_MAPPING
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any] ) ->List[str]:
"""simple docstring"""
a = ObjectDetectionPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : int ) ->Tuple:
"""simple docstring"""
a = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' , threshold=0.0 )
self.assertGreater(len(__UpperCAmelCase ) , 0 )
for detected_object in outputs:
self.assertEqual(
__UpperCAmelCase , {
'''score''': ANY(__UpperCAmelCase ),
'''label''': ANY(__UpperCAmelCase ),
'''box''': {'''xmin''': ANY(__UpperCAmelCase ), '''ymin''': ANY(__UpperCAmelCase ), '''xmax''': ANY(__UpperCAmelCase ), '''ymax''': ANY(__UpperCAmelCase )},
} , )
import datasets
a = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' )
a = [
Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ),
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
# RGBA
dataset[0]['''file'''],
# LA
dataset[1]['''file'''],
# L
dataset[2]['''file'''],
]
a = object_detector(__UpperCAmelCase , threshold=0.0 )
self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) )
for outputs in batch_outputs:
self.assertGreater(len(__UpperCAmelCase ) , 0 )
for detected_object in outputs:
self.assertEqual(
__UpperCAmelCase , {
'''score''': ANY(__UpperCAmelCase ),
'''label''': ANY(__UpperCAmelCase ),
'''box''': {'''xmin''': ANY(__UpperCAmelCase ), '''ymin''': ANY(__UpperCAmelCase ), '''xmax''': ANY(__UpperCAmelCase ), '''ymax''': ANY(__UpperCAmelCase )},
} , )
@require_tf
@unittest.skip('''Object detection not implemented in TF''' )
def __lowerCAmelCase ( self : Any ) ->str:
"""simple docstring"""
pass
@require_torch
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
a = '''hf-internal-testing/tiny-detr-mobilenetsv3'''
a = AutoModelForObjectDetection.from_pretrained(__UpperCAmelCase )
a = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase )
a = ObjectDetectionPipeline(model=__UpperCAmelCase , feature_extractor=__UpperCAmelCase )
a = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=0.0 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}},
{'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}},
] , )
a = object_detector(
[
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
] , threshold=0.0 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}},
{'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}},
],
[
{'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}},
{'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}},
],
] , )
@require_torch
@slow
def __lowerCAmelCase ( self : Tuple ) ->Union[str, Any]:
"""simple docstring"""
a = '''facebook/detr-resnet-50'''
a = AutoModelForObjectDetection.from_pretrained(__UpperCAmelCase )
a = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase )
a = ObjectDetectionPipeline(model=__UpperCAmelCase , feature_extractor=__UpperCAmelCase )
a = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}},
{'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}},
{'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}},
{'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}},
{'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}},
] , )
a = object_detector(
[
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
] )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}},
{'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}},
{'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}},
{'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}},
{'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}},
],
[
{'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}},
{'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}},
{'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}},
{'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}},
{'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}},
],
] , )
@require_torch
@slow
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
a = '''facebook/detr-resnet-50'''
a = pipeline('''object-detection''' , model=__UpperCAmelCase )
a = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}},
{'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}},
{'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}},
{'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}},
{'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}},
] , )
a = object_detector(
[
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
] )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}},
{'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}},
{'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}},
{'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}},
{'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}},
],
[
{'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}},
{'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}},
{'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}},
{'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}},
{'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}},
],
] , )
@require_torch
@slow
def __lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
a = 0.9985
a = '''facebook/detr-resnet-50'''
a = pipeline('''object-detection''' , model=__UpperCAmelCase )
a = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}},
{'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}},
] , )
@require_torch
@require_pytesseract
@slow
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = '''Narsil/layoutlmv3-finetuned-funsd'''
a = 0.9993
a = pipeline('''object-detection''' , model=__UpperCAmelCase , threshold=__UpperCAmelCase )
a = object_detector(
'''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}},
{'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}},
] , )
| 0 |
from math import factorial
UpperCAmelCase__ = {str(digit): factorial(digit) for digit in range(10)}
def _a ( a :int ) -> int:
if not isinstance(a , a ):
raise TypeError('''Parameter number must be int''' )
if number < 0:
raise ValueError('''Parameter number must be greater than or equal to 0''' )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(a ) )
def _a ( a :int = 60 , a :int = 1_000_000 ) -> int:
if not isinstance(a , a ) or not isinstance(a , a ):
raise TypeError('''Parameters chain_length and number_limit must be int''' )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
'''Parameters chain_length and number_limit must be greater than 0''' )
# the counter for the chains with the exact desired length
a = 0
# the cached sizes of the previous chains
a = {}
for start_chain_element in range(1 , a ):
# The temporary set will contain the elements of the chain
a = set()
a = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
a = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(a )
chain_set_length += 1
a = digit_factorial_sum(a )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
a = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution()}""")
| 0 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase__ = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
),
"google/electra-base-generator": (
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
),
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase__ = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
UpperCAmelCase__ = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_INIT_CONFIGURATION
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = ElectraTokenizer
def __init__( self : Dict , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : str="[UNK]" , __UpperCAmelCase : Any="[SEP]" , __UpperCAmelCase : str="[PAD]" , __UpperCAmelCase : Optional[Any]="[CLS]" , __UpperCAmelCase : Union[str, Any]="[MASK]" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Optional[int] , ) ->str:
"""simple docstring"""
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
a = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars
):
a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) )
a = do_lower_case
a = strip_accents
a = tokenize_chinese_chars
a = normalizer_class(**__UpperCAmelCase )
a = do_lower_case
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple=None ) ->str:
"""simple docstring"""
a = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
a = [self.sep_token_id]
a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 0 |
def _a ( a :int = 100 ) -> int:
a = n * (n + 1) * (2 * n + 1) / 6
a = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 0 | 1 |
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Optional[int] ) ->Tuple:
"""simple docstring"""
a = get_activation('''swish''' )
self.assertIsInstance(__UpperCAmelCase , nn.SiLU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def __lowerCAmelCase ( self : Dict ) ->Dict:
"""simple docstring"""
a = get_activation('''silu''' )
self.assertIsInstance(__UpperCAmelCase , nn.SiLU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
a = get_activation('''mish''' )
self.assertIsInstance(__UpperCAmelCase , nn.Mish )
self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def __lowerCAmelCase ( self : Tuple ) ->Optional[int]:
"""simple docstring"""
a = get_activation('''gelu''' )
self.assertIsInstance(__UpperCAmelCase , nn.GELU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase__ = {
"configuration_groupvit": [
"GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"GroupViTConfig",
"GroupViTOnnxConfig",
"GroupViTTextConfig",
"GroupViTVisionConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GroupViTModel",
"GroupViTPreTrainedModel",
"GroupViTTextModel",
"GroupViTVisionModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFGroupViTModel",
"TFGroupViTPreTrainedModel",
"TFGroupViTTextModel",
"TFGroupViTVisionModel",
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 | 1 |
from __future__ import annotations
from collections import deque
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , __UpperCAmelCase : list[str] ) ->int:
"""simple docstring"""
a = []
self.adlist.append(
{'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} )
for keyword in keywords:
self.add_keyword(__UpperCAmelCase )
self.set_fail_transitions()
def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : str ) ->int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def __lowerCAmelCase ( self : str , __UpperCAmelCase : str ) ->None:
"""simple docstring"""
a = 0
for character in keyword:
a = self.find_next_state(__UpperCAmelCase , __UpperCAmelCase )
if next_state is None:
self.adlist.append(
{
'''value''': character,
'''next_states''': [],
'''fail_state''': 0,
'''output''': [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
a = len(self.adlist ) - 1
else:
a = next_state
self.adlist[current_state]["output"].append(__UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] ) ->None:
"""simple docstring"""
a = deque()
for node in self.adlist[0]["next_states"]:
q.append(__UpperCAmelCase )
a = 0
while q:
a = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(__UpperCAmelCase )
a = self.adlist[r]['''fail_state''']
while (
self.find_next_state(__UpperCAmelCase , self.adlist[child]['''value'''] ) is None
and state != 0
):
a = self.adlist[state]['''fail_state''']
a = self.find_next_state(
__UpperCAmelCase , self.adlist[child]['''value'''] )
if self.adlist[child]["fail_state"] is None:
a = 0
a = (
self.adlist[child]['''output''']
+ self.adlist[self.adlist[child]['''fail_state''']]['''output''']
)
def __lowerCAmelCase ( self : int , __UpperCAmelCase : str ) ->dict[str, list[int]]:
"""simple docstring"""
a = {} # returns a dict with keywords and list of its occurrences
a = 0
for i in range(len(__UpperCAmelCase ) ):
while (
self.find_next_state(__UpperCAmelCase , string[i] ) is None
and current_state != 0
):
a = self.adlist[current_state]['''fail_state''']
a = self.find_next_state(__UpperCAmelCase , string[i] )
if next_state is None:
a = 0
else:
a = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
a = []
result[key].append(i - len(__UpperCAmelCase ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ShapEPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''num_inference_steps''',
'''generator''',
'''latents''',
'''guidance_scale''',
'''frame_size''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
return 8
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
a = PriorTransformer(**__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
a = ShapERenderer(**__UpperCAmelCase )
return model
def __lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_renderer
a = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=__UpperCAmelCase , clip_sample=__UpperCAmelCase , clip_sample_range=1.0 , )
a = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str=0 ) ->Optional[int]:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.images[0]
a = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
a = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , )
def __lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = 1
a = 2
a = self.get_dummy_inputs(__UpperCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
a = batch_size * [inputs[key]]
a = pipe(**__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
a = ShapEPipeline.from_pretrained('''openai/shap-e''' )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
a = pipe(
'''a shark''' , generator=__UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
| 0 | 1 |
import importlib
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Union
import torch
from ..utils import BaseOutput
UpperCAmelCase__ = "scheduler_config.json"
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = 1
__snake_case = 2
__snake_case = 3
__snake_case = 4
__snake_case = 5
__snake_case = 6
__snake_case = 7
__snake_case = 8
__snake_case = 9
__snake_case = 10
__snake_case = 11
__snake_case = 12
__snake_case = 13
__snake_case = 14
@dataclass
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = 42
class lowercase_ :
'''simple docstring'''
__snake_case = SCHEDULER_CONFIG_NAME
__snake_case = []
__snake_case = True
@classmethod
def __lowerCAmelCase ( cls : List[Any] , __UpperCAmelCase : Dict[str, Any] = None , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : List[str]=False , **__UpperCAmelCase : Dict , ) ->int:
"""simple docstring"""
a , a , a = cls.load_config(
pretrained_model_name_or_path=__UpperCAmelCase , subfolder=__UpperCAmelCase , return_unused_kwargs=__UpperCAmelCase , return_commit_hash=__UpperCAmelCase , **__UpperCAmelCase , )
return cls.from_config(__UpperCAmelCase , return_unused_kwargs=__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Union[str, os.PathLike] , __UpperCAmelCase : bool = False , **__UpperCAmelCase : List[str] ) ->List[Any]:
"""simple docstring"""
self.save_config(save_directory=__UpperCAmelCase , push_to_hub=__UpperCAmelCase , **__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : List[Any] ) ->List[Any]:
"""simple docstring"""
return self._get_compatibles()
@classmethod
def __lowerCAmelCase ( cls : Any ) ->List[str]:
"""simple docstring"""
a = list(set([cls.__name__] + cls._compatibles ) )
a = importlib.import_module(__name__.split('''.''' )[0] )
a = [
getattr(__UpperCAmelCase , __UpperCAmelCase ) for c in compatible_classes_str if hasattr(__UpperCAmelCase , __UpperCAmelCase )
]
return compatible_classes
| 0 |
from __future__ import annotations
import time
import numpy as np
UpperCAmelCase__ = [8, 5, 9, 7]
UpperCAmelCase__ = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
UpperCAmelCase__ = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[list[int]] , ) ->None:
"""simple docstring"""
a = claim_vector
a = allocated_resources_table
a = maximum_claim_table
def __lowerCAmelCase ( self : Any ) ->list[int]:
"""simple docstring"""
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def __lowerCAmelCase ( self : Optional[int] ) ->list[int]:
"""simple docstring"""
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def __lowerCAmelCase ( self : Union[str, Any] ) ->list[list[int]]:
"""simple docstring"""
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def __lowerCAmelCase ( self : Tuple ) ->dict[int, list[int]]:
"""simple docstring"""
return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()}
def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->None:
"""simple docstring"""
a = self.__need()
a = self.__allocated_resources_table
a = self.__available_resources()
a = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print('''_''' * 50 + '''\n''' )
while need_list:
a = False
for each_need in need_list:
a = True
for index, need in enumerate(__UpperCAmelCase ):
if need > available_resources[index]:
a = False
break
if execution:
a = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
a = original_need_index
print(F"""Process {process_number + 1} is executing.""" )
# remove the process run from stack
need_list.remove(__UpperCAmelCase )
# update available/freed resources stack
a = np.array(__UpperCAmelCase ) + np.array(
alloc_resources_table[process_number] )
print(
'''Updated available resource stack for processes: '''
+ ''' '''.join([str(__UpperCAmelCase ) for x in available_resources] ) )
break
if safe:
print('''The process is in a safe state.\n''' )
else:
print('''System in unsafe state. Aborting...\n''' )
break
def __lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
print(''' ''' * 9 + '''Allocated Resource Table''' )
for item in self.__allocated_resources_table:
print(
F"""P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(''' ''' * 9 + '''System Resource Table''' )
for item in self.__maximum_claim_table:
print(
F"""P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(
'''Current Usage by Active Processes: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) )
print(
'''Initial Available Resources: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
def _a ( a :int = 50 ) -> int:
a = [[0] * 3 for _ in range(length + 1 )]
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length] )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase__ = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
),
"google/electra-base-generator": (
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
),
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase__ = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
UpperCAmelCase__ = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_INIT_CONFIGURATION
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = ElectraTokenizer
def __init__( self : Dict , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : str="[UNK]" , __UpperCAmelCase : Any="[SEP]" , __UpperCAmelCase : str="[PAD]" , __UpperCAmelCase : Optional[Any]="[CLS]" , __UpperCAmelCase : Union[str, Any]="[MASK]" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Optional[int] , ) ->str:
"""simple docstring"""
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
a = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars
):
a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) )
a = do_lower_case
a = strip_accents
a = tokenize_chinese_chars
a = normalizer_class(**__UpperCAmelCase )
a = do_lower_case
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple=None ) ->str:
"""simple docstring"""
a = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
a = [self.sep_token_id]
a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 0 | 1 |
import argparse
import shlex
import runhouse as rh
if __name__ == "__main__":
# Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access
# setup instructions, if using on-demand hardware
# If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster
# If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster
# Throw an error if user passes both BYO and on-demand cluster args
# Otherwise, use default values
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--user", type=str, default="ubuntu")
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--key_path", type=str, default=None)
parser.add_argument("--instance", type=str, default="V100:1")
parser.add_argument("--provider", type=str, default="cheapest")
parser.add_argument("--use_spot", type=bool, default=False)
parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py")
UpperCAmelCase__ , UpperCAmelCase__ = parser.parse_known_args()
if args.host != "localhost":
if args.instance != "V100:1" or args.provider != "cheapest":
raise ValueError("Cannot specify both BYO and on-demand cluster args")
UpperCAmelCase__ = rh.cluster(
name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path}
)
else:
UpperCAmelCase__ = rh.cluster(
name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot
)
UpperCAmelCase__ = args.example.rsplit("/", 1)[0]
# Set up remote environment
cluster.install_packages(["pip:./"]) # Installs transformers from local source
# Note transformers is copied into the home directory on the remote machine, so we can install from there
cluster.run([f"""pip install -r transformers/examples/{example_dir}/requirements.txt"""])
cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"])
# Run example. You can bypass the CLI wrapper and paste your own code here.
cluster.run([f"""python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"""])
# Alternatively, we can just import and run a training function (especially if there's no wrapper CLI):
# from my_script... import train
# reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard']
# launch_train_gpu = rh.function(fn=train,
# system=gpu,
# reqs=reqs,
# name='train_bert_glue')
#
# We can pass in arguments just like we would to a function:
# launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16
# stream_logs=True)
| 0 |
def _a ( a :int ) -> bool:
a = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 0 | 1 |
def _a ( a :int = 10 , a :int = 22 ) -> int:
a = range(1 , a )
a = range(1 , a )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f"""{solution(10, 22) = }""")
| 0 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
UpperCAmelCase__ = pytest.mark.integration
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
a = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(__UpperCAmelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
a = dset.map(
lambda __UpperCAmelCase , __UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase )
a = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
dset.drop_index('''vecs''' )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
dset.save_faiss_index('''vecs''' , tmp_file.name )
dset.load_faiss_index('''vecs2''' , tmp_file.name )
os.unlink(tmp_file.name )
a , a = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' )
dset.drop_index('''vecs''' )
self.assertRaises(__UpperCAmelCase , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
from elasticsearch import Elasticsearch
a = self._create_dummy_dataset()
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = {'''acknowledged''': True}
mocked_bulk.return_value([(True, None)] * 30 )
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}}
a = Elasticsearch()
dset.add_elasticsearch_index('''filename''' , es_client=__UpperCAmelCase )
a , a = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Any ) ->Any:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
a = np.eye(5 , dtype=np.floataa )[::-1]
a , a = index.search_batch(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search_batch , queries[0] )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , __UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
import faiss
a = FaissIndex(string_factory='''Flat''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
a = FaissIndex(string_factory='''LSH''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(__UpperCAmelCase ):
a = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) )
def __lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = faiss.IndexFlat(5 )
a = FaissIndex(custom_index=__UpperCAmelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
index.save(tmp_file.name )
a = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _a ( a :Dict ) -> Any:
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
a = '''index.faiss'''
a = F"""mock://{index_name}"""
index.save(a , storage_options=mockfs.storage_options )
a = FaissIndex.load(a , storage_options=mockfs.storage_options )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(a )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->List[Any]:
"""simple docstring"""
from elasticsearch import Elasticsearch
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = Elasticsearch()
a = {'''acknowledged''': True}
a = ElasticSearchIndex(es_client=__UpperCAmelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['''foo''', '''bar''', '''foobar'''] )
# single query
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
# batched queries with timeout
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase , request_timeout=30 )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
| 0 | 1 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = (DEISMultistepScheduler,)
__snake_case = (('''num_inference_steps''', 25),)
def __lowerCAmelCase ( self : Optional[int] , **__UpperCAmelCase : Union[str, Any] ) ->int:
"""simple docstring"""
a = {
'''num_train_timesteps''': 1_000,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
}
config.update(**__UpperCAmelCase )
return config
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str]=0 , **__UpperCAmelCase : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
a = dict(self.forward_default_kwargs )
a = kwargs.pop('''num_inference_steps''' , __UpperCAmelCase )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config(**__UpperCAmelCase )
a = scheduler_class(**__UpperCAmelCase )
scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residuals
a = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__UpperCAmelCase )
a = scheduler_class.from_pretrained(__UpperCAmelCase )
new_scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residuals
a = dummy_past_residuals[: new_scheduler.config.solver_order]
a , a = sample, sample
for t in range(__UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ):
a = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
a = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def __lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str]=0 , **__UpperCAmelCase : str ) ->int:
"""simple docstring"""
a = dict(self.forward_default_kwargs )
a = kwargs.pop('''num_inference_steps''' , __UpperCAmelCase )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__UpperCAmelCase )
scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
a = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__UpperCAmelCase )
a = scheduler_class.from_pretrained(__UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
a = dummy_past_residuals[: new_scheduler.config.solver_order]
a = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
a = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : Dict ) ->List[str]:
"""simple docstring"""
if scheduler is None:
a = self.scheduler_classes[0]
a = self.get_scheduler_config(**__UpperCAmelCase )
a = scheduler_class(**__UpperCAmelCase )
a = self.scheduler_classes[0]
a = self.get_scheduler_config(**__UpperCAmelCase )
a = scheduler_class(**__UpperCAmelCase )
a = 10
a = self.dummy_model()
a = self.dummy_sample_deter
scheduler.set_timesteps(__UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
a = model(__UpperCAmelCase , __UpperCAmelCase )
a = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample
return sample
def __lowerCAmelCase ( self : Dict ) ->Dict:
"""simple docstring"""
a = dict(self.forward_default_kwargs )
a = kwargs.pop('''num_inference_steps''' , __UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__UpperCAmelCase )
a = self.dummy_sample
a = 0.1 * sample
if num_inference_steps is not None and hasattr(__UpperCAmelCase , '''set_timesteps''' ):
scheduler.set_timesteps(__UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(__UpperCAmelCase , '''set_timesteps''' ):
a = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
a = [residual + 0.2, residual + 0.15, residual + 0.10]
a = dummy_past_residuals[: scheduler.config.solver_order]
a = scheduler.timesteps[5]
a = scheduler.timesteps[6]
a = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
a = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = DEISMultistepScheduler(**self.get_scheduler_config() )
a = self.full_loop(scheduler=__UpperCAmelCase )
a = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_mean.item() - 0.23916 ) < 1e-3
a = DPMSolverSinglestepScheduler.from_config(scheduler.config )
a = DPMSolverMultistepScheduler.from_config(scheduler.config )
a = UniPCMultistepScheduler.from_config(scheduler.config )
a = DEISMultistepScheduler.from_config(scheduler.config )
a = self.full_loop(scheduler=__UpperCAmelCase )
a = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_mean.item() - 0.23916 ) < 1e-3
def __lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
for timesteps in [25, 50, 100, 999, 1_000]:
self.check_over_configs(num_train_timesteps=__UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
self.check_over_configs(thresholding=__UpperCAmelCase )
for order in [1, 2, 3]:
for solver_type in ["logrho"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=__UpperCAmelCase , prediction_type=__UpperCAmelCase , sample_max_value=__UpperCAmelCase , algorithm_type='''deis''' , solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , )
def __lowerCAmelCase ( self : int ) ->Tuple:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__UpperCAmelCase )
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
for algorithm_type in ["deis"]:
for solver_type in ["logrho"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , prediction_type=__UpperCAmelCase , algorithm_type=__UpperCAmelCase , )
a = self.full_loop(
solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , prediction_type=__UpperCAmelCase , algorithm_type=__UpperCAmelCase , )
assert not torch.isnan(__UpperCAmelCase ).any(), "Samples have nan numbers"
def __lowerCAmelCase ( self : List[str] ) ->Any:
"""simple docstring"""
self.check_over_configs(lower_order_final=__UpperCAmelCase )
self.check_over_configs(lower_order_final=__UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]:
self.check_over_forward(num_inference_steps=__UpperCAmelCase , time_step=0 )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = self.full_loop()
a = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_mean.item() - 0.23916 ) < 1e-3
def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
a = self.full_loop(prediction_type='''v_prediction''' )
a = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_mean.item() - 0.091 ) < 1e-3
def __lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
a = self.scheduler_classes[0]
a = self.get_scheduler_config(thresholding=__UpperCAmelCase , dynamic_thresholding_ratio=0 )
a = scheduler_class(**__UpperCAmelCase )
a = 10
a = self.dummy_model()
a = self.dummy_sample_deter.half()
scheduler.set_timesteps(__UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
a = model(__UpperCAmelCase , __UpperCAmelCase )
a = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample
assert sample.dtype == torch.floataa
| 0 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''t5'''
__snake_case = ['''past_key_values''']
__snake_case = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any]=32_128 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : Dict=64 , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : int=6 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=8 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Tuple=128 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : int=1e-6 , __UpperCAmelCase : int=1.0 , __UpperCAmelCase : List[str]="relu" , __UpperCAmelCase : int=True , __UpperCAmelCase : int=True , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : int=1 , **__UpperCAmelCase : str , ) ->Optional[Any]:
"""simple docstring"""
a = vocab_size
a = d_model
a = d_kv
a = d_ff
a = num_layers
a = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
a = num_heads
a = relative_attention_num_buckets
a = relative_attention_max_distance
a = dropout_rate
a = layer_norm_epsilon
a = initializer_factor
a = feed_forward_proj
a = use_cache
a = self.feed_forward_proj.split('''-''' )
a = act_info[-1]
a = act_info[0] == '''gated'''
if len(__UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(__UpperCAmelCase ) > 2:
raise ValueError(
F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
a = '''gelu_new'''
super().__init__(
pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase , )
class lowercase_ ( lowercase ):
'''simple docstring'''
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
a = {
'''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''},
'''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''},
}
if self.use_past:
a = '''past_encoder_sequence + sequence'''
a = {0: '''batch'''}
a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
a = {0: '''batch''', 1: '''decoder_sequence'''}
a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
return common_inputs
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
return 13
| 0 | 1 |
import functools
from typing import Any
def _a ( a :str , a :list[str] ) -> bool:
# Validation
if not isinstance(a , a ) or len(a ) == 0:
raise ValueError('''the string should be not empty string''' )
if not isinstance(a , a ) or not all(
isinstance(a , a ) and len(a ) > 0 for item in words ):
raise ValueError('''the words should be a list of non-empty strings''' )
# Build trie
a = {}
a = '''WORD_KEEPER'''
for word in words:
a = trie
for c in word:
if c not in trie_node:
a = {}
a = trie_node[c]
a = True
a = len(a )
# Dynamic programming method
@functools.cache
def is_breakable(a :int ) -> bool:
if index == len_string:
return True
a = trie
for i in range(a , a ):
a = trie_node.get(string[i] , a )
if trie_node is None:
return False
if trie_node.get(a , a ) and is_breakable(i + 1 ):
return True
return False
return is_breakable(0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''llama'''
__snake_case = ['''past_key_values''']
def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any]=32_000 , __UpperCAmelCase : str=4_096 , __UpperCAmelCase : int=11_008 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Union[str, Any]="silu" , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Any=1e-6 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Tuple , ) ->str:
"""simple docstring"""
a = vocab_size
a = max_position_embeddings
a = hidden_size
a = intermediate_size
a = num_hidden_layers
a = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
a = num_attention_heads
a = num_key_value_heads
a = hidden_act
a = initializer_range
a = rms_norm_eps
a = pretraining_tp
a = use_cache
a = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
F"""got {self.rope_scaling}""" )
a = self.rope_scaling.get('''type''' , __UpperCAmelCase )
a = self.rope_scaling.get('''factor''' , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 0 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''llama'''
__snake_case = ['''past_key_values''']
def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any]=32_000 , __UpperCAmelCase : str=4_096 , __UpperCAmelCase : int=11_008 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Union[str, Any]="silu" , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Any=1e-6 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Tuple , ) ->str:
"""simple docstring"""
a = vocab_size
a = max_position_embeddings
a = hidden_size
a = intermediate_size
a = num_hidden_layers
a = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
a = num_attention_heads
a = num_key_value_heads
a = hidden_act
a = initializer_range
a = rms_norm_eps
a = pretraining_tp
a = use_cache
a = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
F"""got {self.rope_scaling}""" )
a = self.rope_scaling.get('''type''' , __UpperCAmelCase )
a = self.rope_scaling.get('''factor''' , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 0 |
from __future__ import annotations
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "MIT"
UpperCAmelCase__ = "1.0.0"
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "contact@muhammadumerfarooq.me"
UpperCAmelCase__ = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : str ) ->None:
"""simple docstring"""
super().__init__()
a = []
a = domain
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : list[tuple[str, str | None]] ) ->None:
"""simple docstring"""
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
a = parse.urljoin(self.domain , __UpperCAmelCase )
self.urls.append(__UpperCAmelCase )
def _a ( a :str ) -> str:
return ".".join(get_sub_domain_name(a ).split('''.''' )[-2:] )
def _a ( a :str ) -> str:
return parse.urlparse(a ).netloc
def _a ( a :str = "https://github.com" ) -> list[str]:
a = get_domain_name(a )
# Initialize the parser
a = Parser(a )
try:
# Open URL
a = requests.get(a )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
a = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
a = requests.get(a )
# Get the valid email.
a = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(a )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(a )
if __name__ == "__main__":
UpperCAmelCase__ = emails_from_url("https://github.com")
print(f"""{len(emails)} emails found:""")
print("\n".join(sorted(emails)))
| 0 | 1 |
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class lowercase_ ( lowercase , lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = AutoencoderKL
__snake_case = '''sample'''
__snake_case = 1e-2
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
a = 4
a = 3
a = (32, 32)
a = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCAmelCase )
return {"sample": image}
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->Any:
"""simple docstring"""
return (3, 32, 32)
@property
def __lowerCAmelCase ( self : int ) ->List[Any]:
"""simple docstring"""
return (3, 32, 32)
def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
a = {
'''block_out_channels''': [32, 64],
'''in_channels''': 3,
'''out_channels''': 3,
'''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],
'''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],
'''latent_channels''': 4,
}
a = self.dummy_input
return init_dict, inputs_dict
def __lowerCAmelCase ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
pass
@unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' )
def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
a , a = self.prepare_init_args_and_inputs_for_common()
a = self.model_class(**__UpperCAmelCase )
model.to(__UpperCAmelCase )
assert not model.is_gradient_checkpointing and model.training
a = model(**__UpperCAmelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
a = torch.randn_like(__UpperCAmelCase )
a = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
a = self.model_class(**__UpperCAmelCase )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(__UpperCAmelCase )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
a = model_a(**__UpperCAmelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
a = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1e-5 )
a = dict(model.named_parameters() )
a = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) )
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
a , a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 )
model.to(__UpperCAmelCase )
a = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' )
a = model.to(__UpperCAmelCase )
model.eval()
if torch_device == "mps":
a = torch.manual_seed(0 )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
a = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
a = image.to(__UpperCAmelCase )
with torch.no_grad():
a = model(__UpperCAmelCase , sample_posterior=__UpperCAmelCase , generator=__UpperCAmelCase ).sample
a = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
a = torch.tensor(
[
-4.0_0_7_8e-0_1,
-3.8_3_2_3e-0_4,
-1.2_6_8_1e-0_1,
-1.1_4_6_2e-0_1,
2.0_0_9_5e-0_1,
1.0_8_9_3e-0_1,
-8.8_2_4_7e-0_2,
-3.0_3_6_1e-0_1,
-9.8_6_4_4e-0_3,
] )
elif torch_device == "cpu":
a = torch.tensor(
[-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] )
else:
a = torch.tensor(
[-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] )
self.assertTrue(torch_all_close(__UpperCAmelCase , __UpperCAmelCase , rtol=1e-2 ) )
@slow
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ) ->str:
"""simple docstring"""
return F"""gaussian_noise_s={seed}_shape={'_'.join([str(__UpperCAmelCase ) for s in shape] )}.npy"""
def __lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Tuple=0 , __UpperCAmelCase : Tuple=(4, 3, 512, 512) , __UpperCAmelCase : Optional[int]=False ) ->Dict:
"""simple docstring"""
a = torch.floataa if fpaa else torch.floataa
a = torch.from_numpy(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase ) ) ).to(__UpperCAmelCase ).to(__UpperCAmelCase )
return image
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[Any]="CompVis/stable-diffusion-v1-4" , __UpperCAmelCase : Optional[Any]=False ) ->Dict:
"""simple docstring"""
a = '''fp16''' if fpaa else None
a = torch.floataa if fpaa else torch.floataa
a = AutoencoderKL.from_pretrained(
__UpperCAmelCase , subfolder='''vae''' , torch_dtype=__UpperCAmelCase , revision=__UpperCAmelCase , )
model.to(__UpperCAmelCase ).eval()
return model
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Tuple=0 ) ->int:
"""simple docstring"""
if torch_device == "mps":
return torch.manual_seed(__UpperCAmelCase )
return torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
@parameterized.expand(
[
# fmt: off
[33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] ) ->List[str]:
"""simple docstring"""
a = self.get_sd_vae_model()
a = self.get_sd_image(__UpperCAmelCase )
a = self.get_generator(__UpperCAmelCase )
with torch.no_grad():
a = model(__UpperCAmelCase , generator=__UpperCAmelCase , sample_posterior=__UpperCAmelCase ).sample
assert sample.shape == image.shape
a = sample[-1, -2:, -2:, :2].flatten().float().cpu()
a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice )
assert torch_all_close(__UpperCAmelCase , __UpperCAmelCase , atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
[47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
# fmt: on
] )
@require_torch_gpu
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ) ->List[Any]:
"""simple docstring"""
a = self.get_sd_vae_model(fpaa=__UpperCAmelCase )
a = self.get_sd_image(__UpperCAmelCase , fpaa=__UpperCAmelCase )
a = self.get_generator(__UpperCAmelCase )
with torch.no_grad():
a = model(__UpperCAmelCase , generator=__UpperCAmelCase , sample_posterior=__UpperCAmelCase ).sample
assert sample.shape == image.shape
a = sample[-1, -2:, :2, -2:].flatten().float().cpu()
a = torch.tensor(__UpperCAmelCase )
assert torch_all_close(__UpperCAmelCase , __UpperCAmelCase , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def __lowerCAmelCase ( self : str , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : int ) ->List[str]:
"""simple docstring"""
a = self.get_sd_vae_model()
a = self.get_sd_image(__UpperCAmelCase )
with torch.no_grad():
a = model(__UpperCAmelCase ).sample
assert sample.shape == image.shape
a = sample[-1, -2:, -2:, :2].flatten().float().cpu()
a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice )
assert torch_all_close(__UpperCAmelCase , __UpperCAmelCase , atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
[37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
# fmt: on
] )
@require_torch_gpu
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] ) ->Dict:
"""simple docstring"""
a = self.get_sd_vae_model()
a = self.get_sd_image(__UpperCAmelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
a = model.decode(__UpperCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
a = sample[-1, -2:, :2, -2:].flatten().cpu()
a = torch.tensor(__UpperCAmelCase )
assert torch_all_close(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
[16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
# fmt: on
] )
@require_torch_gpu
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any ) ->int:
"""simple docstring"""
a = self.get_sd_vae_model(fpaa=__UpperCAmelCase )
a = self.get_sd_image(__UpperCAmelCase , shape=(3, 4, 64, 64) , fpaa=__UpperCAmelCase )
with torch.no_grad():
a = model.decode(__UpperCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
a = sample[-1, -2:, :2, -2:].flatten().float().cpu()
a = torch.tensor(__UpperCAmelCase )
assert torch_all_close(__UpperCAmelCase , __UpperCAmelCase , atol=5e-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' )
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : int ) ->List[str]:
"""simple docstring"""
a = self.get_sd_vae_model(fpaa=__UpperCAmelCase )
a = self.get_sd_image(__UpperCAmelCase , shape=(3, 4, 64, 64) , fpaa=__UpperCAmelCase )
with torch.no_grad():
a = model.decode(__UpperCAmelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
a = model.decode(__UpperCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(__UpperCAmelCase , __UpperCAmelCase , atol=1e-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' )
def __lowerCAmelCase ( self : int , __UpperCAmelCase : str ) ->Any:
"""simple docstring"""
a = self.get_sd_vae_model()
a = self.get_sd_image(__UpperCAmelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
a = model.decode(__UpperCAmelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
a = model.decode(__UpperCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(__UpperCAmelCase , __UpperCAmelCase , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
# fmt: on
] )
def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] ) ->List[str]:
"""simple docstring"""
a = self.get_sd_vae_model()
a = self.get_sd_image(__UpperCAmelCase )
a = self.get_generator(__UpperCAmelCase )
with torch.no_grad():
a = model.encode(__UpperCAmelCase ).latent_dist
a = dist.sample(generator=__UpperCAmelCase )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
a = sample[0, -1, -3:, -3:].flatten().cpu()
a = torch.tensor(__UpperCAmelCase )
a = 3e-3 if torch_device != '''mps''' else 1e-2
assert torch_all_close(__UpperCAmelCase , __UpperCAmelCase , atol=__UpperCAmelCase )
| 0 |
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
UpperCAmelCase__ = logging.getLogger()
def _a ( ) -> Optional[int]:
a = argparse.ArgumentParser()
parser.add_argument('''-f''' )
a = parser.parse_args()
return args.f
def _a ( a :Any ) -> Tuple:
a = {}
a = os.path.join(a , '''all_results.json''' )
if os.path.exists(a ):
with open(a , '''r''' ) as f:
a = json.load(a )
else:
raise ValueError(F"""can't find {path}""" )
return results
def _a ( ) -> int:
a = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
UpperCAmelCase__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowercase_ ( lowercase ):
'''simple docstring'''
@classmethod
def __lowerCAmelCase ( cls : str ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
a = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
a = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def __lowerCAmelCase ( cls : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->str:
"""simple docstring"""
a = 7 if get_gpu_count() > 1 else 2
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''translation_no_trainer''' ) ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
a = logging.StreamHandler(sys.stdout )
logger.addHandler(__UpperCAmelCase )
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''image_classification_no_trainer''' ) ) )
| 0 | 1 |
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
__snake_case = JukeboxTokenizer
__snake_case = {
'''artist''': '''Zac Brown Band''',
'''genres''': '''Country''',
'''lyrics''': '''I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
''',
}
@require_torch
def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
import torch
a = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' )
a = tokenizer(**self.metas )['''input_ids''']
# fmt: off
a = [
torch.tensor([[
0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1_069, 11]] ),
torch.tensor([[0, 0, 0, 1_069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def __lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
import torch
a = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' )
a = tokenizer(**self.metas )['''input_ids''']
# fmt: off
a = [
torch.tensor([[
0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 0 |
import math
def _a ( a :int ) -> list:
a = [True] * n
a = False
a = False
a = True
for i in range(3 , int(n**0.5 + 1 ) , 2 ):
a = i * 2
while index < n:
a = False
a = index + i
a = [2]
for i in range(3 , a , 2 ):
if is_prime[i]:
primes.append(a )
return primes
def _a ( a :int = 999_966_663_333 ) -> int:
a = math.floor(math.sqrt(a ) ) + 100
a = prime_sieve(a )
a = 0
a = 0
a = primes[prime_index]
while (last_prime**2) <= limit:
a = primes[prime_index + 1]
a = last_prime**2
a = next_prime**2
# Get numbers divisible by lps(current)
a = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
a = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
a = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
a = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 0 | 1 |
from datetime import datetime as dt
import os
from github import Github
UpperCAmelCase__ = [
"good first issue",
"good second issue",
"good difficult issue",
"feature request",
"new model",
"wip",
]
def _a ( ) -> Tuple:
a = Github(os.environ['''GITHUB_TOKEN'''] )
a = g.get_repo('''huggingface/transformers''' )
a = repo.get_issues(state='''open''' )
for issue in open_issues:
a = sorted([comment for comment in issue.get_comments()] , key=lambda a : i.created_at , reverse=a )
a = comments[0] if len(a ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state='''closed''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 0 |
def _a ( a :float , a :float ) -> float:
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f"""{price_plus_tax(100, 0.25) = }""")
print(f"""{price_plus_tax(125.50, 0.05) = }""")
| 0 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json",
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''switch_transformers'''
__snake_case = ['''past_key_values''']
__snake_case = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self : Dict , __UpperCAmelCase : List[Any]=32_128 , __UpperCAmelCase : List[str]=768 , __UpperCAmelCase : str=64 , __UpperCAmelCase : Dict=2_048 , __UpperCAmelCase : int=64 , __UpperCAmelCase : str=12 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : str=12 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Dict=12 , __UpperCAmelCase : List[str]=8 , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : List[Any]=0.01 , __UpperCAmelCase : Any="float32" , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=32 , __UpperCAmelCase : str=128 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Optional[Any]=1e-6 , __UpperCAmelCase : Optional[int]=0.001 , __UpperCAmelCase : Any=0.001 , __UpperCAmelCase : List[Any]=1.0 , __UpperCAmelCase : List[Any]="relu" , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : str=True , __UpperCAmelCase : Any=0 , __UpperCAmelCase : str=1 , **__UpperCAmelCase : List[Any] , ) ->Optional[int]:
"""simple docstring"""
a = vocab_size
a = d_model
a = d_kv
a = d_ff
a = num_sparse_encoder_layers
a = num_layers
a = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
a = num_sparse_decoder_layers
# This tells us, each how many encoder layer we'll have to set a sparse layer.
if self.num_sparse_encoder_layers > 0:
a = self.num_layers // self.num_sparse_encoder_layers
else:
a = self.num_layers # HACK: this will create 0 sparse layers
# This tells us, each how many encoder layer we'll have to set a sparse layer.
if self.num_sparse_decoder_layers > 0:
a = self.num_decoder_layers // self.num_sparse_decoder_layers
else:
a = self.num_decoder_layers # HACK: this will create 0 sparse layers
a = num_heads
a = num_experts
a = expert_capacity
a = router_bias
a = router_jitter_noise
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" )
a = router_dtype
a = router_ignore_padding_tokens
a = relative_attention_num_buckets
a = relative_attention_max_distance
a = dropout_rate
a = layer_norm_epsilon
a = initializer_factor
a = feed_forward_proj
a = use_cache
a = add_router_probs
a = router_z_loss_coef
a = router_aux_loss_coef
a = self.feed_forward_proj.split('''-''' )
a = act_info[-1]
a = act_info[0] == '''gated'''
if len(__UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(__UpperCAmelCase ) > 2:
raise ValueError(
F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
a = '''gelu_new'''
super().__init__(
pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase , )
| 0 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
a = SMALL_MODEL_IDENTIFIER
a = '''pt'''
a = '''tf'''
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str ) ->Union[str, Any]:
"""simple docstring"""
a = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ) ->List[str]:
"""simple docstring"""
a = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCAmelCase )
model_tf.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = '''mock_framework'''
# Framework provided - return whatever the user provides
a = FeaturesManager.determine_framework(self.test_model , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Both in environment -> use PyTorch
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# Both not in environment -> raise error
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
| 0 | 1 |
import os
from collections import deque
import torch
from torch.utils.data import Dataset
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : str , __UpperCAmelCase : Dict="" , __UpperCAmelCase : Optional[int]="train" ) ->Tuple:
"""simple docstring"""
assert os.path.isdir(__UpperCAmelCase )
a = []
a = os.listdir(__UpperCAmelCase )
for story_filename in story_filenames_list:
if "summary" in story_filename:
continue
a = os.path.join(__UpperCAmelCase , __UpperCAmelCase )
if not os.path.isfile(__UpperCAmelCase ):
continue
self.documents.append(__UpperCAmelCase )
def __len__( self : str ) ->Tuple:
"""simple docstring"""
return len(self.documents )
def __getitem__( self : Dict , __UpperCAmelCase : str ) ->Any:
"""simple docstring"""
a = self.documents[idx]
a = document_path.split('''/''' )[-1]
with open(__UpperCAmelCase , encoding='''utf-8''' ) as source:
a = source.read()
a , a = process_story(__UpperCAmelCase )
return document_name, story_lines, summary_lines
def _a ( a :Tuple ) -> Union[str, Any]:
a = list(filter(lambda a : len(a ) != 0 , [line.strip() for line in raw_story.split('''\n''' )] ) )
# for some unknown reason some lines miss a period, add it
a = [_add_missing_period(a ) for line in nonempty_lines]
# gather article lines
a = []
a = deque(a )
while True:
try:
a = lines.popleft()
if element.startswith('''@highlight''' ):
break
story_lines.append(a )
except IndexError:
# if "@highlight" is absent from the file we pop
# all elements until there is None, raising an exception.
return story_lines, []
# gather summary lines
a = list(filter(lambda a : not t.startswith('''@highlight''' ) , a ) )
return story_lines, summary_lines
def _a ( a :List[str] ) -> Union[str, Any]:
a = ['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')''']
if line.startswith('''@highlight''' ):
return line
if line[-1] in END_TOKENS:
return line
return line + "."
def _a ( a :Optional[Any] , a :int , a :Union[str, Any] ) -> Optional[int]:
if len(a ) > block_size:
return sequence[:block_size]
else:
sequence.extend([pad_token_id] * (block_size - len(a )) )
return sequence
def _a ( a :Union[str, Any] , a :Optional[int] ) -> Union[str, Any]:
a = torch.ones_like(a )
a = sequence == pad_token_id
a = 0
return mask
def _a ( a :Optional[Any] , a :Optional[Any] , a :Tuple ) -> List[Any]:
a = [tokenizer.encode(a ) for line in story_lines]
a = [token for sentence in story_lines_token_ids for token in sentence]
a = [tokenizer.encode(a ) for line in summary_lines]
a = [token for sentence in summary_lines_token_ids for token in sentence]
return story_token_ids, summary_token_ids
def _a ( a :int , a :str ) -> Dict:
a = []
for sequence in batch:
a = -1
a = []
for s in sequence:
if s == separator_token_id:
sentence_num += 1
embeddings.append(sentence_num % 2 )
batch_embeddings.append(a )
return torch.tensor(a )
| 0 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ProphetNetTokenizer
__snake_case = False
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
super().setUp()
a = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str ) ->Dict:
"""simple docstring"""
a = '''UNwant\u00E9d,running'''
a = '''unwanted, running'''
return input_text, output_text
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
a = self.tokenizer_class(self.vocab_file )
a = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
a = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
a = {}
for i, token in enumerate(__UpperCAmelCase ):
a = i
a = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
@require_torch
def __lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
a = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102]
a = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='''pt''' )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
a = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
a = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase )
assert encoded_sentence == text + [102]
assert encoded_pair == text + [102] + text_a + [102]
| 0 | 1 |
import math
def _a ( a :int ) -> bool:
return math.sqrt(a ) * math.sqrt(a ) == num
def _a ( a :int ) -> bool:
a = 0
a = n
while left <= right:
a = (left + right) // 2
if mid**2 == n:
return True
elif mid**2 > n:
a = mid - 1
else:
a = mid + 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase__ = {
"configuration_nllb_moe": [
"NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",
"NllbMoeConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
"NllbMoeForConditionalGeneration",
"NllbMoeModel",
"NllbMoePreTrainedModel",
"NllbMoeTop2Router",
"NllbMoeSparseMLP",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 | 1 |
def _a ( a :int ) -> int:
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
a = 1
a = 1
while repunit:
a = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def _a ( a :int = 1_000_000 ) -> int:
a = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(a ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(f"""{solution() = }""")
| 0 |
def _a ( a :int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
a = gray_code_sequence_string(a )
#
# convert them to integers
for i in range(len(a ) ):
a = int(sequence[i] , 2 )
return sequence
def _a ( a :int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
a = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
a = gray_code_sequence_string(bit_count - 1 )
a = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
a = '''0''' + smaller_sequence[i]
sequence.append(a )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
a = '''1''' + smaller_sequence[i]
sequence.append(a )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
from __future__ import annotations
import math
def _a ( a :int , a :int , a :bool , a :list[int] , a :float ) -> int:
if depth < 0:
raise ValueError('''Depth cannot be less than 0''' )
if not scores:
raise ValueError('''Scores cannot be empty''' )
if depth == height:
return scores[node_index]
return (
max(
minimax(depth + 1 , node_index * 2 , a , a , a ) , minimax(depth + 1 , node_index * 2 + 1 , a , a , a ) , )
if is_max
else min(
minimax(depth + 1 , node_index * 2 , a , a , a ) , minimax(depth + 1 , node_index * 2 + 1 , a , a , a ) , )
)
def _a ( ) -> None:
a = [90, 23, 6, 33, 21, 65, 123, 34_423]
a = math.log(len(a ) , 2 )
print(F"""Optimal value : {minimax(0 , 0 , a , a , a )}""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
# fmt: off
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
a = {
'''do_resize''': True,
'''size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
a = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] , **__UpperCAmelCase : List[Any] ) ->int:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] , **__UpperCAmelCase : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def __lowerCAmelCase ( self : str ) ->Dict:
"""simple docstring"""
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
a = self.get_tokenizer()
a = self.get_image_processor()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
a = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
a = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
a = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = self.prepare_image_inputs()
a = image_processor(__UpperCAmelCase , return_tensors='''np''' )
a = processor(images=__UpperCAmelCase , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = processor(text=__UpperCAmelCase )
a = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(__UpperCAmelCase ):
processor()
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__UpperCAmelCase )
a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 0 | 1 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class lowercase_ :
'''simple docstring'''
def __init__( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Any=3 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : int=7 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Union[str, Any]=99 , __UpperCAmelCase : Tuple=36 , __UpperCAmelCase : Optional[Any]=3 , __UpperCAmelCase : List[str]=4 , __UpperCAmelCase : Union[str, Any]=37 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : int=512 , __UpperCAmelCase : str=16 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Any=6 , __UpperCAmelCase : Tuple=6 , __UpperCAmelCase : Optional[int]=3 , __UpperCAmelCase : int=4 , __UpperCAmelCase : str=None , __UpperCAmelCase : Tuple=1_000 , ) ->str:
"""simple docstring"""
a = parent
a = batch_size
a = num_channels
a = image_size
a = patch_size
a = text_seq_length
a = is_training
a = use_input_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = coordinate_size
a = shape_size
a = num_labels
a = num_choices
a = scope
a = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
a = text_seq_length
a = (image_size // patch_size) ** 2 + 1
a = self.text_seq_length + self.image_seq_length
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
a = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
a = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
a = bbox[i, j, 3]
a = bbox[i, j, 1]
a = t
if bbox[i, j, 2] < bbox[i, j, 0]:
a = bbox[i, j, 2]
a = bbox[i, j, 0]
a = t
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
if self.use_input_mask:
a = random_attention_mask([self.batch_size, self.text_seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
a = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] ) ->Dict:
"""simple docstring"""
a = LayoutLMvaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
# text + image
a = model(__UpperCAmelCase , pixel_values=__UpperCAmelCase )
a = model(
__UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
a = model(__UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
a = model(__UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
a = model(__UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
a = model(pixel_values=__UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple ) ->List[str]:
"""simple docstring"""
a = self.num_labels
a = LayoutLMvaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(
__UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any ) ->int:
"""simple docstring"""
a = self.num_labels
a = LayoutLMvaForTokenClassification(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(
__UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def __lowerCAmelCase ( self : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] ) ->str:
"""simple docstring"""
a = LayoutLMvaForQuestionAnswering(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(
__UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
a = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) ,
) = config_and_inputs
a = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''pixel_values''': pixel_values,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class lowercase_ ( lowercase , lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = False
__snake_case = False
__snake_case = False
__snake_case = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
__snake_case = (
{'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel}
if is_torch_available()
else {}
)
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : str ) ->Tuple:
"""simple docstring"""
return True
def __lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
a = LayoutLMvaModelTester(self )
a = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : str=False ) ->Optional[int]:
"""simple docstring"""
a = copy.deepcopy(__UpperCAmelCase )
if model_class in get_values(__UpperCAmelCase ):
a = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(__UpperCAmelCase , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__UpperCAmelCase ):
a = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase )
elif model_class in get_values(__UpperCAmelCase ):
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase )
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase )
elif model_class in [
*get_values(__UpperCAmelCase ),
]:
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase )
elif model_class in [
*get_values(__UpperCAmelCase ),
]:
a = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__UpperCAmelCase , )
return inputs_dict
def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : Tuple ) ->Union[str, Any]:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
a = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->str:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase )
def __lowerCAmelCase ( self : int ) ->List[Any]:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase )
@slow
def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = LayoutLMvaModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def _a ( ) -> List[Any]:
a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=__UpperCAmelCase ) if is_vision_available() else None
@slow
def __lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
a = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(__UpperCAmelCase )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).pixel_values.to(__UpperCAmelCase )
a = torch.tensor([[1, 2]] )
a = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
a = model(
input_ids=input_ids.to(__UpperCAmelCase ) , bbox=bbox.to(__UpperCAmelCase ) , pixel_values=pixel_values.to(__UpperCAmelCase ) , )
# verify the logits
a = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , __UpperCAmelCase )
a = torch.tensor(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=1e-4 ) )
| 0 |
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def _a ( a :List[Any] ) -> Optional[int]:
a = []
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""",
F"""stage{idx}.patch_embed.proj.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""",
F"""stage{idx}.patch_embed.proj.bias""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""",
F"""stage{idx}.patch_embed.norm.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""",
F"""stage{idx}.patch_embed.norm.bias""",
) )
return embed
def _a ( a :List[Any] , a :Optional[int] ) -> Dict:
a = []
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj.bias""",
) )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") )
return attention_weights
def _a ( a :Any ) -> List[Any]:
a = []
token.append((F"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') )
return token
def _a ( ) -> Optional[int]:
a = []
head.append(('''layernorm.weight''', '''norm.weight''') )
head.append(('''layernorm.bias''', '''norm.bias''') )
head.append(('''classifier.weight''', '''head.weight''') )
head.append(('''classifier.bias''', '''head.bias''') )
return head
def _a ( a :Tuple , a :Optional[int] , a :List[Any] , a :Union[str, Any] ) -> Optional[int]:
a = '''imagenet-1k-id2label.json'''
a = 1_000
a = '''huggingface/label-files'''
a = num_labels
a = json.load(open(cached_download(hf_hub_url(a , a , repo_type='''dataset''' ) ) , '''r''' ) )
a = {int(a ): v for k, v in idalabel.items()}
a = idalabel
a = {v: k for k, v in idalabel.items()}
a = a = CvtConfig(num_labels=a , idalabel=a , labelaid=a )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13":
a = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21":
a = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
a = [2, 2, 20]
a = [3, 12, 16]
a = [192, 768, 1_024]
a = CvtForImageClassification(a )
a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' )
a = image_size
a = torch.load(a , map_location=torch.device('''cpu''' ) )
a = OrderedDict()
a = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
a = list_of_state_dict + cls_token(a )
a = list_of_state_dict + embeddings(a )
for cnt in range(config.depth[idx] ):
a = list_of_state_dict + attention(a , a )
a = list_of_state_dict + final()
for gg in list_of_state_dict:
print(a )
for i in range(len(a ) ):
a = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(a )
model.save_pretrained(a )
image_processor.save_pretrained(a )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
UpperCAmelCase__ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 0 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
UpperCAmelCase__ = logging.get_logger(__name__)
class lowercase_ ( lowercase , lowercase ):
'''simple docstring'''
__snake_case = '''maskformer-swin'''
__snake_case = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self : Dict , __UpperCAmelCase : Tuple=224 , __UpperCAmelCase : Tuple=4 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Optional[Any]=96 , __UpperCAmelCase : Tuple=[2, 2, 6, 2] , __UpperCAmelCase : Optional[Any]=[3, 6, 12, 24] , __UpperCAmelCase : Dict=7 , __UpperCAmelCase : Tuple=4.0 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : Optional[Any]=0.0 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : str="gelu" , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : List[Any]=1e-5 , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , **__UpperCAmelCase : str , ) ->List[str]:
"""simple docstring"""
super().__init__(**__UpperCAmelCase )
a = image_size
a = patch_size
a = num_channels
a = embed_dim
a = depths
a = len(__UpperCAmelCase )
a = num_heads
a = window_size
a = mlp_ratio
a = qkv_bias
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = drop_path_rate
a = hidden_act
a = use_absolute_embeddings
a = layer_norm_eps
a = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
a = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) )
a = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(__UpperCAmelCase ) + 1 )]
a , a = get_aligned_output_features_output_indices(
out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
| 0 |
from __future__ import annotations
UpperCAmelCase__ = list[list[int]]
# assigning initial values to the grid
UpperCAmelCase__ = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
UpperCAmelCase__ = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _a ( a :Matrix , a :int , a :int , a :int ) -> bool:
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _a ( a :Matrix ) -> tuple[int, int] | None:
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def _a ( a :Matrix ) -> Matrix | None:
if location := find_empty_location(a ):
a , a = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(a , a , a , a ):
a = digit
if sudoku(a ) is not None:
return grid
a = 0
return None
def _a ( a :Matrix ) -> None:
for row in grid:
for cell in row:
print(a , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("\nExample grid:\n" + "=" * 20)
print_solution(example_grid)
print("\nExample grid solution:")
UpperCAmelCase__ = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("Cannot find a solution.")
| 0 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json",
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''canine'''
def __init__( self : List[str] , __UpperCAmelCase : List[Any]=768 , __UpperCAmelCase : Optional[int]=12 , __UpperCAmelCase : List[str]=12 , __UpperCAmelCase : Dict=3_072 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : List[Any]=16_384 , __UpperCAmelCase : int=16 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : Union[str, Any]=1e-1_2 , __UpperCAmelCase : Tuple=0 , __UpperCAmelCase : Any=0xe_000 , __UpperCAmelCase : List[Any]=0xe_001 , __UpperCAmelCase : str=4 , __UpperCAmelCase : Any=4 , __UpperCAmelCase : int=8 , __UpperCAmelCase : Optional[int]=16_384 , __UpperCAmelCase : List[str]=128 , **__UpperCAmelCase : Union[str, Any] , ) ->Optional[Any]:
"""simple docstring"""
super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
a = max_position_embeddings
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = initializer_range
a = type_vocab_size
a = layer_norm_eps
# Character config:
a = downsampling_rate
a = upsampling_kernel_size
a = num_hash_functions
a = num_hash_buckets
a = local_transformer_stride
| 0 |
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = KandinskyVaaPriorPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''', '''negative_prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''generator''',
'''num_inference_steps''',
'''latents''',
'''negative_prompt''',
'''guidance_scale''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
return 100
@property
def __lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 12,
'''embedding_dim''': self.text_embedder_hidden_size,
'''num_layers''': 1,
}
a = PriorTransformer(**__UpperCAmelCase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
a = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
a = CLIPVisionModelWithProjection(__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
a = CLIPImageProcessor(
crop_size=224 , do_center_crop=__UpperCAmelCase , do_normalize=__UpperCAmelCase , do_resize=__UpperCAmelCase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_image_encoder
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_image_processor
a = UnCLIPScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=__UpperCAmelCase , clip_sample_range=10.0 , )
a = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''scheduler''': scheduler,
'''image_processor''': image_processor,
}
return components
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str=0 ) ->int:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.image_embeds
a = pipe(
**self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0]
a = image[0, -10:]
a = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
a = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
a = False
self._test_inference_batch_single_identical(
test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
@skip_mps
def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = False
self._test_attention_slicing_forward_pass(
test_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
| 0 | 1 |
import collections
import importlib.util
import os
import re
from pathlib import Path
UpperCAmelCase__ = "src/transformers"
# Matches is_xxx_available()
UpperCAmelCase__ = re.compile(R"is\_([a-z_]*)_available()")
# Catches a one-line _import_struct = {xxx}
UpperCAmelCase__ = re.compile(R"^_import_structure\s+=\s+\{([^\}]+)\}")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
UpperCAmelCase__ = re.compile(R"\s+\"\S*\":\s+\[([^\]]*)\]")
# Catches a line if not is_foo_available
UpperCAmelCase__ = re.compile(R"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)")
# Catches a line _import_struct["bla"].append("foo")
UpperCAmelCase__ = re.compile(R"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
UpperCAmelCase__ = re.compile(R"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]")
# Catches a line with an object between quotes and a comma: "MyModel",
UpperCAmelCase__ = re.compile("^\s+\"([^\"]+)\",")
# Catches a line with objects between brackets only: ["foo", "bar"],
UpperCAmelCase__ = re.compile("^\s+\[([^\]]+)\]")
# Catches a line with from foo import bar, bla, boo
UpperCAmelCase__ = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
# Catches a line with try:
UpperCAmelCase__ = re.compile(R"^\s*try:")
# Catches a line with else:
UpperCAmelCase__ = re.compile(R"^\s*else:")
def _a ( a :Optional[Any] ) -> Dict:
if _re_test_backend.search(a ) is None:
return None
a = [b[0] for b in _re_backend.findall(a )]
backends.sort()
return "_and_".join(a )
def _a ( a :int ) -> Union[str, Any]:
with open(a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
a = f.readlines()
a = 0
while line_index < len(a ) and not lines[line_index].startswith('''_import_structure = {''' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(a ):
return None
# First grab the objects without a specific backend in _import_structure
a = []
while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None:
a = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(a ):
a = _re_one_line_import_struct.search(a ).groups()[0]
a = re.findall('''\[([^\]]+)\]''' , a )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] )
line_index += 1
continue
a = _re_import_struct_key_value.search(a )
if single_line_import_search is not None:
a = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(a ) > 0]
objects.extend(a )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
line_index += 1
a = {'''none''': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('''if TYPE_CHECKING''' ):
# If the line is an if not is_backend_available, we grab all objects associated.
a = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
a = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
a = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ):
a = lines[line_index]
if _re_import_struct_add_one.search(a ) is not None:
objects.append(_re_import_struct_add_one.search(a ).groups()[0] )
elif _re_import_struct_add_many.search(a ) is not None:
a = _re_import_struct_add_many.search(a ).groups()[0].split(''', ''' )
a = [obj[1:-1] for obj in imports if len(a ) > 0]
objects.extend(a )
elif _re_between_brackets.search(a ) is not None:
a = _re_between_brackets.search(a ).groups()[0].split(''', ''' )
a = [obj[1:-1] for obj in imports if len(a ) > 0]
objects.extend(a )
elif _re_quote_object.search(a ) is not None:
objects.append(_re_quote_object.search(a ).groups()[0] )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
elif line.startswith(''' ''' * 12 + '''"''' ):
objects.append(line[13:-3] )
line_index += 1
a = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
a = []
while (
line_index < len(a )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('''else''' )
):
a = lines[line_index]
a = _re_import.search(a )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
a = {'''none''': objects}
# Let's continue with backend-specific objects
while line_index < len(a ):
# If the line is an if is_backend_available, we grab all objects associated.
a = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
a = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
a = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ):
a = lines[line_index]
a = _re_import.search(a )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 12 ):
objects.append(line[12:-2] )
line_index += 1
a = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _a ( a :str , a :Optional[Any] ) -> Tuple:
def find_duplicates(a :Optional[int] ):
return [k for k, v in collections.Counter(a ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
a = []
for key in import_dict_objects.keys():
a = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
a = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
a = '''base imports''' if key == '''none''' else F"""{key} backend"""
errors.append(F"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def _a ( ) -> Any:
a = []
for root, _, files in os.walk(a ):
if "__init__.py" in files:
a = os.path.join(a , '''__init__.py''' )
a = parse_init(a )
if objects is not None:
a = analyze_results(*a )
if len(a ) > 0:
a = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append('''\n'''.join(a ) )
if len(a ) > 0:
raise ValueError('''\n\n'''.join(a ) )
def _a ( ) -> int:
a = []
for path, directories, files in os.walk(a ):
for folder in directories:
# Ignore private modules
if folder.startswith('''_''' ):
directories.remove(a )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(a ) / folder).glob('''*.py''' ) ) ) == 0:
continue
a = str((Path(a ) / folder).relative_to(a ) )
a = short_path.replace(os.path.sep , '''.''' )
submodules.append(a )
for fname in files:
if fname == "__init__.py":
continue
a = str((Path(a ) / fname).relative_to(a ) )
a = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' )
if len(submodule.split('''.''' ) ) == 1:
submodules.append(a )
return submodules
UpperCAmelCase__ = [
"convert_pytorch_checkpoint_to_tf2",
"modeling_flax_pytorch_utils",
]
def _a ( ) -> Any:
# This is to make sure the transformers module imported is the one in the repo.
a = importlib.util.spec_from_file_location(
'''transformers''' , os.path.join(a , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
a = spec.loader.load_module()
a = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(a ) > 0:
a = '''\n'''.join(F"""- {module}""" for module in module_not_registered )
raise ValueError(
'''The following submodules are not properly registered in the main init of Transformers:\n'''
F"""{list_of_modules}\n"""
'''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 0 |
from math import factorial
UpperCAmelCase__ = {str(digit): factorial(digit) for digit in range(10)}
def _a ( a :int ) -> int:
if not isinstance(a , a ):
raise TypeError('''Parameter number must be int''' )
if number < 0:
raise ValueError('''Parameter number must be greater than or equal to 0''' )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(a ) )
def _a ( a :int = 60 , a :int = 1_000_000 ) -> int:
if not isinstance(a , a ) or not isinstance(a , a ):
raise TypeError('''Parameters chain_length and number_limit must be int''' )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
'''Parameters chain_length and number_limit must be greater than 0''' )
# the counter for the chains with the exact desired length
a = 0
# the cached sizes of the previous chains
a = {}
for start_chain_element in range(1 , a ):
# The temporary set will contain the elements of the chain
a = set()
a = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
a = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(a )
chain_set_length += 1
a = digit_factorial_sum(a )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
a = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution()}""")
| 0 | 1 |
def _a ( a :int ) -> bool:
a = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 0 |
def _a ( a :int = 100 ) -> int:
a = n * (n + 1) * (2 * n + 1) / 6
a = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 0 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json",
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''donut-swin'''
__snake_case = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self : List[str] , __UpperCAmelCase : Optional[Any]=224 , __UpperCAmelCase : Optional[int]=4 , __UpperCAmelCase : Any=3 , __UpperCAmelCase : Any=96 , __UpperCAmelCase : Optional[int]=[2, 2, 6, 2] , __UpperCAmelCase : List[Any]=[3, 6, 12, 24] , __UpperCAmelCase : Optional[Any]=7 , __UpperCAmelCase : List[Any]=4.0 , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : Union[str, Any]=0.0 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : int=0.02 , __UpperCAmelCase : int=1e-5 , **__UpperCAmelCase : Tuple , ) ->int:
"""simple docstring"""
super().__init__(**__UpperCAmelCase )
a = image_size
a = patch_size
a = num_channels
a = embed_dim
a = depths
a = len(__UpperCAmelCase )
a = num_heads
a = window_size
a = mlp_ratio
a = qkv_bias
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = drop_path_rate
a = hidden_act
a = use_absolute_embeddings
a = layer_norm_eps
a = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
a = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) )
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase__ = {
"configuration_groupvit": [
"GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"GroupViTConfig",
"GroupViTOnnxConfig",
"GroupViTTextConfig",
"GroupViTVisionConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GroupViTModel",
"GroupViTPreTrainedModel",
"GroupViTTextModel",
"GroupViTVisionModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFGroupViTModel",
"TFGroupViTPreTrainedModel",
"TFGroupViTTextModel",
"TFGroupViTVisionModel",
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 | 1 |
import collections.abc
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_poolformer import PoolFormerConfig
UpperCAmelCase__ = logging.get_logger(__name__)
# General docstring
UpperCAmelCase__ = "PoolFormerConfig"
# Base docstring
UpperCAmelCase__ = "sail/poolformer_s12"
UpperCAmelCase__ = [1, 512, 7, 7]
# Image classification docstring
UpperCAmelCase__ = "sail/poolformer_s12"
UpperCAmelCase__ = "tabby, tabby cat"
UpperCAmelCase__ = [
"sail/poolformer_s12",
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
]
def _a ( a :Dict , a :float = 0.0 , a :bool = False ) -> Optional[Any]:
if drop_prob == 0.0 or not training:
return input
a = 1 - drop_prob
a = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
a = keep_prob + torch.rand(a , dtype=input.dtype , device=input.device )
random_tensor.floor_() # binarize
a = input.div(a ) * random_tensor
return output
class lowercase_ ( nn.Module ):
'''simple docstring'''
def __init__( self : int , __UpperCAmelCase : Optional[float] = None ) ->None:
"""simple docstring"""
super().__init__()
a = drop_prob
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : torch.Tensor ) ->torch.Tensor:
"""simple docstring"""
return drop_path(__UpperCAmelCase , self.drop_prob , self.training )
def __lowerCAmelCase ( self : int ) ->str:
"""simple docstring"""
return "p={}".format(self.drop_prob )
class lowercase_ ( nn.Module ):
'''simple docstring'''
def __init__( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Any=None ) ->int:
"""simple docstring"""
super().__init__()
a = patch_size if isinstance(__UpperCAmelCase , collections.abc.Iterable ) else (patch_size, patch_size)
a = stride if isinstance(__UpperCAmelCase , collections.abc.Iterable ) else (stride, stride)
a = padding if isinstance(__UpperCAmelCase , collections.abc.Iterable ) else (padding, padding)
a = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , kernel_size=__UpperCAmelCase , stride=__UpperCAmelCase , padding=__UpperCAmelCase )
a = norm_layer(__UpperCAmelCase ) if norm_layer else nn.Identity()
def __lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.projection(__UpperCAmelCase )
a = self.norm(__UpperCAmelCase )
return embeddings
class lowercase_ ( nn.GroupNorm ):
'''simple docstring'''
def __init__( self : List[Any] , __UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Union[str, Any] ) ->Dict:
"""simple docstring"""
super().__init__(1 , __UpperCAmelCase , **__UpperCAmelCase )
class lowercase_ ( nn.Module ):
'''simple docstring'''
def __init__( self : int , __UpperCAmelCase : Optional[Any] ) ->List[Any]:
"""simple docstring"""
super().__init__()
a = nn.AvgPoolad(__UpperCAmelCase , stride=1 , padding=pool_size // 2 , count_include_pad=__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : List[str] ) ->Union[str, Any]:
"""simple docstring"""
return self.pool(__UpperCAmelCase ) - hidden_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Dict ) ->List[Any]:
"""simple docstring"""
super().__init__()
a = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 )
a = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 )
a = PoolFormerDropPath(__UpperCAmelCase )
if isinstance(config.hidden_act , __UpperCAmelCase ):
a = ACTaFN[config.hidden_act]
else:
a = config.hidden_act
def __lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[int] ) ->List[Any]:
"""simple docstring"""
a = self.conva(__UpperCAmelCase )
a = self.act_fn(__UpperCAmelCase )
a = self.drop(__UpperCAmelCase )
a = self.conva(__UpperCAmelCase )
a = self.drop(__UpperCAmelCase )
return hidden_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
def __init__( self : int , __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ) ->int:
"""simple docstring"""
super().__init__()
a = PoolFormerPooling(__UpperCAmelCase )
a = PoolFormerOutput(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
a = PoolFormerGroupNorm(__UpperCAmelCase )
a = PoolFormerGroupNorm(__UpperCAmelCase )
# Useful for training neural nets
a = PoolFormerDropPath(__UpperCAmelCase ) if drop_path > 0.0 else nn.Identity()
a = config.use_layer_scale
if config.use_layer_scale:
a = nn.Parameter(
config.layer_scale_init_value * torch.ones((__UpperCAmelCase) ) , requires_grad=__UpperCAmelCase )
a = nn.Parameter(
config.layer_scale_init_value * torch.ones((__UpperCAmelCase) ) , requires_grad=__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->Any:
"""simple docstring"""
if self.use_layer_scale:
a = self.pooling(self.before_norm(__UpperCAmelCase ) )
a = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output
# First residual connection
a = hidden_states + self.drop_path(__UpperCAmelCase )
a = ()
a = self.output(self.after_norm(__UpperCAmelCase ) )
a = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output
# Second residual connection
a = hidden_states + self.drop_path(__UpperCAmelCase )
a = (output,) + outputs
return outputs
else:
a = self.drop_path(self.pooling(self.before_norm(__UpperCAmelCase ) ) )
# First residual connection
a = pooling_output + hidden_states
a = ()
# Second residual connection inside the PoolFormerOutput block
a = self.drop_path(self.output(self.after_norm(__UpperCAmelCase ) ) )
a = hidden_states + layer_output
a = (output,) + outputs
return outputs
class lowercase_ ( nn.Module ):
'''simple docstring'''
def __init__( self : List[Any] , __UpperCAmelCase : Optional[int] ) ->Dict:
"""simple docstring"""
super().__init__()
a = config
# stochastic depth decay rule
a = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )]
# patch embeddings
a = []
for i in range(config.num_encoder_blocks ):
embeddings.append(
PoolFormerEmbeddings(
patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) )
a = nn.ModuleList(__UpperCAmelCase )
# Transformer blocks
a = []
a = 0
for i in range(config.num_encoder_blocks ):
# each block consists of layers
a = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i] ):
layers.append(
PoolFormerLayer(
__UpperCAmelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) )
blocks.append(nn.ModuleList(__UpperCAmelCase ) )
a = nn.ModuleList(__UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Tuple=True ) ->Union[str, Any]:
"""simple docstring"""
a = () if output_hidden_states else None
a = pixel_values
for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ):
a , a = layers
# Get patch embeddings from hidden_states
a = embedding_layer(__UpperCAmelCase )
# Send the embeddings through the blocks
for _, blk in enumerate(__UpperCAmelCase ):
a = blk(__UpperCAmelCase )
a = layer_outputs[0]
if output_hidden_states:
a = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=__UpperCAmelCase , hidden_states=__UpperCAmelCase )
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = PoolFormerConfig
__snake_case = '''poolformer'''
__snake_case = '''pixel_values'''
__snake_case = True
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : List[str] ) ->Optional[Any]:
"""simple docstring"""
if isinstance(__UpperCAmelCase , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(__UpperCAmelCase , nn.LayerNorm ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any]=False ) ->int:
"""simple docstring"""
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
a = value
UpperCAmelCase__ = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
UpperCAmelCase__ = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n"
@add_start_docstrings(
'''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''' , lowercase , )
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : str , __UpperCAmelCase : int ) ->Optional[Any]:
"""simple docstring"""
super().__init__(__UpperCAmelCase )
a = config
a = PoolFormerEncoder(__UpperCAmelCase )
# Initialize weights and apply final processing
self.post_init()
def __lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(__UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def __lowerCAmelCase ( self : str , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None , ) ->Union[Tuple, BaseModelOutputWithNoAttention]:
"""simple docstring"""
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError('''You have to specify pixel_values''' )
a = self.encoder(
__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase , )
a = encoder_outputs[0]
if not return_dict:
return (sequence_output, None) + encoder_outputs[1:]
return BaseModelOutputWithNoAttention(
last_hidden_state=__UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , )
class lowercase_ ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[int] , __UpperCAmelCase : Dict ) ->List[str]:
"""simple docstring"""
super().__init__()
a = nn.Linear(config.hidden_size , config.hidden_size )
def __lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
a = self.dense(__UpperCAmelCase )
return output
@add_start_docstrings(
'''
PoolFormer Model transformer with an image classification head on top
''' , lowercase , )
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : List[str] ) ->Any:
"""simple docstring"""
super().__init__(__UpperCAmelCase )
a = config.num_labels
a = PoolFormerModel(__UpperCAmelCase )
# Final norm
a = PoolFormerGroupNorm(config.hidden_sizes[-1] )
# Classifier head
a = (
nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[torch.LongTensor] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None , ) ->Union[Tuple, ImageClassifierOutputWithNoAttention]:
"""simple docstring"""
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.poolformer(
__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase , )
a = outputs[0]
a = self.classifier(self.norm(__UpperCAmelCase ).mean([-2, -1] ) )
a = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
a = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
a = '''single_label_classification'''
else:
a = '''multi_label_classification'''
if self.config.problem_type == "regression":
a = MSELoss()
if self.num_labels == 1:
a = loss_fct(logits.squeeze() , labels.squeeze() )
else:
a = loss_fct(__UpperCAmelCase , __UpperCAmelCase )
elif self.config.problem_type == "single_label_classification":
a = CrossEntropyLoss()
a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
a = BCEWithLogitsLoss()
a = loss_fct(__UpperCAmelCase , __UpperCAmelCase )
if not return_dict:
a = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=__UpperCAmelCase , logits=__UpperCAmelCase , hidden_states=outputs.hidden_states )
| 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ShapEPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''num_inference_steps''',
'''generator''',
'''latents''',
'''guidance_scale''',
'''frame_size''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
return 8
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
a = PriorTransformer(**__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
a = ShapERenderer(**__UpperCAmelCase )
return model
def __lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_renderer
a = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=__UpperCAmelCase , clip_sample=__UpperCAmelCase , clip_sample_range=1.0 , )
a = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str=0 ) ->Optional[int]:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.images[0]
a = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
a = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , )
def __lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = 1
a = 2
a = self.get_dummy_inputs(__UpperCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
a = batch_size * [inputs[key]]
a = pipe(**__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
a = ShapEPipeline.from_pretrained('''openai/shap-e''' )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
a = pipe(
'''a shark''' , generator=__UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
| 0 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
UpperCAmelCase__ = logging.get_logger(__name__)
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = ['''pixel_values''']
def __init__( self : str , __UpperCAmelCase : bool = True , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : int = 0.9 , __UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCAmelCase : bool = True , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : Union[int, float] = 1 / 255 , __UpperCAmelCase : bool = True , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , **__UpperCAmelCase : str , ) ->None:
"""simple docstring"""
super().__init__(**__UpperCAmelCase )
a = size if size is not None else {'''shortest_edge''': 224}
a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' )
a = do_resize
a = size
a = crop_pct
a = resample
a = do_center_crop
a = crop_size
a = do_rescale
a = rescale_factor
a = do_normalize
a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
a = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Dict[str, int] , __UpperCAmelCase : Optional[float] = None , __UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : List[Any] , ) ->np.ndarray:
"""simple docstring"""
a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
raise ValueError(F"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
if crop_pct is not None:
if "shortest_edge" in size:
a = int(size['''shortest_edge'''] / crop_pct )
elif "height" in size and "width" in size:
if size["height"] == size["width"]:
a = int(size['''height'''] / crop_pct )
else:
a = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct ))
else:
raise ValueError('''Invalid size for resize: {}'''.format(__UpperCAmelCase ) )
a = get_resize_output_image_size(__UpperCAmelCase , size=__UpperCAmelCase , default_to_square=__UpperCAmelCase )
else:
if "shortest_edge" in size:
a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase )
elif "height" in size and "width" in size:
a = (size['''height'''], size['''width'''])
else:
raise ValueError('''Invalid size for resize: {}'''.format(__UpperCAmelCase ) )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Dict[str, int] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Any , ) ->np.ndarray:
"""simple docstring"""
a = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Union[int, float] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Tuple , ) ->Tuple:
"""simple docstring"""
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Union[float, List[float]] , __UpperCAmelCase : Union[float, List[float]] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Optional[int] , ) ->np.ndarray:
"""simple docstring"""
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : ImageInput , __UpperCAmelCase : bool = None , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : int = None , __UpperCAmelCase : PILImageResampling = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : float = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , __UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__UpperCAmelCase : Tuple , ) ->PIL.Image.Image:
"""simple docstring"""
a = do_resize if do_resize is not None else self.do_resize
a = crop_pct if crop_pct is not None else self.crop_pct
a = resample if resample is not None else self.resample
a = do_center_crop if do_center_crop is not None else self.do_center_crop
a = do_rescale if do_rescale is not None else self.do_rescale
a = rescale_factor if rescale_factor is not None else self.rescale_factor
a = do_normalize if do_normalize is not None else self.do_normalize
a = image_mean if image_mean is not None else self.image_mean
a = image_std if image_std is not None else self.image_std
a = size if size is not None else self.size
a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
a = crop_size if crop_size is not None else self.crop_size
a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' )
a = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_pct is None:
raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
a = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , crop_pct=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_center_crop:
a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
if do_rescale:
a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
a = {'''pixel_values''': images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 0 |
from __future__ import annotations
import time
import numpy as np
UpperCAmelCase__ = [8, 5, 9, 7]
UpperCAmelCase__ = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
UpperCAmelCase__ = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[list[int]] , ) ->None:
"""simple docstring"""
a = claim_vector
a = allocated_resources_table
a = maximum_claim_table
def __lowerCAmelCase ( self : Any ) ->list[int]:
"""simple docstring"""
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def __lowerCAmelCase ( self : Optional[int] ) ->list[int]:
"""simple docstring"""
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def __lowerCAmelCase ( self : Union[str, Any] ) ->list[list[int]]:
"""simple docstring"""
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def __lowerCAmelCase ( self : Tuple ) ->dict[int, list[int]]:
"""simple docstring"""
return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()}
def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->None:
"""simple docstring"""
a = self.__need()
a = self.__allocated_resources_table
a = self.__available_resources()
a = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print('''_''' * 50 + '''\n''' )
while need_list:
a = False
for each_need in need_list:
a = True
for index, need in enumerate(__UpperCAmelCase ):
if need > available_resources[index]:
a = False
break
if execution:
a = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
a = original_need_index
print(F"""Process {process_number + 1} is executing.""" )
# remove the process run from stack
need_list.remove(__UpperCAmelCase )
# update available/freed resources stack
a = np.array(__UpperCAmelCase ) + np.array(
alloc_resources_table[process_number] )
print(
'''Updated available resource stack for processes: '''
+ ''' '''.join([str(__UpperCAmelCase ) for x in available_resources] ) )
break
if safe:
print('''The process is in a safe state.\n''' )
else:
print('''System in unsafe state. Aborting...\n''' )
break
def __lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
print(''' ''' * 9 + '''Allocated Resource Table''' )
for item in self.__allocated_resources_table:
print(
F"""P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(''' ''' * 9 + '''System Resource Table''' )
for item in self.__maximum_claim_table:
print(
F"""P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(
'''Current Usage by Active Processes: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) )
print(
'''Initial Available Resources: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
UpperCAmelCase__ = logging.get_logger("transformers.models.speecht5")
def _a ( a :Any , a :List[str] , a :Tuple ) -> int:
hf_model.apply_weight_norm()
a = checkpoint['''input_conv.weight_g''']
a = checkpoint['''input_conv.weight_v''']
a = checkpoint['''input_conv.bias''']
for i in range(len(config.upsample_rates ) ):
a = checkpoint[F"""upsamples.{i}.1.weight_g"""]
a = checkpoint[F"""upsamples.{i}.1.weight_v"""]
a = checkpoint[F"""upsamples.{i}.1.bias"""]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""]
a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""]
a = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""]
a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""]
a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""]
a = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""]
a = checkpoint['''output_conv.1.weight_g''']
a = checkpoint['''output_conv.1.weight_v''']
a = checkpoint['''output_conv.1.bias''']
hf_model.remove_weight_norm()
@torch.no_grad()
def _a ( a :Dict , a :int , a :Tuple , a :Dict=None , a :List[Any]=None , ) -> Optional[Any]:
if config_path is not None:
a = SpeechTaHifiGanConfig.from_pretrained(a )
else:
a = SpeechTaHifiGanConfig()
a = SpeechTaHifiGan(a )
a = torch.load(a )
load_weights(orig_checkpoint['''model''']['''generator'''] , a , a )
a = np.load(a )
a = stats[0].reshape(-1 )
a = stats[1].reshape(-1 )
a = torch.from_numpy(a ).float()
a = torch.from_numpy(a ).float()
model.save_pretrained(a )
if repo_id:
print('''Pushing to the hub...''' )
model.push_to_hub(a )
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
UpperCAmelCase__ = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase__ = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
),
"google/electra-base-generator": (
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
),
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase__ = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
UpperCAmelCase__ = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_INIT_CONFIGURATION
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = ElectraTokenizer
def __init__( self : Dict , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : str="[UNK]" , __UpperCAmelCase : Any="[SEP]" , __UpperCAmelCase : str="[PAD]" , __UpperCAmelCase : Optional[Any]="[CLS]" , __UpperCAmelCase : Union[str, Any]="[MASK]" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Optional[int] , ) ->str:
"""simple docstring"""
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
a = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars
):
a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) )
a = do_lower_case
a = strip_accents
a = tokenize_chinese_chars
a = normalizer_class(**__UpperCAmelCase )
a = do_lower_case
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple=None ) ->str:
"""simple docstring"""
a = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
a = [self.sep_token_id]
a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 0 | 1 |
def _a ( a :int = 100 ) -> int:
a = n * (n + 1) * (2 * n + 1) / 6
a = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 0 |
def _a ( a :int ) -> bool:
a = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 0 | 1 |
import sys
import turtle
def _a ( a :tuple[float, float] , a :tuple[float, float] ) -> tuple[float, float]:
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def _a ( a :tuple[float, float] , a :tuple[float, float] , a :tuple[float, float] , a :int , ) -> None:
my_pen.up()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
if depth == 0:
return
triangle(a , get_mid(a , a ) , get_mid(a , a ) , depth - 1 )
triangle(a , get_mid(a , a ) , get_mid(a , a ) , depth - 1 )
triangle(a , get_mid(a , a ) , get_mid(a , a ) , depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"Correct format for using this script: "
"python fractals.py <int:depth_for_fractal>"
)
UpperCAmelCase__ = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
UpperCAmelCase__ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 0 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
UpperCAmelCase__ = pytest.mark.integration
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
a = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(__UpperCAmelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
a = dset.map(
lambda __UpperCAmelCase , __UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase )
a = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
dset.drop_index('''vecs''' )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
dset.save_faiss_index('''vecs''' , tmp_file.name )
dset.load_faiss_index('''vecs2''' , tmp_file.name )
os.unlink(tmp_file.name )
a , a = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' )
dset.drop_index('''vecs''' )
self.assertRaises(__UpperCAmelCase , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
from elasticsearch import Elasticsearch
a = self._create_dummy_dataset()
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = {'''acknowledged''': True}
mocked_bulk.return_value([(True, None)] * 30 )
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}}
a = Elasticsearch()
dset.add_elasticsearch_index('''filename''' , es_client=__UpperCAmelCase )
a , a = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Any ) ->Any:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
a = np.eye(5 , dtype=np.floataa )[::-1]
a , a = index.search_batch(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search_batch , queries[0] )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , __UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
import faiss
a = FaissIndex(string_factory='''Flat''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
a = FaissIndex(string_factory='''LSH''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(__UpperCAmelCase ):
a = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) )
def __lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = faiss.IndexFlat(5 )
a = FaissIndex(custom_index=__UpperCAmelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
index.save(tmp_file.name )
a = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _a ( a :Dict ) -> Any:
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
a = '''index.faiss'''
a = F"""mock://{index_name}"""
index.save(a , storage_options=mockfs.storage_options )
a = FaissIndex.load(a , storage_options=mockfs.storage_options )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(a )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->List[Any]:
"""simple docstring"""
from elasticsearch import Elasticsearch
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = Elasticsearch()
a = {'''acknowledged''': True}
a = ElasticSearchIndex(es_client=__UpperCAmelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['''foo''', '''bar''', '''foobar'''] )
# single query
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
# batched queries with timeout
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase , request_timeout=30 )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
| 0 | 1 |
from typing import Callable, Optional
from .. import Features
from ..packaged_modules.generator.generator import Generator
from .abc import AbstractDatasetInputStream
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Optional[Any] , __UpperCAmelCase : Callable , __UpperCAmelCase : Optional[Features] = None , __UpperCAmelCase : str = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[dict] = None , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : Dict , ) ->List[Any]:
"""simple docstring"""
super().__init__(
features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , )
a = Generator(
cache_dir=__UpperCAmelCase , features=__UpperCAmelCase , generator=__UpperCAmelCase , gen_kwargs=__UpperCAmelCase , **__UpperCAmelCase , )
def __lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
if self.streaming:
a = self.builder.as_streaming_dataset(split='''train''' )
# Build regular (map-style) dataset
else:
a = None
a = None
a = None
a = None
self.builder.download_and_prepare(
download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , )
a = self.builder.as_dataset(
split='''train''' , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
| 0 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''t5'''
__snake_case = ['''past_key_values''']
__snake_case = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any]=32_128 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : Dict=64 , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : int=6 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=8 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Tuple=128 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : int=1e-6 , __UpperCAmelCase : int=1.0 , __UpperCAmelCase : List[str]="relu" , __UpperCAmelCase : int=True , __UpperCAmelCase : int=True , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : int=1 , **__UpperCAmelCase : str , ) ->Optional[Any]:
"""simple docstring"""
a = vocab_size
a = d_model
a = d_kv
a = d_ff
a = num_layers
a = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
a = num_heads
a = relative_attention_num_buckets
a = relative_attention_max_distance
a = dropout_rate
a = layer_norm_epsilon
a = initializer_factor
a = feed_forward_proj
a = use_cache
a = self.feed_forward_proj.split('''-''' )
a = act_info[-1]
a = act_info[0] == '''gated'''
if len(__UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(__UpperCAmelCase ) > 2:
raise ValueError(
F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
a = '''gelu_new'''
super().__init__(
pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase , )
class lowercase_ ( lowercase ):
'''simple docstring'''
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
a = {
'''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''},
'''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''},
}
if self.use_past:
a = '''past_encoder_sequence + sequence'''
a = {0: '''batch'''}
a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
a = {0: '''batch''', 1: '''decoder_sequence'''}
a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
return common_inputs
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
return 13
| 0 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = "▁"
UpperCAmelCase__ = {"vocab_file": "sentencepiece.bpe.model"}
UpperCAmelCase__ = {
"vocab_file": {
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model",
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model",
"xlm-roberta-large-finetuned-conll02-dutch": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll02-spanish": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll03-english": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll03-german": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model"
),
}
}
UpperCAmelCase__ = {
"xlm-roberta-base": 512,
"xlm-roberta-large": 512,
"xlm-roberta-large-finetuned-conll02-dutch": 512,
"xlm-roberta-large-finetuned-conll02-spanish": 512,
"xlm-roberta-large-finetuned-conll03-english": 512,
"xlm-roberta-large-finetuned-conll03-german": 512,
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = ['''input_ids''', '''attention_mask''']
def __init__( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any]="<s>" , __UpperCAmelCase : Optional[int]="</s>" , __UpperCAmelCase : str="</s>" , __UpperCAmelCase : int="<s>" , __UpperCAmelCase : Union[str, Any]="<unk>" , __UpperCAmelCase : Optional[Any]="<pad>" , __UpperCAmelCase : str="<mask>" , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Any , ) ->None:
"""simple docstring"""
a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
a = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__UpperCAmelCase ) )
a = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
a = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
a = 1
a = len(self.sp_model ) + self.fairseq_offset
a = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : List[str] ) ->Optional[int]:
"""simple docstring"""
a = self.__dict__.copy()
a = None
a = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : Tuple , __UpperCAmelCase : Tuple ) ->Optional[Any]:
"""simple docstring"""
a = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
a = {}
a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
a = [self.cls_token_id]
a = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __lowerCAmelCase ( self : str , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1]
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
a = [self.sep_token_id]
a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def __lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token
def __lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : str ) ->List[str]:
"""simple docstring"""
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Optional[int] ) ->Optional[int]:
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
a = self.sp_model.PieceToId(__UpperCAmelCase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str ) ->List[str]:
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
a = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ''' ''' ).strip()
return out_string
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , '''wb''' ) as fi:
a = self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (out_vocab_file,)
| 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''llama'''
__snake_case = ['''past_key_values''']
def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any]=32_000 , __UpperCAmelCase : str=4_096 , __UpperCAmelCase : int=11_008 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Union[str, Any]="silu" , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Any=1e-6 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Tuple , ) ->str:
"""simple docstring"""
a = vocab_size
a = max_position_embeddings
a = hidden_size
a = intermediate_size
a = num_hidden_layers
a = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
a = num_attention_heads
a = num_key_value_heads
a = hidden_act
a = initializer_range
a = rms_norm_eps
a = pretraining_tp
a = use_cache
a = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
F"""got {self.rope_scaling}""" )
a = self.rope_scaling.get('''type''' , __UpperCAmelCase )
a = self.rope_scaling.get('''factor''' , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 0 | 1 |
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def _a ( a :Features ) -> Optional[int]:
a = np.inf
def set_batch_size(a :FeatureType ) -> None:
nonlocal batch_size
if isinstance(a , a ):
a = min(a , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(a , a ):
a = min(a , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(a , a ) and feature.dtype == "binary":
a = min(a , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(a , a )
return None if batch_size is np.inf else batch_size
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : str , __UpperCAmelCase : NestedDataStructureLike[PathLike] , __UpperCAmelCase : Optional[NamedSplit] = None , __UpperCAmelCase : Optional[Features] = None , __UpperCAmelCase : str = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : List[Any] , ) ->List[Any]:
"""simple docstring"""
super().__init__(
__UpperCAmelCase , split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , )
a = path_or_paths if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else {self.split: path_or_paths}
a = _PACKAGED_DATASETS_MODULES['''parquet'''][1]
a = Parquet(
cache_dir=__UpperCAmelCase , data_files=__UpperCAmelCase , features=__UpperCAmelCase , hash=__UpperCAmelCase , **__UpperCAmelCase , )
def __lowerCAmelCase ( self : List[Any] ) ->Optional[int]:
"""simple docstring"""
if self.streaming:
a = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
a = None
a = None
a = None
a = None
self.builder.download_and_prepare(
download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , )
a = self.builder.as_dataset(
split=self.split , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
class lowercase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : Dataset , __UpperCAmelCase : Union[PathLike, BinaryIO] , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : List[str] , ) ->Any:
"""simple docstring"""
a = dataset
a = path_or_buf
a = batch_size or get_writer_batch_size(dataset.features )
a = parquet_writer_kwargs
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
a = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , '''wb+''' ) as buffer:
a = self._write(file_obj=__UpperCAmelCase , batch_size=__UpperCAmelCase , **self.parquet_writer_kwargs )
else:
a = self._write(file_obj=self.path_or_buf , batch_size=__UpperCAmelCase , **self.parquet_writer_kwargs )
return written
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : BinaryIO , __UpperCAmelCase : int , **__UpperCAmelCase : List[str] ) ->int:
"""simple docstring"""
a = 0
a = parquet_writer_kwargs.pop('''path_or_buf''' , __UpperCAmelCase )
a = self.dataset.features.arrow_schema
a = pq.ParquetWriter(__UpperCAmelCase , schema=__UpperCAmelCase , **__UpperCAmelCase )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , __UpperCAmelCase ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ):
a = query_table(
table=self.dataset._data , key=slice(__UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(__UpperCAmelCase )
written += batch.nbytes
writer.close()
return written
| 0 |
from __future__ import annotations
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "MIT"
UpperCAmelCase__ = "1.0.0"
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "contact@muhammadumerfarooq.me"
UpperCAmelCase__ = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : str ) ->None:
"""simple docstring"""
super().__init__()
a = []
a = domain
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : list[tuple[str, str | None]] ) ->None:
"""simple docstring"""
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
a = parse.urljoin(self.domain , __UpperCAmelCase )
self.urls.append(__UpperCAmelCase )
def _a ( a :str ) -> str:
return ".".join(get_sub_domain_name(a ).split('''.''' )[-2:] )
def _a ( a :str ) -> str:
return parse.urlparse(a ).netloc
def _a ( a :str = "https://github.com" ) -> list[str]:
a = get_domain_name(a )
# Initialize the parser
a = Parser(a )
try:
# Open URL
a = requests.get(a )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
a = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
a = requests.get(a )
# Get the valid email.
a = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(a )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(a )
if __name__ == "__main__":
UpperCAmelCase__ = emails_from_url("https://github.com")
print(f"""{len(emails)} emails found:""")
print("\n".join(sorted(emails)))
| 0 | 1 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def _a ( a :Dict , a :Union[str, Any] , a :Dict , a :str , a :str ) -> List[Any]:
# load base model
a = StableDiffusionPipeline.from_pretrained(a , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
a = load_file(a )
a = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
a = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' )
a = pipeline.text_encoder
else:
a = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' )
a = pipeline.unet
# find the target layer
a = layer_infos.pop(0 )
while len(a ) > -1:
try:
a = curr_layer.__getattr__(a )
if len(a ) > 0:
a = layer_infos.pop(0 )
elif len(a ) == 0:
break
except Exception:
if len(a ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
a = layer_infos.pop(0 )
a = []
if "lora_down" in key:
pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) )
pair_keys.append(a )
else:
pair_keys.append(a )
pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
a = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
a = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a , a ).unsqueeze(2 ).unsqueeze(3 )
else:
a = state_dict[pair_keys[0]].to(torch.floataa )
a = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a , a )
# update visited list
for item in pair_keys:
visited.append(a )
return pipeline
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format."
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors"
)
parser.add_argument(
"--lora_prefix_text_encoder",
default="lora_te",
type=str,
help="The prefix of text encoder weight in safetensors",
)
parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW")
parser.add_argument(
"--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not."
)
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
UpperCAmelCase__ = parser.parse_args()
UpperCAmelCase__ = args.base_model_path
UpperCAmelCase__ = args.checkpoint_path
UpperCAmelCase__ = args.dump_path
UpperCAmelCase__ = args.lora_prefix_unet
UpperCAmelCase__ = args.lora_prefix_text_encoder
UpperCAmelCase__ = args.alpha
UpperCAmelCase__ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
UpperCAmelCase__ = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 0 |
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
UpperCAmelCase__ = logging.getLogger()
def _a ( ) -> Optional[int]:
a = argparse.ArgumentParser()
parser.add_argument('''-f''' )
a = parser.parse_args()
return args.f
def _a ( a :Any ) -> Tuple:
a = {}
a = os.path.join(a , '''all_results.json''' )
if os.path.exists(a ):
with open(a , '''r''' ) as f:
a = json.load(a )
else:
raise ValueError(F"""can't find {path}""" )
return results
def _a ( ) -> int:
a = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
UpperCAmelCase__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowercase_ ( lowercase ):
'''simple docstring'''
@classmethod
def __lowerCAmelCase ( cls : str ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
a = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
a = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def __lowerCAmelCase ( cls : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->str:
"""simple docstring"""
a = 7 if get_gpu_count() > 1 else 2
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''translation_no_trainer''' ) ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
a = logging.StreamHandler(sys.stdout )
logger.addHandler(__UpperCAmelCase )
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''image_classification_no_trainer''' ) ) )
| 0 | 1 |
from argparse import ArgumentParser, Namespace
from typing import Any, List, Optional
from ..pipelines import Pipeline, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from fastapi import Body, FastAPI, HTTPException
from fastapi.routing import APIRoute
from pydantic import BaseModel
from starlette.responses import JSONResponse
from uvicorn import run
UpperCAmelCase__ = True
except (ImportError, AttributeError):
UpperCAmelCase__ = object
def _a ( *a :str , **a :Optional[Any] ) -> int:
pass
UpperCAmelCase__ = False
UpperCAmelCase__ = logging.get_logger("transformers-cli/serving")
def _a ( a :Namespace ) -> Any:
a = pipeline(
task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , )
return ServeCommand(a , args.host , args.port , args.workers )
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = 42
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = 42
__snake_case = 42
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = 42
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = 42
class lowercase_ ( lowercase ):
'''simple docstring'''
@staticmethod
def __lowerCAmelCase ( __UpperCAmelCase : ArgumentParser ) ->Dict:
"""simple docstring"""
a = parser.add_parser(
'''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' )
serve_parser.add_argument(
'''--task''' , type=__UpperCAmelCase , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , )
serve_parser.add_argument('''--host''' , type=__UpperCAmelCase , default='''localhost''' , help='''Interface the server will listen on.''' )
serve_parser.add_argument('''--port''' , type=__UpperCAmelCase , default=8_888 , help='''Port the serving will listen to.''' )
serve_parser.add_argument('''--workers''' , type=__UpperCAmelCase , default=1 , help='''Number of http workers''' )
serve_parser.add_argument('''--model''' , type=__UpperCAmelCase , help='''Model\'s name or path to stored model.''' )
serve_parser.add_argument('''--config''' , type=__UpperCAmelCase , help='''Model\'s config name or path to stored model.''' )
serve_parser.add_argument('''--tokenizer''' , type=__UpperCAmelCase , help='''Tokenizer name to use.''' )
serve_parser.add_argument(
'''--device''' , type=__UpperCAmelCase , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , )
serve_parser.set_defaults(func=__UpperCAmelCase )
def __init__( self : Dict , __UpperCAmelCase : Pipeline , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : int ) ->List[Any]:
"""simple docstring"""
a = pipeline
a = host
a = port
a = workers
if not _serve_dependencies_installed:
raise RuntimeError(
'''Using serve command requires FastAPI and uvicorn. '''
'''Please install transformers with [serving]: pip install "transformers[serving]".'''
'''Or install FastAPI and uvicorn separately.''' )
else:
logger.info(F"""Serving model over {host}:{port}""" )
a = FastAPI(
routes=[
APIRoute(
'''/''' , self.model_info , response_model=__UpperCAmelCase , response_class=__UpperCAmelCase , methods=['''GET'''] , ),
APIRoute(
'''/tokenize''' , self.tokenize , response_model=__UpperCAmelCase , response_class=__UpperCAmelCase , methods=['''POST'''] , ),
APIRoute(
'''/detokenize''' , self.detokenize , response_model=__UpperCAmelCase , response_class=__UpperCAmelCase , methods=['''POST'''] , ),
APIRoute(
'''/forward''' , self.forward , response_model=__UpperCAmelCase , response_class=__UpperCAmelCase , methods=['''POST'''] , ),
] , timeout=600 , )
def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
run(self._app , host=self.host , port=self.port , workers=self.workers )
def __lowerCAmelCase ( self : int ) ->Union[str, Any]:
"""simple docstring"""
return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) )
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : str = Body(__UpperCAmelCase , embed=__UpperCAmelCase ) , __UpperCAmelCase : bool = Body(__UpperCAmelCase , embed=__UpperCAmelCase ) ) ->Tuple:
"""simple docstring"""
try:
a = self._pipeline.tokenizer.tokenize(__UpperCAmelCase )
if return_ids:
a = self._pipeline.tokenizer.convert_tokens_to_ids(__UpperCAmelCase )
return ServeTokenizeResult(tokens=__UpperCAmelCase , tokens_ids=__UpperCAmelCase )
else:
return ServeTokenizeResult(tokens=__UpperCAmelCase )
except Exception as e:
raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(__UpperCAmelCase )} )
def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : List[int] = Body(__UpperCAmelCase , embed=__UpperCAmelCase ) , __UpperCAmelCase : bool = Body(__UpperCAmelCase , embed=__UpperCAmelCase ) , __UpperCAmelCase : bool = Body(__UpperCAmelCase , embed=__UpperCAmelCase ) , ) ->Any:
"""simple docstring"""
try:
a = self._pipeline.tokenizer.decode(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return ServeDeTokenizeResult(model='''''' , text=__UpperCAmelCase )
except Exception as e:
raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(__UpperCAmelCase )} )
async def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Optional[int]=Body(__UpperCAmelCase , embed=__UpperCAmelCase ) ) ->Any:
"""simple docstring"""
if len(__UpperCAmelCase ) == 0:
return ServeForwardResult(output=[] , attention=[] )
try:
# Forward through the model
a = self._pipeline(__UpperCAmelCase )
return ServeForwardResult(output=__UpperCAmelCase )
except Exception as e:
raise HTTPException(500 , {'''error''': str(__UpperCAmelCase )} )
| 0 |
import math
def _a ( a :int ) -> list:
a = [True] * n
a = False
a = False
a = True
for i in range(3 , int(n**0.5 + 1 ) , 2 ):
a = i * 2
while index < n:
a = False
a = index + i
a = [2]
for i in range(3 , a , 2 ):
if is_prime[i]:
primes.append(a )
return primes
def _a ( a :int = 999_966_663_333 ) -> int:
a = math.floor(math.sqrt(a ) ) + 100
a = prime_sieve(a )
a = 0
a = 0
a = primes[prime_index]
while (last_prime**2) <= limit:
a = primes[prime_index + 1]
a = last_prime**2
a = next_prime**2
# Get numbers divisible by lps(current)
a = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
a = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
a = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
a = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 0 | 1 |
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
UpperCAmelCase__ = "2.13.1"
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse("3.7"):
raise ImportWarning(
"To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition."
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
"To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n"
"If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`."
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
UpperCAmelCase__ = concatenate_datasets
UpperCAmelCase__ = DownloadConfig
UpperCAmelCase__ = DownloadManager
UpperCAmelCase__ = DownloadMode
UpperCAmelCase__ = DownloadConfig
UpperCAmelCase__ = DownloadMode
UpperCAmelCase__ = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 0 |
def _a ( a :float , a :float ) -> float:
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f"""{price_plus_tax(100, 0.25) = }""")
print(f"""{price_plus_tax(125.50, 0.05) = }""")
| 0 | 1 |
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
def _a ( a :Union[str, Any] ) -> Optional[int]:
a = r'''\w+[.]\d+'''
a = re.findall(a , a )
for pat in pats:
a = key.replace(a , '''_'''.join(pat.split('''.''' ) ) )
return key
def _a ( a :List[str] , a :List[Any] , a :Union[str, Any] ) -> Optional[int]:
a = pt_tuple_key[:-1] + ('''scale''',)
if (
any('''norm''' in str_ for str_ in pt_tuple_key )
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
a = pt_tuple_key[:-1] + ('''scale''',)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
a = pt_tuple_key[:-1] + ('''scale''',)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
a = pt_tuple_key[:-1] + ('''embedding''',)
return renamed_pt_tuple_key, pt_tensor
# conv layer
a = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
a = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
a = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight":
a = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
a = pt_tuple_key[:-1] + ('''weight''',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
a = pt_tuple_key[:-1] + ('''bias''',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def _a ( a :List[str] , a :List[Any] , a :Dict=42 ) -> Optional[Any]:
# Step 1: Convert pytorch tensor to numpy
a = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
a = flax_model.init_weights(PRNGKey(a ) )
a = flatten_dict(a )
a = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
a = rename_key(a )
a = tuple(renamed_pt_key.split('''.''' ) )
# Correctly rename weight parameters
a , a = rename_key_and_reshape_tensor(a , a , a )
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """
F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
# also add unexpected weight so that warning is thrown
a = jnp.asarray(a )
return unflatten_dict(a )
| 0 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
a = SMALL_MODEL_IDENTIFIER
a = '''pt'''
a = '''tf'''
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str ) ->Union[str, Any]:
"""simple docstring"""
a = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ) ->List[str]:
"""simple docstring"""
a = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCAmelCase )
model_tf.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = '''mock_framework'''
# Framework provided - return whatever the user provides
a = FeaturesManager.determine_framework(self.test_model , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Both in environment -> use PyTorch
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# Both not in environment -> raise error
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
| 0 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase__ = {
"configuration_xlm_roberta": [
"XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP",
"XLMRobertaConfig",
"XLMRobertaOnnxConfig",
],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = ["XLMRobertaTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = ["XLMRobertaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMRobertaForCausalLM",
"XLMRobertaForMaskedLM",
"XLMRobertaForMultipleChoice",
"XLMRobertaForQuestionAnswering",
"XLMRobertaForSequenceClassification",
"XLMRobertaForTokenClassification",
"XLMRobertaModel",
"XLMRobertaPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMRobertaForCausalLM",
"TFXLMRobertaForMaskedLM",
"TFXLMRobertaForMultipleChoice",
"TFXLMRobertaForQuestionAnswering",
"TFXLMRobertaForSequenceClassification",
"TFXLMRobertaForTokenClassification",
"TFXLMRobertaModel",
"TFXLMRobertaPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaxXLMRobertaForMaskedLM",
"FlaxXLMRobertaForCausalLM",
"FlaxXLMRobertaForMultipleChoice",
"FlaxXLMRobertaForQuestionAnswering",
"FlaxXLMRobertaForSequenceClassification",
"FlaxXLMRobertaForTokenClassification",
"FlaxXLMRobertaModel",
"FlaxXLMRobertaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaConfig,
XLMRobertaOnnxConfig,
)
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta import XLMRobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaForCausalLM,
XLMRobertaForMaskedLM,
XLMRobertaForMultipleChoice,
XLMRobertaForQuestionAnswering,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
XLMRobertaModel,
XLMRobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm_roberta import (
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMRobertaForCausalLM,
TFXLMRobertaForMaskedLM,
TFXLMRobertaForMultipleChoice,
TFXLMRobertaForQuestionAnswering,
TFXLMRobertaForSequenceClassification,
TFXLMRobertaForTokenClassification,
TFXLMRobertaModel,
TFXLMRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xlm_roberta import (
FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxXLMRobertaForCausalLM,
FlaxXLMRobertaForMaskedLM,
FlaxXLMRobertaForMultipleChoice,
FlaxXLMRobertaForQuestionAnswering,
FlaxXLMRobertaForSequenceClassification,
FlaxXLMRobertaForTokenClassification,
FlaxXLMRobertaModel,
FlaxXLMRobertaPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ProphetNetTokenizer
__snake_case = False
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
super().setUp()
a = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str ) ->Dict:
"""simple docstring"""
a = '''UNwant\u00E9d,running'''
a = '''unwanted, running'''
return input_text, output_text
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
a = self.tokenizer_class(self.vocab_file )
a = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
a = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
a = {}
for i, token in enumerate(__UpperCAmelCase ):
a = i
a = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
@require_torch
def __lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
a = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102]
a = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='''pt''' )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
a = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
a = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase )
assert encoded_sentence == text + [102]
assert encoded_pair == text + [102] + text_a + [102]
| 0 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCAmelCase__ = {
"configuration_pix2struct": [
"PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Pix2StructConfig",
"Pix2StructTextConfig",
"Pix2StructVisionConfig",
],
"processing_pix2struct": ["Pix2StructProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = ["Pix2StructImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST",
"Pix2StructPreTrainedModel",
"Pix2StructForConditionalGeneration",
"Pix2StructVisionModel",
"Pix2StructTextModel",
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase__ = {
"configuration_nllb_moe": [
"NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",
"NllbMoeConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
"NllbMoeForConditionalGeneration",
"NllbMoeModel",
"NllbMoePreTrainedModel",
"NllbMoeTop2Router",
"NllbMoeSparseMLP",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 | 1 |
import csv
import tweepy
# Twitter API credentials
UpperCAmelCase__ = ""
UpperCAmelCase__ = ""
UpperCAmelCase__ = ""
UpperCAmelCase__ = ""
def _a ( a :str ) -> None:
# authorize twitter, initialize tweepy
a = tweepy.OAuthHandler(a , a )
auth.set_access_token(a , a )
a = tweepy.API(a )
# initialize a list to hold all the tweepy Tweets
a = []
# make initial request for most recent tweets (200 is the maximum allowed count)
a = api.user_timeline(screen_name=a , count=200 )
# save most recent tweets
alltweets.extend(a )
# save the id of the oldest tweet less one
a = alltweets[-1].id - 1
# keep grabbing tweets until there are no tweets left to grab
while len(a ) > 0:
print(F"""getting tweets before {oldest}""" )
# all subsequent requests use the max_id param to prevent duplicates
a = api.user_timeline(
screen_name=a , count=200 , max_id=a )
# save most recent tweets
alltweets.extend(a )
# update the id of the oldest tweet less one
a = alltweets[-1].id - 1
print(F"""...{len(a )} tweets downloaded so far""" )
# transform the tweepy tweets into a 2D array that will populate the csv
a = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets]
# write the csv
with open(F"""new_{screen_name}_tweets.csv""" , '''w''' ) as f:
a = csv.writer(a )
writer.writerow(['''id''', '''created_at''', '''text'''] )
writer.writerows(a )
if __name__ == "__main__":
# pass in the username of the account you want to download
get_all_tweets("FirePing32")
| 0 |
def _a ( a :int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
a = gray_code_sequence_string(a )
#
# convert them to integers
for i in range(len(a ) ):
a = int(sequence[i] , 2 )
return sequence
def _a ( a :int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
a = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
a = gray_code_sequence_string(bit_count - 1 )
a = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
a = '''0''' + smaller_sequence[i]
sequence.append(a )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
a = '''1''' + smaller_sequence[i]
sequence.append(a )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
UpperCAmelCase__ = {
"configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"],
"processing_trocr": ["TrOCRProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"TROCR_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrOCRForCausalLM",
"TrOCRPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
# fmt: off
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
a = {
'''do_resize''': True,
'''size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
a = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] , **__UpperCAmelCase : List[Any] ) ->int:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] , **__UpperCAmelCase : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def __lowerCAmelCase ( self : str ) ->Dict:
"""simple docstring"""
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
a = self.get_tokenizer()
a = self.get_image_processor()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
a = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
a = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
a = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = self.prepare_image_inputs()
a = image_processor(__UpperCAmelCase , return_tensors='''np''' )
a = processor(images=__UpperCAmelCase , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = processor(text=__UpperCAmelCase )
a = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(__UpperCAmelCase ):
processor()
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__UpperCAmelCase )
a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 0 | 1 |
import argparse
import json
import os
from collections import OrderedDict
import numpy as np
import tensorflow as tf
import torch
def _a ( a :Union[str, Any] ) -> List[str]:
a = os.path.join(args.tf_model_dir , '''parameters.json''' )
a = json.loads(open(a ).read() )
if not params:
raise ValueError(
F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" )
if not args.output.endswith('''.pt''' ):
a = args.output + '''.pt'''
a = OrderedDict()
with tf.device('''/CPU:0''' ):
a = tf.train.load_checkpoint(args.tf_model_dir )
a = reader.get_variable_to_shape_map()
for key_name in shapes.keys():
a = reader.get_tensor(a ).astype(np.floataa )
if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ):
continue
if key_name.startswith('''pasts/''' ):
if key_name.startswith('''pasts/mlp''' ):
a = int(key_name[9] )
elif key_name.startswith('''pasts/out''' ):
a = 8
a = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time
a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
a = torch.tensor(a )
elif key_name.startswith('''model/moe''' ):
a = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/switch_gating/kernel''' ):
a = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player
a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
a = torch.tensor(a )
elif key_name.endswith('''/softmlp/kernel''' ):
a = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player
a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
a = torch.tensor(a )
elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ):
a = key_name[-9:-7]
for i in range(16 ):
a = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer)
a = (
vnp[i].transpose([1, 0] ).copy()
) # In Mesh-Tensorflow, it is one array, so it is divided
a = torch.tensor(a )
elif key_name.startswith('''model/mlp''' ):
a = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/p1/kernel''' ):
a = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player
a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
a = torch.tensor(a )
elif key_name.endswith('''/p1/bias''' ):
a = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player
a = vnp.copy() # same because it is one dimensional
a = torch.tensor(a )
elif key_name.endswith('''/p2/kernel''' ):
a = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player
a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
a = torch.tensor(a )
elif key_name.endswith('''/p2/bias''' ):
a = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player
a = vnp.copy() # same because it is one dimensional
a = torch.tensor(a )
elif key_name.startswith('''model/ln''' ):
a = int(key_name[8:].split('''/''' )[0] )
if key_name.endswith('''/b''' ):
a = '''model.blocks.%d.feed_forward.norm.bias''' % player
a = vnp.copy() # same because it is one dimensional
a = torch.tensor(a )
elif key_name.endswith('''/g''' ):
a = '''model.blocks.%d.feed_forward.norm.weight''' % player
a = vnp.copy() # same because it is one dimensional
a = torch.tensor(a )
elif key_name.startswith('''model/att''' ):
a = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/qkv/kernel''' ):
a = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum
a = state[:, 0, :, :]
a = state[:, 1, :, :]
a = state[:, 2, :, :]
a = (
state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
a = (
state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
a = (
state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
a = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player
a = torch.tensor(a )
a = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player
a = torch.tensor(a )
a = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player
a = torch.tensor(a )
elif key_name.endswith('''/o/kernel''' ):
a = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player
a = (
vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy()
) # Mesh-Tensorflow is a diagonal matrix
a = torch.tensor(a )
elif key_name.startswith('''model/an''' ):
a = int(key_name[8:].split('''/''' )[0] )
if key_name.endswith('''/b''' ):
a = '''model.blocks.%d.self_attn.norm.bias''' % player
a = vnp.copy() # same because it is one dimensional
a = torch.tensor(a )
elif key_name.endswith('''/g''' ):
a = '''model.blocks.%d.self_attn.norm.weight''' % player
a = vnp.copy() # same because it is one dimensional
a = torch.tensor(a )
elif (
key_name.startswith('''model/wte''' )
or key_name.startswith('''model/wpe''' )
or key_name.startswith('''model/ete''' )
):
a = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[
key_name[-3:]
]
a = '''model.%s.weight''' % nlayer
a = vnp.copy() # same in embedded
a = torch.tensor(a )
if key_name.startswith('''model/wte''' ):
a = '''lm_head.weight'''
a = vnp.copy() # same in embedded
a = torch.tensor(a )
elif key_name.startswith('''model/wob''' ):
a = '''final_logits_bias'''
a = vnp.copy() # same in embedded
a = state.reshape((1, -1) )
a = torch.tensor(a )
elif key_name == "model/dense/kernel":
a = '''model.last_project.weight'''
a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
a = torch.tensor(a )
elif key_name == "model/dense_1/bias":
a = '''model.last_project.bias'''
a = vnp.copy() # same because it is one dimensional
a = torch.tensor(a )
torch.save(a , args.output )
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser(
description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model")
parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model")
UpperCAmelCase__ = parser.parse_args()
convert_tf_gptsan_to_pt(args)
| 0 |
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def _a ( a :List[Any] ) -> Optional[int]:
a = []
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""",
F"""stage{idx}.patch_embed.proj.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""",
F"""stage{idx}.patch_embed.proj.bias""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""",
F"""stage{idx}.patch_embed.norm.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""",
F"""stage{idx}.patch_embed.norm.bias""",
) )
return embed
def _a ( a :List[Any] , a :Optional[int] ) -> Dict:
a = []
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj.bias""",
) )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") )
return attention_weights
def _a ( a :Any ) -> List[Any]:
a = []
token.append((F"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') )
return token
def _a ( ) -> Optional[int]:
a = []
head.append(('''layernorm.weight''', '''norm.weight''') )
head.append(('''layernorm.bias''', '''norm.bias''') )
head.append(('''classifier.weight''', '''head.weight''') )
head.append(('''classifier.bias''', '''head.bias''') )
return head
def _a ( a :Tuple , a :Optional[int] , a :List[Any] , a :Union[str, Any] ) -> Optional[int]:
a = '''imagenet-1k-id2label.json'''
a = 1_000
a = '''huggingface/label-files'''
a = num_labels
a = json.load(open(cached_download(hf_hub_url(a , a , repo_type='''dataset''' ) ) , '''r''' ) )
a = {int(a ): v for k, v in idalabel.items()}
a = idalabel
a = {v: k for k, v in idalabel.items()}
a = a = CvtConfig(num_labels=a , idalabel=a , labelaid=a )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13":
a = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21":
a = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
a = [2, 2, 20]
a = [3, 12, 16]
a = [192, 768, 1_024]
a = CvtForImageClassification(a )
a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' )
a = image_size
a = torch.load(a , map_location=torch.device('''cpu''' ) )
a = OrderedDict()
a = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
a = list_of_state_dict + cls_token(a )
a = list_of_state_dict + embeddings(a )
for cnt in range(config.depth[idx] ):
a = list_of_state_dict + attention(a , a )
a = list_of_state_dict + final()
for gg in list_of_state_dict:
print(a )
for i in range(len(a ) ):
a = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(a )
model.save_pretrained(a )
image_processor.save_pretrained(a )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
UpperCAmelCase__ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 0 | 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json",
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''wavlm'''
def __init__( self : str , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : Dict=768 , __UpperCAmelCase : Any=12 , __UpperCAmelCase : Union[str, Any]=12 , __UpperCAmelCase : Any=3_072 , __UpperCAmelCase : List[Any]="gelu" , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Tuple=1e-5 , __UpperCAmelCase : Dict="group" , __UpperCAmelCase : Optional[int]="gelu" , __UpperCAmelCase : Optional[Any]=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase : Any=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase : Tuple=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase : Any=False , __UpperCAmelCase : List[Any]=128 , __UpperCAmelCase : Tuple=16 , __UpperCAmelCase : str=320 , __UpperCAmelCase : List[Any]=800 , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Dict=0.05 , __UpperCAmelCase : Union[str, Any]=10 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Dict=0.0 , __UpperCAmelCase : Any=10 , __UpperCAmelCase : Union[str, Any]=320 , __UpperCAmelCase : str=2 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Union[str, Any]=100 , __UpperCAmelCase : str=256 , __UpperCAmelCase : Any=256 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Union[str, Any]="mean" , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[Any]=256 , __UpperCAmelCase : Optional[int]=(512, 512, 512, 512, 1_500) , __UpperCAmelCase : Any=(5, 3, 3, 1, 1) , __UpperCAmelCase : Dict=(1, 2, 3, 1, 1) , __UpperCAmelCase : Optional[int]=512 , __UpperCAmelCase : Optional[Any]=80 , __UpperCAmelCase : Tuple=0 , __UpperCAmelCase : Union[str, Any]=1 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Optional[Any]=3 , __UpperCAmelCase : str=None , **__UpperCAmelCase : Dict , ) ->Dict:
"""simple docstring"""
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
a = hidden_size
a = feat_extract_norm
a = feat_extract_activation
a = list(__UpperCAmelCase )
a = list(__UpperCAmelCase )
a = list(__UpperCAmelCase )
a = conv_bias
a = num_buckets
a = max_bucket_distance
a = num_conv_pos_embeddings
a = num_conv_pos_embedding_groups
a = len(self.conv_dim )
a = num_hidden_layers
a = intermediate_size
a = hidden_act
a = num_attention_heads
a = hidden_dropout
a = attention_dropout
a = activation_dropout
a = feat_proj_dropout
a = final_dropout
a = layerdrop
a = layer_norm_eps
a = initializer_range
a = num_ctc_classes
a = vocab_size
a = do_stable_layer_norm
a = use_weighted_layer_sum
a = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
a = apply_spec_augment
a = mask_time_prob
a = mask_time_length
a = mask_time_min_masks
a = mask_feature_prob
a = mask_feature_length
# parameters for pretraining with codevector quantized representations
a = num_codevectors_per_group
a = num_codevector_groups
a = contrastive_logits_temperature
a = num_negatives
a = codevector_dim
a = proj_codevector_dim
a = diversity_loss_weight
# ctc loss
a = ctc_loss_reduction
a = ctc_zero_infinity
# adapter
a = add_adapter
a = adapter_kernel_size
a = adapter_stride
a = num_adapter_layers
a = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
a = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
a = list(__UpperCAmelCase )
a = list(__UpperCAmelCase )
a = list(__UpperCAmelCase )
a = xvector_output_dim
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 0 |
from __future__ import annotations
UpperCAmelCase__ = list[list[int]]
# assigning initial values to the grid
UpperCAmelCase__ = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
UpperCAmelCase__ = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _a ( a :Matrix , a :int , a :int , a :int ) -> bool:
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _a ( a :Matrix ) -> tuple[int, int] | None:
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def _a ( a :Matrix ) -> Matrix | None:
if location := find_empty_location(a ):
a , a = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(a , a , a , a ):
a = digit
if sudoku(a ) is not None:
return grid
a = 0
return None
def _a ( a :Matrix ) -> None:
for row in grid:
for cell in row:
print(a , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("\nExample grid:\n" + "=" * 20)
print_solution(example_grid)
print("\nExample grid solution:")
UpperCAmelCase__ = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("Cannot find a solution.")
| 0 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
UpperCAmelCase__ = None
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase__ = {
"vocab_file": {
"camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model",
},
"tokenizer_file": {
"camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json",
},
}
UpperCAmelCase__ = {
"camembert-base": 512,
}
UpperCAmelCase__ = "▁"
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = ['''input_ids''', '''attention_mask''']
__snake_case = CamembertTokenizer
def __init__( self : Dict , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : str="<s>" , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : List[Any]="</s>" , __UpperCAmelCase : List[Any]="<s>" , __UpperCAmelCase : str="<unk>" , __UpperCAmelCase : Optional[int]="<pad>" , __UpperCAmelCase : Optional[Any]="<mask>" , __UpperCAmelCase : Optional[Any]=["<s>NOTUSED", "</s>NOTUSED"] , **__UpperCAmelCase : int , ) ->List[Any]:
"""simple docstring"""
a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , )
a = vocab_file
a = False if not self.vocab_file else True
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
a = [self.cls_token_id]
a = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __lowerCAmelCase ( self : int , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
a = [self.sep_token_id]
a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(__UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
return (out_vocab_file,)
| 0 |
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = KandinskyVaaPriorPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''', '''negative_prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''generator''',
'''num_inference_steps''',
'''latents''',
'''negative_prompt''',
'''guidance_scale''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
return 100
@property
def __lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 12,
'''embedding_dim''': self.text_embedder_hidden_size,
'''num_layers''': 1,
}
a = PriorTransformer(**__UpperCAmelCase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
a = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
a = CLIPVisionModelWithProjection(__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
a = CLIPImageProcessor(
crop_size=224 , do_center_crop=__UpperCAmelCase , do_normalize=__UpperCAmelCase , do_resize=__UpperCAmelCase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_image_encoder
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_image_processor
a = UnCLIPScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=__UpperCAmelCase , clip_sample_range=10.0 , )
a = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''scheduler''': scheduler,
'''image_processor''': image_processor,
}
return components
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str=0 ) ->int:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.image_embeds
a = pipe(
**self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0]
a = image[0, -10:]
a = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
a = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
a = False
self._test_inference_batch_single_identical(
test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
@skip_mps
def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = False
self._test_attention_slicing_forward_pass(
test_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
| 0 | 1 |
from ..utils import DummyObject, requires_backends
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Optional[int] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *__UpperCAmelCase : int , **__UpperCAmelCase : Optional[int] ) ->List[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[int] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : int ) ->Any:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : str , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Optional[Any] ) ->str:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ) ->Dict:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : List[Any] ) ->Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Optional[Any] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Optional[Any] ) ->List[Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : str , *__UpperCAmelCase : Any , **__UpperCAmelCase : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[int] , *__UpperCAmelCase : Any , **__UpperCAmelCase : Dict ) ->str:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Optional[Any] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : List[Any] ) ->Dict:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Dict , *__UpperCAmelCase : Any , **__UpperCAmelCase : List[Any] ) ->Tuple:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : int , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Optional[int] ) ->Dict:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : str , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[Any] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Optional[Any] ) ->Tuple:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Union[str, Any] , *__UpperCAmelCase : str , **__UpperCAmelCase : List[str] ) ->int:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *__UpperCAmelCase : int , **__UpperCAmelCase : int ) ->int:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[int] , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : int ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Optional[Any] , *__UpperCAmelCase : int , **__UpperCAmelCase : str ) ->Optional[int]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Dict , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : List[Any] ) ->int:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Dict , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : str ) ->List[str]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Optional[int] , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : str ) ->str:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Dict , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : List[str] ) ->Any:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : str , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Any ) ->List[str]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : str , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Dict ) ->Tuple:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : int , *__UpperCAmelCase : Dict , **__UpperCAmelCase : List[Any] ) ->Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *__UpperCAmelCase : Any , **__UpperCAmelCase : Tuple ) ->Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Dict , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Union[str, Any] ) ->str:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Dict , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Tuple ) ->str:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : List[Any] , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : int ) ->Optional[Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Optional[Any] ) ->Tuple:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *__UpperCAmelCase : str , **__UpperCAmelCase : Optional[int] ) ->Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
def _a ( *a :Union[str, Any] , **a :List[str] ) -> int:
requires_backends(a , ['''torch'''] )
def _a ( *a :Dict , **a :Dict ) -> List[str]:
requires_backends(a , ['''torch'''] )
def _a ( *a :Dict , **a :Any ) -> Tuple:
requires_backends(a , ['''torch'''] )
def _a ( *a :Any , **a :Union[str, Any] ) -> List[Any]:
requires_backends(a , ['''torch'''] )
def _a ( *a :List[str] , **a :Dict ) -> Optional[int]:
requires_backends(a , ['''torch'''] )
def _a ( *a :Any , **a :Union[str, Any] ) -> Any:
requires_backends(a , ['''torch'''] )
def _a ( *a :List[Any] , **a :Any ) -> int:
requires_backends(a , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Optional[int] , *__UpperCAmelCase : Any , **__UpperCAmelCase : int ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : List[str] ) ->Tuple:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[int] ) ->str:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Any , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Optional[int] ) ->List[str]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : str , *__UpperCAmelCase : int , **__UpperCAmelCase : Optional[Any] ) ->List[str]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *__UpperCAmelCase : str , **__UpperCAmelCase : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : str , *__UpperCAmelCase : Any , **__UpperCAmelCase : Any ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Optional[int] ) ->List[str]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : List[str] ) ->str:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Optional[Any] , *__UpperCAmelCase : str , **__UpperCAmelCase : str ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Union[str, Any] ) ->Tuple:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[int] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ) ->Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Tuple , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Any , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Optional[int] ) ->List[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *__UpperCAmelCase : Any , **__UpperCAmelCase : Tuple ) ->str:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ) ->Tuple:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *__UpperCAmelCase : str , **__UpperCAmelCase : str ) ->Any:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[Any] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Optional[Any] ) ->int:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Dict , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : List[str] ) ->List[str]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : Optional[Any] ) ->int:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *__UpperCAmelCase : Any , **__UpperCAmelCase : Any ) ->int:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[int] ) ->Dict:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : int , *__UpperCAmelCase : str , **__UpperCAmelCase : int ) ->Dict:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *__UpperCAmelCase : str , **__UpperCAmelCase : Any ) ->Tuple:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : List[str] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : Optional[int] ) ->Tuple:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : List[Any] ) ->Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Any , *__UpperCAmelCase : str , **__UpperCAmelCase : Optional[int] ) ->Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : int , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Tuple ) ->Tuple:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : str , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : List[str] ) ->List[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Any , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Dict ) ->List[str]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Any , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Any ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[Any] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : str ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Any , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : str ) ->Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Optional[Any] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Optional[int] ) ->Any:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : str , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : List[str] ) ->Any:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : str , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Any ) ->Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Dict , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Any ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : int , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any] ) ->int:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Any , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ) ->int:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : int , *__UpperCAmelCase : Any , **__UpperCAmelCase : List[str] ) ->Dict:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[Any] , *__UpperCAmelCase : int , **__UpperCAmelCase : int ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[Any] ) ->str:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : str , *__UpperCAmelCase : int , **__UpperCAmelCase : List[str] ) ->Optional[int]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[Any] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : Tuple ) ->Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : List[Any] ) ->int:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Dict , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Dict ) ->List[str]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Any , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : List[str] ) ->str:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Any , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Any ) ->Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : int , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Tuple ) ->Optional[Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[int] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Dict ) ->List[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Dict ) ->int:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Optional[Any] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Dict ) ->str:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[Any] , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : int ) ->Dict:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : str , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Union[str, Any] ) ->Tuple:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Dict , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : List[str] ) ->Optional[Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : int ) ->Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : str , *__UpperCAmelCase : Dict , **__UpperCAmelCase : str ) ->Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Optional[Any] , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : int , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : str ) ->List[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Dict , *__UpperCAmelCase : str , **__UpperCAmelCase : List[Any] ) ->Any:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : List[str] , *__UpperCAmelCase : int , **__UpperCAmelCase : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[Any] , *__UpperCAmelCase : Any , **__UpperCAmelCase : Tuple ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Dict , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : List[str] ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : List[Any] , *__UpperCAmelCase : int , **__UpperCAmelCase : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *__UpperCAmelCase : Any , **__UpperCAmelCase : Any ) ->List[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[int] , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->List[str]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : List[Any] , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : str ) ->Optional[int]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : str , *__UpperCAmelCase : Dict , **__UpperCAmelCase : List[Any] ) ->str:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Any , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Dict ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : List[str] , *__UpperCAmelCase : Any , **__UpperCAmelCase : str ) ->Optional[Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[int] , *__UpperCAmelCase : str , **__UpperCAmelCase : Union[str, Any] ) ->Any:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : str ) ->Dict:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : List[str] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Tuple ) ->Any:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *__UpperCAmelCase : Any , **__UpperCAmelCase : Dict ) ->str:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[Any] , *__UpperCAmelCase : str , **__UpperCAmelCase : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Optional[int] , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : int , *__UpperCAmelCase : Any , **__UpperCAmelCase : Any ) ->List[str]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Optional[int] ) ->List[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : List[Any] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Optional[int] ) ->Dict:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : Any ) ->Any:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *__UpperCAmelCase : Any , **__UpperCAmelCase : List[str] ) ->Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Optional[Any] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Union[str, Any] ) ->int:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : List[Any] ) ->Any:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : str , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Any , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : Dict ) ->Any:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Dict , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : str ) ->Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *__UpperCAmelCase : str , **__UpperCAmelCase : List[str] ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Optional[Any] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : List[Any] ) ->Tuple:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Union[str, Any] ) ->str:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[int] , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : int ) ->Tuple:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : List[Any] , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->Optional[int]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : int ) ->Tuple:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Any , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Dict ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Dict , *__UpperCAmelCase : Any , **__UpperCAmelCase : Tuple ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ) ->str:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[Any] , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->List[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Optional[Any] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Union[str, Any] ) ->Dict:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[Any] , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : List[Any] ) ->str:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[Any] , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Union[str, Any] ) ->Dict:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : List[Any] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : Any ) ->Dict:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Optional[Any] ) ->str:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Dict , *__UpperCAmelCase : int , **__UpperCAmelCase : List[str] ) ->List[Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : int , *__UpperCAmelCase : str , **__UpperCAmelCase : Union[str, Any] ) ->Dict:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Optional[int] ) ->int:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Optional[int] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : str ) ->List[Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *__UpperCAmelCase : Any , **__UpperCAmelCase : str ) ->Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *__UpperCAmelCase : int , **__UpperCAmelCase : str ) ->List[str]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : List[Any] , *__UpperCAmelCase : int , **__UpperCAmelCase : Union[str, Any] ) ->List[str]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Dict , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : str ) ->List[str]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[int] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : int , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Tuple ) ->Optional[int]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Optional[int] ) ->Any:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *__UpperCAmelCase : int , **__UpperCAmelCase : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''']
def __init__( self : Optional[Any] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *__UpperCAmelCase : int , **__UpperCAmelCase : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
@classmethod
def __lowerCAmelCase ( cls : Dict , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->Dict:
"""simple docstring"""
requires_backends(cls , ['''torch'''] )
| 0 |
from math import factorial
UpperCAmelCase__ = {str(digit): factorial(digit) for digit in range(10)}
def _a ( a :int ) -> int:
if not isinstance(a , a ):
raise TypeError('''Parameter number must be int''' )
if number < 0:
raise ValueError('''Parameter number must be greater than or equal to 0''' )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(a ) )
def _a ( a :int = 60 , a :int = 1_000_000 ) -> int:
if not isinstance(a , a ) or not isinstance(a , a ):
raise TypeError('''Parameters chain_length and number_limit must be int''' )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
'''Parameters chain_length and number_limit must be greater than 0''' )
# the counter for the chains with the exact desired length
a = 0
# the cached sizes of the previous chains
a = {}
for start_chain_element in range(1 , a ):
# The temporary set will contain the elements of the chain
a = set()
a = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
a = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(a )
chain_set_length += 1
a = digit_factorial_sum(a )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
a = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution()}""")
| 0 | 1 |
UpperCAmelCase__ = 256
# Modulus to hash a string
UpperCAmelCase__ = 1000003
def _a ( a :str , a :str ) -> bool:
a = len(a )
a = len(a )
if p_len > t_len:
return False
a = 0
a = 0
a = 1
# Calculating the hash of pattern and substring of text
for i in range(a ):
a = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
a = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
a = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
a = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def _a ( ) -> None:
a = '''abc1abc12'''
a = '''alskfjaldsabc1abc1abc12k23adsfabcabc'''
a = '''alskfjaldsk23adsfabcabc'''
assert rabin_karp(a , a ) and not rabin_karp(a , a )
# Test 2)
a = '''ABABX'''
a = '''ABABZABABYABABX'''
assert rabin_karp(a , a )
# Test 3)
a = '''AAAB'''
a = '''ABAAAAAB'''
assert rabin_karp(a , a )
# Test 4)
a = '''abcdabcy'''
a = '''abcxabcdabxabcdabcdabcy'''
assert rabin_karp(a , a )
# Test 5)
a = '''Lü'''
a = '''Lüsai'''
assert rabin_karp(a , a )
a = '''Lue'''
assert not rabin_karp(a , a )
print('''Success.''' )
if __name__ == "__main__":
test_rabin_karp()
| 0 |
def _a ( a :int = 100 ) -> int:
a = n * (n + 1) * (2 * n + 1) / 6
a = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 0 | 1 |
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def _a ( a :Any ) -> Dict:
return EnvironmentCommand()
def _a ( a :Optional[Any] ) -> List[Any]:
return EnvironmentCommand(args.accelerate_config_file )
class lowercase_ ( lowercase ):
'''simple docstring'''
@staticmethod
def __lowerCAmelCase ( __UpperCAmelCase : ArgumentParser ) ->str:
"""simple docstring"""
a = parser.add_parser('''env''' )
download_parser.set_defaults(func=__UpperCAmelCase )
download_parser.add_argument(
'''--accelerate-config_file''' , default=__UpperCAmelCase , help='''The accelerate config file to use for the default values in the launching script.''' , )
download_parser.set_defaults(func=__UpperCAmelCase )
def __init__( self : Union[str, Any] , __UpperCAmelCase : Any , *__UpperCAmelCase : List[Any] ) ->None:
"""simple docstring"""
a = accelerate_config_file
def __lowerCAmelCase ( self : int ) ->Tuple:
"""simple docstring"""
a = '''not installed'''
if is_safetensors_available():
import safetensors
a = safetensors.__version__
elif importlib.util.find_spec('''safetensors''' ) is not None:
import safetensors
a = F"""{safetensors.__version__} but is ignored because of PyTorch version too old."""
a = '''not installed'''
a = a = '''not found'''
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
a = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(__UpperCAmelCase ):
a = load_config_from_file(self._accelerate_config_file ).to_dict()
a = (
'''\n'''.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] )
if isinstance(__UpperCAmelCase , __UpperCAmelCase )
else F"""\t{accelerate_config}"""
)
a = '''not installed'''
a = '''NA'''
if is_torch_available():
import torch
a = torch.__version__
a = torch.cuda.is_available()
a = '''not installed'''
a = '''NA'''
if is_tf_available():
import tensorflow as tf
a = tf.__version__
try:
# deprecated in v2.1
a = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
a = bool(tf.config.list_physical_devices('''GPU''' ) )
a = '''not installed'''
a = '''not installed'''
a = '''not installed'''
a = '''NA'''
if is_flax_available():
import flax
import jax
import jaxlib
a = flax.__version__
a = jax.__version__
a = jaxlib.__version__
a = jax.lib.xla_bridge.get_backend().platform
a = {
'''`transformers` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Huggingface_hub version''': huggingface_hub.__version__,
'''Safetensors version''': F"""{safetensors_version}""",
'''Accelerate version''': F"""{accelerate_version}""",
'''Accelerate config''': F"""{accelerate_config_str}""",
'''PyTorch version (GPU?)''': F"""{pt_version} ({pt_cuda_available})""",
'''Tensorflow version (GPU?)''': F"""{tf_version} ({tf_cuda_available})""",
'''Flax version (CPU?/GPU?/TPU?)''': F"""{flax_version} ({jax_backend})""",
'''Jax version''': F"""{jax_version}""",
'''JaxLib version''': F"""{jaxlib_version}""",
'''Using GPU in script?''': '''<fill in>''',
'''Using distributed or parallel set-up in script?''': '''<fill in>''',
}
print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' )
print(self.format_dict(__UpperCAmelCase ) )
return info
@staticmethod
def __lowerCAmelCase ( __UpperCAmelCase : List[Any] ) ->Any:
"""simple docstring"""
return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase__ = {
"configuration_groupvit": [
"GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"GroupViTConfig",
"GroupViTOnnxConfig",
"GroupViTTextConfig",
"GroupViTVisionConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GroupViTModel",
"GroupViTPreTrainedModel",
"GroupViTTextModel",
"GroupViTVisionModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFGroupViTModel",
"TFGroupViTPreTrainedModel",
"TFGroupViTTextModel",
"TFGroupViTVisionModel",
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 | 1 |
import os
def _a ( ) -> Union[str, Any]:
with open(os.path.dirname(a ) + '''/p022_names.txt''' ) as file:
a = str(file.readlines()[0] )
a = names.replace('''"''' , '''''' ).split(''',''' )
names.sort()
a = 0
a = 0
for i, name in enumerate(a ):
for letter in name:
name_score += ord(a ) - 64
total_score += (i + 1) * name_score
a = 0
return total_score
if __name__ == "__main__":
print(solution())
| 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ShapEPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''num_inference_steps''',
'''generator''',
'''latents''',
'''guidance_scale''',
'''frame_size''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
return 8
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
a = PriorTransformer(**__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
a = ShapERenderer(**__UpperCAmelCase )
return model
def __lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_renderer
a = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=__UpperCAmelCase , clip_sample=__UpperCAmelCase , clip_sample_range=1.0 , )
a = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str=0 ) ->Optional[int]:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.images[0]
a = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
a = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , )
def __lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = 1
a = 2
a = self.get_dummy_inputs(__UpperCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
a = batch_size * [inputs[key]]
a = pipe(**__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
a = ShapEPipeline.from_pretrained('''openai/shap-e''' )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
a = pipe(
'''a shark''' , generator=__UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
| 0 | 1 |
from __future__ import annotations
def _a ( a :float , a :float , a :float ) -> dict[str, float]:
if (voltage, current, resistance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if resistance < 0:
raise ValueError('''Resistance cannot be negative''' )
if voltage == 0:
return {"voltage": float(current * resistance )}
elif current == 0:
return {"current": voltage / resistance}
elif resistance == 0:
return {"resistance": voltage / current}
else:
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 |
from __future__ import annotations
import time
import numpy as np
UpperCAmelCase__ = [8, 5, 9, 7]
UpperCAmelCase__ = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
UpperCAmelCase__ = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[list[int]] , ) ->None:
"""simple docstring"""
a = claim_vector
a = allocated_resources_table
a = maximum_claim_table
def __lowerCAmelCase ( self : Any ) ->list[int]:
"""simple docstring"""
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def __lowerCAmelCase ( self : Optional[int] ) ->list[int]:
"""simple docstring"""
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def __lowerCAmelCase ( self : Union[str, Any] ) ->list[list[int]]:
"""simple docstring"""
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def __lowerCAmelCase ( self : Tuple ) ->dict[int, list[int]]:
"""simple docstring"""
return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()}
def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->None:
"""simple docstring"""
a = self.__need()
a = self.__allocated_resources_table
a = self.__available_resources()
a = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print('''_''' * 50 + '''\n''' )
while need_list:
a = False
for each_need in need_list:
a = True
for index, need in enumerate(__UpperCAmelCase ):
if need > available_resources[index]:
a = False
break
if execution:
a = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
a = original_need_index
print(F"""Process {process_number + 1} is executing.""" )
# remove the process run from stack
need_list.remove(__UpperCAmelCase )
# update available/freed resources stack
a = np.array(__UpperCAmelCase ) + np.array(
alloc_resources_table[process_number] )
print(
'''Updated available resource stack for processes: '''
+ ''' '''.join([str(__UpperCAmelCase ) for x in available_resources] ) )
break
if safe:
print('''The process is in a safe state.\n''' )
else:
print('''System in unsafe state. Aborting...\n''' )
break
def __lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
print(''' ''' * 9 + '''Allocated Resource Table''' )
for item in self.__allocated_resources_table:
print(
F"""P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(''' ''' * 9 + '''System Resource Table''' )
for item in self.__maximum_claim_table:
print(
F"""P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(
'''Current Usage by Active Processes: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) )
print(
'''Initial Available Resources: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
import random
def _a ( a :int ) -> bool:
a = num - 1
a = 0
while s % 2 == 0:
a = s // 2
t += 1
for _ in range(5 ):
a = random.randrange(2 , num - 1 )
a = pow(a , a , a )
if v != 1:
a = 0
while v != (num - 1):
if i == t - 1:
return False
else:
a = i + 1
a = (v**2) % num
return True
def _a ( a :int ) -> bool:
if num < 2:
return False
a = [
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(a )
def _a ( a :int = 1_024 ) -> int:
while True:
a = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) )
if is_prime_low_num(a ):
return num
if __name__ == "__main__":
UpperCAmelCase__ = generate_large_prime()
print(("Prime number:", num))
print(("is_prime_low_num:", is_prime_low_num(num)))
| 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase__ = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
),
"google/electra-base-generator": (
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
),
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase__ = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
UpperCAmelCase__ = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_INIT_CONFIGURATION
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = ElectraTokenizer
def __init__( self : Dict , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : str="[UNK]" , __UpperCAmelCase : Any="[SEP]" , __UpperCAmelCase : str="[PAD]" , __UpperCAmelCase : Optional[Any]="[CLS]" , __UpperCAmelCase : Union[str, Any]="[MASK]" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Optional[int] , ) ->str:
"""simple docstring"""
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
a = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars
):
a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) )
a = do_lower_case
a = strip_accents
a = tokenize_chinese_chars
a = normalizer_class(**__UpperCAmelCase )
a = do_lower_case
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple=None ) ->str:
"""simple docstring"""
a = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
a = [self.sep_token_id]
a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 0 | 1 |
import argparse
from collections import defaultdict
def _a ( a :Optional[int] , a :Optional[Any] , a :Optional[Any] , a :Any , a :int ) -> Union[str, Any]:
a = F"""{file}_{class_name}_{test_name}"""
done_test[_id] += 1
with open(a , '''r''' ) as f:
a = f.readlines()
a = F"""class {class_name}("""
a = F"""{4 * ' '}def {test_name}("""
a = F"""{8 * ' '}{correct_line.split()[0]}"""
a = F"""{16 * ' '}{correct_line.split()[0]}"""
a = False
a = False
a = False
a = False
a = 0
a = 0
a = []
for line in lines:
if line.startswith(a ):
a = True
elif in_class and line.startswith(a ):
a = True
elif in_class and in_func and (line.startswith(a ) or line.startswith(a )):
a = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
a = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
a = True
if in_class and in_func and in_line and insert_line:
new_lines.append(F"""{spaces * ' '}{correct_line}""" )
a = a = a = a = False
else:
new_lines.append(a )
with open(a , '''w''' ) as f:
for line in new_lines:
f.write(a )
def _a ( a :Tuple , a :Union[str, Any]=None ) -> Optional[Any]:
if fail is not None:
with open(a , '''r''' ) as f:
a = {l.strip() for l in f.readlines()}
else:
a = None
with open(a , '''r''' ) as f:
a = f.readlines()
a = defaultdict(a )
for line in correct_lines:
a , a , a , a = line.split(''';''' )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(a , a , a , a , a )
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--correct_filename", help="filename of tests with expected result")
parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None)
UpperCAmelCase__ = parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 0 |
def _a ( a :int ) -> bool:
a = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 0 | 1 |
def _a ( a :int , a :int ) -> str:
return "\n".join(
F"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=10))
| 0 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
UpperCAmelCase__ = pytest.mark.integration
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
a = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(__UpperCAmelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
a = dset.map(
lambda __UpperCAmelCase , __UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase )
a = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
dset.drop_index('''vecs''' )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
dset.save_faiss_index('''vecs''' , tmp_file.name )
dset.load_faiss_index('''vecs2''' , tmp_file.name )
os.unlink(tmp_file.name )
a , a = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' )
dset.drop_index('''vecs''' )
self.assertRaises(__UpperCAmelCase , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
from elasticsearch import Elasticsearch
a = self._create_dummy_dataset()
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = {'''acknowledged''': True}
mocked_bulk.return_value([(True, None)] * 30 )
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}}
a = Elasticsearch()
dset.add_elasticsearch_index('''filename''' , es_client=__UpperCAmelCase )
a , a = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Any ) ->Any:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
a = np.eye(5 , dtype=np.floataa )[::-1]
a , a = index.search_batch(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search_batch , queries[0] )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , __UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
import faiss
a = FaissIndex(string_factory='''Flat''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
a = FaissIndex(string_factory='''LSH''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(__UpperCAmelCase ):
a = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) )
def __lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = faiss.IndexFlat(5 )
a = FaissIndex(custom_index=__UpperCAmelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
index.save(tmp_file.name )
a = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _a ( a :Dict ) -> Any:
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
a = '''index.faiss'''
a = F"""mock://{index_name}"""
index.save(a , storage_options=mockfs.storage_options )
a = FaissIndex.load(a , storage_options=mockfs.storage_options )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(a )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->List[Any]:
"""simple docstring"""
from elasticsearch import Elasticsearch
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = Elasticsearch()
a = {'''acknowledged''': True}
a = ElasticSearchIndex(es_client=__UpperCAmelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['''foo''', '''bar''', '''foobar'''] )
# single query
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
# batched queries with timeout
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase , request_timeout=30 )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
| 0 | 1 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json",
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''gpt_neo'''
__snake_case = ['''past_key_values''']
__snake_case = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self : Dict , __UpperCAmelCase : str=50_257 , __UpperCAmelCase : Optional[int]=2_048 , __UpperCAmelCase : Optional[Any]=2_048 , __UpperCAmelCase : Optional[int]=24 , __UpperCAmelCase : Optional[int]=[[["global", "local"], 12]] , __UpperCAmelCase : str=16 , __UpperCAmelCase : Any=None , __UpperCAmelCase : List[str]=256 , __UpperCAmelCase : Optional[Any]="gelu_new" , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : Optional[int]=0.0 , __UpperCAmelCase : Union[str, Any]=0.0 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Any=1e-5 , __UpperCAmelCase : Dict=0.02 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Tuple=50_256 , __UpperCAmelCase : Optional[int]=50_256 , **__UpperCAmelCase : Optional[int] , ) ->Union[str, Any]:
"""simple docstring"""
a = vocab_size
a = max_position_embeddings
a = hidden_size
a = num_layers
a = num_heads
a = intermediate_size
a = window_size
a = activation_function
a = resid_dropout
a = embed_dropout
a = attention_dropout
a = classifier_dropout
a = layer_norm_epsilon
a = initializer_range
a = use_cache
a = bos_token_id
a = eos_token_id
a = attention_types
a = self.expand_attention_types_params(__UpperCAmelCase )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
'''Configuration for convolutional module is incorrect. '''
'''It is required that `len(config.attention_layers)` == `config.num_layers` '''
F"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """
F"""`config.num_layers = {self.num_layers}`. """
'''`config.attention_layers` is prepared using `config.attention_types`. '''
'''Please verify the value of `config.attention_types` argument.''' )
super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
@staticmethod
def __lowerCAmelCase ( __UpperCAmelCase : List[str] ) ->Optional[int]:
"""simple docstring"""
a = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def _a ( a :str , a :Any , a :Union[str, Any] , a :Optional[int] ) -> List[Any]:
import torch
a = input.size()
a = len(a )
a = shape[dimension]
a = torch.arange(0 , a , a )
a = torch.div(sizedim - size , a , rounding_mode='''floor''' ) + 1
a = torch.arange(a ) + low_indices[:min_length][:, None]
a = [slice(a )] * rank
a = indices
a = input[s]
a = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(a )
def _a ( a :List[str] , a :List[str] ) -> Any:
import torch
a = torch.arange(1 , a )
a = torch.remainder(a , a )
a = remainders == 0
a = candidates[divisor_indices]
a = torch.max(a )
return largest_divisor, torch.div(a , a , rounding_mode='''floor''' )
class lowercase_ ( lowercase ):
'''simple docstring'''
@property
def __lowerCAmelCase ( self : Optional[int] ) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
a = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
a = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def __lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
return self._config.num_heads
def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : PreTrainedTokenizer , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[TensorType] = None , ) ->Mapping[str, Any]:
"""simple docstring"""
a = super(__UpperCAmelCase , self ).generate_dummy_inputs(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
a , a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
a = seqlen + 2
a = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers )
]
a = common_inputs['''attention_mask''']
if self.use_past:
a = ordered_inputs['''attention_mask'''].dtype
a = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def __lowerCAmelCase ( self : Dict ) ->int:
"""simple docstring"""
return 13
| 0 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''t5'''
__snake_case = ['''past_key_values''']
__snake_case = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any]=32_128 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : Dict=64 , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : int=6 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=8 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Tuple=128 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : int=1e-6 , __UpperCAmelCase : int=1.0 , __UpperCAmelCase : List[str]="relu" , __UpperCAmelCase : int=True , __UpperCAmelCase : int=True , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : int=1 , **__UpperCAmelCase : str , ) ->Optional[Any]:
"""simple docstring"""
a = vocab_size
a = d_model
a = d_kv
a = d_ff
a = num_layers
a = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
a = num_heads
a = relative_attention_num_buckets
a = relative_attention_max_distance
a = dropout_rate
a = layer_norm_epsilon
a = initializer_factor
a = feed_forward_proj
a = use_cache
a = self.feed_forward_proj.split('''-''' )
a = act_info[-1]
a = act_info[0] == '''gated'''
if len(__UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(__UpperCAmelCase ) > 2:
raise ValueError(
F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
a = '''gelu_new'''
super().__init__(
pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase , )
class lowercase_ ( lowercase ):
'''simple docstring'''
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
a = {
'''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''},
'''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''},
}
if self.use_past:
a = '''past_encoder_sequence + sequence'''
a = {0: '''batch'''}
a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
a = {0: '''batch''', 1: '''decoder_sequence'''}
a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
return common_inputs
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
return 13
| 0 | 1 |
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = KandinskyVaaPriorPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''', '''negative_prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''generator''',
'''num_inference_steps''',
'''latents''',
'''negative_prompt''',
'''guidance_scale''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
return 100
@property
def __lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 12,
'''embedding_dim''': self.text_embedder_hidden_size,
'''num_layers''': 1,
}
a = PriorTransformer(**__UpperCAmelCase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
a = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
a = CLIPVisionModelWithProjection(__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
a = CLIPImageProcessor(
crop_size=224 , do_center_crop=__UpperCAmelCase , do_normalize=__UpperCAmelCase , do_resize=__UpperCAmelCase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_image_encoder
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_image_processor
a = UnCLIPScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=__UpperCAmelCase , clip_sample_range=10.0 , )
a = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''scheduler''': scheduler,
'''image_processor''': image_processor,
}
return components
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str=0 ) ->int:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.image_embeds
a = pipe(
**self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0]
a = image[0, -10:]
a = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
a = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
a = False
self._test_inference_batch_single_identical(
test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
@skip_mps
def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = False
self._test_attention_slicing_forward_pass(
test_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
| 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''llama'''
__snake_case = ['''past_key_values''']
def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any]=32_000 , __UpperCAmelCase : str=4_096 , __UpperCAmelCase : int=11_008 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Union[str, Any]="silu" , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Any=1e-6 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Tuple , ) ->str:
"""simple docstring"""
a = vocab_size
a = max_position_embeddings
a = hidden_size
a = intermediate_size
a = num_hidden_layers
a = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
a = num_attention_heads
a = num_key_value_heads
a = hidden_act
a = initializer_range
a = rms_norm_eps
a = pretraining_tp
a = use_cache
a = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
F"""got {self.rope_scaling}""" )
a = self.rope_scaling.get('''type''' , __UpperCAmelCase )
a = self.rope_scaling.get('''factor''' , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 0 | 1 |
from __future__ import annotations
from cmath import sqrt
def _a ( a :int , a :int , a :int ) -> tuple[complex, complex]:
if a == 0:
raise ValueError('''Coefficient \'a\' must not be zero.''' )
a = b * b - 4 * a * c
a = (-b + sqrt(a )) / (2 * a)
a = (-b - sqrt(a )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def _a ( ) -> Optional[Any]:
a , a = quadratic_roots(a=5 , b=6 , c=1 )
print(F"""The solutions are: {solutiona} and {solutiona}""" )
if __name__ == "__main__":
main()
| 0 |
from __future__ import annotations
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "MIT"
UpperCAmelCase__ = "1.0.0"
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "contact@muhammadumerfarooq.me"
UpperCAmelCase__ = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : str ) ->None:
"""simple docstring"""
super().__init__()
a = []
a = domain
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : list[tuple[str, str | None]] ) ->None:
"""simple docstring"""
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
a = parse.urljoin(self.domain , __UpperCAmelCase )
self.urls.append(__UpperCAmelCase )
def _a ( a :str ) -> str:
return ".".join(get_sub_domain_name(a ).split('''.''' )[-2:] )
def _a ( a :str ) -> str:
return parse.urlparse(a ).netloc
def _a ( a :str = "https://github.com" ) -> list[str]:
a = get_domain_name(a )
# Initialize the parser
a = Parser(a )
try:
# Open URL
a = requests.get(a )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
a = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
a = requests.get(a )
# Get the valid email.
a = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(a )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(a )
if __name__ == "__main__":
UpperCAmelCase__ = emails_from_url("https://github.com")
print(f"""{len(emails)} emails found:""")
print("\n".join(sorted(emails)))
| 0 | 1 |
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase__ = logging.get_logger(__name__)
def _a ( a :Optional[int] ) -> List[Any]:
a = torch.load(a , map_location='''cpu''' )
if "model" in sd.keys():
a = torch.load(a , map_location='''cpu''' )['''model''']
# pop unnecessary weights
a = [
'''decoder.version''',
'''decoder.output_projection.weight''',
]
for key in keys_to_delete:
if key in sd:
sd.pop(a )
a = {
'''decoder.project_in_dim.weight''': '''decoder.project_in.weight''',
'''decoder.project_out_dim.weight''': '''decoder.project_out.weight''',
'''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''',
'''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''',
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
a = sd.pop(a )
a = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
a = sd[key]
# We split QKV in separate Q,K,V
a = key.replace('''.qkv_proj.''' , '''.q_proj.''' )
a = key.replace('''.qkv_proj.''' , '''.k_proj.''' )
a = key.replace('''.qkv_proj.''' , '''.v_proj.''' )
a = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
a , a , a = torch.split(a , depth // 3 , dim=0 )
a = q
a = k
a = v
del sd[key]
return sd
@torch.no_grad()
def _a ( a :str , a :int , a :List[Any]=None ) -> Optional[Any]:
a = load_checkpoint(a )
if config is not None:
a = OPTConfig.from_pretrained(a )
else:
a = OPTConfig()
a = OPTModel(a ).half().eval()
model.load_state_dict(a )
# Check results
Path(a ).mkdir(exist_ok=a )
model.save_pretrained(a )
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--fairseq_path",
type=str,
help=(
"path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"
" https://huggingface.co/models?other=opt_metasq"
),
)
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.")
UpperCAmelCase__ = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 0 |
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
UpperCAmelCase__ = logging.getLogger()
def _a ( ) -> Optional[int]:
a = argparse.ArgumentParser()
parser.add_argument('''-f''' )
a = parser.parse_args()
return args.f
def _a ( a :Any ) -> Tuple:
a = {}
a = os.path.join(a , '''all_results.json''' )
if os.path.exists(a ):
with open(a , '''r''' ) as f:
a = json.load(a )
else:
raise ValueError(F"""can't find {path}""" )
return results
def _a ( ) -> int:
a = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
UpperCAmelCase__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowercase_ ( lowercase ):
'''simple docstring'''
@classmethod
def __lowerCAmelCase ( cls : str ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
a = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
a = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def __lowerCAmelCase ( cls : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->str:
"""simple docstring"""
a = 7 if get_gpu_count() > 1 else 2
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''translation_no_trainer''' ) ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
a = logging.StreamHandler(sys.stdout )
logger.addHandler(__UpperCAmelCase )
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''image_classification_no_trainer''' ) ) )
| 0 | 1 |
def _a ( a :int , a :int ) -> int:
return x if y == 0 else greatest_common_divisor(a , x % y )
def _a ( a :int , a :int ) -> int:
return (x * y) // greatest_common_divisor(a , a )
def _a ( a :int = 20 ) -> int:
a = 1
for i in range(1 , n + 1 ):
a = lcm(a , a )
return g
if __name__ == "__main__":
print(f"""{solution() = }""")
| 0 |
import math
def _a ( a :int ) -> list:
a = [True] * n
a = False
a = False
a = True
for i in range(3 , int(n**0.5 + 1 ) , 2 ):
a = i * 2
while index < n:
a = False
a = index + i
a = [2]
for i in range(3 , a , 2 ):
if is_prime[i]:
primes.append(a )
return primes
def _a ( a :int = 999_966_663_333 ) -> int:
a = math.floor(math.sqrt(a ) ) + 100
a = prime_sieve(a )
a = 0
a = 0
a = primes[prime_index]
while (last_prime**2) <= limit:
a = primes[prime_index + 1]
a = last_prime**2
a = next_prime**2
# Get numbers divisible by lps(current)
a = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
a = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
a = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
a = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 0 | 1 |
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
UpperCAmelCase__ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n"
class lowercase_ ( unittest.TestCase , lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->Tuple:
"""simple docstring"""
a = load_tool('''text-question-answering''' )
self.tool.setup()
a = load_tool('''text-question-answering''' , remote=__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
a = self.tool(__UpperCAmelCase , '''What did Hugging Face do in April 2021?''' )
self.assertEqual(__UpperCAmelCase , '''launched the BigScience Research Workshop''' )
def __lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
a = self.remote_tool(__UpperCAmelCase , '''What did Hugging Face do in April 2021?''' )
self.assertEqual(__UpperCAmelCase , '''launched the BigScience Research Workshop''' )
def __lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
a = self.tool(text=__UpperCAmelCase , question='''What did Hugging Face do in April 2021?''' )
self.assertEqual(__UpperCAmelCase , '''launched the BigScience Research Workshop''' )
def __lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
a = self.remote_tool(text=__UpperCAmelCase , question='''What did Hugging Face do in April 2021?''' )
self.assertEqual(__UpperCAmelCase , '''launched the BigScience Research Workshop''' )
| 0 |
def _a ( a :float , a :float ) -> float:
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f"""{price_plus_tax(100, 0.25) = }""")
print(f"""{price_plus_tax(125.50, 0.05) = }""")
| 0 | 1 |
import argparse
from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta
from transformers.utils import logging
logging.set_verbosity_info()
def _a ( a :Optional[int] , a :List[Any] , a :Union[str, Any] ) -> Tuple:
# Initialise PyTorch model
a = TaConfig.from_json_file(a )
print(F"""Building PyTorch model from configuration: {config}""" )
a = TaForConditionalGeneration(a )
# Load weights from tf checkpoint
load_tf_weights_in_ta(a , a , a )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(a )
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
UpperCAmelCase__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
| 0 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
a = SMALL_MODEL_IDENTIFIER
a = '''pt'''
a = '''tf'''
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str ) ->Union[str, Any]:
"""simple docstring"""
a = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ) ->List[str]:
"""simple docstring"""
a = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCAmelCase )
model_tf.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = '''mock_framework'''
# Framework provided - return whatever the user provides
a = FeaturesManager.determine_framework(self.test_model , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Both in environment -> use PyTorch
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# Both not in environment -> raise error
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
| 0 | 1 |
import datasets
from .evaluate import evaluate
UpperCAmelCase__ = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n"
UpperCAmelCase__ = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n"
UpperCAmelCase__ = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ ( datasets.Metric ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )},
'''references''': {
'''id''': datasets.Value('''string''' ),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
},
} ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , )
def __lowerCAmelCase ( self : str , __UpperCAmelCase : int , __UpperCAmelCase : List[Any] ) ->Optional[int]:
"""simple docstring"""
a = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
a = [
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
a = evaluate(dataset=__UpperCAmelCase , predictions=__UpperCAmelCase )
return score
| 0 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ProphetNetTokenizer
__snake_case = False
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
super().setUp()
a = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str ) ->Dict:
"""simple docstring"""
a = '''UNwant\u00E9d,running'''
a = '''unwanted, running'''
return input_text, output_text
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
a = self.tokenizer_class(self.vocab_file )
a = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
a = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
a = {}
for i, token in enumerate(__UpperCAmelCase ):
a = i
a = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
@require_torch
def __lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
a = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102]
a = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='''pt''' )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
a = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
a = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase )
assert encoded_sentence == text + [102]
assert encoded_pair == text + [102] + text_a + [102]
| 0 | 1 |
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
UpperCAmelCase__ = {"LayoutLMv2Config", "LayoutLMv3Config"}
@is_pipeline_test
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
__snake_case = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
__snake_case = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
__snake_case = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
__snake_case = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
a = pipeline(
task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' )
a = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] )
a = text_classifier('''This is great !''' , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}] )
a = text_classifier(['''This is great !''', '''This is bad'''] , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}],
[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}],
] , )
a = text_classifier('''This is great !''' , top_k=1 )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] )
# Legacy behavior
a = text_classifier('''This is great !''' , return_all_scores=__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] )
a = text_classifier('''This is great !''' , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}]] )
a = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}],
[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}],
] , )
a = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{'''label''': '''LABEL_0''', '''score''': 0.504},
{'''label''': '''LABEL_0''', '''score''': 0.504},
] , )
@require_torch
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
import torch
a = pipeline(
task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' , device=torch.device('''cpu''' ) , )
a = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] )
@require_tf
def __lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
a = pipeline(
task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''tf''' )
a = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] )
@slow
@require_torch
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
a = pipeline('''text-classification''' )
a = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] )
a = text_classifier('''This is bad !''' )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] )
a = text_classifier('''Birds are a type of animal''' )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] )
@slow
@require_tf
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
a = pipeline('''text-classification''' , framework='''tf''' )
a = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] )
a = text_classifier('''This is bad !''' )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] )
a = text_classifier('''Birds are a type of animal''' )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] )
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple ) ->str:
"""simple docstring"""
a = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str ) ->Optional[Any]:
"""simple docstring"""
a = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
a = '''HuggingFace is in'''
a = text_classifier(__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{'''label''': ANY(__UpperCAmelCase ), '''score''': ANY(__UpperCAmelCase )}] )
self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
a = ['''HuggingFace is in ''', '''Paris is in France''']
a = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{'''label''': ANY(__UpperCAmelCase ), '''score''': ANY(__UpperCAmelCase )}, {'''label''': ANY(__UpperCAmelCase ), '''score''': ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
a = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase )
a = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{'''label''': ANY(__UpperCAmelCase ), '''score''': ANY(__UpperCAmelCase )}] * N, [{'''label''': ANY(__UpperCAmelCase ), '''score''': ANY(__UpperCAmelCase )}] * N] , )
a = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''}
a = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {'''label''': ANY(__UpperCAmelCase ), '''score''': ANY(__UpperCAmelCase )} , )
self.assertTrue(outputs['''label'''] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
a = [['''HuggingFace is in ''', '''Paris is in France''']]
with self.assertRaises(__UpperCAmelCase ):
text_classifier(__UpperCAmelCase )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
a = text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{'''label''': ANY(__UpperCAmelCase ), '''score''': ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase__ = {
"configuration_nllb_moe": [
"NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",
"NllbMoeConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
"NllbMoeForConditionalGeneration",
"NllbMoeModel",
"NllbMoePreTrainedModel",
"NllbMoeTop2Router",
"NllbMoeSparseMLP",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 | 1 |
import unittest
import numpy as np
from transformers import DistilBertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.distilbert.modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
)
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple=13 , __UpperCAmelCase : Optional[int]=7 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : str=99 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : Any=5 , __UpperCAmelCase : List[str]=4 , __UpperCAmelCase : List[Any]=37 , __UpperCAmelCase : str="gelu" , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : Dict=512 , __UpperCAmelCase : List[Any]=16 , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Union[str, Any]=4 , ) ->str:
"""simple docstring"""
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def __lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__UpperCAmelCase , )
return config, input_ids, attention_mask
def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
a = self.prepare_config_and_inputs()
a , a , a = config_and_inputs
a = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(
FlaxDistilBertModel,
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __lowerCAmelCase ( self : Optional[int] ) ->Tuple:
"""simple docstring"""
a = FlaxDistilBertModelTester(self )
@slow
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained('''distilbert-base-uncased''' )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__UpperCAmelCase )
@require_flax
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
a = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' )
a = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] )
a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0]
a = (1, 11, 768)
self.assertEqual(output.shape , __UpperCAmelCase )
a = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1e-4 ) )
| 0 |
def _a ( a :int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
a = gray_code_sequence_string(a )
#
# convert them to integers
for i in range(len(a ) ):
a = int(sequence[i] , 2 )
return sequence
def _a ( a :int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
a = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
a = gray_code_sequence_string(bit_count - 1 )
a = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
a = '''0''' + smaller_sequence[i]
sequence.append(a )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
a = '''1''' + smaller_sequence[i]
sequence.append(a )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
UpperCAmelCase__ = get_logger(__name__)
UpperCAmelCase__ = Path(__file__).parent / "model_card_template.md"
UpperCAmelCase__ = uuida().hex
UpperCAmelCase__ = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES
UpperCAmelCase__ = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES
UpperCAmelCase__ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/"
def _a ( a :Union[Dict, str, None] = None ) -> str:
a = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}"""
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += F"""; torch/{_torch_version}"""
if is_flax_available():
ua += F"""; jax/{_jax_version}"""
ua += F"""; flax/{_flax_version}"""
if is_onnx_available():
ua += F"""; onnxruntime/{_onnxruntime_version}"""
# CI will set this value to True
if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(a , a ):
ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items() )
elif isinstance(a , a ):
ua += "; " + user_agent
return ua
def _a ( a :str , a :Optional[str] = None , a :Optional[str] = None ) -> Union[str, Any]:
if token is None:
a = HfFolder.get_token()
if organization is None:
a = whoami(a )['''name''']
return F"""{username}/{model_id}"""
else:
return F"""{organization}/{model_id}"""
def _a ( a :List[Any] , a :Tuple ) -> List[str]:
if not is_jinja_available():
raise ValueError(
'''Modelcard rendering is based on Jinja templates.'''
''' Please make sure to have `jinja` installed before using `create_model_card`.'''
''' To install it, please run `pip install Jinja2`.''' )
if hasattr(a , '''local_rank''' ) and args.local_rank not in [-1, 0]:
return
a = args.hub_token if hasattr(a , '''hub_token''' ) else None
a = get_full_repo_name(a , token=a )
a = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=a , model_name=a , repo_name=a , dataset_name=args.dataset_name if hasattr(a , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(a , '''gradient_accumulation_steps''' ) else None
) , adam_betaa=args.adam_betaa if hasattr(a , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(a , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(a , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(a , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(a , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(a , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(a , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(a , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(a , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , )
a = os.path.join(args.output_dir , '''README.md''' )
model_card.save(a )
def _a ( a :Optional[str] , a :Optional[str] = None ) -> Optional[int]:
if resolved_file is None or commit_hash is not None:
return commit_hash
a = str(Path(a ).as_posix() )
a = re.search(r'''snapshots/([^/]+)/''' , a )
if search is None:
return None
a = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(a ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
UpperCAmelCase__ = os.path.expanduser(
os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface"))
)
UpperCAmelCase__ = os.path.join(hf_cache_home, "diffusers")
def _a ( a :Optional[str] = None , a :Optional[str] = None ) -> None:
if new_cache_dir is None:
a = DIFFUSERS_CACHE
if old_cache_dir is None:
a = old_diffusers_cache
a = Path(a ).expanduser()
a = Path(a ).expanduser()
for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
a = new_cache_dir / old_blob_path.relative_to(a )
new_blob_path.parent.mkdir(parents=a , exist_ok=a )
os.replace(a , a )
try:
os.symlink(a , a )
except OSError:
logger.warning(
'''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
UpperCAmelCase__ = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt")
if not os.path.isfile(cache_version_file):
UpperCAmelCase__ = 0
else:
with open(cache_version_file) as f:
try:
UpperCAmelCase__ = int(f.read())
except ValueError:
UpperCAmelCase__ = 0
if cache_version < 1:
UpperCAmelCase__ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
"The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your "
"existing cached models. This is a one-time operation, you can interrupt it or run it "
"later by calling `diffusers.utils.hub_utils.move_cache()`."
)
try:
move_cache()
except Exception as e:
UpperCAmelCase__ = "\n".join(traceback.format_tb(e.__traceback__))
logger.error(
f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """
"file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole "
"message and we will do our best to help."
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, "w") as f:
f.write("1")
except Exception:
logger.warning(
f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """
"the directory exists and can be written to."
)
def _a ( a :str , a :Optional[str] = None ) -> str:
if variant is not None:
a = weights_name.split('''.''' )
a = splits[:-1] + [variant] + splits[-1:]
a = '''.'''.join(a )
return weights_name
def _a ( a :int , *,
a :Dict , a :Any , a :Tuple , a :List[Any] , a :Union[str, Any] , a :Any , a :str , a :Dict , a :str , a :str , a :List[str]=None , ) -> Any:
a = str(a )
if os.path.isfile(a ):
return pretrained_model_name_or_path
elif os.path.isdir(a ):
if os.path.isfile(os.path.join(a , a ) ):
# Load from a PyTorch checkpoint
a = os.path.join(a , a )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(a , a , a ) ):
a = os.path.join(a , a , a )
return model_file
else:
raise EnvironmentError(
F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(a ).base_version ) >= version.parse('''0.20.0''' )
):
try:
a = hf_hub_download(
a , filename=_add_variant(a , a ) , cache_dir=a , force_download=a , proxies=a , resume_download=a , local_files_only=a , use_auth_token=a , user_agent=a , subfolder=a , revision=revision or commit_hash , )
warnings.warn(
F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , a , )
return model_file
except: # noqa: E722
warnings.warn(
F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(a , a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(a , a )}' so that the correct variant file can be added.""" , a , )
try:
# 2. Load model file as usual
a = hf_hub_download(
a , filename=a , cache_dir=a , force_download=a , proxies=a , resume_download=a , local_files_only=a , use_auth_token=a , user_agent=a , subfolder=a , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """
'''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a '''
'''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli '''
'''login`.''' )
except RevisionNotFoundError:
raise EnvironmentError(
F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """
'''this model name. Check the model page at '''
F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" )
except EntryNotFoundError:
raise EnvironmentError(
F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" )
except HTTPError as err:
raise EnvironmentError(
F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" )
except ValueError:
raise EnvironmentError(
F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"""
F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"""
F""" directory containing a file named {weights_name} or"""
''' \nCheckout your internet connection or see how to run the library in'''
''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' )
except EnvironmentError:
raise EnvironmentError(
F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """
'''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. '''
F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """
F"""containing a file named {weights_name}""" )
| 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
# fmt: off
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
a = {
'''do_resize''': True,
'''size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
a = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] , **__UpperCAmelCase : List[Any] ) ->int:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] , **__UpperCAmelCase : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def __lowerCAmelCase ( self : str ) ->Dict:
"""simple docstring"""
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
a = self.get_tokenizer()
a = self.get_image_processor()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
a = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
a = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
a = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = self.prepare_image_inputs()
a = image_processor(__UpperCAmelCase , return_tensors='''np''' )
a = processor(images=__UpperCAmelCase , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = processor(text=__UpperCAmelCase )
a = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(__UpperCAmelCase ):
processor()
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__UpperCAmelCase )
a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 0 | 1 |
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = BartphoTokenizer
__snake_case = False
__snake_case = True
def __lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
super().setUp()
a = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']
a = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
a = {'''unk_token''': '''<unk>'''}
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] )
with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
for token in vocab_tokens:
fp.write(F"""{token} {vocab_tokens[token]}\n""" )
a = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def __lowerCAmelCase ( self : str , **__UpperCAmelCase : Any ) ->List[str]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : str , __UpperCAmelCase : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
a = '''This is a là test'''
a = '''This is a<unk><unk> test'''
return input_text, output_text
def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
a = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map )
a = '''This is a là test'''
a = '''▁This ▁is ▁a ▁l à ▁t est'''.split()
a = tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
a = tokens + [tokenizer.unk_token]
a = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
| 0 |
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def _a ( a :List[Any] ) -> Optional[int]:
a = []
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""",
F"""stage{idx}.patch_embed.proj.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""",
F"""stage{idx}.patch_embed.proj.bias""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""",
F"""stage{idx}.patch_embed.norm.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""",
F"""stage{idx}.patch_embed.norm.bias""",
) )
return embed
def _a ( a :List[Any] , a :Optional[int] ) -> Dict:
a = []
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj.bias""",
) )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") )
return attention_weights
def _a ( a :Any ) -> List[Any]:
a = []
token.append((F"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') )
return token
def _a ( ) -> Optional[int]:
a = []
head.append(('''layernorm.weight''', '''norm.weight''') )
head.append(('''layernorm.bias''', '''norm.bias''') )
head.append(('''classifier.weight''', '''head.weight''') )
head.append(('''classifier.bias''', '''head.bias''') )
return head
def _a ( a :Tuple , a :Optional[int] , a :List[Any] , a :Union[str, Any] ) -> Optional[int]:
a = '''imagenet-1k-id2label.json'''
a = 1_000
a = '''huggingface/label-files'''
a = num_labels
a = json.load(open(cached_download(hf_hub_url(a , a , repo_type='''dataset''' ) ) , '''r''' ) )
a = {int(a ): v for k, v in idalabel.items()}
a = idalabel
a = {v: k for k, v in idalabel.items()}
a = a = CvtConfig(num_labels=a , idalabel=a , labelaid=a )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13":
a = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21":
a = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
a = [2, 2, 20]
a = [3, 12, 16]
a = [192, 768, 1_024]
a = CvtForImageClassification(a )
a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' )
a = image_size
a = torch.load(a , map_location=torch.device('''cpu''' ) )
a = OrderedDict()
a = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
a = list_of_state_dict + cls_token(a )
a = list_of_state_dict + embeddings(a )
for cnt in range(config.depth[idx] ):
a = list_of_state_dict + attention(a , a )
a = list_of_state_dict + final()
for gg in list_of_state_dict:
print(a )
for i in range(len(a ) ):
a = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(a )
model.save_pretrained(a )
image_processor.save_pretrained(a )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
UpperCAmelCase__ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 0 | 1 |
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Optional[int] , __UpperCAmelCase : NestedDataStructureLike[PathLike] , __UpperCAmelCase : Optional[NamedSplit] = None , __UpperCAmelCase : Optional[Features] = None , __UpperCAmelCase : str = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : Any , ) ->str:
"""simple docstring"""
super().__init__(
__UpperCAmelCase , split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , )
a = field
a = path_or_paths if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else {self.split: path_or_paths}
a = Json(
cache_dir=__UpperCAmelCase , data_files=__UpperCAmelCase , features=__UpperCAmelCase , field=__UpperCAmelCase , **__UpperCAmelCase , )
def __lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
if self.streaming:
a = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
a = None
a = None
a = None
a = None
self.builder.download_and_prepare(
download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , )
a = self.builder.as_dataset(
split=self.split , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
class lowercase_ :
'''simple docstring'''
def __init__( self : List[str] , __UpperCAmelCase : Dataset , __UpperCAmelCase : Union[PathLike, BinaryIO] , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : List[Any] , ) ->int:
"""simple docstring"""
if num_proc is not None and num_proc <= 0:
raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" )
a = dataset
a = path_or_buf
a = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
a = num_proc
a = '''utf-8'''
a = to_json_kwargs
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
a = self.to_json_kwargs.pop('''path_or_buf''' , __UpperCAmelCase )
a = self.to_json_kwargs.pop('''orient''' , '''records''' )
a = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False )
a = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True )
a = self.to_json_kwargs.pop('''compression''' , __UpperCAmelCase )
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""" )
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with fsspec.open(self.path_or_buf , '''wb''' , compression=__UpperCAmelCase ) as buffer:
a = self._write(file_obj=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs )
else:
if compression:
raise NotImplementedError(
F"""The compression parameter is not supported when writing to a buffer, but compression={compression}"""
''' was passed. Please provide a local path instead.''' )
a = self._write(
file_obj=self.path_or_buf , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs )
return written
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Optional[Any] ) ->Dict:
"""simple docstring"""
a , a , a , a , a = args
a = query_table(
table=self.dataset.data , key=slice(__UpperCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , )
a = batch.to_pandas().to_json(
path_or_buf=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **__UpperCAmelCase )
if not json_str.endswith('''\n''' ):
json_str += "\n"
return json_str.encode(self.encoding )
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : BinaryIO , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Optional[Any] , ) ->int:
"""simple docstring"""
a = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ):
a = self._batch_json((offset, orient, lines, index, to_json_kwargs) )
written += file_obj.write(__UpperCAmelCase )
else:
a , a = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __UpperCAmelCase , __UpperCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ):
written += file_obj.write(__UpperCAmelCase )
return written
| 0 |
from __future__ import annotations
UpperCAmelCase__ = list[list[int]]
# assigning initial values to the grid
UpperCAmelCase__ = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
UpperCAmelCase__ = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _a ( a :Matrix , a :int , a :int , a :int ) -> bool:
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _a ( a :Matrix ) -> tuple[int, int] | None:
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def _a ( a :Matrix ) -> Matrix | None:
if location := find_empty_location(a ):
a , a = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(a , a , a , a ):
a = digit
if sudoku(a ) is not None:
return grid
a = 0
return None
def _a ( a :Matrix ) -> None:
for row in grid:
for cell in row:
print(a , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("\nExample grid:\n" + "=" * 20)
print_solution(example_grid)
print("\nExample grid solution:")
UpperCAmelCase__ = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("Cannot find a solution.")
| 0 | 1 |
def _a ( a :float , a :float ) -> float:
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f"""{price_plus_tax(100, 0.25) = }""")
print(f"""{price_plus_tax(125.50, 0.05) = }""")
| 0 |
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = KandinskyVaaPriorPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''', '''negative_prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''generator''',
'''num_inference_steps''',
'''latents''',
'''negative_prompt''',
'''guidance_scale''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
return 100
@property
def __lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 12,
'''embedding_dim''': self.text_embedder_hidden_size,
'''num_layers''': 1,
}
a = PriorTransformer(**__UpperCAmelCase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
a = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
a = CLIPVisionModelWithProjection(__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
a = CLIPImageProcessor(
crop_size=224 , do_center_crop=__UpperCAmelCase , do_normalize=__UpperCAmelCase , do_resize=__UpperCAmelCase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_image_encoder
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_image_processor
a = UnCLIPScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=__UpperCAmelCase , clip_sample_range=10.0 , )
a = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''scheduler''': scheduler,
'''image_processor''': image_processor,
}
return components
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str=0 ) ->int:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.image_embeds
a = pipe(
**self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0]
a = image[0, -10:]
a = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
a = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
a = False
self._test_inference_batch_single_identical(
test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
@skip_mps
def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = False
self._test_attention_slicing_forward_pass(
test_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
| 0 | 1 |