code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "▁" UpperCAmelCase__ = {"vocab_file": "sentencepiece.bpe.model"} UpperCAmelCase__ = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } UpperCAmelCase__ = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any]="<s>" , __UpperCAmelCase : Optional[int]="</s>" , __UpperCAmelCase : str="</s>" , __UpperCAmelCase : int="<s>" , __UpperCAmelCase : Union[str, Any]="<unk>" , __UpperCAmelCase : Optional[Any]="<pad>" , __UpperCAmelCase : str="<mask>" , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Any , ) ->None: """simple docstring""" a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) a = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token a = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a = 1 a = len(self.sp_model ) + self.fairseq_offset a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[str] ) ->Optional[int]: """simple docstring""" a = self.__dict__.copy() a = None a = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple , __UpperCAmelCase : Tuple ) ->Optional[Any]: """simple docstring""" a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a = [self.cls_token_id] a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self : str , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def __lowerCAmelCase ( self : Dict ) ->Tuple: """simple docstring""" a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Optional[int] ) ->Optional[int]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a = self.sp_model.PieceToId(__UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] ) ->Union[str, Any]: """simple docstring""" a = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = """realm""" def __init__(self : str , UpperCamelCase : List[Any]=30522 , UpperCamelCase : List[Any]=768 , UpperCamelCase : int=128 , UpperCamelCase : Any=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Union[str, Any]=3072 , UpperCamelCase : List[str]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : Dict=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : List[Any]=1E-12 , UpperCamelCase : Dict=256 , UpperCamelCase : Union[str, Any]=10 , UpperCamelCase : Optional[int]=1E-3 , UpperCamelCase : Tuple=5 , UpperCamelCase : Optional[int]=320 , UpperCamelCase : List[str]=13353718 , UpperCamelCase : Optional[Any]=5000 , UpperCamelCase : str=1 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[Any]=2 , **UpperCamelCase : int , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) # Common config lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = retriever_proj_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_candidates lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps # Reader config lowercase__ = span_hidden_size lowercase__ = max_span_width lowercase__ = reader_layer_norm_eps lowercase__ = reader_beam_size lowercase__ = reader_seq_len # Retrieval config lowercase__ = num_block_records lowercase__ = searcher_beam_size
2
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __A ( unittest.TestCase ): a__ : Union[str, Any] = StableDiffusionLDMaDPipeline a__ : str = TEXT_TO_IMAGE_PARAMS a__ : Dict = TEXT_TO_IMAGE_BATCH_PARAMS a__ : str = TEXT_TO_IMAGE_IMAGE_PARAMS def _lowercase (self : int ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ = CLIPTextModel(__a ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowercase (self : Any , __a : str , __a : Any=0 ): if str(__a ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(__a ) else: UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(__a ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowercase (self : List[str] ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionLDMaDPipeline(**__a ) UpperCAmelCase_ = ldmad_pipe.to(__a ) ldmad_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = self.get_dummy_inputs(__a ) UpperCAmelCase_ = ldmad_pipe(**__a ) UpperCAmelCase_ , UpperCAmelCase_ = output.rgb, output.depth UpperCAmelCase_ = rgb[0, -3:, -3:, -1] UpperCAmelCase_ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCAmelCase_ = np.array( [0.37_33_81_76, 0.7_02_47, 0.74_20_31_93, 0.51_64_36_04, 0.58_25_67_93, 0.60_93_21_36, 0.4_18_10_95, 0.48_35_58_77, 0.46_53_52_62] ) UpperCAmelCase_ = np.array([1_03.4_67_27, 85.81_20_04, 87.84_92_36] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionLDMaDPipeline(**__a ) UpperCAmelCase_ = ldmad_pipe.to(__a ) ldmad_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = self.get_dummy_inputs(__a ) UpperCAmelCase_ = 3 * [inputs["prompt"]] # forward UpperCAmelCase_ = ldmad_pipe(**__a ) UpperCAmelCase_ , UpperCAmelCase_ = output.rgb, output.depth UpperCAmelCase_ = rgb_slice_a[0, -3:, -3:, -1] UpperCAmelCase_ = depth_slice_a[0, -3:, -1] UpperCAmelCase_ = self.get_dummy_inputs(__a ) UpperCAmelCase_ = 3 * [inputs.pop("prompt" )] UpperCAmelCase_ = ldmad_pipe.tokenizer( __a , padding="max_length" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__a , return_tensors="pt" , ) UpperCAmelCase_ = text_inputs["input_ids"].to(__a ) UpperCAmelCase_ = ldmad_pipe.text_encoder(__a )[0] UpperCAmelCase_ = prompt_embeds # forward UpperCAmelCase_ = ldmad_pipe(**__a ) UpperCAmelCase_ , UpperCAmelCase_ = output.rgb, output.depth UpperCAmelCase_ = rgb_slice_a[0, -3:, -3:, -1] UpperCAmelCase_ = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = PNDMScheduler(skip_prk_steps=__a ) UpperCAmelCase_ = StableDiffusionLDMaDPipeline(**__a ) UpperCAmelCase_ = ldmad_pipe.to(__a ) ldmad_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = self.get_dummy_inputs(__a ) UpperCAmelCase_ = "french fries" UpperCAmelCase_ = ldmad_pipe(**__a , negative_prompt=__a ) UpperCAmelCase_ , UpperCAmelCase_ = output.rgb, output.depth UpperCAmelCase_ = rgb[0, -3:, -3:, -1] UpperCAmelCase_ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCAmelCase_ = np.array( [0.3_70_44, 0.71_81_15_03, 0.7_22_32_51, 0.48_60_36_75, 0.5_63_83_91, 0.6_36_49_48, 0.42_83_37_04, 0.4_90_13_15, 0.47_92_62_17] ) UpperCAmelCase_ = np.array([1_07.8_47_38, 84.6_28_02, 89.96_21_35] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class __A ( unittest.TestCase ): def _lowercase (self : str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : Union[str, Any] , __a : List[Any] , __a : int="cpu" , __a : Dict=torch.floataa , __a : Dict=0 ): UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(__a ) UpperCAmelCase_ = np.random.RandomState(__a ).standard_normal((1, 4, 64, 64) ) UpperCAmelCase_ = torch.from_numpy(__a ).to(device=__a , dtype=__a ) UpperCAmelCase_ = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase (self : Tuple ): UpperCAmelCase_ = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ) UpperCAmelCase_ = ldmad_pipe.to(__a ) ldmad_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = self.get_inputs(__a ) UpperCAmelCase_ = ldmad_pipe(**__a ) UpperCAmelCase_ , UpperCAmelCase_ = output.rgb, output.depth UpperCAmelCase_ = rgb[0, -3:, -3:, -1].flatten() UpperCAmelCase_ = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) UpperCAmelCase_ = np.array( [0.53_80_54_65, 0.56_70_73_05, 0.5_48_65_15, 0.57_01_22_36, 0.5_81_45_11, 0.56_25_34_87, 0.54_84_30_14, 0.55_09_22_63, 0.6_45_97_06] ) UpperCAmelCase_ = np.array( [0.9_26_37_81, 0.6_67_86_72, 0.5_48_65_15, 0.92_20_21_45, 0.67_83_11_35, 0.56_25_34_87, 0.9_24_16_94, 0.7_55_14_78, 0.6_45_97_06] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class __A ( unittest.TestCase ): def _lowercase (self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : int , __a : Union[str, Any] , __a : List[str]="cpu" , __a : List[str]=torch.floataa , __a : Tuple=0 ): UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(__a ) UpperCAmelCase_ = np.random.RandomState(__a ).standard_normal((1, 4, 64, 64) ) UpperCAmelCase_ = torch.from_numpy(__a ).to(device=__a , dtype=__a ) UpperCAmelCase_ = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase (self : Optional[int] ): UpperCAmelCase_ = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(__a ) ldmad_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = self.get_inputs(__a ) UpperCAmelCase_ = ldmad_pipe(**__a ) UpperCAmelCase_ , UpperCAmelCase_ = output.rgb, output.depth UpperCAmelCase_ = 0.49_55_86 UpperCAmelCase_ = 0.33_79_55_15 UpperCAmelCase_ = 1_12.4_85_18 UpperCAmelCase_ = 98.48_97_46 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def _lowercase (self : Any ): UpperCAmelCase_ = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(__a ) ldmad_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = self.get_inputs(__a ) UpperCAmelCase_ = ldmad_pipe(**__a ) UpperCAmelCase_ , UpperCAmelCase_ = output.rgb, output.depth UpperCAmelCase_ = 0.4_19_41_27 UpperCAmelCase_ = 0.35_37_55_86 UpperCAmelCase_ = 0.5_63_85_02 UpperCAmelCase_ = 0.34_68_61_03 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
1
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : int = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = """mvp""" lowerCAmelCase__ : Optional[Any] = ["""past_key_values"""] lowerCAmelCase__ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self : Any , UpperCamelCase : Optional[int]=50267 , UpperCamelCase : Tuple=1024 , UpperCamelCase : int=12 , UpperCamelCase : Tuple=4096 , UpperCamelCase : Dict=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Union[str, Any]=1024 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=1 , UpperCamelCase : int=0 , UpperCamelCase : int=2 , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=False , UpperCamelCase : int=100 , UpperCamelCase : Optional[Any]=800 , **UpperCamelCase : str , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = classifier_dropout lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = use_prompt lowercase__ = prompt_length lowercase__ = prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase ): lowercase__ = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " '''The config can simply be saved and uploaded again to be fixed.''' )
2
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : str = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class A ( __snake_case ): __magic_name__ = '''bert''' def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Optional[int] = vocab_size A : Optional[Any] = hidden_size A : List[Any] = num_hidden_layers A : List[str] = num_attention_heads A : Dict = hidden_act A : Optional[Any] = intermediate_size A : List[Any] = hidden_dropout_prob A : List[Any] = attention_probs_dropout_prob A : Optional[Any] = max_position_embeddings A : List[str] = type_vocab_size A : Dict = initializer_range A : str = layer_norm_eps A : int = position_embedding_type A : Dict = use_cache A : str = classifier_dropout class A ( __snake_case ): @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": A : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
3
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : List[str] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : int = DebertaVaTokenizer lowerCAmelCase__ : List[Any] = DebertaVaTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Tuple = True def UpperCamelCase__ (self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ = DebertaVaTokenizer(UpperCamelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = '''this is a test''' lowercase__ = '''this is a test''' return input_text, output_text def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''<pad>''' lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(UpperCamelCase ) , 30001 ) def UpperCamelCase__ (self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''This is a test''' lowercase__ = [13, 1, 4398, 25, 21, 1289] lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = DebertaVaTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # fmt: off lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DebertaVaTokenizer(UpperCamelCase ) lowercase__ = tokenizer.encode('''sequence builders''' ) lowercase__ = tokenizer.encode('''multi-sequence build''' ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase , ) @slow def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case ={ """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =[ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
4
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _SCREAMING_SNAKE_CASE (A ) -> Optional[Any]: """simple docstring""" lowercase__ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A , A ) def _SCREAMING_SNAKE_CASE (A ) -> List[str]: """simple docstring""" lowercase__ ,lowercase__ = emb.weight.shape lowercase__ = nn.Linear(A , A , bias=A ) lowercase__ = emb.weight.data return lin_layer def _SCREAMING_SNAKE_CASE (A , A="facebook/mbart-large-en-ro" , A=False , A=False ) -> Union[str, Any]: """simple docstring""" lowercase__ = torch.load(A , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A ) lowercase__ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowercase__ = MBartConfig.from_pretrained(A , vocab_size=A ) if mbart_aa and finetuned: lowercase__ = '''relu''' lowercase__ = state_dict['''decoder.embed_tokens.weight'''] lowercase__ = MBartForConditionalGeneration(A ) model.model.load_state_dict(A ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') lowerCamelCase : Any = parser.parse_args() lowerCamelCase : List[str] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
2
0
import itertools import string from collections.abc import Generator, Iterable def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Generator[tuple[str, ...], None, None]: """simple docstring""" _lowercase =iter(__snake_case ) while True: _lowercase =tuple(itertools.islice(__snake_case , __snake_case ) ) if not chunk: return yield chunk def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) _lowercase ='''''' if len(__snake_case ) < 2: return dirty for i in range(len(__snake_case ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__snake_case ) & 1: clean += "X" return clean def UpperCAmelCase_ ( __snake_case ) -> list[str]: """simple docstring""" _lowercase ='''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _lowercase =[] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__snake_case ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__snake_case ) return table def UpperCAmelCase_ ( __snake_case , __snake_case ) -> str: """simple docstring""" _lowercase =generate_table(__snake_case ) _lowercase =prepare_input(__snake_case ) _lowercase ='''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__snake_case , 2 ): _lowercase , _lowercase =divmod(table.index(__snake_case ) , 5 ) _lowercase , _lowercase =divmod(table.index(__snake_case ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def UpperCAmelCase_ ( __snake_case , __snake_case ) -> str: """simple docstring""" _lowercase =generate_table(__snake_case ) _lowercase ='''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__snake_case , 2 ): _lowercase , _lowercase =divmod(table.index(__snake_case ) , 5 ) _lowercase , _lowercase =divmod(table.index(__snake_case ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
5
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCamelCase : List[Any] = logging.getLogger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCamelCase : Any=-1 ): '''simple docstring''' lowercase__ = label_idx def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: lowercase__ = [] lowercase__ = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 lowercase__ = [] lowercase__ = [] else: lowercase__ = line.split(''' ''' ) words.append(splits[0] ) if len(UpperCamelCase ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) return examples def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(UpperCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase__ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(UpperCamelCase ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : List[Any] ): '''simple docstring''' super().__init__(label_idx=-2 ) def UpperCamelCase__ (self : List[Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def UpperCamelCase__ (self : Tuple , UpperCamelCase : int , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: for sentence in parse_incr(UpperCamelCase ): lowercase__ = [] lowercase__ = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(UpperCamelCase ) == len(UpperCamelCase ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 return examples def UpperCamelCase__ (self : Tuple , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for sentence in parse_incr(UpperCamelCase ): lowercase__ = preds_list[example_id] lowercase__ = '''''' for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(UpperCamelCase ) example_id += 1 def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
2
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : List[Any] = logging.get_logger(__name__) A : Union[str, Any] = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __A( a ): snake_case_ = '''deformable_detr''' snake_case_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _snake_case=True , _snake_case=None , _snake_case=3 , _snake_case=300 , _snake_case=1_024 , _snake_case=6 , _snake_case=1_024 , _snake_case=8 , _snake_case=6 , _snake_case=1_024 , _snake_case=8 , _snake_case=0.0 , _snake_case=True , _snake_case="relu" , _snake_case=256 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1.0 , _snake_case=True , _snake_case=False , _snake_case="sine" , _snake_case="resnet50" , _snake_case=True , _snake_case=False , _snake_case=4 , _snake_case=4 , _snake_case=4 , _snake_case=False , _snake_case=300 , _snake_case=False , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=1 , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=0.1 , _snake_case=0.25 , _snake_case=False , **_snake_case , ) -> Any: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __a = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_snake_case , _snake_case ): __a = backbone_config.get('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_snake_case ) __a = use_timm_backbone __a = backbone_config __a = num_channels __a = num_queries __a = max_position_embeddings __a = d_model __a = encoder_ffn_dim __a = encoder_layers __a = encoder_attention_heads __a = decoder_ffn_dim __a = decoder_layers __a = decoder_attention_heads __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = init_xavier_std __a = encoder_layerdrop __a = auxiliary_loss __a = position_embedding_type __a = backbone __a = use_pretrained_backbone __a = dilation # deformable attributes __a = num_feature_levels __a = encoder_n_points __a = decoder_n_points __a = two_stage __a = two_stage_num_proposals __a = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher __a = class_cost __a = bbox_cost __a = giou_cost # Loss coefficients __a = mask_loss_coefficient __a = dice_loss_coefficient __a = bbox_loss_coefficient __a = giou_loss_coefficient __a = eos_coefficient __a = focal_alpha __a = disable_custom_kernels super().__init__(is_encoder_decoder=_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return self.d_model def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __a = self.backbone_config.to_dict() __a = self.__class__.model_type return output
6
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = """megatron-bert""" def __init__(self : Tuple , UpperCamelCase : Optional[int]=29056 , UpperCamelCase : Optional[Any]=1024 , UpperCamelCase : Any=24 , UpperCamelCase : int=16 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : int="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=512 , UpperCamelCase : int=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Dict=1E-12 , UpperCamelCase : List[Any]=0 , UpperCamelCase : Optional[int]="absolute" , UpperCamelCase : List[Any]=True , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache
2
0
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowercase_ = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) lowercase_ = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) lowercase_ = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) lowercase_ = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) lowercase_ = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) lowercase_ = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) lowercase_ = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def _snake_case( ) -> List[str]: '''simple docstring''' A__ , A__ = randrange(len(SCREAMING_SNAKE_CASE__ ) ), randrange(len(SCREAMING_SNAKE_CASE__ ) ) A__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] A__ , A__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _snake_case( SCREAMING_SNAKE_CASE__ : int = 100 ) -> str: '''simple docstring''' return (generate_random_hand() for _ in range(SCREAMING_SNAKE_CASE__ )) @pytest.mark.parametrize('hand, expected' , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ) -> int: '''simple docstring''' assert PokerHand(SCREAMING_SNAKE_CASE__ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> str: '''simple docstring''' assert PokerHand(SCREAMING_SNAKE_CASE__ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: '''simple docstring''' A__ = PokerHand(SCREAMING_SNAKE_CASE__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> Tuple: '''simple docstring''' assert PokerHand(SCREAMING_SNAKE_CASE__ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: '''simple docstring''' assert PokerHand(SCREAMING_SNAKE_CASE__ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' assert PokerHand(SCREAMING_SNAKE_CASE__ ).compare_with(PokerHand(SCREAMING_SNAKE_CASE__ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: '''simple docstring''' assert PokerHand(SCREAMING_SNAKE_CASE__ ).compare_with(PokerHand(SCREAMING_SNAKE_CASE__ ) ) == expected def _snake_case( ) -> Optional[int]: '''simple docstring''' A__ = [PokerHand(SCREAMING_SNAKE_CASE__ ) for hand in SORTED_HANDS] A__ = poker_hands.copy() shuffle(SCREAMING_SNAKE_CASE__ ) A__ = chain(sorted(SCREAMING_SNAKE_CASE__ ) ) for index, hand in enumerate(SCREAMING_SNAKE_CASE__ ): assert hand == poker_hands[index] def _snake_case( ) -> List[str]: '''simple docstring''' A__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=SCREAMING_SNAKE_CASE__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _snake_case( ) -> str: '''simple docstring''' A__ = PokerHand('2C 4S AS 3D 5C' ) A__ = True A__ = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _snake_case( ) -> List[str]: '''simple docstring''' A__ = 0 A__ = os.path.abspath(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ) A__ = os.path.join(SCREAMING_SNAKE_CASE__ , 'poker_hands.txt' ) with open(SCREAMING_SNAKE_CASE__ ) as file_hand: for line in file_hand: A__ = line[:14].strip() A__ = line[15:].strip() A__ , A__ = PokerHand(SCREAMING_SNAKE_CASE__ ), PokerHand(SCREAMING_SNAKE_CASE__ ) A__ = player.compare_with(SCREAMING_SNAKE_CASE__ ) if output == "Win": answer += 1 assert answer == 376
7
'''simple docstring''' # Lint as: python3 import itertools import os import re lowerCamelCase : Any = re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCamelCase : str = re.compile(R'([a-z\d])([A-Z])') lowerCamelCase : Optional[int] = re.compile(R'(?<!_)_(?!_)') lowerCamelCase : List[Any] = re.compile(R'(_{2,})') lowerCamelCase : str = R'^\w+(\.\w+)*$' lowerCamelCase : Dict = R'<>:/\|?*' def _SCREAMING_SNAKE_CASE (A ) -> Any: """simple docstring""" lowercase__ = _uppercase_uppercase_re.sub(R'''\1_\2''' , A ) lowercase__ = _lowercase_uppercase_re.sub(R'''\1_\2''' , A ) return name.lower() def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" lowercase__ = _single_underscore_re.split(A ) lowercase__ = [_multiple_underscores_re.split(A ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A ) if n != '''''' ) def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , A ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(A )}-{split}" def _SCREAMING_SNAKE_CASE (A , A , A , A=None ) -> List[str]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) if filetype_suffix: prefix += f".{filetype_suffix}" lowercase__ = os.path.join(A , A ) return f"{filepath}*" def _SCREAMING_SNAKE_CASE (A , A , A , A=None , A=None ) -> Optional[Any]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) lowercase__ = os.path.join(A , A ) if shard_lengths: lowercase__ = len(A ) lowercase__ = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(A )] if filetype_suffix: lowercase__ = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: lowercase__ = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
2
0
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCAmelCase_ = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_28, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCAmelCase_ = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_55, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCAmelCase_ = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_55) lowerCAmelCase_ = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) lowerCAmelCase_ = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions lowerCAmelCase_ = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) lowerCAmelCase_ = tf.keras.preprocessing.image.img_to_array(test_image) lowerCAmelCase_ = np.expand_dims(test_image, axis=0) lowerCAmelCase_ = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCAmelCase_ = '''Normal''' if result[0][0] == 1: lowerCAmelCase_ = '''Abnormality detected'''
8
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __lowerCAmelCase : '''simple docstring''' def __init__(self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : str=True , UpperCamelCase : Tuple=False , UpperCamelCase : str=True , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Any=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Tuple=30 , UpperCamelCase : str=0 , UpperCamelCase : Tuple=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : str=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = decoder_seq_length # For common tests lowercase__ = self.decoder_seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_model lowercase__ = decoder_layers lowercase__ = decoder_layers lowercase__ = decoder_ffn_dim lowercase__ = decoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = eos_token_id lowercase__ = bos_token_id lowercase__ = pad_token_id lowercase__ = decoder_start_token_id lowercase__ = use_cache lowercase__ = max_position_embeddings lowercase__ = None lowercase__ = decoder_seq_length lowercase__ = 2 lowercase__ = 1 def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , ): '''simple docstring''' lowercase__ = True lowercase__ = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval() lowercase__ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) lowercase__ = model(UpperCamelCase ) lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) lowercase__ = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowercase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ = model(UpperCamelCase )['''last_hidden_state'''] lowercase__ = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state'''] # select random slice lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowercase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class __lowerCAmelCase (lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase__ : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase__ : Optional[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[str] = False def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass
2
0
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __lowerCAmelCase : Optional[Any] ='base_with_context' def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) __SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=lowercase__ ) for lyr_num, lyr in enumerate(model.encoders ): __SCREAMING_SNAKE_CASE : str = weights[F'''layers_{lyr_num}'''] __SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) __SCREAMING_SNAKE_CASE : List[Any] = ly_weight['''attention'''] __SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) __SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=lowercase__ ) for lyr_num, lyr in enumerate(model.encoders ): __SCREAMING_SNAKE_CASE : List[str] = weights[F'''layers_{lyr_num}'''] __SCREAMING_SNAKE_CASE : int = ly_weight['''attention'''] __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): __SCREAMING_SNAKE_CASE : Dict = weights[F'''layers_{lyr_num}'''] __SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = ly_weight['''self_attention'''] __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Optional[int] = ly_weight['''MultiHeadDotProductAttention_0'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Any = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) __SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) __SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Any = checkpoints.load_tax_checkpoint(args.checkpoint_path ) __SCREAMING_SNAKE_CASE : List[Any] = jnp.tree_util.tree_map(onp.array , lowercase__ ) __SCREAMING_SNAKE_CASE : str = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] __SCREAMING_SNAKE_CASE : Dict = os.path.join(args.checkpoint_path , '''..''' , '''config.gin''' ) __SCREAMING_SNAKE_CASE : Tuple = inference.parse_training_gin_file(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = inference.InferenceModel(args.checkpoint_path , lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' , variance_type='''fixed_large''' ) __SCREAMING_SNAKE_CASE : List[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) __SCREAMING_SNAKE_CASE : str = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['''targets_context'''] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) __SCREAMING_SNAKE_CASE : Any = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['''targets_context'''] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) __SCREAMING_SNAKE_CASE : int = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''] , lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''] , lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = load_decoder(ta_checkpoint['''target''']['''decoder'''] , lowercase__ ) __SCREAMING_SNAKE_CASE : int = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) __SCREAMING_SNAKE_CASE : Dict = SpectrogramDiffusionPipeline( notes_encoder=lowercase__ , continuous_encoder=lowercase__ , decoder=lowercase__ , scheduler=lowercase__ , melgan=lowercase__ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=f"""{MODEL}/checkpoint_500000""", type=str, required=False, help='Path to the original jax model checkpoint.', ) __lowerCAmelCase : Tuple =parser.parse_args() main(args)
9
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" if not isinstance(A , A ): raise TypeError('''only integers accepted as input''' ) else: lowercase__ = str(abs(A ) ) lowercase__ = [list(A ) for char in range(len(A ) )] for index in range(len(A ) ): num_transpositions[index].pop(A ) return max( int(''''''.join(list(A ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
2
0
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =tf.convert_to_tensor( [ [ 8.222_0991, # 3rd highest value; idx. 0 -0.562_0044, 5.2322_9752, 4.038_6393, -6.879_8378, -0.5478_5802, -3.201_2153, 2.9277_7176, 1.8817_1953, 7.3534_1276, # 5th highest value; idx. 9 8.4320_7833, # 2nd highest value; idx. 10 -9.8571_1836, -5.9620_9236, -1.1303_9161, -7.111_5294, -0.836_9633, -5.318_6408, 7.0642_7407, 0.8136_9344, -0.8202_3817, -5.917_9796, 0.5881_3443, -6.9977_8438, 4.7155_1189, -0.1877_1637, 7.4402_0759, # 4th highest value; idx. 25 9.3845_0987, # 1st highest value; idx. 26 2.1266_2941, -9.3256_2038, 2.3565_2522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5842_5518, 4.5313_9238, -5.5751_0464, -6.2803_0699, -7.1952_9503, -4.0212_2551, 1.3933_7037, -6.0670_7057, 1.5948_0517, -9.64_3119, 0.0390_7799, 0.6723_1762, -8.8820_6726, 6.2711_5922, # 4th highest value; idx. 13 2.2852_0723, 4.8276_7506, 4.3042_1368, 8.827_5313, # 2nd highest value; idx. 17 5.4402_9958, # 5th highest value; idx. 18 -4.473_5794, 7.3857_9536, # 3rd highest value; idx. 20 -2.9105_1663, 2.6194_6077, -2.567_4762, -9.4895_9302, -4.0292_2645, -1.3541_6918, 9.6770_2323, # 1st highest value; idx. 27 -5.8947_8553, 1.8537_0467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) lowerCamelCase__: List[Any] =tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above lowerCamelCase__: str =tf.convert_to_tensor( [8.22_2099, 7.353_4126, 8.43_2078, 7.440_2075, 9.3_8451, 6.27_1159, 8.82_7531, 5.440_2995, 7.385_7956, 9.67_7023] , dtype=tf.floataa , ) # expected non filtered values as noted above lowerCamelCase__: Any =tf_top_k_top_p_filtering(UpperCAmelCase_ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4) lowerCamelCase__: List[str] =output[output != -float("inf")] lowerCamelCase__: List[Any] =tf.cast( tf.where(tf.not_equal(UpperCAmelCase_ , tf.constant(-float("inf") , dtype=tf.floataa))) , dtype=tf.intaa , ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-1_2) tf.debugging.assert_equal(UpperCAmelCase_ , UpperCAmelCase_) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase_ = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") lowerCamelCase__: Any =2 lowerCamelCase__: List[Any] =2 class _SCREAMING_SNAKE_CASE ( tf.Module ): '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : Dict) ->Union[str, Any]: '''simple docstring''' super(UpperCAmelCase_ , self).__init__() lowerCamelCase__: Union[str, Any] =model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids"), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask"), ) , jit_compile=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any) ->int: '''simple docstring''' lowerCamelCase__: Any =self.model.generate( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , max_new_tokens=UpperCAmelCase_ , return_dict_in_generate=UpperCAmelCase_ , ) return {"sequences": outputs["sequences"]} lowerCamelCase__: Dict =[[2, 0], [102, 103]] lowerCamelCase__: List[Any] =[[1, 0], [1, 1]] lowerCamelCase__: Union[str, Any] =DummyModel(model=UpperCAmelCase_) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCAmelCase_ , UpperCAmelCase_ , signatures={"serving_default": dummy_model.serving}) lowerCamelCase__: Tuple =tf.saved_model.load(UpperCAmelCase_).signatures["serving_default"] for batch_size in range(1 , len(UpperCAmelCase_) + 1): lowerCamelCase__: Optional[Any] ={ "input_ids": tf.constant(dummy_input_ids[:batch_size]), "attention_mask": tf.constant(dummy_attention_masks[:batch_size]), } lowerCamelCase__: int =serving_func(**UpperCAmelCase_)["sequences"] lowerCamelCase__: int =test_model.generate(**UpperCAmelCase_ , max_new_tokens=UpperCAmelCase_) tf.debugging.assert_equal(UpperCAmelCase_ , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") lowerCamelCase__: Tuple =1 lowerCamelCase__: int =2 class _SCREAMING_SNAKE_CASE ( tf.Module ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Tuple: '''simple docstring''' super(UpperCAmelCase_ , self).__init__() lowerCamelCase__: str =model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids"), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask"), ) , jit_compile=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Dict =self.model.generate( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , max_new_tokens=UpperCAmelCase_ , return_dict_in_generate=UpperCAmelCase_ , ) return {"sequences": outputs["sequences"]} lowerCamelCase__: Dict =[[2], [102, 103]] lowerCamelCase__: Tuple =[[1], [1, 1]] lowerCamelCase__: List[str] =DummyModel(model=UpperCAmelCase_) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCAmelCase_ , UpperCAmelCase_ , signatures={"serving_default": dummy_model.serving}) lowerCamelCase__: Dict =tf.saved_model.load(UpperCAmelCase_).signatures["serving_default"] for input_row in range(len(UpperCAmelCase_)): lowerCamelCase__: Optional[Any] ={ "input_ids": tf.constant([dummy_input_ids[input_row]]), "attention_mask": tf.constant([dummy_attention_masks[input_row]]), } lowerCamelCase__: List[Any] =serving_func(**UpperCAmelCase_)["sequences"] lowerCamelCase__: Optional[Any] =test_model.generate(**UpperCAmelCase_ , max_new_tokens=UpperCAmelCase_) tf.debugging.assert_equal(UpperCAmelCase_ , UpperCAmelCase_) @slow @require_tensorflow_text def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=UpperCAmelCase_) class _SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Optional[int]) ->Optional[int]: '''simple docstring''' super().__init__() lowerCamelCase__: Dict =text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(UpperCAmelCase_ , "spiece.model") , "rb").read()) lowerCamelCase__: Dict =TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5") def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =self.tokenizer.tokenize(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: Dict =text.pad_model_inputs( UpperCAmelCase_ , max_seq_length=64 , pad_value=self.model.config.pad_token_id) lowerCamelCase__: Dict =self.model.generate(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) return self.tokenizer.detokenize(UpperCAmelCase_) lowerCamelCase__: int =CompleteSentenceTransformer() lowerCamelCase__: Dict =tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs") lowerCamelCase__: Optional[Any] =complete_model(UpperCAmelCase_) lowerCamelCase__: Optional[int] =tf.keras.Model(UpperCAmelCase_ , UpperCAmelCase_) keras_model.save(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->int: '''simple docstring''' lowerCamelCase__: str ={ "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } lowerCamelCase__: Any =14 lowerCamelCase__: Tuple =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") lowerCamelCase__: int ="Hello, my dog is cute and" lowerCamelCase__: Optional[int] =tokenizer(UpperCAmelCase_ , return_tensors="tf") lowerCamelCase__: Tuple =TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") lowerCamelCase__: Union[str, Any] =638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): tf.random.set_seed(0) lowerCamelCase__: int =model.generate(**UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_) self.assertTrue(expectation == len(generated_tokens[0])) lowerCamelCase__: List[str] =[638, 198] with tf.device(":/CPU:0"): tf.random.set_seed(0) lowerCamelCase__: Dict =model.generate(**UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_) self.assertTrue(expectation == len(generated_tokens[0])) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Tuple =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") lowerCamelCase__: Optional[int] ="Hugging Face is a technology company based in New York and Paris." lowerCamelCase__: Any =bart_tokenizer(UpperCAmelCase_ , return_tensors="tf").input_ids lowerCamelCase__: Optional[int] =TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart") lowerCamelCase__: Optional[int] =bart_model.generate(UpperCAmelCase_).numpy() class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : int) ->Any: '''simple docstring''' return super().call(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[Any] =FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart") lowerCamelCase__: Union[str, Any] =bart_model.generate(UpperCAmelCase_ , foo="bar").numpy() self.assertTrue(np.array_equal(UpperCAmelCase_ , UpperCAmelCase_)) class _SCREAMING_SNAKE_CASE ( bart_model.model.encoder.__class__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any]) ->Optional[int]: '''simple docstring''' return super().call(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =FakeEncoder(bart_model.config , bart_model.model.shared) lowerCamelCase__: int =fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowerCamelCase__: Any =bart_model.generate(UpperCAmelCase_).numpy() with self.assertRaises(UpperCAmelCase_): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(UpperCAmelCase_ , foo="bar")
10
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase : str = Mapping[str, np.ndarray] lowerCamelCase : List[Any] = Mapping[str, Any] # Is a nested dict. lowerCamelCase : Any = 0.0_1 @dataclasses.dataclass(frozen=lowercase_ ) class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCAmelCase__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCAmelCase__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCAmelCase__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCAmelCase__ : Optional[str] = None # Templates used to generate this protein (prediction-only) lowerCAmelCase__ : Optional[Sequence[str]] = None # Chain corresponding to each parent lowerCAmelCase__ : Optional[Sequence[int]] = None def _SCREAMING_SNAKE_CASE (A ) -> Protein: """simple docstring""" lowercase__ = R'''(\[[A-Z]+\]\n)''' lowercase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0] lowercase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) lowercase__ = ["N", "CA", "C"] lowercase__ = None lowercase__ = None lowercase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ = g[1][0].strip() for i in range(len(A ) ): if seq[i] not in residue_constants.restypes: lowercase__ = '''X''' # FIXME: strings are immutable lowercase__ = np.array( [residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ = [] for axis in range(3 ): tertiary.append(list(map(A , g[1][axis].split() ) ) ) lowercase__ = np.array(A ) lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) lowercase__ = np.zeros( ( len(A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , ) def _SCREAMING_SNAKE_CASE (A , A = 0 ) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) lowercase__ = prot.parents lowercase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ = [p for i, p in zip(A , A ) if i == chain_id] if parents is None or len(A ) == 0: lowercase__ = ['''N/A'''] pdb_headers.append(f"PARENT {' '.join(A )}" ) return pdb_headers def _SCREAMING_SNAKE_CASE (A , A ) -> str: """simple docstring""" lowercase__ = [] lowercase__ = pdb_str.split('''\n''' ) lowercase__ = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) lowercase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase__ = [] if prot.parents_chain_index is not None: lowercase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(A ) , [] ) parent_dict[str(A )].append(A ) lowercase__ = max([int(A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ = parent_dict.get(str(A ) , ['''N/A'''] ) parents_per_chain.append(A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ = [['''N/A''']] def make_parent_line(A ) -> str: return f"PARENT {' '.join(A )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ = 0 for i, l in enumerate(A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(A ): lowercase__ = parents_per_chain[chain_counter] else: lowercase__ = ['''N/A'''] out_pdb_lines.append(make_parent_line(A ) ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> str: """simple docstring""" lowercase__ = residue_constants.restypes + ['''X'''] def res_atoa(A ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) lowercase__ = residue_constants.atom_types lowercase__ = [] lowercase__ = prot.atom_mask lowercase__ = prot.aatype lowercase__ = prot.atom_positions lowercase__ = prot.residue_index.astype(np.intaa ) lowercase__ = prot.b_factors lowercase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) lowercase__ = get_pdb_headers(A ) if len(A ) > 0: pdb_lines.extend(A ) lowercase__ = aatype.shape[0] lowercase__ = 1 lowercase__ = 0 lowercase__ = string.ascii_uppercase lowercase__ = None # Add all atom sites. for i in range(A ): lowercase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase__ = '''ATOM''' lowercase__ = atom_name if len(A ) == 4 else f" {atom_name}" lowercase__ = '''''' lowercase__ = '''''' lowercase__ = 1.00 lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ = '''''' lowercase__ = '''A''' if chain_index is not None: lowercase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(A ) atom_index += 1 lowercase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ = True lowercase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ = '''TER''' lowercase__ = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(A , A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _SCREAMING_SNAKE_CASE (A , A , A = None , A = None , A = None , A = None , A = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
2
0
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
11
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A , A ) -> list[list[int]]: """simple docstring""" lowercase__ = [] create_all_state(1 , A , A , [] , A ) return result def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def _SCREAMING_SNAKE_CASE (A ) -> None: """simple docstring""" for i in total_list: print(*A ) if __name__ == "__main__": lowerCamelCase : Tuple = 4 lowerCamelCase : Union[str, Any] = 2 lowerCamelCase : Dict = generate_all_combinations(n, k) print_all_state(total_list)
2
0
# Lint as: python3 import itertools import os import re UpperCAmelCase_ = re.compile(r'([A-Z]+)([A-Z][a-z])') UpperCAmelCase_ = re.compile(r'([a-z\d])([A-Z])') UpperCAmelCase_ = re.compile(r'(?<!_)_(?!_)') UpperCAmelCase_ = re.compile(r'(_{2,})') UpperCAmelCase_ = r'^\w+(\.\w+)*$' UpperCAmelCase_ = r'<>:/\|?*' def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' __lowerCamelCase = _uppercase_uppercase_re.sub(R"""\1_\2""" , A__ ) __lowerCamelCase = _lowercase_uppercase_re.sub(R"""\1_\2""" , A__ ) return name.lower() def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = _single_underscore_re.split(A__ ) __lowerCamelCase = [_multiple_underscores_re.split(A__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A__ ) if n != """""" ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' if os.path.basename(A__ ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) return camelcase_to_snakecase(A__ ) def lowerCamelCase__ ( A__ : Dict , A__ : Dict ): '''simple docstring''' if os.path.basename(A__ ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) if not re.match(_split_re , A__ ): raise ValueError(f'Split name should match \'{_split_re}\'\' but got \'{split}\'.' ) return f'{filename_prefix_for_name(A__ )}-{split}' def lowerCamelCase__ ( A__ : int , A__ : Tuple , A__ : Optional[Any] , A__ : str=None ): '''simple docstring''' __lowerCamelCase = filename_prefix_for_split(A__ , A__ ) if filetype_suffix: prefix += f'.{filetype_suffix}' __lowerCamelCase = os.path.join(A__ , A__ ) return f'{filepath}*' def lowerCamelCase__ ( A__ : List[str] , A__ : List[Any] , A__ : int , A__ : int=None , A__ : Any=None ): '''simple docstring''' __lowerCamelCase = filename_prefix_for_split(A__ , A__ ) __lowerCamelCase = os.path.join(A__ , A__ ) if shard_lengths: __lowerCamelCase = len(A__ ) __lowerCamelCase = [f'{prefix}-{shard_id:05d}-of-{num_shards:05d}' for shard_id in range(A__ )] if filetype_suffix: __lowerCamelCase = [filename + f'.{filetype_suffix}' for filename in filenames] return filenames else: __lowerCamelCase = prefix if filetype_suffix: filename += f'.{filetype_suffix}' return [filename]
12
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCamelCase : Optional[Any] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowerCamelCase : Tuple = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowerCamelCase : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowerCamelCase : Any = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowerCamelCase : Tuple = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowerCamelCase : Optional[int] = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowerCamelCase : Dict = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ ,lowercase__ = randrange(len(A ) ), randrange(len(A ) ) lowercase__ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowercase__ ,lowercase__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE (A = 100 ) -> str: """simple docstring""" return (generate_random_hand() for _ in range(A )) @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]: """simple docstring""" assert PokerHand(A )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Any: """simple docstring""" lowercase__ = PokerHand(A ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple: """simple docstring""" assert PokerHand(A )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected def _SCREAMING_SNAKE_CASE () -> Tuple: """simple docstring""" lowercase__ = [PokerHand(A ) for hand in SORTED_HANDS] lowercase__ = poker_hands.copy() shuffle(A ) lowercase__ = chain(sorted(A ) ) for index, hand in enumerate(A ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE () -> List[Any]: """simple docstring""" lowercase__ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=A ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE () -> int: """simple docstring""" lowercase__ = PokerHand('''2C 4S AS 3D 5C''' ) lowercase__ = True lowercase__ = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ = 0 lowercase__ = os.path.abspath(os.path.dirname(A ) ) lowercase__ = os.path.join(A , '''poker_hands.txt''' ) with open(A ) as file_hand: for line in file_hand: lowercase__ = line[:14].strip() lowercase__ = line[15:].strip() lowercase__ ,lowercase__ = PokerHand(A ), PokerHand(A ) lowercase__ = player.compare_with(A ) if output == "Win": answer += 1 assert answer == 376
2
0
from __future__ import annotations import os from typing import Any import requests lowerCAmelCase : Tuple = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowerCAmelCase : Union[str, Any] = BASE_URL + """/user""" # https://github.com/settings/tokens lowerCAmelCase : Dict = os.environ.get("""USER_TOKEN""", """""") def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple = { "Authorization": f"token {auth_token}", "Accept": "application/vnd.github.v3+json", } return requests.get(_UpperCAmelCase , headers=_UpperCAmelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
13
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCamelCase : str = parser.parse_args() if args.model_type == "bert": lowerCamelCase : List[Any] = BertForMaskedLM.from_pretrained(args.model_name) lowerCamelCase : Any = 'bert' else: raise ValueError('args.model_type should be "bert".') lowerCamelCase : int = model.state_dict() lowerCamelCase : int = {} for w in ["word_embeddings", "position_embeddings"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] lowerCamelCase : Tuple = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] lowerCamelCase : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] lowerCamelCase : Tuple = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] lowerCamelCase : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] lowerCamelCase : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] lowerCamelCase : Any = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 lowerCamelCase : Optional[int] = state_dict['cls.predictions.decoder.weight'] lowerCamelCase : str = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: lowerCamelCase : str = state_dict[f"""cls.predictions.transform.dense.{w}"""] lowerCamelCase : Any = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
2
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
14
'''simple docstring''' from ....utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=2048 ): '''simple docstring''' lowercase__ = config.__dict__ lowercase__ = modal_hidden_size if num_labels: lowercase__ = num_labels
2
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 SCREAMING_SNAKE_CASE :Union[str, Any] = get_tests_dir('fixtures') class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): # A mock response for an HTTP head request to emulate server down __A = mock.Mock() __A = 5_00 __A = {} __A = HTTPError __A = {} # Download this model to make sure it's in the cache. __A = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" ,return_value=A ) as mock_head: __A = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase_ ( self : Optional[int] ): # This test is for deprecated behavior and can be removed in v5 __A = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase_ ( cls : List[str] ): __A = TOKEN HfFolder.save_token(A ) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] ): try: delete_repo(token=cls._token ,repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def UpperCamelCase_ ( self : Dict ): __A = WavaVecaFeatureExtractor.from_pretrained(A ) feature_extractor.push_to_hub("test-feature-extractor" ,use_auth_token=self._token ) __A = WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A ,getattr(A ,A ) ) # Reset repo delete_repo(token=self._token ,repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A ,repo_id="test-feature-extractor" ,push_to_hub=A ,use_auth_token=self._token ) __A = WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A ,getattr(A ,A ) ) def UpperCamelCase_ ( self : Optional[Any] ): __A = WavaVecaFeatureExtractor.from_pretrained(A ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" ,use_auth_token=self._token ) __A = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A ,getattr(A ,A ) ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A ,repo_id="valid_org/test-feature-extractor-org" ,push_to_hub=A ,use_auth_token=self._token ) __A = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A ,getattr(A ,A ) ) def UpperCamelCase_ ( self : Tuple ): CustomFeatureExtractor.register_for_auto_class() __A = CustomFeatureExtractor.from_pretrained(A ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map ,{"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} ,) __A = AutoFeatureExtractor.from_pretrained( f'''{USER}/test-dynamic-feature-extractor''' ,trust_remote_code=A ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ ,"CustomFeatureExtractor" )
15
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Dict = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Tuple = """cvt""" def __init__(self : int , UpperCamelCase : List[Any]=3 , UpperCamelCase : int=[7, 3, 3] , UpperCamelCase : str=[4, 2, 2] , UpperCamelCase : Dict=[2, 1, 1] , UpperCamelCase : Dict=[64, 192, 384] , UpperCamelCase : Dict=[1, 3, 6] , UpperCamelCase : Dict=[1, 2, 10] , UpperCamelCase : Any=[4.0, 4.0, 4.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : int=[0.0, 0.0, 0.1] , UpperCamelCase : Any=[True, True, True] , UpperCamelCase : int=[False, False, True] , UpperCamelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase : Optional[int]=[3, 3, 3] , UpperCamelCase : Tuple=[1, 1, 1] , UpperCamelCase : Any=[2, 2, 2] , UpperCamelCase : Dict=[1, 1, 1] , UpperCamelCase : List[str]=[1, 1, 1] , UpperCamelCase : str=0.02 , UpperCamelCase : int=1E-12 , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) lowercase__ = num_channels lowercase__ = patch_sizes lowercase__ = patch_stride lowercase__ = patch_padding lowercase__ = embed_dim lowercase__ = num_heads lowercase__ = depth lowercase__ = mlp_ratio lowercase__ = attention_drop_rate lowercase__ = drop_rate lowercase__ = drop_path_rate lowercase__ = qkv_bias lowercase__ = cls_token lowercase__ = qkv_projection_method lowercase__ = kernel_qkv lowercase__ = padding_kv lowercase__ = stride_kv lowercase__ = padding_q lowercase__ = stride_q lowercase__ = initializer_range lowercase__ = layer_norm_eps
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCamelCase : Any = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCamelCase : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCamelCase : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) lowerCamelCase : List[Any] = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) lowerCamelCase : List[str] = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions lowerCamelCase : List[str] = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image) lowerCamelCase : str = np.expand_dims(test_image, axis=0) lowerCamelCase : List[str] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCamelCase : Any = 'Normal' if result[0][0] == 1: lowerCamelCase : Any = 'Abnormality detected'
2
0
"""simple docstring""" def _A ( UpperCamelCase_ : list, UpperCamelCase_ : list) -> float: '''simple docstring''' _validate_point(UpperCamelCase_) _validate_point(UpperCamelCase_) if len(UpperCamelCase_) != len(UpperCamelCase_): raise ValueError("Both points must be in the same n-dimensional space") return float(sum(abs(a - b) for a, b in zip(UpperCamelCase_, UpperCamelCase_))) def _A ( UpperCamelCase_ : list[float]) -> None: '''simple docstring''' if point: if isinstance(UpperCamelCase_, UpperCamelCase_): for item in point: if not isinstance(UpperCamelCase_, (int, float)): __lowercase = ( "Expected a list of numbers as input, found " F"""{type(UpperCamelCase_).__name__}""" ) raise TypeError(UpperCamelCase_) else: __lowercase = F"""Expected a list of numbers as input, found {type(UpperCamelCase_).__name__}""" raise TypeError(UpperCamelCase_) else: raise ValueError("Missing an input") def _A ( UpperCamelCase_ : list, UpperCamelCase_ : list) -> float: '''simple docstring''' _validate_point(UpperCamelCase_) _validate_point(UpperCamelCase_) if len(UpperCamelCase_) != len(UpperCamelCase_): raise ValueError("Both points must be in the same n-dimensional space") return float(sum(abs(x - y) for x, y in zip(UpperCamelCase_, UpperCamelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' class __lowerCAmelCase : # Public class to implement a graph '''simple docstring''' def __init__(self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = row lowercase__ = col lowercase__ = graph def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): # And finally, count all islands. '''simple docstring''' lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase ) count += 1 return count
2
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml __lowerCamelCase : Any = logging.get_logger(__name__) def _snake_case ( lowerCAmelCase : bool , lowerCAmelCase : bool ): """simple docstring""" def run_func(lowerCAmelCase : int ): @wraps(lowerCAmelCase ) def run_in_eager_mode(*lowerCAmelCase : Tuple , **lowerCAmelCase : Any ): return func(*lowerCAmelCase , **lowerCAmelCase ) @wraps(lowerCAmelCase ) @tf.function(experimental_compile=lowerCAmelCase ) def run_in_graph_mode(*lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str] ): return func(*lowerCAmelCase , **lowerCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = random.Random() SCREAMING_SNAKE_CASE_ : str = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class a__ ( A__ ): A = 42 A = 42 A = "TensorFlow" @property def __UpperCamelCase ( self : str ): """simple docstring""" return tf.__version__ def __UpperCamelCase ( self : int,_A : str,_A : int,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) SCREAMING_SNAKE_CASE_ : Any = self._prepare_inference_func(_A,_A,_A ) return self._measure_speed(_inference ) def __UpperCamelCase ( self : str,_A : str,_A : int,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) SCREAMING_SNAKE_CASE_ : List[Any] = self._prepare_train_func(_A,_A,_A ) return self._measure_speed(_train ) def __UpperCamelCase ( self : Dict,_A : str,_A : int,_A : int ): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx],_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) SCREAMING_SNAKE_CASE_ : str = self._prepare_inference_func(_A,_A,_A ) return self._measure_memory(_inference ) def __UpperCamelCase ( self : Optional[Any],_A : str,_A : int,_A : int ): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx],_A ) SCREAMING_SNAKE_CASE_ : Any = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) SCREAMING_SNAKE_CASE_ : str = self._prepare_train_func(_A,_A,_A ) return self._measure_memory(_train ) def __UpperCamelCase ( self : int,_A : str,_A : int,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) SCREAMING_SNAKE_CASE_ : Dict = ( hasattr(_A,"architectures" ) and isinstance(config.architectures,_A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: SCREAMING_SNAKE_CASE_ : List[Any] = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model SCREAMING_SNAKE_CASE_ : List[Any] = __import__("transformers",fromlist=[model_class] ) SCREAMING_SNAKE_CASE_ : Tuple = getattr(_A,_A ) SCREAMING_SNAKE_CASE_ : List[str] = model_cls(_A ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = TF_MODEL_MAPPING[config.__class__](_A ) # encoder-decoder has vocab size saved differently SCREAMING_SNAKE_CASE_ : Tuple = config.vocab_size if hasattr(_A,"vocab_size" ) else config.encoder.vocab_size SCREAMING_SNAKE_CASE_ : str = random_input_ids(_A,_A,_A ) @run_with_tf_optimizations(self.args.eager_mode,self.args.use_xla ) def encoder_decoder_forward(): return model(_A,decoder_input_ids=_A,training=_A ) @run_with_tf_optimizations(self.args.eager_mode,self.args.use_xla ) def encoder_forward(): return model(_A,training=_A ) SCREAMING_SNAKE_CASE_ : Tuple = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __UpperCamelCase ( self : Dict,_A : str,_A : int,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) SCREAMING_SNAKE_CASE_ : Dict = ( hasattr(_A,"architectures" ) and isinstance(config.architectures,_A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: SCREAMING_SNAKE_CASE_ : Dict = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model SCREAMING_SNAKE_CASE_ : Tuple = __import__("transformers",fromlist=[model_class] ) SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(_A,_A ) SCREAMING_SNAKE_CASE_ : List[Any] = model_cls(_A ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: SCREAMING_SNAKE_CASE_ : Any = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_A ) # encoder-decoder has vocab size saved differently SCREAMING_SNAKE_CASE_ : Any = config.vocab_size if hasattr(_A,"vocab_size" ) else config.encoder.vocab_size SCREAMING_SNAKE_CASE_ : int = random_input_ids(_A,_A,_A ) @run_with_tf_optimizations(self.args.eager_mode,self.args.use_xla ) def encoder_decoder_train(): SCREAMING_SNAKE_CASE_ : Dict = model(_A,decoder_input_ids=_A,labels=_A,training=_A )[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.gradients(_A,model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode,self.args.use_xla ) def encoder_train(): SCREAMING_SNAKE_CASE_ : Tuple = model(_A,labels=_A,training=_A )[0] SCREAMING_SNAKE_CASE_ : Tuple = tf.gradients(_A,model.trainable_variables ) return gradients SCREAMING_SNAKE_CASE_ : List[Any] = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __UpperCamelCase ( self : int,_A : Any ): """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(_A,repeat=1,number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average SCREAMING_SNAKE_CASE_ : Optional[int] = timeit.repeat( _A,repeat=self.args.repeat,number=10,) return min(_A ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) def __UpperCamelCase ( self : List[str],_A : Callable[[], None] ): """simple docstring""" logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) SCREAMING_SNAKE_CASE_ : List[str] = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) SCREAMING_SNAKE_CASE_ : Optional[int] = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() SCREAMING_SNAKE_CASE_ : str = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = nvml.nvmlDeviceGetMemoryInfo(_A ) SCREAMING_SNAKE_CASE_ : Any = meminfo.used SCREAMING_SNAKE_CASE_ : List[Any] = Memory(_A ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = None else: SCREAMING_SNAKE_CASE_ : Optional[Any] = measure_peak_memory_cpu(_A ) SCREAMING_SNAKE_CASE_ : str = Memory(_A ) if isinstance(_A,_A ) else memory_bytes if self.args.trace_memory_line_by_line: SCREAMING_SNAKE_CASE_ : Optional[int] = stop_memory_tracing(_A ) if memory is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = summary.total else: SCREAMING_SNAKE_CASE_ : Optional[int] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) return "N/A", None
18
'''simple docstring''' import unittest from transformers import DonutProcessor lowerCamelCase : Tuple = 'naver-clova-ix/donut-base' class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DonutProcessor.from_pretrained(UpperCamelCase ) def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__ = self.processor.tokenajson(UpperCamelCase ) self.assertDictEqual(UpperCamelCase , UpperCamelCase )
2
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , lowercase=[0.5, 0.5, 0.5] , lowercase=[0.5, 0.5, 0.5] , lowercase=True , lowercase=1 / 255 , lowercase=True , ) -> Dict: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCamelCase_ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean lowerCamelCase_ = image_std lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_pad def SCREAMING_SNAKE_CASE_( self ) -> Dict: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=False ) -> str: if not batched: lowerCamelCase_ = image_inputs[0] if isinstance(lowercase , Image.Image ): lowerCamelCase_ , lowerCamelCase_ = image.size else: lowerCamelCase_ , lowerCamelCase_ = image.shape[1], image.shape[2] if w < h: lowerCamelCase_ = int(self.size["shortest_edge"] * h / w ) lowerCamelCase_ = self.size["shortest_edge"] elif w > h: lowerCamelCase_ = self.size["shortest_edge"] lowerCamelCase_ = int(self.size["shortest_edge"] * w / h ) else: lowerCamelCase_ = self.size["shortest_edge"] lowerCamelCase_ = self.size["shortest_edge"] else: lowerCamelCase_ = [] for image in image_inputs: lowerCamelCase_ , lowerCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase_ = max(lowercase , key=lambda lowercase : item[0] )[0] lowerCamelCase_ = max(lowercase , key=lambda lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): lowerCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = DeformableDetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , "image_mean" ) ) self.assertTrue(hasattr(lowercase , "image_std" ) ) self.assertTrue(hasattr(lowercase , "do_normalize" ) ) self.assertTrue(hasattr(lowercase , "do_resize" ) ) self.assertTrue(hasattr(lowercase , "do_rescale" ) ) self.assertTrue(hasattr(lowercase , "do_pad" ) ) self.assertTrue(hasattr(lowercase , "size" ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , lowercase ) lowerCamelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: pass def SCREAMING_SNAKE_CASE_( self ) -> List[str]: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) lowerCamelCase_ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_( self ) -> Any: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ = image_processing(lowercase , return_tensors="pt" ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ = image_processing(lowercase , return_tensors="pt" ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: # prepare image and target lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: lowerCamelCase_ = json.loads(f.read() ) lowerCamelCase_ = {"image_id": 39769, "annotations": target} # encode them lowerCamelCase_ = DeformableDetrImageProcessor() lowerCamelCase_ = image_processing(images=lowercase , annotations=lowercase , return_tensors="pt" ) # verify pixel values lowerCamelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowercase ) lowerCamelCase_ = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowercase , atol=1e-4 ) ) # verify area lowerCamelCase_ = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowercase ) ) # verify boxes lowerCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowercase ) lowerCamelCase_ = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowercase , atol=1e-3 ) ) # verify image_id lowerCamelCase_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowercase ) ) # verify is_crowd lowerCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowercase ) ) # verify class_labels lowerCamelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowercase ) ) # verify orig_size lowerCamelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowercase ) ) # verify size lowerCamelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowercase ) ) @slow def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: # prepare image, target and masks_path lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: lowerCamelCase_ = json.loads(f.read() ) lowerCamelCase_ = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} lowerCamelCase_ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowerCamelCase_ = DeformableDetrImageProcessor(format="coco_panoptic" ) lowerCamelCase_ = image_processing(images=lowercase , annotations=lowercase , masks_path=lowercase , return_tensors="pt" ) # verify pixel values lowerCamelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowercase ) lowerCamelCase_ = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowercase , atol=1e-4 ) ) # verify area lowerCamelCase_ = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowercase ) ) # verify boxes lowerCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowercase ) lowerCamelCase_ = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowercase , atol=1e-3 ) ) # verify image_id lowerCamelCase_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowercase ) ) # verify is_crowd lowerCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowercase ) ) # verify class_labels lowerCamelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowercase ) ) # verify masks lowerCamelCase_ = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowercase ) # verify orig_size lowerCamelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowercase ) ) # verify size lowerCamelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowercase ) )
19
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
class __snake_case : def __init__( self ,snake_case ): '''simple docstring''' lowercase : List[Any] = arr.split(""",""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = [int(self.array[0] )] * len(self.array ) lowercase : Any = [int(self.array[0] )] * len(self.array ) for i in range(1 ,len(self.array ) ): lowercase : Optional[int] = max( int(self.array[i] ) + sum_value[i - 1] ,int(self.array[i] ) ) lowercase : Optional[int] = max(sum_value[i] ,rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": lowercase : Any = input("""please input some numbers:""") lowercase : Union[str, Any] = SubArray(whole_array) lowercase : Any = array.solve_sub_array() print(("""the results is:""", re))
20
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCamelCase : Any = None lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : List[str] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase : Any = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : int = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ : Optional[int] = TaTokenizer lowerCAmelCase__ : List[int] = [] def __init__(self : Dict , UpperCamelCase : str=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any="</s>" , UpperCamelCase : str="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : List[str]=100 , UpperCamelCase : Tuple=None , **UpperCamelCase : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase__ = [f"<extra_id_{i}>" for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ = len(set(filter(lambda UpperCamelCase : bool('''extra_id_''' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True lowercase__ = extra_ids @staticmethod def UpperCamelCase__ (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase , ) return max_model_length def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase__ = os.path.join( UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) logger.info(f"Copy vocab file to {out_vocab_file}" ) return (out_vocab_file,) def UpperCamelCase__ (self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase ) for token in self.get_sentinel_tokens()]
2
0
from collections import deque class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> None: """simple docstring""" _lowercase : Optional[Any] = process_name # process name _lowercase : List[Any] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time _lowercase : Tuple = arrival_time _lowercase : Any = burst_time # remaining burst time _lowercase : Optional[int] = 0 # total time of the process wait in ready queue _lowercase : Union[str, Any] = 0 # time from arrival time to completion time class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> None: """simple docstring""" _lowercase : List[str] = number_of_queues # time slice of queues that round robin algorithm applied _lowercase : str = time_slices # unfinished process is in this ready_queue _lowercase : Optional[Any] = queue # current time _lowercase : Union[str, Any] = current_time # finished process is in this sequence queue _lowercase : deque[Process] = deque() def UpperCamelCase ( self) -> list[str]: """simple docstring""" _lowercase : List[Any] = [] for i in range(len(self.finish_queue)): sequence.append(self.finish_queue[i].process_name) return sequence def UpperCamelCase ( self, lowerCamelCase) -> list[int]: """simple docstring""" _lowercase : Optional[int] = [] for i in range(len(lowerCamelCase)): waiting_times.append(queue[i].waiting_time) return waiting_times def UpperCamelCase ( self, lowerCamelCase) -> list[int]: """simple docstring""" _lowercase : Tuple = [] for i in range(len(lowerCamelCase)): turnaround_times.append(queue[i].turnaround_time) return turnaround_times def UpperCamelCase ( self, lowerCamelCase) -> list[int]: """simple docstring""" _lowercase : Optional[int] = [] for i in range(len(lowerCamelCase)): completion_times.append(queue[i].stop_time) return completion_times def UpperCamelCase ( self, lowerCamelCase) -> list[int]: """simple docstring""" return [q.burst_time for q in queue] def UpperCamelCase ( self, lowerCamelCase) -> int: """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def UpperCamelCase ( self, lowerCamelCase) -> deque[Process]: """simple docstring""" _lowercase : deque[Process] = deque() # sequence deque of finished process while len(lowerCamelCase) != 0: _lowercase : List[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(lowerCamelCase) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 _lowercase : Optional[int] = 0 # set the process's turnaround time because it is finished _lowercase : str = self.current_time - cp.arrival_time # set the completion time _lowercase : Any = self.current_time # add the process to queue that has finished queue finished.append(lowerCamelCase) self.finish_queue.extend(lowerCamelCase) # add finished process to finish queue # FCFS will finish all remaining processes return finished def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> tuple[deque[Process], deque[Process]]: """simple docstring""" _lowercase : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(lowerCamelCase)): _lowercase : int = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(lowerCamelCase) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time _lowercase : str = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(lowerCamelCase) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished _lowercase : str = 0 # set the finish time _lowercase : Union[str, Any] = self.current_time # update the process' turnaround time because it is finished _lowercase : List[str] = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(lowerCamelCase) self.finish_queue.extend(lowerCamelCase) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def UpperCamelCase ( self) -> deque[Process]: """simple docstring""" for i in range(self.number_of_queues - 1): _lowercase , _lowercase : str = self.round_robin( self.ready_queue, self.time_slices[i]) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue) return self.finish_queue if __name__ == "__main__": import doctest SCREAMING_SNAKE_CASE : Union[str, Any] = Process("P1", 0, 53) SCREAMING_SNAKE_CASE : str = Process("P2", 0, 17) SCREAMING_SNAKE_CASE : Optional[Any] = Process("P3", 0, 68) SCREAMING_SNAKE_CASE : Optional[Any] = Process("P4", 0, 24) SCREAMING_SNAKE_CASE : Optional[int] = 3 SCREAMING_SNAKE_CASE : List[str] = [17, 25] SCREAMING_SNAKE_CASE : List[Any] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) SCREAMING_SNAKE_CASE : List[str] = Process("P1", 0, 53) SCREAMING_SNAKE_CASE : Optional[Any] = Process("P2", 0, 17) SCREAMING_SNAKE_CASE : List[str] = Process("P3", 0, 68) SCREAMING_SNAKE_CASE : Tuple = Process("P4", 0, 24) SCREAMING_SNAKE_CASE : List[str] = 3 SCREAMING_SNAKE_CASE : Union[str, Any] = [17, 25] SCREAMING_SNAKE_CASE : Optional[Any] = deque([Pa, Pa, Pa, Pa]) SCREAMING_SNAKE_CASE : str = MLFQ(number_of_queues, time_slices, queue, 0) SCREAMING_SNAKE_CASE : Union[str, Any] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( F"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( F"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( F"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
21
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Dict = ShapEImgaImgPipeline lowerCAmelCase__ : List[str] = ["""image"""] lowerCAmelCase__ : Any = ["""image"""] lowerCAmelCase__ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] lowerCAmelCase__ : Tuple = False @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : str ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase__ (self : int ): '''simple docstring''' return 8 @property def UpperCamelCase__ (self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(UpperCamelCase ) return model @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase , do_normalize=UpperCamelCase , do_resize=UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def UpperCamelCase__ (self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase__ = PriorTransformer(**UpperCamelCase ) return model @property def UpperCamelCase__ (self : int ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**UpperCamelCase ) return model def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase , clip_sample=UpperCamelCase , clip_sample_range=1.0 , ) lowercase__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=0 ): '''simple docstring''' lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if str(UpperCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase ) else: lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowercase__ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = torch_device == '''cpu''' lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase , relax_max_difference=UpperCamelCase , ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(UpperCamelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**UpperCamelCase , num_images_per_prompt=UpperCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) lowercase__ = pipe( UpperCamelCase , generator=UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
2
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[Any] = ["""image_processor""", """tokenizer"""] _lowerCamelCase : Dict = """BlipImageProcessor""" _lowerCamelCase : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : str , snake_case_ : Dict , snake_case_ : Any ): _UpperCAmelCase = False super().__init__(snake_case_ , snake_case_ ) _UpperCAmelCase = self.image_processor def __call__( self : Tuple , snake_case_ : ImageInput = None , snake_case_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , snake_case_ : bool = True , snake_case_ : Union[bool, str, PaddingStrategy] = False , snake_case_ : Union[bool, str, TruncationStrategy] = None , snake_case_ : Optional[int] = None , snake_case_ : int = 0 , snake_case_ : Optional[int] = None , snake_case_ : Optional[bool] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = True , snake_case_ : Optional[Union[str, TensorType]] = None , **snake_case_ : Optional[Any] , ): if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: _UpperCAmelCase = self.tokenizer _UpperCAmelCase = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) return text_encoding # add pixel_values _UpperCAmelCase = self.image_processor(snake_case_ , return_tensors=snake_case_ ) if text is not None: _UpperCAmelCase = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) else: _UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(snake_case_ ) return encoding_image_processor def lowercase ( self : Optional[int] , *snake_case_ : Union[str, Any] , **snake_case_ : List[str] ): return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def lowercase ( self : Union[str, Any] , *snake_case_ : int , **snake_case_ : Optional[int] ): return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def lowercase ( self : Any ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
22
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : str = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = """google/mobilebert-uncased""" def A ( self : Any ) -> int: super().setUp() UpperCAmelCase : str = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCAmelCase : List[Any] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def A ( self : Optional[Any] , __snake_case : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running''' UpperCAmelCase : int = '''unwanted, running''' return input_text, output_text def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase : List[str] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : Dict = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__snake_case , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [9, 6, 7, 12, 10, 11] ) def A ( self : Any ) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase : Optional[int] = self.get_tokenizer() UpperCAmelCase : Any = self.get_rust_tokenizer() UpperCAmelCase : int = '''UNwant\u00E9d,running''' UpperCAmelCase : Dict = tokenizer.tokenize(__snake_case ) UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : int = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase : int = self.get_rust_tokenizer() UpperCAmelCase : int = tokenizer.encode(__snake_case ) UpperCAmelCase : str = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # With lower casing UpperCAmelCase : Dict = self.get_tokenizer(do_lower_case=__snake_case ) UpperCAmelCase : int = self.get_rust_tokenizer(do_lower_case=__snake_case ) UpperCAmelCase : Dict = '''UNwant\u00E9d,running''' UpperCAmelCase : int = tokenizer.tokenize(__snake_case ) UpperCAmelCase : List[Any] = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase : int = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : List[Any] = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase : Union[str, Any] = tokenizer.encode(__snake_case ) UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def A ( self : List[str] ) -> List[str]: UpperCAmelCase : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def A ( self : Optional[int] ) -> Any: UpperCAmelCase : Tuple = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A ( self : Optional[int] ) -> int: UpperCAmelCase : Optional[Any] = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def A ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Dict = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A ( self : str ) -> Optional[int]: UpperCAmelCase : Any = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A ( self : Union[str, Any] ) -> Optional[int]: UpperCAmelCase : Dict = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A ( self : Tuple ) -> Any: UpperCAmelCase : Dict = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : List[str] = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Tuple = BasicTokenizer(do_lower_case=__snake_case , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def A ( self : List[Any] ) -> Dict: UpperCAmelCase : List[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] UpperCAmelCase : Tuple = {} for i, token in enumerate(__snake_case ): UpperCAmelCase : List[str] = i UpperCAmelCase : str = WordpieceTokenizer(vocab=__snake_case , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def A ( self : Union[str, Any] ) -> Tuple: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def A ( self : Union[str, Any] ) -> Any: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def A ( self : Optional[int] ) -> Tuple: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Dict = self.get_tokenizer() UpperCAmelCase : int = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__snake_case ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(__snake_case ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def A ( self : Union[str, Any] ) -> Optional[int]: UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) UpperCAmelCase : Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) UpperCAmelCase : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) UpperCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) UpperCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def A ( self : Optional[Any] ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) UpperCAmelCase : str = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase : Optional[int] = tokenizer_r.encode_plus( __snake_case , return_attention_mask=__snake_case , return_token_type_ids=__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case , ) UpperCAmelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__snake_case , '''do_lower_case''' ) else False UpperCAmelCase : str = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def A ( self : Optional[int] ) -> str: UpperCAmelCase : str = ['''的''', '''人''', '''有'''] UpperCAmelCase : List[Any] = ''''''.join(__snake_case ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) UpperCAmelCase : int = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) UpperCAmelCase : List[Any] = tokenizer_p.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : Tuple = tokenizer_r.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : Any = tokenizer_r.convert_ids_to_tokens(__snake_case ) UpperCAmelCase : Optional[int] = tokenizer_p.convert_ids_to_tokens(__snake_case ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : int = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) UpperCAmelCase : int = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) UpperCAmelCase : List[Any] = tokenizer_r.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : Tuple = tokenizer_p.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : List[str] = tokenizer_r.convert_ids_to_tokens(__snake_case ) UpperCAmelCase : Optional[int] = tokenizer_p.convert_ids_to_tokens(__snake_case ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase : Optional[Any] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(__snake_case ) ] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(__snake_case , __snake_case )
23
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = """realm""" def __init__(self : str , UpperCamelCase : List[Any]=30522 , UpperCamelCase : List[Any]=768 , UpperCamelCase : int=128 , UpperCamelCase : Any=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Union[str, Any]=3072 , UpperCamelCase : List[str]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : Dict=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : List[Any]=1E-12 , UpperCamelCase : Dict=256 , UpperCamelCase : Union[str, Any]=10 , UpperCamelCase : Optional[int]=1E-3 , UpperCamelCase : Tuple=5 , UpperCamelCase : Optional[int]=320 , UpperCamelCase : List[str]=13353718 , UpperCamelCase : Optional[Any]=5000 , UpperCamelCase : str=1 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[Any]=2 , **UpperCamelCase : int , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) # Common config lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = retriever_proj_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_candidates lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps # Reader config lowercase__ = span_hidden_size lowercase__ = max_span_width lowercase__ = reader_layer_norm_eps lowercase__ = reader_beam_size lowercase__ = reader_seq_len # Retrieval config lowercase__ = num_block_records lowercase__ = searcher_beam_size
2
0
from collections import defaultdict from math import gcd def lowerCamelCase__ ( snake_case_ : int = 150_0000 ) -> int: __snake_case = defaultdict(snake_case_ ) __snake_case = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , snake_case_ , 2 ): if gcd(snake_case_ , snake_case_ ) > 1: continue __snake_case = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(snake_case_ , limit + 1 , snake_case_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'{solution() = }')
24
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : int = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = """mvp""" lowerCAmelCase__ : Optional[Any] = ["""past_key_values"""] lowerCAmelCase__ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self : Any , UpperCamelCase : Optional[int]=50267 , UpperCamelCase : Tuple=1024 , UpperCamelCase : int=12 , UpperCamelCase : Tuple=4096 , UpperCamelCase : Dict=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Union[str, Any]=1024 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=1 , UpperCamelCase : int=0 , UpperCamelCase : int=2 , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=False , UpperCamelCase : int=100 , UpperCamelCase : Optional[Any]=800 , **UpperCamelCase : str , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = classifier_dropout lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = use_prompt lowercase__ = prompt_length lowercase__ = prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase ): lowercase__ = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " '''The config can simply be saved and uploaded again to be fixed.''' )
2
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : List[Any] = BlipImageProcessor() SCREAMING_SNAKE_CASE__ : Optional[Any] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) SCREAMING_SNAKE_CASE__ : str = InstructBlipProcessor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).tokenizer def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).qformer_tokenizer def __magic_name__ (self ) -> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ : int = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) SCREAMING_SNAKE_CASE__ : Any = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ : List[Any] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor.qformer_tokenizer , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Tuple = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE__ : str = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ , qformer_tokenizer=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : str = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE__ : str = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ , qformer_tokenizer=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = """lower newer""" SCREAMING_SNAKE_CASE__ : int = processor(text=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = tokenizer(SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = qformer_tokenizer(SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : int = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[Any] = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ , qformer_tokenizer=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = """lower newer""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : Any = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE__ : int = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Any = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE__ : Union[str, Any] = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ , qformer_tokenizer=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ : Optional[int] = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Tuple = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE__ : List[str] = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ , qformer_tokenizer=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = """lower newer""" SCREAMING_SNAKE_CASE__ : Tuple = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : Any = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
25
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : List[str] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : int = DebertaVaTokenizer lowerCAmelCase__ : List[Any] = DebertaVaTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Tuple = True def UpperCamelCase__ (self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ = DebertaVaTokenizer(UpperCamelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = '''this is a test''' lowercase__ = '''this is a test''' return input_text, output_text def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''<pad>''' lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(UpperCamelCase ) , 30001 ) def UpperCamelCase__ (self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''This is a test''' lowercase__ = [13, 1, 4398, 25, 21, 1289] lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = DebertaVaTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # fmt: off lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DebertaVaTokenizer(UpperCamelCase ) lowercase__ = tokenizer.encode('''sequence builders''' ) lowercase__ = tokenizer.encode('''multi-sequence build''' ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase , ) @slow def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A , _A : Any = set(snake_case_ ), [start] while stack: _A : Union[str, Any] = stack.pop() explored.add(snake_case_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(snake_case_ ) return explored _snake_case = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
26
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _SCREAMING_SNAKE_CASE (A ) -> Optional[Any]: """simple docstring""" lowercase__ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A , A ) def _SCREAMING_SNAKE_CASE (A ) -> List[str]: """simple docstring""" lowercase__ ,lowercase__ = emb.weight.shape lowercase__ = nn.Linear(A , A , bias=A ) lowercase__ = emb.weight.data return lin_layer def _SCREAMING_SNAKE_CASE (A , A="facebook/mbart-large-en-ro" , A=False , A=False ) -> Union[str, Any]: """simple docstring""" lowercase__ = torch.load(A , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A ) lowercase__ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowercase__ = MBartConfig.from_pretrained(A , vocab_size=A ) if mbart_aa and finetuned: lowercase__ = '''relu''' lowercase__ = state_dict['''decoder.embed_tokens.weight'''] lowercase__ = MBartForConditionalGeneration(A ) model.model.load_state_dict(A ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') lowerCamelCase : Any = parser.parse_args() lowerCamelCase : List[str] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
2
0
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __UpperCamelCase : A_ = 42 A_ = None # Automatically constructed A_ = "dict" A_ = None A_ = field(default="Translation" , init=lowerCAmelCase_ , repr=lowerCAmelCase_ ) def __call__( self ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __UpperCAmelCase ( self ): '''simple docstring''' from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __UpperCamelCase : A_ = None A_ = None A_ = None # Automatically constructed A_ = "dict" A_ = None A_ = field(default="TranslationVariableLanguages" , init=lowerCAmelCase_ , repr=lowerCAmelCase_ ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = sorted(set(self.languages ) ) if self.languages else None __a : int = len(self.languages ) if self.languages else None def __call__( self ): '''simple docstring''' return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : int = set(self.languages ) if self.languages and set(__a ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(__a ) - lang_set ) )}) are not in valid set ({", ".join(__a )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __a : Optional[int] = [] for lang, text in translation_dict.items(): if isinstance(__a , __a ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __a , __a : str = zip(*sorted(__a ) ) return {"language": languages, "translation": translations} def __UpperCAmelCase ( self ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
27
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCamelCase : List[Any] = logging.getLogger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCamelCase : Any=-1 ): '''simple docstring''' lowercase__ = label_idx def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: lowercase__ = [] lowercase__ = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 lowercase__ = [] lowercase__ = [] else: lowercase__ = line.split(''' ''' ) words.append(splits[0] ) if len(UpperCamelCase ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) return examples def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(UpperCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase__ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(UpperCamelCase ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : List[Any] ): '''simple docstring''' super().__init__(label_idx=-2 ) def UpperCamelCase__ (self : List[Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def UpperCamelCase__ (self : Tuple , UpperCamelCase : int , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: for sentence in parse_incr(UpperCamelCase ): lowercase__ = [] lowercase__ = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(UpperCamelCase ) == len(UpperCamelCase ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 return examples def UpperCamelCase__ (self : Tuple , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for sentence in parse_incr(UpperCamelCase ): lowercase__ = preds_list[example_id] lowercase__ = '''''' for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(UpperCamelCase ) example_id += 1 def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
2
0
'''simple docstring''' def __lowerCamelCase ( A__ ) -> bool: """simple docstring""" UpperCamelCase = 0 for ch in input_str: UpperCamelCase = ord(A__ ) UpperCamelCase = pow(2 , A__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
28
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = """megatron-bert""" def __init__(self : Tuple , UpperCamelCase : Optional[int]=29056 , UpperCamelCase : Optional[Any]=1024 , UpperCamelCase : Any=24 , UpperCamelCase : int=16 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : int="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=512 , UpperCamelCase : int=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Dict=1E-12 , UpperCamelCase : List[Any]=0 , UpperCamelCase : Optional[int]="absolute" , UpperCamelCase : List[Any]=True , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache
2
0
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : List[str] = 9, 14 # noqa: F841 UpperCAmelCase_ : Optional[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCAmelCase_ : int = defaultdict(__snake_case ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) UpperCAmelCase_ : List[Any] = mst(__snake_case ) UpperCAmelCase_ : Any = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: UpperCAmelCase_ : str = tuple(answer[:2] ) UpperCAmelCase_ : Union[str, Any] = tuple(edge[::-1] ) assert edge in result or reverse in result
29
'''simple docstring''' # Lint as: python3 import itertools import os import re lowerCamelCase : Any = re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCamelCase : str = re.compile(R'([a-z\d])([A-Z])') lowerCamelCase : Optional[int] = re.compile(R'(?<!_)_(?!_)') lowerCamelCase : List[Any] = re.compile(R'(_{2,})') lowerCamelCase : str = R'^\w+(\.\w+)*$' lowerCamelCase : Dict = R'<>:/\|?*' def _SCREAMING_SNAKE_CASE (A ) -> Any: """simple docstring""" lowercase__ = _uppercase_uppercase_re.sub(R'''\1_\2''' , A ) lowercase__ = _lowercase_uppercase_re.sub(R'''\1_\2''' , A ) return name.lower() def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" lowercase__ = _single_underscore_re.split(A ) lowercase__ = [_multiple_underscores_re.split(A ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A ) if n != '''''' ) def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , A ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(A )}-{split}" def _SCREAMING_SNAKE_CASE (A , A , A , A=None ) -> List[str]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) if filetype_suffix: prefix += f".{filetype_suffix}" lowercase__ = os.path.join(A , A ) return f"{filepath}*" def _SCREAMING_SNAKE_CASE (A , A , A , A=None , A=None ) -> Optional[Any]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) lowercase__ = os.path.join(A , A ) if shard_lengths: lowercase__ = len(A ) lowercase__ = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(A )] if filetype_suffix: lowercase__ = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: lowercase__ = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
2
0
class lowercase__: """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None ) -> List[str]: lowercase_ = data lowercase_ = previous lowercase_ = next_node def __str__( self : Tuple ) -> str: return f'''{self.data}''' def _lowercase ( self : Any ) -> int: return self.data def _lowercase ( self : Union[str, Any] ) -> Optional[int]: return self.next def _lowercase ( self : Tuple ) -> Any: return self.previous class lowercase__: """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str: lowercase_ = head def __iter__( self : Union[str, Any] ) -> str: return self def _lowercase ( self : List[str] ) -> Tuple: if not self.current: raise StopIteration else: lowercase_ = self.current.get_data() lowercase_ = self.current.get_next() return value class lowercase__: """simple docstring""" def __init__( self : Union[str, Any] ) -> Any: lowercase_ = None # First node in list lowercase_ = None # Last node in list def __str__( self : Union[str, Any] ) -> Union[str, Any]: lowercase_ = self.head lowercase_ = [] while current is not None: nodes.append(current.get_data() ) lowercase_ = current.get_next() return " ".join(str(SCREAMING_SNAKE_CASE_ ) for node in nodes ) def __contains__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: lowercase_ = self.head while current: if current.get_data() == value: return True lowercase_ = current.get_next() return False def __iter__( self : Dict ) -> Tuple: return LinkedListIterator(self.head ) def _lowercase ( self : Any ) -> Optional[Any]: if self.head: return self.head.get_data() return None def _lowercase ( self : Any ) -> Any: if self.tail: return self.tail.get_data() return None def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : Node ) -> None: if self.head is None: lowercase_ = node lowercase_ = node else: self.insert_before_node(self.head , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Node ) -> None: if self.head is None: self.set_head(SCREAMING_SNAKE_CASE_ ) else: self.insert_after_node(self.tail , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : int ) -> None: lowercase_ = Node(SCREAMING_SNAKE_CASE_ ) if self.head is None: self.set_head(SCREAMING_SNAKE_CASE_ ) else: self.set_tail(SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Node , SCREAMING_SNAKE_CASE_ : Node ) -> None: lowercase_ = node lowercase_ = node.previous if node.get_previous() is None: lowercase_ = node_to_insert else: lowercase_ = node_to_insert lowercase_ = node_to_insert def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Node , SCREAMING_SNAKE_CASE_ : Node ) -> None: lowercase_ = node lowercase_ = node.next if node.get_next() is None: lowercase_ = node_to_insert else: lowercase_ = node_to_insert lowercase_ = node_to_insert def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> None: lowercase_ = 1 lowercase_ = Node(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.head while node: if current_position == position: self.insert_before_node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return current_position += 1 lowercase_ = node.next self.insert_after_node(self.tail , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : int ) -> Node: lowercase_ = self.head while node: if node.get_data() == item: return node lowercase_ = node.get_next() raise Exception('''Node not found''' ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: if (node := self.get_node(SCREAMING_SNAKE_CASE_ )) is not None: if node == self.head: lowercase_ = self.head.get_next() if node == self.tail: lowercase_ = self.tail.get_previous() self.remove_node_pointers(SCREAMING_SNAKE_CASE_ ) @staticmethod def _lowercase ( SCREAMING_SNAKE_CASE_ : Node ) -> None: if node.get_next(): lowercase_ = node.previous if node.get_previous(): lowercase_ = node.next lowercase_ = None lowercase_ = None def _lowercase ( self : Tuple ) -> Tuple: return self.head is None def a ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
30
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __lowerCAmelCase : '''simple docstring''' def __init__(self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : str=True , UpperCamelCase : Tuple=False , UpperCamelCase : str=True , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Any=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Tuple=30 , UpperCamelCase : str=0 , UpperCamelCase : Tuple=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : str=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = decoder_seq_length # For common tests lowercase__ = self.decoder_seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_model lowercase__ = decoder_layers lowercase__ = decoder_layers lowercase__ = decoder_ffn_dim lowercase__ = decoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = eos_token_id lowercase__ = bos_token_id lowercase__ = pad_token_id lowercase__ = decoder_start_token_id lowercase__ = use_cache lowercase__ = max_position_embeddings lowercase__ = None lowercase__ = decoder_seq_length lowercase__ = 2 lowercase__ = 1 def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , ): '''simple docstring''' lowercase__ = True lowercase__ = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval() lowercase__ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) lowercase__ = model(UpperCamelCase ) lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) lowercase__ = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowercase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ = model(UpperCamelCase )['''last_hidden_state'''] lowercase__ = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state'''] # select random slice lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowercase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class __lowerCAmelCase (lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase__ : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase__ : Optional[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[str] = False def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass
2
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCamelCase_ ( _UpperCAmelCase : int ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : List[Any] = emb.weight.shape _UpperCAmelCase : Optional[int] = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) _UpperCAmelCase : List[str] = emb.weight.data return lin_layer def UpperCamelCase_ ( _UpperCAmelCase : Any ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = torch.load(_UpperCAmelCase , map_location="cpu" ) _UpperCAmelCase : Any = mam_aaa["args"] or mam_aaa["cfg"]["model"] _UpperCAmelCase : List[Any] = mam_aaa["model"] remove_ignore_keys_(_UpperCAmelCase ) _UpperCAmelCase : int = state_dict["encoder.embed_tokens.weight"].shape[0] _UpperCAmelCase : Tuple = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1_024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) _UpperCAmelCase : Union[str, Any] = state_dict["decoder.embed_tokens.weight"] _UpperCAmelCase : Union[str, Any] = MaMaaaForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) _UpperCAmelCase : Optional[Any] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") __SCREAMING_SNAKE_CASE : int = parser.parse_args() __SCREAMING_SNAKE_CASE : Optional[int] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
31
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" if not isinstance(A , A ): raise TypeError('''only integers accepted as input''' ) else: lowercase__ = str(abs(A ) ) lowercase__ = [list(A ) for char in range(len(A ) )] for index in range(len(A ) ): num_transpositions[index].pop(A ) return max( int(''''''.join(list(A ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
2
0
def SCREAMING_SNAKE_CASE_ ( __A : int = 10_00 ) -> int: """simple docstring""" a_ : Union[str, Any] = 2**power a_ : Tuple = str(__A ) a_ : int = list(__A ) a_ : Optional[Any] = 0 for i in list_num: sum_of_num += int(__A ) return sum_of_num if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) UpperCAmelCase_ : Dict = solution(power) print('Sum of the digits is: ', result)
32
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase : str = Mapping[str, np.ndarray] lowerCamelCase : List[Any] = Mapping[str, Any] # Is a nested dict. lowerCamelCase : Any = 0.0_1 @dataclasses.dataclass(frozen=lowercase_ ) class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCAmelCase__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCAmelCase__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCAmelCase__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCAmelCase__ : Optional[str] = None # Templates used to generate this protein (prediction-only) lowerCAmelCase__ : Optional[Sequence[str]] = None # Chain corresponding to each parent lowerCAmelCase__ : Optional[Sequence[int]] = None def _SCREAMING_SNAKE_CASE (A ) -> Protein: """simple docstring""" lowercase__ = R'''(\[[A-Z]+\]\n)''' lowercase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0] lowercase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) lowercase__ = ["N", "CA", "C"] lowercase__ = None lowercase__ = None lowercase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ = g[1][0].strip() for i in range(len(A ) ): if seq[i] not in residue_constants.restypes: lowercase__ = '''X''' # FIXME: strings are immutable lowercase__ = np.array( [residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ = [] for axis in range(3 ): tertiary.append(list(map(A , g[1][axis].split() ) ) ) lowercase__ = np.array(A ) lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) lowercase__ = np.zeros( ( len(A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , ) def _SCREAMING_SNAKE_CASE (A , A = 0 ) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) lowercase__ = prot.parents lowercase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ = [p for i, p in zip(A , A ) if i == chain_id] if parents is None or len(A ) == 0: lowercase__ = ['''N/A'''] pdb_headers.append(f"PARENT {' '.join(A )}" ) return pdb_headers def _SCREAMING_SNAKE_CASE (A , A ) -> str: """simple docstring""" lowercase__ = [] lowercase__ = pdb_str.split('''\n''' ) lowercase__ = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) lowercase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase__ = [] if prot.parents_chain_index is not None: lowercase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(A ) , [] ) parent_dict[str(A )].append(A ) lowercase__ = max([int(A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ = parent_dict.get(str(A ) , ['''N/A'''] ) parents_per_chain.append(A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ = [['''N/A''']] def make_parent_line(A ) -> str: return f"PARENT {' '.join(A )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ = 0 for i, l in enumerate(A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(A ): lowercase__ = parents_per_chain[chain_counter] else: lowercase__ = ['''N/A'''] out_pdb_lines.append(make_parent_line(A ) ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> str: """simple docstring""" lowercase__ = residue_constants.restypes + ['''X'''] def res_atoa(A ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) lowercase__ = residue_constants.atom_types lowercase__ = [] lowercase__ = prot.atom_mask lowercase__ = prot.aatype lowercase__ = prot.atom_positions lowercase__ = prot.residue_index.astype(np.intaa ) lowercase__ = prot.b_factors lowercase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) lowercase__ = get_pdb_headers(A ) if len(A ) > 0: pdb_lines.extend(A ) lowercase__ = aatype.shape[0] lowercase__ = 1 lowercase__ = 0 lowercase__ = string.ascii_uppercase lowercase__ = None # Add all atom sites. for i in range(A ): lowercase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase__ = '''ATOM''' lowercase__ = atom_name if len(A ) == 4 else f" {atom_name}" lowercase__ = '''''' lowercase__ = '''''' lowercase__ = 1.00 lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ = '''''' lowercase__ = '''A''' if chain_index is not None: lowercase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(A ) atom_index += 1 lowercase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ = True lowercase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ = '''TER''' lowercase__ = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(A , A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _SCREAMING_SNAKE_CASE (A , A , A = None , A = None , A = None , A = None , A = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A : Any = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ['''DeiTFeatureExtractor'''] __A : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
33
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A , A ) -> list[list[int]]: """simple docstring""" lowercase__ = [] create_all_state(1 , A , A , [] , A ) return result def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def _SCREAMING_SNAKE_CASE (A ) -> None: """simple docstring""" for i in total_list: print(*A ) if __name__ == "__main__": lowerCamelCase : Tuple = 4 lowerCamelCase : Union[str, Any] = 2 lowerCamelCase : Dict = generate_all_combinations(n, k) print_all_state(total_list)
2
0
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def snake_case_ (_a : Tuple ): return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def snake_case_ (): UpperCAmelCase = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a ) UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_a ) EnvironmentCommand.register_subcommand(_a ) TestCommand.register_subcommand(_a ) RunBeamCommand.register_subcommand(_a ) DummyDataCommand.register_subcommand(_a ) # Parse args UpperCAmelCase , UpperCAmelCase = parser.parse_known_args() if not hasattr(_a , '''func''' ): parser.print_help() exit(1 ) UpperCAmelCase = parse_unknown_args(_a ) # Run UpperCAmelCase = args.func(_a , **_a ) service.run() if __name__ == "__main__": main()
34
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCamelCase : Optional[Any] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowerCamelCase : Tuple = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowerCamelCase : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowerCamelCase : Any = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowerCamelCase : Tuple = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowerCamelCase : Optional[int] = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowerCamelCase : Dict = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ ,lowercase__ = randrange(len(A ) ), randrange(len(A ) ) lowercase__ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowercase__ ,lowercase__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE (A = 100 ) -> str: """simple docstring""" return (generate_random_hand() for _ in range(A )) @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]: """simple docstring""" assert PokerHand(A )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Any: """simple docstring""" lowercase__ = PokerHand(A ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple: """simple docstring""" assert PokerHand(A )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected def _SCREAMING_SNAKE_CASE () -> Tuple: """simple docstring""" lowercase__ = [PokerHand(A ) for hand in SORTED_HANDS] lowercase__ = poker_hands.copy() shuffle(A ) lowercase__ = chain(sorted(A ) ) for index, hand in enumerate(A ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE () -> List[Any]: """simple docstring""" lowercase__ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=A ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE () -> int: """simple docstring""" lowercase__ = PokerHand('''2C 4S AS 3D 5C''' ) lowercase__ = True lowercase__ = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ = 0 lowercase__ = os.path.abspath(os.path.dirname(A ) ) lowercase__ = os.path.join(A , '''poker_hands.txt''' ) with open(A ) as file_hand: for line in file_hand: lowercase__ = line[:14].strip() lowercase__ = line[15:].strip() lowercase__ ,lowercase__ = PokerHand(A ), PokerHand(A ) lowercase__ = player.compare_with(A ) if output == "Win": answer += 1 assert answer == 376
2
0
'''simple docstring''' import argparse import os import re __a = "src/transformers" # Pattern that looks at the indentation in a line. __a = re.compile(R"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. __a = re.compile(R"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __a = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. __a = re.compile(R"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __a = re.compile(R"\[([^\]]+)\]") def __snake_case( _lowerCAmelCase ) -> List[Any]: snake_case__ : int = _re_indent.search(_lowerCAmelCase ) return "" if search is None else search.groups()[0] def __snake_case( _lowerCAmelCase , _lowerCAmelCase="" , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> List[str]: snake_case__ : str = 0 snake_case__ : Union[str, Any] = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCAmelCase ): index += 1 snake_case__ : Tuple = ["""\n""".join(lines[:index] )] else: snake_case__ : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case__ : Optional[int] = [lines[index]] index += 1 while index < len(_lowerCAmelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCAmelCase ) ) if index < len(_lowerCAmelCase ) - 1: snake_case__ : str = [lines[index + 1]] index += 1 else: snake_case__ : int = [] else: blocks.append("""\n""".join(_lowerCAmelCase ) ) snake_case__ : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCAmelCase ) > 0: blocks.append("""\n""".join(_lowerCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCAmelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def __snake_case( _lowerCAmelCase ) -> Tuple: def _inner(_lowerCAmelCase ): return key(_lowerCAmelCase ).lower().replace("""_""" , """""" ) return _inner def __snake_case( _lowerCAmelCase , _lowerCAmelCase=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(_lowerCAmelCase ): return x if key is None: snake_case__ : Optional[int] = noop # Constants are all uppercase, they go first. snake_case__ : Optional[int] = [obj for obj in objects if key(_lowerCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case__ : int = [obj for obj in objects if key(_lowerCAmelCase )[0].isupper() and not key(_lowerCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. snake_case__ : str = [obj for obj in objects if not key(_lowerCAmelCase )[0].isupper()] snake_case__ : List[str] = ignore_underscore(_lowerCAmelCase ) return sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> int: # This inner function sort imports between [ ]. def _replace(_lowerCAmelCase ): snake_case__ : Union[str, Any] = match.groups()[0] if "," not in imports: return f"[{imports}]" snake_case__ : int = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : List[str] = keys[:-1] return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(_lowerCAmelCase )] ) + "]" snake_case__ : str = import_statement.split("""\n""" ) if len(_lowerCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case__ : Dict = 2 if lines[1].strip() == """[""" else 1 snake_case__ : str = [(i, _re_strip_line.search(_lowerCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case__ : str = sort_objects(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] ) snake_case__ : Union[str, Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case__ : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: snake_case__ : List[Any] = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : List[str] = keys[:-1] snake_case__ : int = get_indent(lines[1] ) + """, """.join([f"\"{k}\"" for k in sort_objects(_lowerCAmelCase )] ) return "\n".join(_lowerCAmelCase ) else: # Finally we have to deal with imports fitting on one line snake_case__ : Optional[Any] = _re_bracket_content.sub(_replace , _lowerCAmelCase ) return import_statement def __snake_case( _lowerCAmelCase , _lowerCAmelCase=True ) -> Dict: with open(_lowerCAmelCase , encoding="""utf-8""" ) as f: snake_case__ : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case__ : Optional[int] = split_code_in_indented_blocks( _lowerCAmelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case__ : Optional[Any] = main_blocks[block_idx] snake_case__ : Dict = block.split("""\n""" ) # Get to the start of the imports. snake_case__ : Dict = 0 while line_idx < len(_lowerCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case__ : Union[str, Any] = len(_lowerCAmelCase ) else: line_idx += 1 if line_idx >= len(_lowerCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. snake_case__ : List[str] = """\n""".join(block_lines[line_idx:-1] ) snake_case__ : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case__ : Optional[int] = split_code_in_indented_blocks(_lowerCAmelCase , indent_level=_lowerCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case__ : Tuple = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case__ : Optional[Any] = [(pattern.search(_lowerCAmelCase ).groups()[0] if pattern.search(_lowerCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case__ : Dict = [(i, key) for i, key in enumerate(_lowerCAmelCase ) if key is not None] snake_case__ : Union[str, Any] = [x[0] for x in sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case__ : List[Any] = 0 snake_case__ : Optional[Any] = [] for i in range(len(_lowerCAmelCase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: snake_case__ : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_lowerCAmelCase ) count += 1 # And we put our main block back together with its first and last line. snake_case__ : Dict = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCAmelCase ): if check_only: return True else: print(f"Overwriting {file}." ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(_lowerCAmelCase ) ) def __snake_case( _lowerCAmelCase=True ) -> Tuple: snake_case__ : str = [] for root, _, files in os.walk(_lowerCAmelCase ): if "__init__.py" in files: snake_case__ : Union[str, Any] = sort_imports(os.path.join(_lowerCAmelCase , """__init__.py""" ) , check_only=_lowerCAmelCase ) if result: snake_case__ : Union[str, Any] = [os.path.join(_lowerCAmelCase , """__init__.py""" )] if len(_lowerCAmelCase ) > 0: raise ValueError(f"Would overwrite {len(_lowerCAmelCase )} files, run `make style`." ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __a = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
35
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCamelCase : str = parser.parse_args() if args.model_type == "bert": lowerCamelCase : List[Any] = BertForMaskedLM.from_pretrained(args.model_name) lowerCamelCase : Any = 'bert' else: raise ValueError('args.model_type should be "bert".') lowerCamelCase : int = model.state_dict() lowerCamelCase : int = {} for w in ["word_embeddings", "position_embeddings"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] lowerCamelCase : Tuple = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] lowerCamelCase : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] lowerCamelCase : Tuple = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] lowerCamelCase : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] lowerCamelCase : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] lowerCamelCase : Any = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 lowerCamelCase : Optional[int] = state_dict['cls.predictions.decoder.weight'] lowerCamelCase : str = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: lowerCamelCase : str = state_dict[f"""cls.predictions.transform.dense.{w}"""] lowerCamelCase : Any = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
2
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
36
'''simple docstring''' from ....utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=2048 ): '''simple docstring''' lowercase__ = config.__dict__ lowercase__ = modal_hidden_size if num_labels: lowercase__ = num_labels
2
0
'''simple docstring''' from __future__ import annotations import math def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , ) ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Tuple = [90, 23, 6, 33, 21, 65, 123, 34423] lowerCAmelCase__ : Optional[int] = math.log(len(UpperCamelCase ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , UpperCamelCase , UpperCamelCase , UpperCamelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
37
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Dict = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Tuple = """cvt""" def __init__(self : int , UpperCamelCase : List[Any]=3 , UpperCamelCase : int=[7, 3, 3] , UpperCamelCase : str=[4, 2, 2] , UpperCamelCase : Dict=[2, 1, 1] , UpperCamelCase : Dict=[64, 192, 384] , UpperCamelCase : Dict=[1, 3, 6] , UpperCamelCase : Dict=[1, 2, 10] , UpperCamelCase : Any=[4.0, 4.0, 4.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : int=[0.0, 0.0, 0.1] , UpperCamelCase : Any=[True, True, True] , UpperCamelCase : int=[False, False, True] , UpperCamelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase : Optional[int]=[3, 3, 3] , UpperCamelCase : Tuple=[1, 1, 1] , UpperCamelCase : Any=[2, 2, 2] , UpperCamelCase : Dict=[1, 1, 1] , UpperCamelCase : List[str]=[1, 1, 1] , UpperCamelCase : str=0.02 , UpperCamelCase : int=1E-12 , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) lowercase__ = num_channels lowercase__ = patch_sizes lowercase__ = patch_stride lowercase__ = patch_padding lowercase__ = embed_dim lowercase__ = num_heads lowercase__ = depth lowercase__ = mlp_ratio lowercase__ = attention_drop_rate lowercase__ = drop_rate lowercase__ = drop_path_rate lowercase__ = qkv_bias lowercase__ = cls_token lowercase__ = qkv_projection_method lowercase__ = kernel_qkv lowercase__ = padding_kv lowercase__ = stride_kv lowercase__ = padding_q lowercase__ = stride_q lowercase__ = initializer_range lowercase__ = layer_norm_eps
2
0
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor UpperCAmelCase_ : str = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): UpperCamelCase :Union[str, Any] = [image] UpperCamelCase :Tuple = [trans(img.convert("""RGB""" ) ) for img in image] UpperCamelCase :int = torch.stack(__magic_name__ ) return image class _SCREAMING_SNAKE_CASE ( _a ): def __init__( self : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Any ): super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase :List[Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) def _A ( self : Dict , __lowerCamelCase : List[str] ): if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def _A ( self : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): # get the original timestep using init_timestep UpperCamelCase :Optional[Any] = min(int(num_inference_steps * strength ) , __lowerCamelCase ) UpperCamelCase :Dict = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase :str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _A ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int]=None ): if not isinstance(__lowerCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCamelCase )}""" ) UpperCamelCase :Tuple = image.to(device=__lowerCamelCase , dtype=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__lowerCamelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCamelCase :Tuple = init_latents.shape UpperCamelCase :List[str] = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase ) # get latents print("""add noise to latents at timestep""" , __lowerCamelCase ) UpperCamelCase :List[Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Tuple = init_latents return latents @torch.no_grad() def __call__( self : Tuple , __lowerCamelCase : Union[torch.FloatTensor, PIL.Image.Image] = None , __lowerCamelCase : float = 0.8 , __lowerCamelCase : int = 1 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 50 , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ): self.check_inputs(__lowerCamelCase ) # 2. Preprocess image UpperCamelCase :Any = preprocess(__lowerCamelCase ) # 3. set timesteps self.scheduler.set_timesteps(__lowerCamelCase , device=self.device ) UpperCamelCase , UpperCamelCase :Dict = self.get_timesteps(__lowerCamelCase , __lowerCamelCase , self.device ) UpperCamelCase :List[Any] = timesteps[:1].repeat(__lowerCamelCase ) # 4. Prepare latent variables UpperCamelCase :str = self.prepare_latents(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.unet.dtype , self.device , __lowerCamelCase ) UpperCamelCase :List[str] = latents # 5. Denoising loop for t in self.progress_bar(__lowerCamelCase ): # 1. predict noise model_output UpperCamelCase :List[str] = self.unet(__lowerCamelCase , __lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase :Union[str, Any] = self.scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , eta=__lowerCamelCase , use_clipped_model_output=__lowerCamelCase , generator=__lowerCamelCase , ).prev_sample UpperCamelCase :Dict = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase :Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase :List[str] = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__lowerCamelCase )
38
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCamelCase : Any = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCamelCase : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCamelCase : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) lowerCamelCase : List[Any] = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) lowerCamelCase : List[str] = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions lowerCamelCase : List[str] = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image) lowerCamelCase : str = np.expand_dims(test_image, axis=0) lowerCamelCase : List[str] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCamelCase : Any = 'Normal' if result[0][0] == 1: lowerCamelCase : Any = 'Abnormality detected'
2
0
def __A ( __lowerCAmelCase = 1_000 )-> int: """simple docstring""" _UpperCAmelCase = 2**power _UpperCAmelCase = str(__lowerCAmelCase ) _UpperCAmelCase = list(__lowerCAmelCase ) _UpperCAmelCase = 0 for i in list_num: sum_of_num += int(__lowerCAmelCase ) return sum_of_num if __name__ == "__main__": _a = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) _a = solution(power) print('''Sum of the digits is: ''', result)
39
'''simple docstring''' class __lowerCAmelCase : # Public class to implement a graph '''simple docstring''' def __init__(self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = row lowercase__ = col lowercase__ = graph def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): # And finally, count all islands. '''simple docstring''' lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase ) count += 1 return count
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
40
'''simple docstring''' import unittest from transformers import DonutProcessor lowerCamelCase : Tuple = 'naver-clova-ix/donut-base' class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DonutProcessor.from_pretrained(UpperCamelCase ) def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__ = self.processor.tokenajson(UpperCamelCase ) self.assertDictEqual(UpperCamelCase , UpperCamelCase )
2
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str: lowerCamelCase__ : Dict = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Optional[Any]: lowerCamelCase__ : Tuple = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: lowerCamelCase__ : Tuple = s_dict.pop(UpperCamelCase ) elif "subsample" in key: lowerCamelCase__ : List[Any] = s_dict.pop(UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Tuple: lowerCamelCase__ , lowerCamelCase__ : Tuple = emb.weight.shape lowerCamelCase__ : int = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) lowerCamelCase__ : Optional[Any] = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> List[Any]: lowerCamelCase__ : int = torch.load(UpperCamelCase , map_location="""cpu""" ) lowerCamelCase__ : List[Any] = mam_aaa["""args"""] lowerCamelCase__ : Union[str, Any] = mam_aaa["""model"""] lowerCamelCase__ : List[str] = state_dict["""decoder.output_projection.weight"""] remove_ignore_keys_(UpperCamelCase ) rename_keys(UpperCamelCase ) lowerCamelCase__ : List[Any] = state_dict["""decoder.embed_tokens.weight"""].shape[0] lowerCamelCase__ : int = args.share_decoder_input_output_embed lowerCamelCase__ : Optional[int] = [int(UpperCamelCase ) for i in args.conv_kernel_sizes.split(""",""" )] lowerCamelCase__ : List[Any] = SpeechaTextConfig( vocab_size=UpperCamelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(UpperCamelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=UpperCamelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=UpperCamelCase , num_beams=5 , max_length=200 , use_cache=UpperCamelCase , decoder_start_token_id=2 , early_stopping=UpperCamelCase , ) lowerCamelCase__ : List[Any] = SpeechaTextForConditionalGeneration(UpperCamelCase ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = model.model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) if len(UpperCamelCase ) > 0 and not set(UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" f''' but all the following weights are missing {missing}''' ) if tie_embeds: lowerCamelCase__ : Union[str, Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowerCamelCase__ : Optional[Any] = lm_head_weights model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _A : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument('''--fairseq_path''', type=str, help='''Path to the fairseq model (.pt) file.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _A : str =parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
41
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
'''simple docstring''' from __future__ import annotations lowercase : Any = 8.988E9 # units = N * m^s * C^-2 def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A ) -> dict[str, float]: _snake_case = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if distance < 0: raise ValueError('Distance cannot be negative' ) if force == 0: _snake_case = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: _snake_case = abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: _snake_case = abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: _snake_case = (COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
42
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCamelCase : Any = None lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : List[str] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase : Any = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : int = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ : Optional[int] = TaTokenizer lowerCAmelCase__ : List[int] = [] def __init__(self : Dict , UpperCamelCase : str=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any="</s>" , UpperCamelCase : str="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : List[str]=100 , UpperCamelCase : Tuple=None , **UpperCamelCase : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase__ = [f"<extra_id_{i}>" for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ = len(set(filter(lambda UpperCamelCase : bool('''extra_id_''' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True lowercase__ = extra_ids @staticmethod def UpperCamelCase__ (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase , ) return max_model_length def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase__ = os.path.join( UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) logger.info(f"Copy vocab file to {out_vocab_file}" ) return (out_vocab_file,) def UpperCamelCase__ (self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase ) for token in self.get_sentinel_tokens()]
2
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
43
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Dict = ShapEImgaImgPipeline lowerCAmelCase__ : List[str] = ["""image"""] lowerCAmelCase__ : Any = ["""image"""] lowerCAmelCase__ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] lowerCAmelCase__ : Tuple = False @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : str ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase__ (self : int ): '''simple docstring''' return 8 @property def UpperCamelCase__ (self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(UpperCamelCase ) return model @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase , do_normalize=UpperCamelCase , do_resize=UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def UpperCamelCase__ (self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase__ = PriorTransformer(**UpperCamelCase ) return model @property def UpperCamelCase__ (self : int ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**UpperCamelCase ) return model def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase , clip_sample=UpperCamelCase , clip_sample_range=1.0 , ) lowercase__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=0 ): '''simple docstring''' lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if str(UpperCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase ) else: lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowercase__ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = torch_device == '''cpu''' lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase , relax_max_difference=UpperCamelCase , ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(UpperCamelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**UpperCamelCase , num_images_per_prompt=UpperCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) lowercase__ = pipe( UpperCamelCase , generator=UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
2
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list ) -> list: for i in range(len(_lowerCamelCase ) - 1 ,0 ,-1 ): _lowerCAmelCase : Dict = False for j in range(_lowerCamelCase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: _lowerCAmelCase , _lowerCAmelCase : List[str] = unsorted[j - 1], unsorted[j] _lowerCAmelCase : int = True for j in range(_lowerCamelCase ): if unsorted[j] > unsorted[j + 1]: _lowerCAmelCase , _lowerCAmelCase : Any = unsorted[j + 1], unsorted[j] _lowerCAmelCase : int = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() _a : Tuple = input('Enter numbers separated by a comma:\n').strip() _a : Optional[Any] = [int(item) for item in user_input.split(',')] print(F"""{cocktail_shaker_sort(unsorted) = }""")
44
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : str = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() lowercase_ = logging.get_logger("transformers.models.speecht5") lowercase_ = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } lowercase_ = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } lowercase_ = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } lowercase_ = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } lowercase_ = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } lowercase_ = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } lowercase_ = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } lowercase_ = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } lowercase_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } lowercase_ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowercase_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowercase_ = [] lowercase_ = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] lowercase_ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] lowercase_ = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] lowercase_ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowercase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any ) -> Tuple: for attribute in key.split('''.''' ): __a = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: __a = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: __a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value elif weight_type == "running_mean": __a = value elif weight_type == "running_var": __a = value elif weight_type == "num_batches_tracked": __a = value else: __a = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any ) -> Optional[Any]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __a , __a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] ) -> int: __a = [] if task == "s2t": __a = hf_model.speechta.encoder.prenet.feature_encoder __a = MAPPING_S2T __a = IGNORE_KEYS_S2T elif task == "t2s": __a = None __a = MAPPING_T2S __a = IGNORE_KEYS_T2S elif task == "s2s": __a = hf_model.speechta.encoder.prenet.feature_encoder __a = MAPPING_S2S __a = IGNORE_KEYS_S2S else: raise ValueError(f'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info(f'''{name} was ignored''' ) continue __a = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) __a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __a , __a = key.split('''.*.''' ) if prefix in name and suffix in name: __a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __a = True if "*" in mapped_key: __a = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] __a = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: __a = '''weight_g''' elif "weight_v" in name: __a = '''weight_v''' elif "bias" in name: __a = '''bias''' elif "weight" in name: __a = '''weight''' elif "running_mean" in name: __a = '''running_mean''' elif "running_var" in name: __a = '''running_var''' elif "num_batches_tracked" in name: __a = '''num_batches_tracked''' else: __a = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] ) -> Optional[int]: __a = full_name.split('''conv_layers.''' )[-1] __a = name.split('''.''' ) __a = int(items[0] ) __a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : List[str]=None , ) -> int: if config_path is not None: __a = SpeechTaConfig.from_pretrained(lowerCAmelCase__ ) else: __a = SpeechTaConfig() if task == "s2t": __a = config.max_text_positions __a = SpeechTaForSpeechToText(lowerCAmelCase__ ) elif task == "t2s": __a = 1876 __a = 600 __a = config.max_speech_positions __a = SpeechTaForTextToSpeech(lowerCAmelCase__ ) elif task == "s2s": __a = 1876 __a = config.max_speech_positions __a = SpeechTaForSpeechToSpeech(lowerCAmelCase__ ) else: raise ValueError(f'''Unknown task name: {task}''' ) if vocab_path: __a = SpeechTaTokenizer(lowerCAmelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __a = AddedToken('''<mask>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) __a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) __a = SpeechTaFeatureExtractor() __a = SpeechTaProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) __a = torch.load(lowerCAmelCase__ ) recursively_load_weights(fairseq_checkpoint['''model'''] , lowerCAmelCase__ , lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) lowercase_ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
45
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = """realm""" def __init__(self : str , UpperCamelCase : List[Any]=30522 , UpperCamelCase : List[Any]=768 , UpperCamelCase : int=128 , UpperCamelCase : Any=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Union[str, Any]=3072 , UpperCamelCase : List[str]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : Dict=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : List[Any]=1E-12 , UpperCamelCase : Dict=256 , UpperCamelCase : Union[str, Any]=10 , UpperCamelCase : Optional[int]=1E-3 , UpperCamelCase : Tuple=5 , UpperCamelCase : Optional[int]=320 , UpperCamelCase : List[str]=13353718 , UpperCamelCase : Optional[Any]=5000 , UpperCamelCase : str=1 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[Any]=2 , **UpperCamelCase : int , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) # Common config lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = retriever_proj_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_candidates lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps # Reader config lowercase__ = span_hidden_size lowercase__ = max_span_width lowercase__ = reader_layer_norm_eps lowercase__ = reader_beam_size lowercase__ = reader_seq_len # Retrieval config lowercase__ = num_block_records lowercase__ = searcher_beam_size
2
0
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' for param in module.parameters(): lowerCAmelCase = False def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCAmelCase = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase = plt.imshow(SCREAMING_SNAKE_CASE ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE ) plt.show() def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = datetime.now() lowerCAmelCase = current_time.strftime("""%H:%M:%S""" ) return timestamp
46
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : int = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = """mvp""" lowerCAmelCase__ : Optional[Any] = ["""past_key_values"""] lowerCAmelCase__ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self : Any , UpperCamelCase : Optional[int]=50267 , UpperCamelCase : Tuple=1024 , UpperCamelCase : int=12 , UpperCamelCase : Tuple=4096 , UpperCamelCase : Dict=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Union[str, Any]=1024 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=1 , UpperCamelCase : int=0 , UpperCamelCase : int=2 , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=False , UpperCamelCase : int=100 , UpperCamelCase : Optional[Any]=800 , **UpperCamelCase : str , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = classifier_dropout lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = use_prompt lowercase__ = prompt_length lowercase__ = prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase ): lowercase__ = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " '''The config can simply be saved and uploaded again to be fixed.''' )
2
0
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =1, 1 _SCREAMING_SNAKE_CASE =[] for i in range(1 , n + 1 ): _SCREAMING_SNAKE_CASE =prev_numerator + 2 * prev_denominator _SCREAMING_SNAKE_CASE =prev_numerator + prev_denominator if len(str(_UpperCamelCase ) ) > len(str(_UpperCamelCase ) ): result.append(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =numerator _SCREAMING_SNAKE_CASE =denominator return len(_UpperCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
47
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : List[str] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : int = DebertaVaTokenizer lowerCAmelCase__ : List[Any] = DebertaVaTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Tuple = True def UpperCamelCase__ (self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ = DebertaVaTokenizer(UpperCamelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = '''this is a test''' lowercase__ = '''this is a test''' return input_text, output_text def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''<pad>''' lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(UpperCamelCase ) , 30001 ) def UpperCamelCase__ (self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''This is a test''' lowercase__ = [13, 1, 4398, 25, 21, 1289] lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = DebertaVaTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # fmt: off lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DebertaVaTokenizer(UpperCamelCase ) lowercase__ = tokenizer.encode('''sequence builders''' ) lowercase__ = tokenizer.encode('''multi-sequence build''' ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase , ) @slow def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Any = """deberta-v2""" def __init__( self , UpperCamelCase__=12_8100 , UpperCamelCase__=1536 , UpperCamelCase__=24 , UpperCamelCase__=24 , UpperCamelCase__=6144 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=0 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-7 , UpperCamelCase__=False , UpperCamelCase__=-1 , UpperCamelCase__=0 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=0 , UpperCamelCase__="gelu" , **UpperCamelCase__ , ) -> Optional[int]: super().__init__(**UpperCamelCase__ ) lowerCamelCase : List[str] = hidden_size lowerCamelCase : Optional[int] = num_hidden_layers lowerCamelCase : Optional[Any] = num_attention_heads lowerCamelCase : Union[str, Any] = intermediate_size lowerCamelCase : Any = hidden_act lowerCamelCase : Dict = hidden_dropout_prob lowerCamelCase : Dict = attention_probs_dropout_prob lowerCamelCase : Tuple = max_position_embeddings lowerCamelCase : Optional[Any] = type_vocab_size lowerCamelCase : List[str] = initializer_range lowerCamelCase : Tuple = relative_attention lowerCamelCase : List[str] = max_relative_positions lowerCamelCase : Optional[int] = pad_token_id lowerCamelCase : int = position_biased_input # Backwards compatibility if type(UpperCamelCase__ ) == str: lowerCamelCase : Any = [x.strip() for x in pos_att_type.lower().split("|" )] lowerCamelCase : List[Any] = pos_att_type lowerCamelCase : Dict = vocab_size lowerCamelCase : Dict = layer_norm_eps lowerCamelCase : Any = kwargs.get("pooler_hidden_size" , UpperCamelCase__ ) lowerCamelCase : Dict = pooler_dropout lowerCamelCase : int = pooler_hidden_act class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCamelCase : str = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase : int = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def _lowercase ( self ) -> int: return 12 def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = 3 , UpperCamelCase__ = 40 , UpperCamelCase__ = 40 , UpperCamelCase__ = None , ) -> Mapping[str, Any]: lowerCamelCase : Union[str, Any] = super().generate_dummy_inputs(preprocessor=UpperCamelCase__ , framework=UpperCamelCase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
48
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _SCREAMING_SNAKE_CASE (A ) -> Optional[Any]: """simple docstring""" lowercase__ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A , A ) def _SCREAMING_SNAKE_CASE (A ) -> List[str]: """simple docstring""" lowercase__ ,lowercase__ = emb.weight.shape lowercase__ = nn.Linear(A , A , bias=A ) lowercase__ = emb.weight.data return lin_layer def _SCREAMING_SNAKE_CASE (A , A="facebook/mbart-large-en-ro" , A=False , A=False ) -> Union[str, Any]: """simple docstring""" lowercase__ = torch.load(A , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A ) lowercase__ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowercase__ = MBartConfig.from_pretrained(A , vocab_size=A ) if mbart_aa and finetuned: lowercase__ = '''relu''' lowercase__ = state_dict['''decoder.embed_tokens.weight'''] lowercase__ = MBartForConditionalGeneration(A ) model.model.load_state_dict(A ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') lowerCamelCase : Any = parser.parse_args() lowerCamelCase : List[str] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
2
0
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _A ( unittest.TestCase ): @property def _lowerCamelCase ( self : Dict): '''simple docstring''' torch.manual_seed(0) __a = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.dummy_uncond_unet __a = PNDMScheduler() __a = PNDMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE) pndm.to(__SCREAMING_SNAKE_CASE) pndm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = torch.manual_seed(0) __a = pndm(generator=__SCREAMING_SNAKE_CASE , num_inference_steps=20 , output_type='''numpy''').images __a = torch.manual_seed(0) __a = pndm(generator=__SCREAMING_SNAKE_CASE , num_inference_steps=20 , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE)[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch class _A ( unittest.TestCase ): def _lowerCamelCase ( self : Any): '''simple docstring''' __a = '''google/ddpm-cifar10-32''' __a = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = PNDMScheduler() __a = PNDMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE) pndm.to(__SCREAMING_SNAKE_CASE) pndm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = torch.manual_seed(0) __a = pndm(generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''').images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
49
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCamelCase : List[Any] = logging.getLogger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCamelCase : Any=-1 ): '''simple docstring''' lowercase__ = label_idx def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: lowercase__ = [] lowercase__ = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 lowercase__ = [] lowercase__ = [] else: lowercase__ = line.split(''' ''' ) words.append(splits[0] ) if len(UpperCamelCase ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) return examples def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(UpperCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase__ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(UpperCamelCase ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : List[Any] ): '''simple docstring''' super().__init__(label_idx=-2 ) def UpperCamelCase__ (self : List[Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def UpperCamelCase__ (self : Tuple , UpperCamelCase : int , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: for sentence in parse_incr(UpperCamelCase ): lowercase__ = [] lowercase__ = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(UpperCamelCase ) == len(UpperCamelCase ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 return examples def UpperCamelCase__ (self : Tuple , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for sentence in parse_incr(UpperCamelCase ): lowercase__ = preds_list[example_id] lowercase__ = '''''' for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(UpperCamelCase ) example_id += 1 def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
2
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase ): @register_to_config def __init__( self : List[str] , UpperCAmelCase : int = 65536 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 0 , UpperCAmelCase : str = "fourier" , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase : str = None , UpperCAmelCase : Tuple[int] = (32, 32, 64) , UpperCAmelCase : str = None , UpperCAmelCase : int = 8 , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = False , ) -> List[Any]: super().__init__() lowerCamelCase__ : Optional[int] = sample_size # time if time_embedding_type == "fourier": lowerCamelCase__ : Optional[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase , log=UpperCAmelCase , flip_sin_to_cos=UpperCAmelCase ) lowerCamelCase__ : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCamelCase__ : List[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase , downscale_freq_shift=UpperCAmelCase ) lowerCamelCase__ : Dict = block_out_channels[0] if use_timestep_embedding: lowerCamelCase__ : str = block_out_channels[0] * 4 lowerCamelCase__ : List[Any] = TimestepEmbedding( in_channels=UpperCAmelCase , time_embed_dim=UpperCAmelCase , act_fn=UpperCAmelCase , out_dim=block_out_channels[0] , ) lowerCamelCase__ : Any = nn.ModuleList([] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = nn.ModuleList([] ) lowerCamelCase__ : Optional[int] = None # down lowerCamelCase__ : Optional[int] = in_channels for i, down_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = output_channel lowerCamelCase__ : Tuple = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCamelCase__ : Union[str, Any] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Optional[int] = get_down_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase ) # mid lowerCamelCase__ : Optional[int] = get_mid_block( UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase , add_downsample=UpperCAmelCase , ) # up lowerCamelCase__ : Optional[int] = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: lowerCamelCase__ : List[str] = out_channels else: lowerCamelCase__ : Any = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Tuple = output_channel lowerCamelCase__ : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase ) - 1 else final_upsample_channels ) lowerCamelCase__ : List[str] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Dict = get_up_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : int = output_channel # out lowerCamelCase__ : int = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCamelCase__ : List[Any] = get_out_block( out_block_type=UpperCAmelCase , num_groups_out=UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase , act_fn=UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def A_ ( self : List[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Union[torch.Tensor, float, int] , UpperCAmelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]: lowerCamelCase__ : Optional[Any] = timestep if not torch.is_tensor(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[str] = timesteps[None].to(sample.device ) lowerCamelCase__ : Optional[int] = self.time_proj(UpperCAmelCase ) if self.config.use_timestep_embedding: lowerCamelCase__ : str = self.time_mlp(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = timestep_embed[..., None] lowerCamelCase__ : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCamelCase__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCamelCase__ : str = () for downsample_block in self.down_blocks: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = downsample_block(hidden_states=UpperCAmelCase , temb=UpperCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCamelCase__ : Optional[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCamelCase__ : Dict = down_block_res_samples[-1:] lowerCamelCase__ : Optional[Any] = down_block_res_samples[:-1] lowerCamelCase__ : Any = upsample_block(UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , temb=UpperCAmelCase ) # 5. post-process if self.out_block: lowerCamelCase__ : Any = self.out_block(UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase )
50
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = """megatron-bert""" def __init__(self : Tuple , UpperCamelCase : Optional[int]=29056 , UpperCamelCase : Optional[Any]=1024 , UpperCamelCase : Any=24 , UpperCamelCase : int=16 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : int="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=512 , UpperCamelCase : int=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Dict=1E-12 , UpperCamelCase : List[Any]=0 , UpperCamelCase : Optional[int]="absolute" , UpperCamelCase : List[Any]=True , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache
2
0
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split snake_case_ : Optional[Any] = datasets.load_iris() snake_case_ : str = np.array(data["data"]) snake_case_ : Any = np.array(data["target"]) snake_case_ : Optional[int] = data["target_names"] snake_case_ , snake_case_ , snake_case_ , snake_case_ : int = train_test_split(X, y) def A (__A : Tuple , __A : str ) -> Any: """simple docstring""" return np.linalg.norm(np.array(__A ) - np.array(__A ) ) def A (__A : str , __A : Any , __A : int , __A : int , __A : List[str]=5 ) -> Any: """simple docstring""" UpperCAmelCase_ = zip(__A , __A ) # List of distances of all points from the point to be classified UpperCAmelCase_ = [] for data_point in data: UpperCAmelCase_ = euclidean_distance(data_point[0] , __A ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. UpperCAmelCase_ = [i[1] for i in sorted(__A )[:k]] # Most commonly occurring class among them # is the class into which the point is classified UpperCAmelCase_ = Counter(__A ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
51
'''simple docstring''' # Lint as: python3 import itertools import os import re lowerCamelCase : Any = re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCamelCase : str = re.compile(R'([a-z\d])([A-Z])') lowerCamelCase : Optional[int] = re.compile(R'(?<!_)_(?!_)') lowerCamelCase : List[Any] = re.compile(R'(_{2,})') lowerCamelCase : str = R'^\w+(\.\w+)*$' lowerCamelCase : Dict = R'<>:/\|?*' def _SCREAMING_SNAKE_CASE (A ) -> Any: """simple docstring""" lowercase__ = _uppercase_uppercase_re.sub(R'''\1_\2''' , A ) lowercase__ = _lowercase_uppercase_re.sub(R'''\1_\2''' , A ) return name.lower() def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" lowercase__ = _single_underscore_re.split(A ) lowercase__ = [_multiple_underscores_re.split(A ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A ) if n != '''''' ) def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , A ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(A )}-{split}" def _SCREAMING_SNAKE_CASE (A , A , A , A=None ) -> List[str]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) if filetype_suffix: prefix += f".{filetype_suffix}" lowercase__ = os.path.join(A , A ) return f"{filepath}*" def _SCREAMING_SNAKE_CASE (A , A , A , A=None , A=None ) -> Optional[Any]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) lowercase__ = os.path.join(A , A ) if shard_lengths: lowercase__ = len(A ) lowercase__ = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(A )] if filetype_suffix: lowercase__ = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: lowercase__ = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
2
0
from scipy.stats import spearmanr import datasets __lowerCamelCase : Optional[Any] = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ __lowerCamelCase : Any = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ __lowerCamelCase : Optional[int] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCamelCase( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def __UpperCamelCase( self , A_ , A_ , A_=False ): '''simple docstring''' UpperCamelCase : Any = spearmanr(A_ , A_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
52
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __lowerCAmelCase : '''simple docstring''' def __init__(self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : str=True , UpperCamelCase : Tuple=False , UpperCamelCase : str=True , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Any=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Tuple=30 , UpperCamelCase : str=0 , UpperCamelCase : Tuple=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : str=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = decoder_seq_length # For common tests lowercase__ = self.decoder_seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_model lowercase__ = decoder_layers lowercase__ = decoder_layers lowercase__ = decoder_ffn_dim lowercase__ = decoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = eos_token_id lowercase__ = bos_token_id lowercase__ = pad_token_id lowercase__ = decoder_start_token_id lowercase__ = use_cache lowercase__ = max_position_embeddings lowercase__ = None lowercase__ = decoder_seq_length lowercase__ = 2 lowercase__ = 1 def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , ): '''simple docstring''' lowercase__ = True lowercase__ = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval() lowercase__ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) lowercase__ = model(UpperCamelCase ) lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) lowercase__ = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowercase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ = model(UpperCamelCase )['''last_hidden_state'''] lowercase__ = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state'''] # select random slice lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowercase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class __lowerCAmelCase (lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase__ : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase__ : Optional[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[str] = False def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass
2
0
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType a__ : List[Any] =logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple ="vision-encoder-decoder" SCREAMING_SNAKE_CASE_ : Tuple =True def __init__( self : List[str] , **__A : List[str] ): super().__init__(**__A ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) __UpperCamelCase = kwargs.pop('encoder' ) __UpperCamelCase = encoder_config.pop('model_type' ) __UpperCamelCase = kwargs.pop('decoder' ) __UpperCamelCase = decoder_config.pop('model_type' ) __UpperCamelCase = AutoConfig.for_model(__A , **__A ) __UpperCamelCase = AutoConfig.for_model(__A , **__A ) __UpperCamelCase = True @classmethod def _lowerCamelCase ( cls : Any , __A : PretrainedConfig , __A : PretrainedConfig , **__A : Union[str, Any] ): logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) __UpperCamelCase = True __UpperCamelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__A ) def _lowerCamelCase ( self : str ): __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.encoder.to_dict() __UpperCamelCase = self.decoder.to_dict() __UpperCamelCase = self.__class__.model_type return output class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple =version.parse("1.11" ) @property def _lowerCamelCase ( self : str ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _lowerCamelCase ( self : Dict ): return 1e-4 @property def _lowerCamelCase ( self : List[str] ): return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class snake_case ( __lowerCamelCase ): """simple docstring""" @property def _lowerCamelCase ( self : int ): __UpperCamelCase = OrderedDict() __UpperCamelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} __UpperCamelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} __UpperCamelCase = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _lowerCamelCase ( self : Union[str, Any] , __A : "PreTrainedTokenizerBase" , __A : int = -1 , __A : int = -1 , __A : bool = False , __A : Optional["TensorType"] = None , ): import torch __UpperCamelCase = OrderedDict() __UpperCamelCase = super().generate_dummy_inputs( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) __UpperCamelCase , __UpperCamelCase = dummy_input['input_ids'].shape __UpperCamelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) __UpperCamelCase = dummy_input.pop('input_ids' ) __UpperCamelCase = dummy_input.pop('attention_mask' ) __UpperCamelCase = torch.zeros(__A ) return common_inputs class snake_case ( __lowerCamelCase ): """simple docstring""" @property def _lowerCamelCase ( self : str ): pass def _lowerCamelCase ( self : Optional[int] , __A : PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(__A ) def _lowerCamelCase ( self : Union[str, Any] , __A : PretrainedConfig , __A : PretrainedConfig , __A : str = "default" ): __UpperCamelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__A , __A )
53
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" if not isinstance(A , A ): raise TypeError('''only integers accepted as input''' ) else: lowercase__ = str(abs(A ) ) lowercase__ = [list(A ) for char in range(len(A ) )] for index in range(len(A ) ): num_transpositions[index].pop(A ) return max( int(''''''.join(list(A ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
2
0
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a__ : int = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: __SCREAMING_SNAKE_CASE = k.replace(lowerCAmelCase_ , lowerCAmelCase_ ) return k def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = DEFAULTS.copy() cfg_kwargs.update(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = PegasusConfig(**lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = PegasusForConditionalGeneration(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = torch_model.model.state_dict() __SCREAMING_SNAKE_CASE = {} for k, v in tf_weights.items(): __SCREAMING_SNAKE_CASE = rename_state_dict_key(lowerCAmelCase_ ) if new_k not in sd: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __SCREAMING_SNAKE_CASE = v.T __SCREAMING_SNAKE_CASE = torch.tensor(lowerCAmelCase_ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __SCREAMING_SNAKE_CASE = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) __SCREAMING_SNAKE_CASE = mapping["shared.weight"] __SCREAMING_SNAKE_CASE = mapping["shared.weight"] __SCREAMING_SNAKE_CASE = {k: torch.zeros_like(lowerCAmelCase_ ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch_model.model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def UpperCAmelCase__ (lowerCAmelCase_="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tf.train.list_variables(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = ["Adafactor", "global_step"] for name, shape in tqdm(lowerCAmelCase_ , desc="converting tf checkpoint to dict" ): __SCREAMING_SNAKE_CASE = any(pat in name for pat in ignore_name ) if skip_key: continue __SCREAMING_SNAKE_CASE = tf.train.load_variable(lowerCAmelCase_ , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = array return tf_weights def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = Path(lowerCAmelCase_ ).parent.name __SCREAMING_SNAKE_CASE = task_specific_params[f"""summarization_{dataset}"""]["max_position_embeddings"] __SCREAMING_SNAKE_CASE = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=lowerCAmelCase_ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(lowerCAmelCase_ ) # convert model __SCREAMING_SNAKE_CASE = get_tf_weights_as_numpy(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = task_specific_params[f"""summarization_{dataset}"""] if dataset == "large": __SCREAMING_SNAKE_CASE = task_specific_params __SCREAMING_SNAKE_CASE = convert_pegasus(lowerCAmelCase_ , lowerCAmelCase_ ) torch_model.save_pretrained(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(lowerCAmelCase_ , Path(lowerCAmelCase_ ) / "pytorch_model.bin" ) if __name__ == "__main__": a__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') a__ : List[str] = parser.parse_args() if args.save_dir is None: a__ : int = Path(args.tf_ckpt_path).parent.name a__ : Tuple = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
54
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase : str = Mapping[str, np.ndarray] lowerCamelCase : List[Any] = Mapping[str, Any] # Is a nested dict. lowerCamelCase : Any = 0.0_1 @dataclasses.dataclass(frozen=lowercase_ ) class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCAmelCase__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCAmelCase__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCAmelCase__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCAmelCase__ : Optional[str] = None # Templates used to generate this protein (prediction-only) lowerCAmelCase__ : Optional[Sequence[str]] = None # Chain corresponding to each parent lowerCAmelCase__ : Optional[Sequence[int]] = None def _SCREAMING_SNAKE_CASE (A ) -> Protein: """simple docstring""" lowercase__ = R'''(\[[A-Z]+\]\n)''' lowercase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0] lowercase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) lowercase__ = ["N", "CA", "C"] lowercase__ = None lowercase__ = None lowercase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ = g[1][0].strip() for i in range(len(A ) ): if seq[i] not in residue_constants.restypes: lowercase__ = '''X''' # FIXME: strings are immutable lowercase__ = np.array( [residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ = [] for axis in range(3 ): tertiary.append(list(map(A , g[1][axis].split() ) ) ) lowercase__ = np.array(A ) lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) lowercase__ = np.zeros( ( len(A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , ) def _SCREAMING_SNAKE_CASE (A , A = 0 ) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) lowercase__ = prot.parents lowercase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ = [p for i, p in zip(A , A ) if i == chain_id] if parents is None or len(A ) == 0: lowercase__ = ['''N/A'''] pdb_headers.append(f"PARENT {' '.join(A )}" ) return pdb_headers def _SCREAMING_SNAKE_CASE (A , A ) -> str: """simple docstring""" lowercase__ = [] lowercase__ = pdb_str.split('''\n''' ) lowercase__ = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) lowercase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase__ = [] if prot.parents_chain_index is not None: lowercase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(A ) , [] ) parent_dict[str(A )].append(A ) lowercase__ = max([int(A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ = parent_dict.get(str(A ) , ['''N/A'''] ) parents_per_chain.append(A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ = [['''N/A''']] def make_parent_line(A ) -> str: return f"PARENT {' '.join(A )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ = 0 for i, l in enumerate(A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(A ): lowercase__ = parents_per_chain[chain_counter] else: lowercase__ = ['''N/A'''] out_pdb_lines.append(make_parent_line(A ) ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> str: """simple docstring""" lowercase__ = residue_constants.restypes + ['''X'''] def res_atoa(A ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) lowercase__ = residue_constants.atom_types lowercase__ = [] lowercase__ = prot.atom_mask lowercase__ = prot.aatype lowercase__ = prot.atom_positions lowercase__ = prot.residue_index.astype(np.intaa ) lowercase__ = prot.b_factors lowercase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) lowercase__ = get_pdb_headers(A ) if len(A ) > 0: pdb_lines.extend(A ) lowercase__ = aatype.shape[0] lowercase__ = 1 lowercase__ = 0 lowercase__ = string.ascii_uppercase lowercase__ = None # Add all atom sites. for i in range(A ): lowercase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase__ = '''ATOM''' lowercase__ = atom_name if len(A ) == 4 else f" {atom_name}" lowercase__ = '''''' lowercase__ = '''''' lowercase__ = 1.00 lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ = '''''' lowercase__ = '''A''' if chain_index is not None: lowercase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(A ) atom_index += 1 lowercase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ = True lowercase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ = '''TER''' lowercase__ = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(A , A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _SCREAMING_SNAKE_CASE (A , A , A = None , A = None , A = None , A = None , A = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
2
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a_ : Dict = logging.get_logger(__name__) a_ : Tuple = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def __snake_case ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): for attribute in key.split("." ): lowerCamelCase_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) if weight_type is not None: lowerCamelCase_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape else: lowerCamelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCamelCase_ = value elif weight_type == "weight_g": lowerCamelCase_ = value elif weight_type == "weight_v": lowerCamelCase_ = value elif weight_type == "bias": lowerCamelCase_ = value else: lowerCamelCase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str ): lowerCamelCase_ = [] lowerCamelCase_ = fairseq_model.state_dict() lowerCamelCase_ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase_ = True else: for key, mapped_key in MAPPING.items(): lowerCamelCase_ = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase_ = True if "*" in mapped_key: lowerCamelCase_ = name.split(UpperCAmelCase_ )[0].split("." )[-2] lowerCamelCase_ = mapped_key.replace("*" , UpperCAmelCase_ ) if "weight_g" in name: lowerCamelCase_ = "weight_g" elif "weight_v" in name: lowerCamelCase_ = "weight_v" elif "weight" in name: lowerCamelCase_ = "weight" elif "bias" in name: lowerCamelCase_ = "bias" else: lowerCamelCase_ = None set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) continue if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] ): lowerCamelCase_ = full_name.split("conv_layers." )[-1] lowerCamelCase_ = name.split("." ) lowerCamelCase_ = int(items[0] ) lowerCamelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowerCamelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase_ ) def __snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ): lowerCamelCase_ = SEWConfig() if is_finetuned: lowerCamelCase_ = model.wav_encoder.wav_model.cfg else: lowerCamelCase_ = model.cfg lowerCamelCase_ = fs_config.conv_bias lowerCamelCase_ = eval(fs_config.conv_feature_layers ) lowerCamelCase_ = [x[0] for x in conv_layers] lowerCamelCase_ = [x[1] for x in conv_layers] lowerCamelCase_ = [x[2] for x in conv_layers] lowerCamelCase_ = "gelu" lowerCamelCase_ = "layer" if fs_config.extractor_mode == "layer_norm" else "group" lowerCamelCase_ = 0.0 lowerCamelCase_ = fs_config.activation_fn.name lowerCamelCase_ = fs_config.encoder_embed_dim lowerCamelCase_ = 0.02 lowerCamelCase_ = fs_config.encoder_ffn_embed_dim lowerCamelCase_ = 1E-5 lowerCamelCase_ = fs_config.encoder_layerdrop lowerCamelCase_ = fs_config.encoder_attention_heads lowerCamelCase_ = fs_config.conv_pos_groups lowerCamelCase_ = fs_config.conv_pos lowerCamelCase_ = len(UpperCAmelCase_ ) lowerCamelCase_ = fs_config.encoder_layers lowerCamelCase_ = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowerCamelCase_ = model.cfg lowerCamelCase_ = fs_config.final_dropout lowerCamelCase_ = fs_config.layerdrop lowerCamelCase_ = fs_config.activation_dropout lowerCamelCase_ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowerCamelCase_ = fs_config.attention_dropout lowerCamelCase_ = fs_config.dropout_input lowerCamelCase_ = fs_config.dropout lowerCamelCase_ = fs_config.mask_channel_length lowerCamelCase_ = fs_config.mask_channel_prob lowerCamelCase_ = fs_config.mask_length lowerCamelCase_ = fs_config.mask_prob lowerCamelCase_ = "Wav2Vec2FeatureExtractor" lowerCamelCase_ = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def __snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : int=True ): if is_finetuned: lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowerCamelCase_ = SEWConfig.from_pretrained(UpperCAmelCase_ ) else: lowerCamelCase_ = convert_config(model[0] , UpperCAmelCase_ ) lowerCamelCase_ = model[0].eval() lowerCamelCase_ = True if config.feat_extract_norm == "layer" else False lowerCamelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) if is_finetuned: if dict_path: lowerCamelCase_ = Dictionary.load(UpperCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase_ = target_dict.pad_index lowerCamelCase_ = target_dict.bos_index lowerCamelCase_ = target_dict.pad_index lowerCamelCase_ = target_dict.bos_index lowerCamelCase_ = target_dict.eos_index lowerCamelCase_ = len(target_dict.symbols ) lowerCamelCase_ = os.path.join(UpperCAmelCase_ , "vocab.json" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(UpperCAmelCase_ ) ) return os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , UpperCAmelCase_ ) lowerCamelCase_ = WavaVecaCTCTokenizer( UpperCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=UpperCAmelCase_ , ) lowerCamelCase_ = WavaVecaProcessor(feature_extractor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) lowerCamelCase_ = SEWForCTC(UpperCAmelCase_ ) else: lowerCamelCase_ = SEWModel(UpperCAmelCase_ ) feature_extractor.save_pretrained(UpperCAmelCase_ ) recursively_load_weights(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) hf_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": a_ : Any = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) a_ : int = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
55
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A , A ) -> list[list[int]]: """simple docstring""" lowercase__ = [] create_all_state(1 , A , A , [] , A ) return result def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def _SCREAMING_SNAKE_CASE (A ) -> None: """simple docstring""" for i in total_list: print(*A ) if __name__ == "__main__": lowerCamelCase : Tuple = 4 lowerCamelCase : Union[str, Any] = 2 lowerCamelCase : Dict = generate_all_combinations(n, k) print_all_state(total_list)
2
0
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(F"could not parse string as bool {string}" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) a : List[str] = parser.parse_args() a : str = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
56
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCamelCase : Optional[Any] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowerCamelCase : Tuple = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowerCamelCase : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowerCamelCase : Any = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowerCamelCase : Tuple = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowerCamelCase : Optional[int] = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowerCamelCase : Dict = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ ,lowercase__ = randrange(len(A ) ), randrange(len(A ) ) lowercase__ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowercase__ ,lowercase__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE (A = 100 ) -> str: """simple docstring""" return (generate_random_hand() for _ in range(A )) @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]: """simple docstring""" assert PokerHand(A )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Any: """simple docstring""" lowercase__ = PokerHand(A ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple: """simple docstring""" assert PokerHand(A )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected def _SCREAMING_SNAKE_CASE () -> Tuple: """simple docstring""" lowercase__ = [PokerHand(A ) for hand in SORTED_HANDS] lowercase__ = poker_hands.copy() shuffle(A ) lowercase__ = chain(sorted(A ) ) for index, hand in enumerate(A ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE () -> List[Any]: """simple docstring""" lowercase__ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=A ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE () -> int: """simple docstring""" lowercase__ = PokerHand('''2C 4S AS 3D 5C''' ) lowercase__ = True lowercase__ = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ = 0 lowercase__ = os.path.abspath(os.path.dirname(A ) ) lowercase__ = os.path.join(A , '''poker_hands.txt''' ) with open(A ) as file_hand: for line in file_hand: lowercase__ = line[:14].strip() lowercase__ = line[15:].strip() lowercase__ ,lowercase__ = PokerHand(A ), PokerHand(A ) lowercase__ = player.compare_with(A ) if output == "Win": answer += 1 assert answer == 376
2
0
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) __lowerCAmelCase = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(_UpperCamelCase ) DownloadCommand.register_subcommand(_UpperCamelCase ) EnvironmentCommand.register_subcommand(_UpperCamelCase ) RunCommand.register_subcommand(_UpperCamelCase ) ServeCommand.register_subcommand(_UpperCamelCase ) UserCommands.register_subcommand(_UpperCamelCase ) AddNewModelCommand.register_subcommand(_UpperCamelCase ) AddNewModelLikeCommand.register_subcommand(_UpperCamelCase ) LfsCommands.register_subcommand(_UpperCamelCase ) PTtoTFCommand.register_subcommand(_UpperCamelCase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(_UpperCamelCase , "func" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(_UpperCamelCase ) service.run() if __name__ == "__main__": main()
57
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCamelCase : str = parser.parse_args() if args.model_type == "bert": lowerCamelCase : List[Any] = BertForMaskedLM.from_pretrained(args.model_name) lowerCamelCase : Any = 'bert' else: raise ValueError('args.model_type should be "bert".') lowerCamelCase : int = model.state_dict() lowerCamelCase : int = {} for w in ["word_embeddings", "position_embeddings"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] lowerCamelCase : Tuple = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] lowerCamelCase : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] lowerCamelCase : Tuple = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] lowerCamelCase : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] lowerCamelCase : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] lowerCamelCase : Any = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 lowerCamelCase : Optional[int] = state_dict['cls.predictions.decoder.weight'] lowerCamelCase : str = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: lowerCamelCase : str = state_dict[f"""cls.predictions.transform.dense.{w}"""] lowerCamelCase : Any = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
2
0
'''simple docstring''' import operator as op lowercase_ = """scaler.pt""" lowercase_ = """pytorch_model""" lowercase_ = """random_states""" lowercase_ = """optimizer""" lowercase_ = """scheduler""" lowercase_ = """pytorch_model.bin""" lowercase_ = """pytorch_model.bin.index.json""" lowercase_ = """model.safetensors""" lowercase_ = """model.safetensors.index.json""" lowercase_ = """1.10.2""" lowercase_ = """py38""" lowercase_ = """4.17.0""" lowercase_ = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""] lowercase_ = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""] lowercase_ = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""] lowercase_ = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""] lowercase_ = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""] lowercase_ = """2.0.1""" lowercase_ = ["""pdsh""", """standard""", """openmpi""", """mvapich"""] lowercase_ = ["""default""", """reduce-overhead""", """max-autotune"""] lowercase_ = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 lowercase_ = [ """nnodes""", """nproc_per_node""", """rdzv_backend""", """rdzv_endpoint""", """rdzv_id""", """rdzv_conf""", """standalone""", """max_restarts""", """monitor_interval""", """start_method""", """role""", """module""", """m""", """no_python""", """run_path""", """log_dir""", """r""", """redirects""", """t""", """tee""", """node_rank""", """master_addr""", """master_port""", ] lowercase_ = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""] lowercase_ = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
58
'''simple docstring''' from ....utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=2048 ): '''simple docstring''' lowercase__ = config.__dict__ lowercase__ = modal_hidden_size if num_labels: lowercase__ = num_labels
2
0
import os def UpperCamelCase ( __lowerCamelCase : str = "input.txt" ): with open(os.path.join(os.path.dirname(__lowerCamelCase ) , __lowerCamelCase ) ) as input_file: snake_case : Dict = [ [int(__lowerCamelCase ) for element in line.split("," )] for line in input_file.readlines() ] snake_case : Tuple = len(__lowerCamelCase ) snake_case : Optional[int] = len(matrix[0] ) snake_case : Tuple = [[-1 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): snake_case : List[str] = matrix[i][0] for j in range(1 , __lowerCamelCase ): for i in range(__lowerCamelCase ): snake_case : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __lowerCamelCase ): snake_case : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): snake_case : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'{solution() = }')
59
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Dict = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Tuple = """cvt""" def __init__(self : int , UpperCamelCase : List[Any]=3 , UpperCamelCase : int=[7, 3, 3] , UpperCamelCase : str=[4, 2, 2] , UpperCamelCase : Dict=[2, 1, 1] , UpperCamelCase : Dict=[64, 192, 384] , UpperCamelCase : Dict=[1, 3, 6] , UpperCamelCase : Dict=[1, 2, 10] , UpperCamelCase : Any=[4.0, 4.0, 4.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : int=[0.0, 0.0, 0.1] , UpperCamelCase : Any=[True, True, True] , UpperCamelCase : int=[False, False, True] , UpperCamelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase : Optional[int]=[3, 3, 3] , UpperCamelCase : Tuple=[1, 1, 1] , UpperCamelCase : Any=[2, 2, 2] , UpperCamelCase : Dict=[1, 1, 1] , UpperCamelCase : List[str]=[1, 1, 1] , UpperCamelCase : str=0.02 , UpperCamelCase : int=1E-12 , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) lowercase__ = num_channels lowercase__ = patch_sizes lowercase__ = patch_stride lowercase__ = patch_padding lowercase__ = embed_dim lowercase__ = num_heads lowercase__ = depth lowercase__ = mlp_ratio lowercase__ = attention_drop_rate lowercase__ = drop_rate lowercase__ = drop_path_rate lowercase__ = qkv_bias lowercase__ = cls_token lowercase__ = qkv_projection_method lowercase__ = kernel_qkv lowercase__ = padding_kv lowercase__ = stride_kv lowercase__ = padding_q lowercase__ = stride_q lowercase__ = initializer_range lowercase__ = layer_norm_eps
2
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Any = logging.get_logger(__name__) def _snake_case ( _snake_case : List[Any] , _snake_case : Tuple=False ): lowerCAmelCase : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _snake_case ( _snake_case : Tuple , _snake_case : List[Any] , _snake_case : Tuple=False ): for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[int] = '''''' else: lowerCAmelCase : Union[str, Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : List[Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) lowerCAmelCase : Tuple = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : Tuple = in_proj_bias[: config.hidden_size] lowerCAmelCase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : List[Any] = in_proj_bias[-config.hidden_size :] def _snake_case ( _snake_case : Tuple ): lowerCAmelCase : List[Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : List[Any] ): lowerCAmelCase : Optional[int] = dct.pop(_snake_case ) lowerCAmelCase : Union[str, Any] = val def _snake_case ( ): lowerCAmelCase : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Any = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any] ): lowerCAmelCase : Any = ViTConfig() lowerCAmelCase : Any = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCAmelCase : List[str] = True lowerCAmelCase : int = int(vit_name[-12:-10] ) lowerCAmelCase : List[Any] = int(vit_name[-9:-6] ) else: lowerCAmelCase : str = 1000 lowerCAmelCase : Optional[int] = '''huggingface/label-files''' lowerCAmelCase : Any = '''imagenet-1k-id2label.json''' lowerCAmelCase : Optional[Any] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase : Optional[Any] = {int(_snake_case ): v for k, v in idalabel.items()} lowerCAmelCase : Dict = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase : List[str] = int(vit_name[-6:-4] ) lowerCAmelCase : int = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): lowerCAmelCase : str = 192 lowerCAmelCase : int = 768 lowerCAmelCase : List[str] = 12 lowerCAmelCase : str = 3 elif vit_name[9:].startswith('''small''' ): lowerCAmelCase : List[str] = 384 lowerCAmelCase : Optional[int] = 1536 lowerCAmelCase : int = 12 lowerCAmelCase : str = 6 else: pass else: if vit_name[4:].startswith('''small''' ): lowerCAmelCase : List[str] = 768 lowerCAmelCase : Dict = 2304 lowerCAmelCase : Dict = 8 lowerCAmelCase : Tuple = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): lowerCAmelCase : Union[str, Any] = 1024 lowerCAmelCase : List[Any] = 4096 lowerCAmelCase : Union[str, Any] = 24 lowerCAmelCase : Any = 16 elif vit_name[4:].startswith('''huge''' ): lowerCAmelCase : Any = 1280 lowerCAmelCase : str = 5120 lowerCAmelCase : Tuple = 32 lowerCAmelCase : Tuple = 16 # load original model from timm lowerCAmelCase : Any = timm.create_model(_snake_case , pretrained=_snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase : int = timm_model.state_dict() if base_model: remove_classification_head_(_snake_case ) lowerCAmelCase : Optional[Any] = create_rename_keys(_snake_case , _snake_case ) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) read_in_q_k_v(_snake_case , _snake_case , _snake_case ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase : Any = ViTModel(_snake_case ).eval() else: lowerCAmelCase : Any = ViTForImageClassification(_snake_case ).eval() model.load_state_dict(_snake_case ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCAmelCase : Dict = DeiTImageProcessor(size=config.image_size ) else: lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) lowerCAmelCase : Union[str, Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCAmelCase : Dict = encoding['''pixel_values'''] lowerCAmelCase : List[Any] = model(_snake_case ) if base_model: lowerCAmelCase : Dict = timm_model.forward_features(_snake_case ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_snake_case , outputs.pooler_output , atol=1E-3 ) else: lowerCAmelCase : Dict = timm_model(_snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_snake_case , outputs.logits , atol=1E-3 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) snake_case__ : int = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
60
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCamelCase : Any = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCamelCase : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCamelCase : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) lowerCamelCase : List[Any] = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) lowerCamelCase : List[str] = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions lowerCamelCase : List[str] = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image) lowerCamelCase : str = np.expand_dims(test_image, axis=0) lowerCamelCase : List[str] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCamelCase : Any = 'Normal' if result[0][0] == 1: lowerCamelCase : Any = 'Abnormality detected'
2
0
"""simple docstring""" _a = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
61
'''simple docstring''' class __lowerCAmelCase : # Public class to implement a graph '''simple docstring''' def __init__(self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = row lowercase__ = col lowercase__ = graph def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): # And finally, count all islands. '''simple docstring''' lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase ) count += 1 return count
2
0
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray ): return input_array.reshape((input_array.size, 1) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =np.nan for i in range(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =features[:, labels == i] __UpperCamelCase =data.mean(1 ) # Centralize the data of class i __UpperCamelCase =data - column_reshape(SCREAMING_SNAKE_CASE__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(SCREAMING_SNAKE_CASE__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) __UpperCamelCase =np.dot(SCREAMING_SNAKE_CASE__ , centered_data.T ) return covariance_sum / features.shape[1] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =features.mean(1 ) __UpperCamelCase =np.nan for i in range(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =features[:, labels == i] __UpperCamelCase =data.shape[1] __UpperCamelCase =data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(SCREAMING_SNAKE_CASE__ ) - column_reshape(SCREAMING_SNAKE_CASE__ ) , (column_reshape(SCREAMING_SNAKE_CASE__ ) - column_reshape(SCREAMING_SNAKE_CASE__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) __UpperCamelCase =device_data * np.dot( column_reshape(SCREAMING_SNAKE_CASE__ ) - column_reshape(SCREAMING_SNAKE_CASE__ ) , (column_reshape(SCREAMING_SNAKE_CASE__ ) - column_reshape(SCREAMING_SNAKE_CASE__ )).T , ) return covariance_sum / features.shape[1] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int ): # Check if the features have been loaded if features.any(): __UpperCamelCase =features.mean(1 ) # Center the dataset __UpperCamelCase =features - np.reshape(SCREAMING_SNAKE_CASE__ , (data_mean.size, 1) ) __UpperCamelCase =np.dot(SCREAMING_SNAKE_CASE__ , centered_data.T ) / features.shape[1] __UpperCamelCase , __UpperCamelCase =np.linalg.eigh(SCREAMING_SNAKE_CASE__ ) # Take all the columns in the reverse order (-1), and then takes only the first __UpperCamelCase =eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space __UpperCamelCase =np.dot(filtered_eigenvectors.T , SCREAMING_SNAKE_CASE__ ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=SCREAMING_SNAKE_CASE__ ) logging.error('Dataset empty' ) raise AssertionError def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert classes > dimensions # Check if features have been already loaded if features.any: __UpperCamelCase , __UpperCamelCase =eigh( covariance_between_classes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , covariance_within_classes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , ) __UpperCamelCase =eigenvectors[:, ::-1][:, :dimensions] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =np.linalg.svd(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =svd_matrix[:, 0:dimensions] __UpperCamelCase =np.dot(filtered_svd_matrix.T , SCREAMING_SNAKE_CASE__ ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=SCREAMING_SNAKE_CASE__ ) logging.error('Dataset empty' ) raise AssertionError def _UpperCAmelCase ( ): # Create dummy dataset with 2 classes and 3 features __UpperCamelCase =np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) __UpperCamelCase =np.array([0, 0, 0, 1, 1] ) __UpperCamelCase =2 __UpperCamelCase =2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(SCREAMING_SNAKE_CASE__ ) as error_info: __UpperCamelCase =linear_discriminant_analysis( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def _UpperCAmelCase ( ): __UpperCamelCase =np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) __UpperCamelCase =2 __UpperCamelCase =np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(SCREAMING_SNAKE_CASE__ ) as error_info: __UpperCamelCase =principal_component_analysis(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
62
'''simple docstring''' import unittest from transformers import DonutProcessor lowerCamelCase : Tuple = 'naver-clova-ix/donut-base' class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DonutProcessor.from_pretrained(UpperCamelCase ) def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__ = self.processor.tokenajson(UpperCamelCase ) self.assertDictEqual(UpperCamelCase , UpperCamelCase )
2
0
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : List[Any] , __a : int , __a : Optional[Any]=13 , __a : str=7 , __a : Optional[int]=True , __a : List[Any]=True , __a : Any=True , __a : List[str]=True , __a : str=99 , __a : int=32 , __a : Any=5 , __a : Union[str, Any]=4 , __a : Optional[int]=37 , __a : Optional[Any]="gelu" , __a : Any=0.1 , __a : str=0.1 , __a : Any=5_12 , __a : Optional[Any]=16 , __a : Dict=2 , __a : Union[str, Any]=0.02 , __a : Any=False , __a : Optional[int]=True , __a : List[Any]="None" , __a : Optional[int]=3 , __a : Dict=4 , __a : List[str]=None , ): _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = relative_attention _a = position_biased_input _a = pos_att_type _a = scope def UpperCamelCase__ ( self : Optional[int] ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self : Optional[int] ): return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCamelCase__ ( self : Any ): _a = self.get_config() _a = 3_00 return config def UpperCamelCase__ ( self : List[str] , __a : Dict ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCamelCase__ ( self : List[Any] , __a : int , __a : Dict , __a : Tuple , __a : str , __a : Union[str, Any] , __a : List[str] , __a : List[Any] ): _a = DebertaModel(config=__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a , token_type_ids=__a )[0] _a = model(__a , token_type_ids=__a )[0] _a = model(__a )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCamelCase__ ( self : str , __a : List[str] , __a : Optional[Any] , __a : Tuple , __a : List[Any] , __a : Dict , __a : Optional[Any] , __a : List[str] ): _a = DebertaForMaskedLM(config=__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self : Optional[Any] , __a : int , __a : Optional[int] , __a : Dict , __a : int , __a : Optional[int] , __a : str , __a : Dict ): _a = self.num_labels _a = DebertaForSequenceClassification(__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__a ) def UpperCamelCase__ ( self : List[str] , __a : int , __a : Dict , __a : Union[str, Any] , __a : Dict , __a : str , __a : Optional[Any] , __a : List[str] ): _a = self.num_labels _a = DebertaForTokenClassification(config=__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self : Optional[Any] , __a : List[Any] , __a : Dict , __a : List[str] , __a : Optional[int] , __a : Union[str, Any] , __a : int , __a : Optional[Any] ): _a = DebertaForQuestionAnswering(config=__a ) model.to(__a ) model.eval() _a = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self : List[str] ): _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __a =( { 'feature-extraction': DebertaModel, 'fill-mask': DebertaForMaskedLM, 'question-answering': DebertaForQuestionAnswering, 'text-classification': DebertaForSequenceClassification, 'token-classification': DebertaForTokenClassification, 'zero-shot': DebertaForSequenceClassification, } if is_torch_available() else {} ) __a =True __a =False __a =False __a =False __a =False def UpperCamelCase__ ( self : Tuple ): _a = DebertaModelTester(self ) _a = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCamelCase__ ( self : Optional[int] ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self : str ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__a ) def UpperCamelCase__ ( self : Any ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__a ) def UpperCamelCase__ ( self : List[str] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__a ) def UpperCamelCase__ ( self : List[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__a ) def UpperCamelCase__ ( self : Any ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__a ) @slow def UpperCamelCase__ ( self : List[str] ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DebertaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @unittest.skip(reason="Model not available yet" ) def UpperCamelCase__ ( self : Tuple ): pass @slow def UpperCamelCase__ ( self : List[Any] ): _a = DebertaModel.from_pretrained("microsoft/deberta-base" ) _a = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) _a = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _a = model(__a , attention_mask=__a )[0] # compare the actual values for a slice. _a = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __a , atol=1e-4 ) , f'{output[:, 1:4, 1:4]}' )
63
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : float ): """simple docstring""" return 10 - x * x def UpperCAmelCase__ (snake_case__ : float , snake_case__ : float ): """simple docstring""" if equation(snake_case__ ) * equation(snake_case__ ) >= 0: raise ValueError("""Wrong space!""" ) _snake_case : Tuple = a while (b - a) >= 0.01: # Find middle point _snake_case : Optional[Any] = (a + b) / 2 # Check if middle point is root if equation(snake_case__ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case__ ) * equation(snake_case__ ) < 0: _snake_case : Optional[int] = c else: _snake_case : Tuple = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
64
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCamelCase : Any = None lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : List[str] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase : Any = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : int = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ : Optional[int] = TaTokenizer lowerCAmelCase__ : List[int] = [] def __init__(self : Dict , UpperCamelCase : str=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any="</s>" , UpperCamelCase : str="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : List[str]=100 , UpperCamelCase : Tuple=None , **UpperCamelCase : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase__ = [f"<extra_id_{i}>" for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ = len(set(filter(lambda UpperCamelCase : bool('''extra_id_''' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True lowercase__ = extra_ids @staticmethod def UpperCamelCase__ (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase , ) return max_model_length def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase__ = os.path.join( UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) logger.info(f"Copy vocab file to {out_vocab_file}" ) return (out_vocab_file,) def UpperCamelCase__ (self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase ) for token in self.get_sentinel_tokens()]
2
0
import mpmath # for roots of unity import numpy as np class A : def __init__(self : Union[str, Any] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Optional[int]=None ) -> Dict: """simple docstring""" UpperCAmelCase__ = list(poly_a or [0] )[:] UpperCAmelCase__ = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() UpperCAmelCase__ = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() UpperCAmelCase__ = len(self.polyB ) # Add 0 to make lengths equal a power of 2 UpperCAmelCase__ = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform UpperCAmelCase__ = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product UpperCAmelCase__ = self.__multiply() def lowercase_ (self : Dict , __UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(__UpperCAmelCase ) <= 1: return dft[0] # UpperCAmelCase__ = self.c_max_length // 2 while next_ncol > 0: UpperCAmelCase__ = [[] for i in range(__UpperCAmelCase )] UpperCAmelCase__ = self.root**next_ncol # First half of next step UpperCAmelCase__ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step UpperCAmelCase__ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update UpperCAmelCase__ = new_dft UpperCAmelCase__ = next_ncol // 2 return dft[0] def lowercase_ (self : str ) -> int: """simple docstring""" UpperCAmelCase__ = self.__dft("A" ) UpperCAmelCase__ = self.__dft("B" ) UpperCAmelCase__ = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT UpperCAmelCase__ = 2 while next_ncol <= self.c_max_length: UpperCAmelCase__ = [[] for i in range(__UpperCAmelCase )] UpperCAmelCase__ = self.root ** (next_ncol // 2) UpperCAmelCase__ = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update UpperCAmelCase__ = new_inverse_c next_ncol *= 2 # Unpack UpperCAmelCase__ = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__(self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase__ = "A = " + " + ".join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) ) UpperCAmelCase__ = "B = " + " + ".join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) ) UpperCAmelCase__ = "A*B = " + " + ".join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) ) return f"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
65
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Dict = ShapEImgaImgPipeline lowerCAmelCase__ : List[str] = ["""image"""] lowerCAmelCase__ : Any = ["""image"""] lowerCAmelCase__ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] lowerCAmelCase__ : Tuple = False @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : str ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase__ (self : int ): '''simple docstring''' return 8 @property def UpperCamelCase__ (self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(UpperCamelCase ) return model @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase , do_normalize=UpperCamelCase , do_resize=UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def UpperCamelCase__ (self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase__ = PriorTransformer(**UpperCamelCase ) return model @property def UpperCamelCase__ (self : int ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**UpperCamelCase ) return model def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase , clip_sample=UpperCamelCase , clip_sample_range=1.0 , ) lowercase__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=0 ): '''simple docstring''' lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if str(UpperCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase ) else: lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowercase__ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = torch_device == '''cpu''' lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase , relax_max_difference=UpperCamelCase , ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(UpperCamelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**UpperCamelCase , num_images_per_prompt=UpperCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) lowercase__ = pipe( UpperCamelCase , generator=UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule __a = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : str = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__=0.9_9_9 , UpperCamelCase__="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __lowerCamelCase = [] for i in range(UpperCamelCase__ ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase__ ) / alpha_bar_fn(UpperCamelCase__ ) , UpperCamelCase__ ) ) return torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) class a__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCamelCase : Dict =[e.name for e in KarrasDiffusionSchedulers] lowerCamelCase : Optional[Any] =2 @register_to_config def __init__( self : Optional[Any] , a : int = 10_00 , a : float = 0.0_00_85 , a : float = 0.0_12 , a : str = "linear" , a : Optional[Union[np.ndarray, List[float]]] = None , a : str = "epsilon" , a : Optional[bool] = False , a : Optional[bool] = False , a : float = 1.0 , a : str = "linspace" , a : int = 0 , ): """simple docstring""" if trained_betas is not None: __lowerCamelCase = torch.tensor(a , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase = torch.linspace(a , a , a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase = betas_for_alpha_bar(a , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": __lowerCamelCase = betas_for_alpha_bar(a , alpha_transform_type='''exp''' ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(a , a , a ) __lowerCamelCase = use_karras_sigmas def SCREAMING_SNAKE_CASE__ ( self : Dict , a : Optional[Any] , a : List[Any]=None ): """simple docstring""" if schedule_timesteps is None: __lowerCamelCase = self.timesteps __lowerCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase = 1 if len(a ) > 1 else 0 else: __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(a ) else timestep __lowerCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : torch.FloatTensor , a : Union[float, torch.FloatTensor] , ): """simple docstring""" __lowerCamelCase = self.index_for_timestep(a ) __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def SCREAMING_SNAKE_CASE__ ( self : Any , a : int , a : Union[str, torch.device] = None , a : Optional[int] = None , ): """simple docstring""" __lowerCamelCase = num_inference_steps __lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , a , dtype=a )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(0 , a ) * step_ratio).round()[::-1].copy().astype(a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(a , 0 , -step_ratio )).round().copy().astype(a ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) __lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase = np.log(a ) __lowerCamelCase = np.interp(a , np.arange(0 , len(a ) ) , a ) if self.config.use_karras_sigmas: __lowerCamelCase = self._convert_to_karras(in_sigmas=a , num_inference_steps=self.num_inference_steps ) __lowerCamelCase = np.array([self._sigma_to_t(a , a ) for sigma in sigmas] ) __lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase = torch.from_numpy(a ).to(device=a ) __lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase = torch.from_numpy(a ) __lowerCamelCase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(a ).startswith('''mps''' ): # mps does not support float64 __lowerCamelCase = timesteps.to(a , dtype=torch.floataa ) else: __lowerCamelCase = timesteps.to(device=a ) # empty dt and derivative __lowerCamelCase = None __lowerCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase = defaultdict(a ) def SCREAMING_SNAKE_CASE__ ( self : int , a : Any , a : List[Any] ): """simple docstring""" __lowerCamelCase = np.log(a ) # get distribution __lowerCamelCase = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __lowerCamelCase = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __lowerCamelCase = low_idx + 1 __lowerCamelCase = log_sigmas[low_idx] __lowerCamelCase = log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase = (low - log_sigma) / (low - high) __lowerCamelCase = np.clip(a , 0 , 1 ) # transform interpolation to time range __lowerCamelCase = (1 - w) * low_idx + w * high_idx __lowerCamelCase = t.reshape(sigma.shape ) return t def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : torch.FloatTensor , a : Dict ): """simple docstring""" __lowerCamelCase = in_sigmas[-1].item() __lowerCamelCase = in_sigmas[0].item() __lowerCamelCase = 7.0 # 7.0 is the value used in the paper __lowerCamelCase = np.linspace(0 , 1 , a ) __lowerCamelCase = sigma_min ** (1 / rho) __lowerCamelCase = sigma_max ** (1 / rho) __lowerCamelCase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" return self.dt is None def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : Union[torch.FloatTensor, np.ndarray] , a : Union[float, torch.FloatTensor] , a : Union[torch.FloatTensor, np.ndarray] , a : bool = True , ): """simple docstring""" __lowerCamelCase = self.index_for_timestep(a ) # advance index counter by 1 __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __lowerCamelCase = self.sigmas[step_index - 1] __lowerCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase = 0 __lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_next __lowerCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_next __lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __lowerCamelCase = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: __lowerCamelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase = sigma_next - sigma_hat # store for 2nd order step __lowerCamelCase = derivative __lowerCamelCase = dt __lowerCamelCase = sample else: # 2. 2nd order / Heun's method __lowerCamelCase = (sample - pred_original_sample) / sigma_next __lowerCamelCase = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __lowerCamelCase = self.dt __lowerCamelCase = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : torch.FloatTensor , a : torch.FloatTensor , a : torch.FloatTensor , ): """simple docstring""" __lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a ): # mps does not support float64 __lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase = self.timesteps.to(original_samples.device ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = [self.index_for_timestep(a , a ) for t in timesteps] __lowerCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase = sigma.unsqueeze(-1 ) __lowerCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self : Tuple ): """simple docstring""" return self.config.num_train_timesteps
67
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = """realm""" def __init__(self : str , UpperCamelCase : List[Any]=30522 , UpperCamelCase : List[Any]=768 , UpperCamelCase : int=128 , UpperCamelCase : Any=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Union[str, Any]=3072 , UpperCamelCase : List[str]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : Dict=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : List[Any]=1E-12 , UpperCamelCase : Dict=256 , UpperCamelCase : Union[str, Any]=10 , UpperCamelCase : Optional[int]=1E-3 , UpperCamelCase : Tuple=5 , UpperCamelCase : Optional[int]=320 , UpperCamelCase : List[str]=13353718 , UpperCamelCase : Optional[Any]=5000 , UpperCamelCase : str=1 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[Any]=2 , **UpperCamelCase : int , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) # Common config lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = retriever_proj_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_candidates lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps # Reader config lowercase__ = span_hidden_size lowercase__ = max_span_width lowercase__ = reader_layer_norm_eps lowercase__ = reader_beam_size lowercase__ = reader_seq_len # Retrieval config lowercase__ = num_block_records lowercase__ = searcher_beam_size
2
0
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class a__ ( snake_case ): """simple docstring""" def __get__( self , lowercase , lowercase=None ) -> Optional[Any]: '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) A__ = "__cached_" + self.fget.__name__ A__ = getattr(lowercase , lowercase , lowercase ) if cached is None: A__ = self.fget(lowercase ) setattr(lowercase , lowercase , lowercase ) return cached def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] ) -> Any: '''simple docstring''' A__ = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'invalid truth value {val!r}' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> List[Any]: '''simple docstring''' if is_torch_fx_proxy(SCREAMING_SNAKE_CASE_ ): return True if is_torch_available(): import torch if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(SCREAMING_SNAKE_CASE_ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(SCREAMING_SNAKE_CASE_ , (jnp.ndarray, Tracer) ): return True return isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[Any] ) -> Tuple: '''simple docstring''' return isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int ) -> Optional[Any]: '''simple docstring''' return _is_numpy(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple ) -> Optional[Any]: '''simple docstring''' import torch return isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[Any] ) -> Any: '''simple docstring''' return False if not is_torch_available() else _is_torch(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] ) -> str: '''simple docstring''' import torch return isinstance(SCREAMING_SNAKE_CASE_ , torch.device ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> Tuple: '''simple docstring''' return False if not is_torch_available() else _is_torch_device(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[Any] ) -> Tuple: '''simple docstring''' import torch if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A__ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: return False return isinstance(SCREAMING_SNAKE_CASE_ , torch.dtype ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] ) -> Optional[Any]: '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' import tensorflow as tf return isinstance(SCREAMING_SNAKE_CASE_ , tf.Tensor ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] ) -> Union[str, Any]: '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str ) -> Union[str, Any]: '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(SCREAMING_SNAKE_CASE_ , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(SCREAMING_SNAKE_CASE_ ) return type(SCREAMING_SNAKE_CASE_ ) == tf.Tensor def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict ) -> int: '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] ) -> str: '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(SCREAMING_SNAKE_CASE_ , jnp.ndarray ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] ) -> Any: '''simple docstring''' return False if not is_flax_available() else _is_jax(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple ) -> str: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , (dict, UserDict) ): return {k: to_py_obj(SCREAMING_SNAKE_CASE_ ) for k, v in obj.items()} elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): return [to_py_obj(SCREAMING_SNAKE_CASE_ ) for o in obj] elif is_tf_tensor(SCREAMING_SNAKE_CASE_ ): return obj.numpy().tolist() elif is_torch_tensor(SCREAMING_SNAKE_CASE_ ): return obj.detach().cpu().tolist() elif is_jax_tensor(SCREAMING_SNAKE_CASE_ ): return np.asarray(SCREAMING_SNAKE_CASE_ ).tolist() elif isinstance(SCREAMING_SNAKE_CASE_ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict ) -> Union[str, Any]: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , (dict, UserDict) ): return {k: to_numpy(SCREAMING_SNAKE_CASE_ ) for k, v in obj.items()} elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): return np.array(SCREAMING_SNAKE_CASE_ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE_ ): return obj.numpy() elif is_torch_tensor(SCREAMING_SNAKE_CASE_ ): return obj.detach().cpu().numpy() elif is_jax_tensor(SCREAMING_SNAKE_CASE_ ): return np.asarray(SCREAMING_SNAKE_CASE_ ) else: return obj class a__ ( snake_case ): """simple docstring""" def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = fields(self ) # Safety and consistency checks if not len(lowercase ): raise ValueError(F'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'{self.__class__.__name__} should not have more than one required field.' ) A__ = getattr(self , class_fields[0].name ) A__ = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(lowercase ): if isinstance(lowercase , lowercase ): A__ = first_field.items() A__ = True else: try: A__ = iter(lowercase ) A__ = True except TypeError: A__ = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowercase ): if ( not isinstance(lowercase , (list, tuple) ) or not len(lowercase ) == 2 or not isinstance(element[0] , lowercase ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute A__ = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: A__ = element[1] elif first_field is not None: A__ = first_field else: for field in class_fields: A__ = getattr(self , field.name ) if v is not None: A__ = v def __delitem__( self , *lowercase , **lowercase ) -> int: '''simple docstring''' raise Exception(F'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def UpperCamelCase ( self , *lowercase , **lowercase ) -> Optional[int]: '''simple docstring''' raise Exception(F'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def UpperCamelCase ( self , *lowercase , **lowercase ) -> Dict: '''simple docstring''' raise Exception(F'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def UpperCamelCase ( self , *lowercase , **lowercase ) -> List[Any]: '''simple docstring''' raise Exception(F'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self , lowercase ) -> Optional[Any]: '''simple docstring''' if isinstance(lowercase , lowercase ): A__ = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , lowercase , lowercase ) -> str: '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowercase , lowercase ) super().__setattr__(lowercase , lowercase ) def __setitem__( self , lowercase , lowercase ) -> str: '''simple docstring''' super().__setitem__(lowercase , lowercase ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowercase , lowercase ) def UpperCamelCase ( self ) -> Tuple[Any]: '''simple docstring''' return tuple(self[k] for k in self.keys() ) class a__ ( snake_case , snake_case ): """simple docstring""" @classmethod def UpperCamelCase ( cls , lowercase ) -> Optional[int]: '''simple docstring''' raise ValueError( F'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'longest' __lowerCamelCase = 'max_length' __lowerCamelCase = 'do_not_pad' class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'pt' __lowerCamelCase = 'tf' __lowerCamelCase = 'np' __lowerCamelCase = 'jax' class a__ : """simple docstring""" def __init__( self , lowercase ) -> Union[str, Any]: '''simple docstring''' A__ = context_managers A__ = ExitStack() def __enter__( self ) -> Union[str, Any]: '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(lowercase ) def __exit__( self , *lowercase , **lowercase ) -> Union[str, Any]: '''simple docstring''' self.stack.__exit__(*lowercase , **lowercase ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> List[Any]: '''simple docstring''' A__ = infer_framework(SCREAMING_SNAKE_CASE_ ) if framework == "tf": A__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": A__ = inspect.signature(model_class.forward ) # PyTorch models else: A__ = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> str: '''simple docstring''' A__ = model_class.__name__ A__ = infer_framework(SCREAMING_SNAKE_CASE_ ) if framework == "tf": A__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": A__ = inspect.signature(model_class.forward ) # PyTorch models else: A__ = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: MutableMapping , SCREAMING_SNAKE_CASE_: str = "" , SCREAMING_SNAKE_CASE_: str = "." ) -> Union[str, Any]: '''simple docstring''' def _flatten_dict(SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: str="" , SCREAMING_SNAKE_CASE_: Any="." ): for k, v in d.items(): A__ = str(SCREAMING_SNAKE_CASE_ ) + delimiter + str(SCREAMING_SNAKE_CASE_ ) if parent_key else k if v and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): yield from flatten_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , delimiter=SCREAMING_SNAKE_CASE_ ).items() else: yield key, v return dict(_flatten_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) @contextmanager def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: bool = False ) -> Dict: '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: List[str]=None ) -> List[Any]: '''simple docstring''' if is_numpy_array(SCREAMING_SNAKE_CASE_ ): return np.transpose(SCREAMING_SNAKE_CASE_ , axes=SCREAMING_SNAKE_CASE_ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE_ ): return array.T if axes is None else array.permute(*SCREAMING_SNAKE_CASE_ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE_ ): import tensorflow as tf return tf.transpose(SCREAMING_SNAKE_CASE_ , perm=SCREAMING_SNAKE_CASE_ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE_ ): return jnp.transpose(SCREAMING_SNAKE_CASE_ , axes=SCREAMING_SNAKE_CASE_ ) else: raise ValueError(F'Type not supported for transpose: {type(SCREAMING_SNAKE_CASE_ )}.' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Optional[Any] ) -> int: '''simple docstring''' if is_numpy_array(SCREAMING_SNAKE_CASE_ ): return np.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE_ ): return array.reshape(*SCREAMING_SNAKE_CASE_ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE_ ): import tensorflow as tf return tf.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE_ ): return jnp.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: raise ValueError(F'Type not supported for reshape: {type(SCREAMING_SNAKE_CASE_ )}.' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: List[str]=None ) -> str: '''simple docstring''' if is_numpy_array(SCREAMING_SNAKE_CASE_ ): return np.squeeze(SCREAMING_SNAKE_CASE_ , axis=SCREAMING_SNAKE_CASE_ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE_ ): return array.squeeze() if axis is None else array.squeeze(dim=SCREAMING_SNAKE_CASE_ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE_ ): import tensorflow as tf return tf.squeeze(SCREAMING_SNAKE_CASE_ , axis=SCREAMING_SNAKE_CASE_ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE_ ): return jnp.squeeze(SCREAMING_SNAKE_CASE_ , axis=SCREAMING_SNAKE_CASE_ ) else: raise ValueError(F'Type not supported for squeeze: {type(SCREAMING_SNAKE_CASE_ )}.' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: Any ) -> Union[str, Any]: '''simple docstring''' if is_numpy_array(SCREAMING_SNAKE_CASE_ ): return np.expand_dims(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE_ ): return array.unsqueeze(dim=SCREAMING_SNAKE_CASE_ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE_ ): import tensorflow as tf return tf.expand_dims(SCREAMING_SNAKE_CASE_ , axis=SCREAMING_SNAKE_CASE_ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE_ ): return jnp.expand_dims(SCREAMING_SNAKE_CASE_ , axis=SCREAMING_SNAKE_CASE_ ) else: raise ValueError(F'Type not supported for expand_dims: {type(SCREAMING_SNAKE_CASE_ )}.' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str ) -> Tuple: '''simple docstring''' if is_numpy_array(SCREAMING_SNAKE_CASE_ ): return np.size(SCREAMING_SNAKE_CASE_ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE_ ): return array.numel() elif is_tf_tensor(SCREAMING_SNAKE_CASE_ ): import tensorflow as tf return tf.size(SCREAMING_SNAKE_CASE_ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE_ ): return array.size else: raise ValueError(F'Type not supported for expand_dims: {type(SCREAMING_SNAKE_CASE_ )}.' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: Optional[Any] ) -> Dict: '''simple docstring''' for key, value in auto_map.items(): if isinstance(SCREAMING_SNAKE_CASE_ , (tuple, list) ): A__ = [F'{repo_id}--{v}' if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: A__ = F'{repo_id}--{value}' return auto_map def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any ) -> Union[str, Any]: '''simple docstring''' for base_class in inspect.getmro(SCREAMING_SNAKE_CASE_ ): A__ = base_class.__module__ A__ = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'Could not infer framework from class {model_class}.' )
68
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : int = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = """mvp""" lowerCAmelCase__ : Optional[Any] = ["""past_key_values"""] lowerCAmelCase__ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self : Any , UpperCamelCase : Optional[int]=50267 , UpperCamelCase : Tuple=1024 , UpperCamelCase : int=12 , UpperCamelCase : Tuple=4096 , UpperCamelCase : Dict=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Union[str, Any]=1024 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=1 , UpperCamelCase : int=0 , UpperCamelCase : int=2 , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=False , UpperCamelCase : int=100 , UpperCamelCase : Optional[Any]=800 , **UpperCamelCase : str , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = classifier_dropout lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = use_prompt lowercase__ = prompt_length lowercase__ = prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase ): lowercase__ = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " '''The config can simply be saved and uploaded again to be fixed.''' )
2
0
"""simple docstring""" import warnings from functools import wraps from typing import Callable def UpperCAmelCase ( UpperCAmelCase ) -> Callable: @wraps(UpperCAmelCase ) def _inner_fn(*UpperCAmelCase , **UpperCAmelCase ): warnings.warn( (f'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , UpperCAmelCase , ) return fn(*UpperCAmelCase , **UpperCAmelCase ) return _inner_fn
69
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : List[str] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : int = DebertaVaTokenizer lowerCAmelCase__ : List[Any] = DebertaVaTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Tuple = True def UpperCamelCase__ (self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ = DebertaVaTokenizer(UpperCamelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = '''this is a test''' lowercase__ = '''this is a test''' return input_text, output_text def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''<pad>''' lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(UpperCamelCase ) , 30001 ) def UpperCamelCase__ (self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''This is a test''' lowercase__ = [13, 1, 4398, 25, 21, 1289] lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = DebertaVaTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # fmt: off lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DebertaVaTokenizer(UpperCamelCase ) lowercase__ = tokenizer.encode('''sequence builders''' ) lowercase__ = tokenizer.encode('''multi-sequence build''' ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase , ) @slow def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : int =logging.get_logger(__name__) A__ : Union[str, Any] ={ '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class UpperCAmelCase ( snake_case_ ): _lowercase: Optional[int] = '''falcon''' _lowercase: Dict = ['''past_key_values'''] def __init__( self : Optional[int] , __snake_case : int=6_50_24 , __snake_case : Optional[int]=45_44 , __snake_case : str=32 , __snake_case : Dict=71 , __snake_case : List[Any]=1E-5 , __snake_case : Union[str, Any]=0.02 , __snake_case : Optional[int]=True , __snake_case : Optional[Any]=0.0 , __snake_case : str=0.0 , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=False , __snake_case : List[str]=False , __snake_case : int=True , __snake_case : int=True , __snake_case : Any=False , __snake_case : str=11 , __snake_case : int=11 , **__snake_case : Optional[int] , ) -> List[str]: _lowerCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _lowerCAmelCase = kwargs.pop("""n_embed""" , __snake_case ) _lowerCAmelCase = hidden_size if n_embed is None else n_embed _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = use_cache _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id _lowerCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _lowerCAmelCase = alibi _lowerCAmelCase = new_decoder_architecture _lowerCAmelCase = multi_query # Ignored when new_decoder_architecture is True _lowerCAmelCase = parallel_attn _lowerCAmelCase = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def lowercase__ ( self : str ) -> Optional[Any]: return self.hidden_size // self.num_attention_heads @property def lowercase__ ( self : Any ) -> Tuple: return not self.alibi
70
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _SCREAMING_SNAKE_CASE (A ) -> Optional[Any]: """simple docstring""" lowercase__ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A , A ) def _SCREAMING_SNAKE_CASE (A ) -> List[str]: """simple docstring""" lowercase__ ,lowercase__ = emb.weight.shape lowercase__ = nn.Linear(A , A , bias=A ) lowercase__ = emb.weight.data return lin_layer def _SCREAMING_SNAKE_CASE (A , A="facebook/mbart-large-en-ro" , A=False , A=False ) -> Union[str, Any]: """simple docstring""" lowercase__ = torch.load(A , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A ) lowercase__ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowercase__ = MBartConfig.from_pretrained(A , vocab_size=A ) if mbart_aa and finetuned: lowercase__ = '''relu''' lowercase__ = state_dict['''decoder.embed_tokens.weight'''] lowercase__ = MBartForConditionalGeneration(A ) model.model.load_state_dict(A ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') lowerCamelCase : Any = parser.parse_args() lowerCamelCase : List[str] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
2
0
from __future__ import annotations def A ( a_ ,a_ = None ,a_ = None ) -> None: if start is None: __UpperCamelCase : int =0 if end is None: __UpperCamelCase : Optional[Any] =len(a_ ) - 1 if start >= end: return __UpperCamelCase : List[Any] =(start + end) // 2 slowsort(a_ ,a_ ,a_ ) slowsort(a_ ,mid + 1 ,a_ ) if sequence[end] < sequence[mid]: __UpperCamelCase , __UpperCamelCase : Dict =sequence[mid], sequence[end] slowsort(a_ ,a_ ,end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
71
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCamelCase : List[Any] = logging.getLogger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCamelCase : Any=-1 ): '''simple docstring''' lowercase__ = label_idx def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: lowercase__ = [] lowercase__ = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 lowercase__ = [] lowercase__ = [] else: lowercase__ = line.split(''' ''' ) words.append(splits[0] ) if len(UpperCamelCase ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) return examples def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(UpperCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase__ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(UpperCamelCase ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : List[Any] ): '''simple docstring''' super().__init__(label_idx=-2 ) def UpperCamelCase__ (self : List[Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def UpperCamelCase__ (self : Tuple , UpperCamelCase : int , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: for sentence in parse_incr(UpperCamelCase ): lowercase__ = [] lowercase__ = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(UpperCamelCase ) == len(UpperCamelCase ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 return examples def UpperCamelCase__ (self : Tuple , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for sentence in parse_incr(UpperCamelCase ): lowercase__ = preds_list[example_id] lowercase__ = '''''' for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(UpperCamelCase ) example_id += 1 def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
2
0
"""simple docstring""" def snake_case_ ( A_ : str ): '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(A_ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
72
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = """megatron-bert""" def __init__(self : Tuple , UpperCamelCase : Optional[int]=29056 , UpperCamelCase : Optional[Any]=1024 , UpperCamelCase : Any=24 , UpperCamelCase : int=16 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : int="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=512 , UpperCamelCase : int=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Dict=1E-12 , UpperCamelCase : List[Any]=0 , UpperCamelCase : Optional[int]="absolute" , UpperCamelCase : List[Any]=True , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache
2
0
from dataclasses import dataclass, field from typing import Optional @dataclass class A_ : _UpperCAmelCase : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} ) _UpperCAmelCase : Optional[str] = field( default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} ) _UpperCAmelCase : Optional[str] = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} ) _UpperCAmelCase : Optional[str] = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) _UpperCAmelCase : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size for training.'''} ) _UpperCAmelCase : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} ) _UpperCAmelCase : Optional[float] = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} ) _UpperCAmelCase : Optional[int] = field( default=10_000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} ) _UpperCAmelCase : Optional[float] = field(default=2E-4 , metadata={'''help''': '''Learning rate fo training.'''} ) _UpperCAmelCase : Optional[str] = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} ) _UpperCAmelCase : Optional[int] = field( default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} ) _UpperCAmelCase : Optional[int] = field( default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} ) _UpperCAmelCase : Optional[bool] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} ) _UpperCAmelCase : Optional[int] = field(default=50_000 , metadata={'''help''': '''Maximum number of training steps.'''} ) _UpperCAmelCase : Optional[int] = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) _UpperCAmelCase : Optional[int] = field(default=1_024 , metadata={'''help''': '''Sequence lengths used for training.'''} ) _UpperCAmelCase : Optional[int] = field(default=1 , metadata={'''help''': '''Training seed.'''} ) _UpperCAmelCase : Optional[int] = field( default=1_024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , ) _UpperCAmelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} ) _UpperCAmelCase : Optional[bool] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''If True the data is pretokenized.'''} ) @dataclass class A_ : _UpperCAmelCase : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) _UpperCAmelCase : Optional[str] = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) _UpperCAmelCase : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} ) _UpperCAmelCase : Optional[int] = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) _UpperCAmelCase : Optional[int] = field(default=1_024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} ) _UpperCAmelCase : Optional[int] = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) @dataclass class A_ : _UpperCAmelCase : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) _UpperCAmelCase : Optional[int] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) _UpperCAmelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , ) _UpperCAmelCase : Optional[bool] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} ) _UpperCAmelCase : Optional[float] = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} ) _UpperCAmelCase : Optional[int] = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} ) _UpperCAmelCase : Optional[int] = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} ) _UpperCAmelCase : Optional[float] = field(default=0.95 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} ) _UpperCAmelCase : Optional[int] = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} ) _UpperCAmelCase : Optional[int] = field( default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} ) _UpperCAmelCase : Optional[int] = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) _UpperCAmelCase : Optional[str] = field( default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} ) _UpperCAmelCase : Optional[str] = field( default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} ) _UpperCAmelCase : Optional[int] = field( default=-1 , metadata={ '''help''': ( '''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive''' ''' number corresponds to which GPU device id to run on.''' ) } , ) @dataclass class A_ : _UpperCAmelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.''' } , ) _UpperCAmelCase : Optional[str] = field( default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} ) _UpperCAmelCase : Optional[str] = field( default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} ) _UpperCAmelCase : Optional[int] = field( default=100_000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} ) _UpperCAmelCase : Optional[str] = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) _UpperCAmelCase : Optional[float] = field( default=1_000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} ) _UpperCAmelCase : Optional[float] = field( default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} ) _UpperCAmelCase : Optional[float] = field( default=0.25 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} ) _UpperCAmelCase : Optional[float] = field( default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} ) _UpperCAmelCase : Optional[float] = field( default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} ) _UpperCAmelCase : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , ) _UpperCAmelCase : Optional[bool] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} ) _UpperCAmelCase : Optional[float] = field( default=0.85 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} ) @dataclass class A_ : _UpperCAmelCase : Optional[str] = field( default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} ) _UpperCAmelCase : Optional[str] = field( default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} ) _UpperCAmelCase : Optional[str] = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) _UpperCAmelCase : Optional[int] = field(default=200_000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} ) _UpperCAmelCase : Optional[int] = field( default=32_768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} ) _UpperCAmelCase : Optional[str] = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} ) _UpperCAmelCase : Optional[bool] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Push saved tokenizer to the hub.'''} ) @dataclass class A_ : _UpperCAmelCase : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} ) _UpperCAmelCase : Optional[str] = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} ) _UpperCAmelCase : Optional[str] = field( default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} ) _UpperCAmelCase : Optional[int] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) @dataclass class A_ : _UpperCAmelCase : Optional[str] = field( default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} ) _UpperCAmelCase : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} ) _UpperCAmelCase : Optional[str] = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} ) _UpperCAmelCase : Optional[bool] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
73
'''simple docstring''' # Lint as: python3 import itertools import os import re lowerCamelCase : Any = re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCamelCase : str = re.compile(R'([a-z\d])([A-Z])') lowerCamelCase : Optional[int] = re.compile(R'(?<!_)_(?!_)') lowerCamelCase : List[Any] = re.compile(R'(_{2,})') lowerCamelCase : str = R'^\w+(\.\w+)*$' lowerCamelCase : Dict = R'<>:/\|?*' def _SCREAMING_SNAKE_CASE (A ) -> Any: """simple docstring""" lowercase__ = _uppercase_uppercase_re.sub(R'''\1_\2''' , A ) lowercase__ = _lowercase_uppercase_re.sub(R'''\1_\2''' , A ) return name.lower() def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" lowercase__ = _single_underscore_re.split(A ) lowercase__ = [_multiple_underscores_re.split(A ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A ) if n != '''''' ) def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , A ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(A )}-{split}" def _SCREAMING_SNAKE_CASE (A , A , A , A=None ) -> List[str]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) if filetype_suffix: prefix += f".{filetype_suffix}" lowercase__ = os.path.join(A , A ) return f"{filepath}*" def _SCREAMING_SNAKE_CASE (A , A , A , A=None , A=None ) -> Optional[Any]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) lowercase__ = os.path.join(A , A ) if shard_lengths: lowercase__ = len(A ) lowercase__ = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(A )] if filetype_suffix: lowercase__ = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: lowercase__ = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
2
0
"""simple docstring""" import os import sys import unittest _lowercase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _lowercase = os.path.join(git_repo_path, '''src''', '''diffusers''') class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: A = find_backend(' if not is_torch_available():' ) self.assertEqual(A_ ,'torch' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") A = find_backend(' if not (is_torch_available() and is_transformers_available()):' ) self.assertEqual(A_ ,'torch_and_transformers' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") A = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' ) self.assertEqual(A_ ,'torch_and_transformers_and_onnx' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: A = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' ,A_ ) self.assertIn('torch_and_transformers' ,A_ ) self.assertIn('flax_and_transformers' ,A_ ) self.assertIn('torch_and_transformers_and_onnx' ,A_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel' ,objects['torch'] ) self.assertIn('FlaxUNet2DConditionModel' ,objects['flax'] ) self.assertIn('StableDiffusionPipeline' ,objects['torch_and_transformers'] ) self.assertIn('FlaxStableDiffusionPipeline' ,objects['flax_and_transformers'] ) self.assertIn('LMSDiscreteScheduler' ,objects['torch_and_scipy'] ) self.assertIn('OnnxStableDiffusionPipeline' ,objects['torch_and_transformers_and_onnx'] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: A = create_dummy_object('CONSTANT' ,'\'torch\'' ) self.assertEqual(A_ ,'\nCONSTANT = None\n' ) A = create_dummy_object('function' ,'\'torch\'' ) self.assertEqual( A_ ,'\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) A = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' A = create_dummy_object('FakeClass' ,'\'torch\'' ) self.assertEqual(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: A = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' A = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] ,A_ )
74
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __lowerCAmelCase : '''simple docstring''' def __init__(self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : str=True , UpperCamelCase : Tuple=False , UpperCamelCase : str=True , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Any=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Tuple=30 , UpperCamelCase : str=0 , UpperCamelCase : Tuple=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : str=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = decoder_seq_length # For common tests lowercase__ = self.decoder_seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_model lowercase__ = decoder_layers lowercase__ = decoder_layers lowercase__ = decoder_ffn_dim lowercase__ = decoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = eos_token_id lowercase__ = bos_token_id lowercase__ = pad_token_id lowercase__ = decoder_start_token_id lowercase__ = use_cache lowercase__ = max_position_embeddings lowercase__ = None lowercase__ = decoder_seq_length lowercase__ = 2 lowercase__ = 1 def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , ): '''simple docstring''' lowercase__ = True lowercase__ = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval() lowercase__ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) lowercase__ = model(UpperCamelCase ) lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) lowercase__ = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowercase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ = model(UpperCamelCase )['''last_hidden_state'''] lowercase__ = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state'''] # select random slice lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowercase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class __lowerCAmelCase (lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase__ : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase__ : Optional[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[str] = False def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass
2
0
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self, lowerCAmelCase, lowerCAmelCase=13, lowerCAmelCase=30, lowerCAmelCase=2, lowerCAmelCase=3, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=32, lowerCAmelCase=5, lowerCAmelCase=4, lowerCAmelCase=37, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=10, lowerCAmelCase=0.0_2, lowerCAmelCase=3, lowerCAmelCase=0.6, lowerCAmelCase=None, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =image_size lowerCamelCase_ =patch_size lowerCamelCase_ =num_channels lowerCamelCase_ =is_training lowerCamelCase_ =use_labels lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =mask_ratio lowerCamelCase_ =scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCamelCase_ =(image_size // patch_size) ** 2 lowerCamelCase_ =int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase_ =self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCAmelCase, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =ViTMAEModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =ViTMAEForPreTraining(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase ) lowerCamelCase_ =(self.image_size // self.patch_size) ** 2 lowerCamelCase_ =self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCamelCase_ =1 lowerCamelCase_ =ViTMAEForPreTraining(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ =model(lowerCAmelCase ) lowerCamelCase_ =self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.prepare_config_and_inputs() lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =config_and_inputs lowerCamelCase_ ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Optional[int] =(ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowercase : Dict ={'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowercase : Union[str, Any] =False lowercase : str =False lowercase : List[Any] =False lowercase : str =False def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =ViTMAEModelTester(self ) lowerCamelCase_ =ConfigTester(self, config_class=lowerCAmelCase, has_text_modality=lowerCAmelCase, hidden_size=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ =model_class(lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowerCamelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase, nn.Linear ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ =model_class(lowerCAmelCase ) lowerCamelCase_ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ =[*signature.parameters.keys()] lowerCamelCase_ =['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" np.random.seed(2 ) lowerCamelCase_ =int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) lowerCamelCase_ =np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase_ =torch.from_numpy(lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCamelCase_ =pt_noise super().check_pt_tf_models(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCamelCase_ =model(**self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) ) lowerCamelCase_ =outputs[0].cpu().numpy() lowerCamelCase_ =0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase ) lowerCamelCase_ =model_class.from_pretrained(lowerCAmelCase ) model.to(lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCamelCase_ =model(**self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) ) # Make sure we don't have nans lowerCamelCase_ =after_outputs[0].cpu().numpy() lowerCamelCase_ =0 lowerCamelCase_ =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase, 1e-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self ): """simple docstring""" pass @slow def lowercase__ ( self ): """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =ViTMAEModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def a_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def lowercase__ ( self ): """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowercase__ ( self ): """simple docstring""" np.random.seed(2 ) lowerCamelCase_ =ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(lowerCAmelCase ) lowerCamelCase_ =self.default_image_processor lowerCamelCase_ =prepare_img() lowerCamelCase_ =image_processor(images=lowerCAmelCase, return_tensors='''pt''' ).to(lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCamelCase_ =ViTMAEConfig() lowerCamelCase_ =int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCamelCase_ =np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): lowerCamelCase_ =model(**lowerCAmelCase, noise=torch.from_numpy(lowerCAmelCase ).to(device=lowerCAmelCase ) ) # verify the logits lowerCamelCase_ =torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape, lowerCAmelCase ) lowerCamelCase_ =torch.tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice.to(lowerCAmelCase ), atol=1e-4 ) )
75
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" if not isinstance(A , A ): raise TypeError('''only integers accepted as input''' ) else: lowercase__ = str(abs(A ) ) lowercase__ = [list(A ) for char in range(len(A ) )] for index in range(len(A ) ): num_transpositions[index].pop(A ) return max( int(''''''.join(list(A ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
2
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Union[str, Any] = [] for part_id in partition_order: SCREAMING_SNAKE_CASE : int = df.where(f"SPARK_PARTITION_ID() = {part_id}").collect() for row_idx, row in enumerate(_a): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict())) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : str = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() SCREAMING_SNAKE_CASE : Dict = spark.range(100).repartition(1) SCREAMING_SNAKE_CASE : List[str] = Spark(_a) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Optional[Any] = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() SCREAMING_SNAKE_CASE : str = spark.range(10).repartition(2) SCREAMING_SNAKE_CASE : List[str] = [1, 0] SCREAMING_SNAKE_CASE : Union[str, Any] = _generate_iterable_examples(_a , _a) # Reverse the partitions. SCREAMING_SNAKE_CASE : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , _a) for i, (row_id, row_dict) in enumerate(generate_fn()): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() SCREAMING_SNAKE_CASE : Optional[Any] = spark.range(10).repartition(1) SCREAMING_SNAKE_CASE : str = SparkExamplesIterable(_a) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_a): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Optional[Any] = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() SCREAMING_SNAKE_CASE : Dict = spark.range(30).repartition(3) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator") as generator_mock: SCREAMING_SNAKE_CASE : str = lambda _a: x.reverse() SCREAMING_SNAKE_CASE : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , [2, 1, 0]) SCREAMING_SNAKE_CASE : Any = SparkExamplesIterable(_a).shuffle_data_sources(_a) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : List[Any] = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() SCREAMING_SNAKE_CASE : Union[str, Any] = spark.range(20).repartition(4) # Partitions 0 and 2 SCREAMING_SNAKE_CASE : Tuple = SparkExamplesIterable(_a).shard_data_sources(worker_id=0 , num_workers=2) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , [0, 2]) for i, (row_id, row_dict) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 SCREAMING_SNAKE_CASE : Optional[Any] = SparkExamplesIterable(_a).shard_data_sources(worker_id=1 , num_workers=2) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , [1, 3]) for i, (row_id, row_dict) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : List[Any] = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() SCREAMING_SNAKE_CASE : Optional[Any] = spark.range(100).repartition(1) SCREAMING_SNAKE_CASE : Optional[Any] = Spark(_a) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
76
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase : str = Mapping[str, np.ndarray] lowerCamelCase : List[Any] = Mapping[str, Any] # Is a nested dict. lowerCamelCase : Any = 0.0_1 @dataclasses.dataclass(frozen=lowercase_ ) class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCAmelCase__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCAmelCase__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCAmelCase__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCAmelCase__ : Optional[str] = None # Templates used to generate this protein (prediction-only) lowerCAmelCase__ : Optional[Sequence[str]] = None # Chain corresponding to each parent lowerCAmelCase__ : Optional[Sequence[int]] = None def _SCREAMING_SNAKE_CASE (A ) -> Protein: """simple docstring""" lowercase__ = R'''(\[[A-Z]+\]\n)''' lowercase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0] lowercase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) lowercase__ = ["N", "CA", "C"] lowercase__ = None lowercase__ = None lowercase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ = g[1][0].strip() for i in range(len(A ) ): if seq[i] not in residue_constants.restypes: lowercase__ = '''X''' # FIXME: strings are immutable lowercase__ = np.array( [residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ = [] for axis in range(3 ): tertiary.append(list(map(A , g[1][axis].split() ) ) ) lowercase__ = np.array(A ) lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) lowercase__ = np.zeros( ( len(A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , ) def _SCREAMING_SNAKE_CASE (A , A = 0 ) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) lowercase__ = prot.parents lowercase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ = [p for i, p in zip(A , A ) if i == chain_id] if parents is None or len(A ) == 0: lowercase__ = ['''N/A'''] pdb_headers.append(f"PARENT {' '.join(A )}" ) return pdb_headers def _SCREAMING_SNAKE_CASE (A , A ) -> str: """simple docstring""" lowercase__ = [] lowercase__ = pdb_str.split('''\n''' ) lowercase__ = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) lowercase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase__ = [] if prot.parents_chain_index is not None: lowercase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(A ) , [] ) parent_dict[str(A )].append(A ) lowercase__ = max([int(A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ = parent_dict.get(str(A ) , ['''N/A'''] ) parents_per_chain.append(A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ = [['''N/A''']] def make_parent_line(A ) -> str: return f"PARENT {' '.join(A )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ = 0 for i, l in enumerate(A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(A ): lowercase__ = parents_per_chain[chain_counter] else: lowercase__ = ['''N/A'''] out_pdb_lines.append(make_parent_line(A ) ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> str: """simple docstring""" lowercase__ = residue_constants.restypes + ['''X'''] def res_atoa(A ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) lowercase__ = residue_constants.atom_types lowercase__ = [] lowercase__ = prot.atom_mask lowercase__ = prot.aatype lowercase__ = prot.atom_positions lowercase__ = prot.residue_index.astype(np.intaa ) lowercase__ = prot.b_factors lowercase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) lowercase__ = get_pdb_headers(A ) if len(A ) > 0: pdb_lines.extend(A ) lowercase__ = aatype.shape[0] lowercase__ = 1 lowercase__ = 0 lowercase__ = string.ascii_uppercase lowercase__ = None # Add all atom sites. for i in range(A ): lowercase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase__ = '''ATOM''' lowercase__ = atom_name if len(A ) == 4 else f" {atom_name}" lowercase__ = '''''' lowercase__ = '''''' lowercase__ = 1.00 lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ = '''''' lowercase__ = '''A''' if chain_index is not None: lowercase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(A ) atom_index += 1 lowercase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ = True lowercase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ = '''TER''' lowercase__ = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(A , A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _SCREAMING_SNAKE_CASE (A , A , A = None , A = None , A = None , A = None , A = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
2
0
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def a_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : str=1024 ): '''simple docstring''' lowercase__ , lowercase__ : Any = [], [] lowercase__ : str = list(zip(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase__ , lowercase__ : List[str] = sorted_examples[0] def is_too_big(_lowerCAmelCase : int ): return tok(_lowerCAmelCase , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): lowercase__ : Union[str, Any] = new_src + ' ' + src lowercase__ : str = new_tgt + ' ' + tgt if is_too_big(_lowerCAmelCase ) or is_too_big(_lowerCAmelCase ): # cant fit, finalize example finished_src.append(_lowerCAmelCase ) finished_tgt.append(_lowerCAmelCase ) lowercase__ , lowercase__ : Any = src, tgt else: # can fit, keep adding lowercase__ , lowercase__ : Dict = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_lowerCAmelCase ) finished_tgt.append(_lowerCAmelCase ) return finished_src, finished_tgt def a_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Path , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' lowercase__ : Dict = Path(_lowerCAmelCase ) save_path.mkdir(exist_ok=_lowerCAmelCase ) for split in ["train"]: lowercase__ , lowercase__ : Dict = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" lowercase__ : Tuple = [x.rstrip() for x in Path(_lowerCAmelCase ).open().readlines()] lowercase__ : Union[str, Any] = [x.rstrip() for x in Path(_lowerCAmelCase ).open().readlines()] lowercase__ , lowercase__ : int = pack_examples(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) print(f"""packed {split} split from {len(_lowerCAmelCase )} examples -> {len(_lowerCAmelCase )}.""" ) Path(save_path / f"""{split}.source""" ).open('w' ).write('\n'.join(_lowerCAmelCase ) ) Path(save_path / f"""{split}.target""" ).open('w' ).write('\n'.join(_lowerCAmelCase ) ) for split in ["val", "test"]: lowercase__ , lowercase__ : List[str] = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" shutil.copyfile(_lowerCAmelCase , save_path / f"""{split}.source""" ) shutil.copyfile(_lowerCAmelCase , save_path / f"""{split}.target""" ) def a_ ( ): '''simple docstring''' lowercase__ : List[Any] = argparse.ArgumentParser() parser.add_argument('--tok_name' , type=_lowerCAmelCase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=_lowerCAmelCase , default=128 ) parser.add_argument('--data_dir' , type=_lowerCAmelCase ) parser.add_argument('--save_path' , type=_lowerCAmelCase ) lowercase__ : List[str] = parser.parse_args() lowercase__ : Tuple = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(_lowerCAmelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
77
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A , A ) -> list[list[int]]: """simple docstring""" lowercase__ = [] create_all_state(1 , A , A , [] , A ) return result def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def _SCREAMING_SNAKE_CASE (A ) -> None: """simple docstring""" for i in total_list: print(*A ) if __name__ == "__main__": lowerCamelCase : Tuple = 4 lowerCamelCase : Union[str, Any] = 2 lowerCamelCase : Dict = generate_all_combinations(n, k) print_all_state(total_list)
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case_ = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
78
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCamelCase : Optional[Any] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowerCamelCase : Tuple = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowerCamelCase : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowerCamelCase : Any = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowerCamelCase : Tuple = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowerCamelCase : Optional[int] = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowerCamelCase : Dict = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ ,lowercase__ = randrange(len(A ) ), randrange(len(A ) ) lowercase__ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowercase__ ,lowercase__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE (A = 100 ) -> str: """simple docstring""" return (generate_random_hand() for _ in range(A )) @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]: """simple docstring""" assert PokerHand(A )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Any: """simple docstring""" lowercase__ = PokerHand(A ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple: """simple docstring""" assert PokerHand(A )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected def _SCREAMING_SNAKE_CASE () -> Tuple: """simple docstring""" lowercase__ = [PokerHand(A ) for hand in SORTED_HANDS] lowercase__ = poker_hands.copy() shuffle(A ) lowercase__ = chain(sorted(A ) ) for index, hand in enumerate(A ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE () -> List[Any]: """simple docstring""" lowercase__ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=A ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE () -> int: """simple docstring""" lowercase__ = PokerHand('''2C 4S AS 3D 5C''' ) lowercase__ = True lowercase__ = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ = 0 lowercase__ = os.path.abspath(os.path.dirname(A ) ) lowercase__ = os.path.join(A , '''poker_hands.txt''' ) with open(A ) as file_hand: for line in file_hand: lowercase__ = line[:14].strip() lowercase__ = line[15:].strip() lowercase__ ,lowercase__ = PokerHand(A ), PokerHand(A ) lowercase__ = player.compare_with(A ) if output == "Win": answer += 1 assert answer == 376
2
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class _UpperCAmelCase ( snake_case_ , snake_case_ ): """simple docstring""" snake_case = '''focalnet''' def __init__( self : Dict , __UpperCAmelCase : Optional[Any]=224 , __UpperCAmelCase : Optional[Any]=4 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Optional[int]=96 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=[192, 384, 768, 768] , __UpperCAmelCase : str=[2, 2, 6, 2] , __UpperCAmelCase : int=[2, 2, 2, 2] , __UpperCAmelCase : Optional[int]=[3, 3, 3, 3] , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Dict=4.0 , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : int=False , __UpperCAmelCase : Dict=1E-4 , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : str=False , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=0.02 , __UpperCAmelCase : Optional[int]=1E-5 , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : Any=None , __UpperCAmelCase : Optional[int]=None , **__UpperCAmelCase : Any , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) _A = image_size _A = patch_size _A = num_channels _A = embed_dim _A = use_conv_embed _A = hidden_sizes _A = depths _A = focal_levels _A = focal_windows _A = hidden_act _A = mlp_ratio _A = hidden_dropout_prob _A = drop_path_rate _A = use_layerscale _A = layerscale_value _A = use_post_layernorm _A = use_post_layernorm_in_modulation _A = normalize_modulator _A = initializer_range _A = layer_norm_eps _A = encoder_stride _A = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] _A , _A = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
79
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCamelCase : str = parser.parse_args() if args.model_type == "bert": lowerCamelCase : List[Any] = BertForMaskedLM.from_pretrained(args.model_name) lowerCamelCase : Any = 'bert' else: raise ValueError('args.model_type should be "bert".') lowerCamelCase : int = model.state_dict() lowerCamelCase : int = {} for w in ["word_embeddings", "position_embeddings"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] lowerCamelCase : Tuple = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] lowerCamelCase : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] lowerCamelCase : Tuple = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] lowerCamelCase : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] lowerCamelCase : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] lowerCamelCase : Any = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 lowerCamelCase : Optional[int] = state_dict['cls.predictions.decoder.weight'] lowerCamelCase : str = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: lowerCamelCase : str = state_dict[f"""cls.predictions.transform.dense.{w}"""] lowerCamelCase : Any = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
2
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase_ ( unittest.TestCase ): def __a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __a ( self ): torch.manual_seed(0 ) UpperCamelCase__ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def __a ( self ): torch.manual_seed(0 ) UpperCamelCase__ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def __a ( self ): torch.manual_seed(0 ) UpperCamelCase__ = AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) UpperCamelCase__ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def __a ( self ): UpperCamelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) UpperCamelCase__ = DDPMScheduler() UpperCamelCase__ = AudioDiffusionPipeline(vqvae=a , unet=self.dummy_unet , mel=a , scheduler=a ) UpperCamelCase__ = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) UpperCamelCase__ = torch.Generator(device=a ).manual_seed(42 ) UpperCamelCase__ = pipe(generator=a , steps=4 ) UpperCamelCase__ = output.audios[0] UpperCamelCase__ = output.images[0] UpperCamelCase__ = torch.Generator(device=a ).manual_seed(42 ) UpperCamelCase__ = pipe(generator=a , steps=4 , return_dict=a ) UpperCamelCase__ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) UpperCamelCase__ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCamelCase__ = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] UpperCamelCase__ = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 UpperCamelCase__ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) UpperCamelCase__ = DDIMScheduler() UpperCamelCase__ = self.dummy_vqvae_and_unet UpperCamelCase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=a , scheduler=a ) UpperCamelCase__ = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) np.random.seed(0 ) UpperCamelCase__ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) UpperCamelCase__ = torch.Generator(device=a ).manual_seed(42 ) UpperCamelCase__ = pipe(raw_audio=a , generator=a , start_step=5 , steps=10 ) UpperCamelCase__ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) UpperCamelCase__ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCamelCase__ = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 UpperCamelCase__ = self.dummy_unet_condition UpperCamelCase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=a , mel=a , scheduler=a ) UpperCamelCase__ = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) np.random.seed(0 ) UpperCamelCase__ = torch.rand((1, 1, 10) ) UpperCamelCase__ = pipe(generator=a , encoding=a ) UpperCamelCase__ = output.images[0] UpperCamelCase__ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCamelCase__ = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): def __a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ): UpperCamelCase__ = torch_device UpperCamelCase__ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) UpperCamelCase__ = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) UpperCamelCase__ = torch.Generator(device=a ).manual_seed(42 ) UpperCamelCase__ = pipe(generator=a ) UpperCamelCase__ = output.audios[0] UpperCamelCase__ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] UpperCamelCase__ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCamelCase__ = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
80
'''simple docstring''' from ....utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=2048 ): '''simple docstring''' lowercase__ = config.__dict__ lowercase__ = modal_hidden_size if num_labels: lowercase__ = num_labels
2
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) lowerCamelCase_ : List[Any] = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "nllb-moe" __lowerCAmelCase = ["past_key_values"] __lowerCAmelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __A=12_8112 , __A=1024 , __A=12 , __A=4096 , __A=16 , __A=12 , __A=4096 , __A=16 , __A=0.05 , __A=0.05 , __A=True , __A=True , __A="relu" , __A=1024 , __A=0.1 , __A=0.1 , __A=0.0 , __A=0.02 , __A=2 , __A=True , __A=False , __A="float32" , __A=False , __A=128 , __A=64 , __A=4 , __A=4 , __A=0.001 , __A=0.001 , __A="all" , __A=False , __A=False , __A=1.0 , __A=0.2 , __A=1 , __A=0 , __A=2 , __A=False , **__A , ) -> List[Any]: a =vocab_size a =max_position_embeddings a =d_model a =encoder_ffn_dim a =encoder_layers a =encoder_attention_heads a =decoder_ffn_dim a =decoder_layers a =decoder_attention_heads a =dropout a =attention_dropout a =activation_dropout a =activation_function a =init_std a =encoder_layerdrop a =decoder_layerdrop a =use_cache a =encoder_layers a =scale_embedding # scale factor will be sqrt(d_model) if True a =router_z_loss_coef a =router_aux_loss_coef a =decoder_sparse_step a =encoder_sparse_step a =num_experts a =expert_capacity a =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) a =router_dtype a =router_ignore_padding_tokens a =batch_prioritized_routing a =second_expert_policy a =normalize_router_prob_before_dropping a =moe_eval_capacity_token_fraction a =moe_token_dropout a =output_router_logits super().__init__( pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , decoder_start_token_id=__A , **__A , )
81
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Dict = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Tuple = """cvt""" def __init__(self : int , UpperCamelCase : List[Any]=3 , UpperCamelCase : int=[7, 3, 3] , UpperCamelCase : str=[4, 2, 2] , UpperCamelCase : Dict=[2, 1, 1] , UpperCamelCase : Dict=[64, 192, 384] , UpperCamelCase : Dict=[1, 3, 6] , UpperCamelCase : Dict=[1, 2, 10] , UpperCamelCase : Any=[4.0, 4.0, 4.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : int=[0.0, 0.0, 0.1] , UpperCamelCase : Any=[True, True, True] , UpperCamelCase : int=[False, False, True] , UpperCamelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase : Optional[int]=[3, 3, 3] , UpperCamelCase : Tuple=[1, 1, 1] , UpperCamelCase : Any=[2, 2, 2] , UpperCamelCase : Dict=[1, 1, 1] , UpperCamelCase : List[str]=[1, 1, 1] , UpperCamelCase : str=0.02 , UpperCamelCase : int=1E-12 , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) lowercase__ = num_channels lowercase__ = patch_sizes lowercase__ = patch_stride lowercase__ = patch_padding lowercase__ = embed_dim lowercase__ = num_heads lowercase__ = depth lowercase__ = mlp_ratio lowercase__ = attention_drop_rate lowercase__ = drop_rate lowercase__ = drop_path_rate lowercase__ = qkv_bias lowercase__ = cls_token lowercase__ = qkv_projection_method lowercase__ = kernel_qkv lowercase__ = padding_kv lowercase__ = stride_kv lowercase__ = padding_q lowercase__ = stride_q lowercase__ = initializer_range lowercase__ = layer_norm_eps
2
0
def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" if principal <= 0: raise Exception("""Principal borrowed must be > 0""" ) if rate_per_annum < 0: raise Exception("""Rate of interest must be >= 0""" ) if years_to_repay <= 0 or not isinstance(snake_case , snake_case ): raise Exception("""Years to repay must be an integer > 0""" ) # Yearly rate is divided by 12 to get monthly rate _lowerCAmelCase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _lowerCAmelCase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
82
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCamelCase : Any = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCamelCase : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCamelCase : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) lowerCamelCase : List[Any] = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) lowerCamelCase : List[str] = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions lowerCamelCase : List[str] = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image) lowerCamelCase : str = np.expand_dims(test_image, axis=0) lowerCamelCase : List[str] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCamelCase : Any = 'Normal' if result[0][0] == 1: lowerCamelCase : Any = 'Abnormality detected'
2
0
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , lowercase , ) class lowercase__ ( lowercase ): lowercase__ = RobertaConfig lowercase__ = """roberta""" def __init__( self : str ,lowerCamelCase__ : Any ): '''simple docstring''' super().__init__(lowerCamelCase__ ) _UpperCamelCase : List[str] = RobertaEmbeddings(lowerCamelCase__ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , lowercase , ) class lowercase__ ( lowercase ): lowercase__ = RobertaConfig lowercase__ = """roberta""" def __init__( self : Optional[Any] ,lowerCamelCase__ : Any ): '''simple docstring''' super().__init__(lowerCamelCase__ ) _UpperCamelCase : Any = config.num_labels _UpperCamelCase : List[str] = config.num_hidden_layers _UpperCamelCase : int = DeeRobertaModel(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = nn.Dropout(config.hidden_dropout_prob ) _UpperCamelCase : Optional[Any] = nn.Linear(config.hidden_size ,self.config.num_labels ) @add_start_docstrings_to_model_forward(lowerCamelCase__ ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : Optional[int]=None ,lowerCamelCase__ : Tuple=None ,lowerCamelCase__ : Optional[int]=None ,lowerCamelCase__ : List[str]=None ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : List[str]=None ,lowerCamelCase__ : Any=-1 ,lowerCamelCase__ : str=False ,): '''simple docstring''' _UpperCamelCase : Any = self.num_layers try: _UpperCamelCase : Tuple = self.roberta( lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,position_ids=lowerCamelCase__ ,head_mask=lowerCamelCase__ ,inputs_embeds=lowerCamelCase__ ,) _UpperCamelCase : Tuple = outputs[1] _UpperCamelCase : Optional[int] = self.dropout(lowerCamelCase__ ) _UpperCamelCase : List[str] = self.classifier(lowerCamelCase__ ) _UpperCamelCase : Tuple = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _UpperCamelCase : Optional[int] = e.message _UpperCamelCase : List[str] = e.exit_layer _UpperCamelCase : Optional[Any] = outputs[0] if not self.training: _UpperCamelCase : int = entropy(lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Optional[Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression _UpperCamelCase : Union[str, Any] = MSELoss() _UpperCamelCase : Tuple = loss_fct(logits.view(-1 ) ,labels.view(-1 ) ) else: _UpperCamelCase : int = CrossEntropyLoss() _UpperCamelCase : Dict = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) # work with highway exits _UpperCamelCase : List[Any] = [] for highway_exit in outputs[-1]: _UpperCamelCase : List[Any] = highway_exit[0] if not self.training: highway_logits_all.append(lowerCamelCase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _UpperCamelCase : List[str] = MSELoss() _UpperCamelCase : Union[str, Any] = loss_fct(highway_logits.view(-1 ) ,labels.view(-1 ) ) else: _UpperCamelCase : Optional[Any] = CrossEntropyLoss() _UpperCamelCase : str = loss_fct(highway_logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) highway_losses.append(lowerCamelCase__ ) if train_highway: _UpperCamelCase : str = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _UpperCamelCase : Union[str, Any] = (loss,) + outputs if not self.training: _UpperCamelCase : int = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _UpperCamelCase : Any = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
83
'''simple docstring''' class __lowerCAmelCase : # Public class to implement a graph '''simple docstring''' def __init__(self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = row lowercase__ = col lowercase__ = graph def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): # And finally, count all islands. '''simple docstring''' lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase ) count += 1 return count
2
0
"""simple docstring""" def _snake_case ( lowercase__ : int ) -> Dict: '''simple docstring''' if collection == []: return [] # get some information about the collection lowerCAmelCase_ :List[Any] = len(lowercase__ ) lowerCAmelCase_ :Optional[Any] = max(lowercase__ ) lowerCAmelCase_ :Tuple = min(lowercase__ ) # create the counting array lowerCAmelCase_ :Optional[Any] = coll_max + 1 - coll_min lowerCAmelCase_ :int = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): lowerCAmelCase_ :Optional[Any] = counting_arr[i] + counting_arr[i - 1] # create the output collection lowerCAmelCase_ :Union[str, Any] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): lowerCAmelCase_ :int = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" __UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() __UpperCAmelCase = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
84
'''simple docstring''' import unittest from transformers import DonutProcessor lowerCamelCase : Tuple = 'naver-clova-ix/donut-base' class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DonutProcessor.from_pretrained(UpperCamelCase ) def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__ = self.processor.tokenajson(UpperCamelCase ) self.assertDictEqual(UpperCamelCase , UpperCamelCase )
2
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _snake_case ( lowercase_ ): lowerCAmelCase_ : Tuple = ["image_processor", "tokenizer"] lowerCAmelCase_ : Any = "FlavaImageProcessor" lowerCAmelCase_ : Dict = ("BertTokenizer", "BertTokenizerFast") def __init__( self , a__=None , a__=None , **a__ ) -> int: '''simple docstring''' snake_case_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a__ , ) snake_case_ = kwargs.pop("feature_extractor" ) snake_case_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a__ , a__ ) snake_case_ = self.image_processor def __call__( self , a__ = None , a__ = None , a__ = True , a__ = False , a__ = False , a__ = None , a__ = 0 , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = False , a__ = False , a__ = False , a__ = False , a__ = True , a__ = None , **a__ , ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: snake_case_ = self.tokenizer( text=a__ , add_special_tokens=a__ , padding=a__ , truncation=a__ , max_length=a__ , stride=a__ , pad_to_multiple_of=a__ , return_token_type_ids=a__ , return_attention_mask=a__ , return_overflowing_tokens=a__ , return_special_tokens_mask=a__ , return_offsets_mapping=a__ , return_length=a__ , verbose=a__ , return_tensors=a__ , **a__ , ) if images is not None: snake_case_ = self.image_processor( a__ , return_image_mask=a__ , return_codebook_pixels=a__ , return_tensors=a__ , **a__ , ) if text is not None and images is not None: encoding.update(a__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def lowerCAmelCase__ ( self , *a__ , **a__ ) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*a__ , **a__ ) def lowerCAmelCase__ ( self , *a__ , **a__ ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*a__ , **a__ ) @property def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.tokenizer.model_input_names snake_case_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a__ , ) return self.image_processor_class @property def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a__ , ) return self.image_processor
85
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" import math def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Tuple = [] __lowerCAmelCase : Dict = 2 __lowerCAmelCase : Any = int(math.sqrt(_UpperCamelCase ) ) # Size of every segment __lowerCAmelCase : Tuple = [True] * (end + 1) __lowerCAmelCase : Any = [] while start <= end: if temp[start] is True: in_prime.append(_UpperCamelCase ) for i in range(start * start , end + 1 , _UpperCamelCase ): __lowerCAmelCase : int = False start += 1 prime += in_prime __lowerCAmelCase : Union[str, Any] = end + 1 __lowerCAmelCase : Tuple = min(2 * end , _UpperCamelCase ) while low <= n: __lowerCAmelCase : List[str] = [True] * (high - low + 1) for each in in_prime: __lowerCAmelCase : int = math.floor(low / each ) * each if t < low: t += each for j in range(_UpperCamelCase , high + 1 , _UpperCamelCase ): __lowerCAmelCase : Any = False for j in range(len(_UpperCamelCase ) ): if temp[j] is True: prime.append(j + low ) __lowerCAmelCase : Tuple = high + 1 __lowerCAmelCase : int = min(high + end , _UpperCamelCase ) return prime print(sieve(10**6))
86
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCamelCase : Any = None lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : List[str] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase : Any = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : int = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ : Optional[int] = TaTokenizer lowerCAmelCase__ : List[int] = [] def __init__(self : Dict , UpperCamelCase : str=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any="</s>" , UpperCamelCase : str="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : List[str]=100 , UpperCamelCase : Tuple=None , **UpperCamelCase : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase__ = [f"<extra_id_{i}>" for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ = len(set(filter(lambda UpperCamelCase : bool('''extra_id_''' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True lowercase__ = extra_ids @staticmethod def UpperCamelCase__ (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase , ) return max_model_length def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase__ = os.path.join( UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) logger.info(f"Copy vocab file to {out_vocab_file}" ) return (out_vocab_file,) def UpperCamelCase__ (self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase ) for token in self.get_sentinel_tokens()]
2
0
def lowercase_ ( _lowerCamelCase : int): if isinstance(_lowerCamelCase , _lowerCamelCase): raise TypeError("'float' object cannot be interpreted as an integer") if isinstance(_lowerCamelCase , _lowerCamelCase): raise TypeError("'str' object cannot be interpreted as an integer") if num == 0: return "0b0" lowercase__ : Optional[Any] = False if num < 0: lowercase__ : Optional[int] = True lowercase__ : List[Any] = -num lowercase__ : list[int] = [] while num > 0: binary.insert(0 , num % 2) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCamelCase) for e in binary) return "0b" + "".join(str(_lowerCamelCase) for e in binary) if __name__ == "__main__": import doctest doctest.testmod()
87
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Dict = ShapEImgaImgPipeline lowerCAmelCase__ : List[str] = ["""image"""] lowerCAmelCase__ : Any = ["""image"""] lowerCAmelCase__ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] lowerCAmelCase__ : Tuple = False @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : str ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase__ (self : int ): '''simple docstring''' return 8 @property def UpperCamelCase__ (self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(UpperCamelCase ) return model @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase , do_normalize=UpperCamelCase , do_resize=UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def UpperCamelCase__ (self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase__ = PriorTransformer(**UpperCamelCase ) return model @property def UpperCamelCase__ (self : int ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**UpperCamelCase ) return model def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase , clip_sample=UpperCamelCase , clip_sample_range=1.0 , ) lowercase__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=0 ): '''simple docstring''' lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if str(UpperCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase ) else: lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowercase__ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = torch_device == '''cpu''' lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase , relax_max_difference=UpperCamelCase , ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(UpperCamelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**UpperCamelCase , num_images_per_prompt=UpperCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) lowercase__ = pipe( UpperCamelCase , generator=UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
2
0
import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : '''simple docstring''' def __init__( self : int , UpperCamelCase__ : str=None , UpperCamelCase__ : int=None ) -> List[str]: """simple docstring""" __magic_name__ = list(poly_a or [0] )[:] __magic_name__ = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __magic_name__ = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() __magic_name__ = len(self.polyB ) # Add 0 to make lengths equal a power of 2 __magic_name__ = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform __magic_name__ = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product __magic_name__ = self.__multiply() def _lowercase ( self : int , UpperCamelCase__ : Any ) -> Optional[int]: """simple docstring""" __magic_name__ = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(UpperCamelCase__ ) <= 1: return dft[0] # __magic_name__ = self.c_max_length // 2 while next_ncol > 0: __magic_name__ = [[] for i in range(UpperCamelCase__ )] __magic_name__ = self.root**next_ncol # First half of next step __magic_name__ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCamelCase__ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step __magic_name__ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCamelCase__ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update __magic_name__ = new_dft __magic_name__ = next_ncol // 2 return dft[0] def _lowercase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __magic_name__ = self.__dft("""A""" ) __magic_name__ = self.__dft("""B""" ) __magic_name__ = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT __magic_name__ = 2 while next_ncol <= self.c_max_length: __magic_name__ = [[] for i in range(UpperCamelCase__ )] __magic_name__ = self.root ** (next_ncol // 2) __magic_name__ = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update __magic_name__ = new_inverse_c next_ncol *= 2 # Unpack __magic_name__ = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Optional[Any] ) -> Dict: """simple docstring""" __magic_name__ = """A = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) __magic_name__ = """B = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) __magic_name__ = """A*B = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
88
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : str = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
89
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = """realm""" def __init__(self : str , UpperCamelCase : List[Any]=30522 , UpperCamelCase : List[Any]=768 , UpperCamelCase : int=128 , UpperCamelCase : Any=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Union[str, Any]=3072 , UpperCamelCase : List[str]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : Dict=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : List[Any]=1E-12 , UpperCamelCase : Dict=256 , UpperCamelCase : Union[str, Any]=10 , UpperCamelCase : Optional[int]=1E-3 , UpperCamelCase : Tuple=5 , UpperCamelCase : Optional[int]=320 , UpperCamelCase : List[str]=13353718 , UpperCamelCase : Optional[Any]=5000 , UpperCamelCase : str=1 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[Any]=2 , **UpperCamelCase : int , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) # Common config lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = retriever_proj_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_candidates lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps # Reader config lowercase__ = span_hidden_size lowercase__ = max_span_width lowercase__ = reader_layer_norm_eps lowercase__ = reader_beam_size lowercase__ = reader_seq_len # Retrieval config lowercase__ = num_block_records lowercase__ = searcher_beam_size
2
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } __A = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> int: """simple docstring""" __lowerCamelCase = {} with open(UpperCamelCase__ , 'r' ) as file: for line_number, line in enumerate(UpperCamelCase__ ): __lowerCamelCase = line.strip() if line: __lowerCamelCase = line.split() __lowerCamelCase = line_number __lowerCamelCase = words[0] __lowerCamelCase = value return result def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" for attribute in key.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCamelCase__ ): __lowerCamelCase = PARAM_MAPPING[full_name.split('.' )[-1]] __lowerCamelCase = 'param' if weight_type is not None and weight_type != "param": __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape elif weight_type is not None and weight_type == "param": __lowerCamelCase = hf_pointer for attribute in hf_param_name.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = shape_pointer.shape # let's reduce dimension __lowerCamelCase = value[0] else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCamelCase__ ): __lowerCamelCase = PARAM_MAPPING[full_name.split('.' )[-1]] __lowerCamelCase = 'param' if weight_type is not None and weight_type != "param": __lowerCamelCase = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __lowerCamelCase = '.'.join([key, hf_param_name] ) else: __lowerCamelCase = key __lowerCamelCase = value if 'lm_head' in full_key else value[0] __A = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[int]=None ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = False for key, mapped_key in MAPPING.items(): __lowerCamelCase = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2] __lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: __lowerCamelCase = 'weight_g' elif "weight_v" in name: __lowerCamelCase = 'weight_v' elif "bias" in name: __lowerCamelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase = 'weight' else: __lowerCamelCase = None if hf_dict is not None: rename_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return is_used return is_used def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase = True else: __lowerCamelCase = load_wavaveca_layer(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : int ) -> Any: """simple docstring""" __lowerCamelCase = full_name.split('conv_layers.' )[-1] __lowerCamelCase = name.split('.' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Any=None , UpperCamelCase__ : str=None , UpperCamelCase__ : int=True , UpperCamelCase__ : str=False ) -> str: """simple docstring""" if config_path is not None: __lowerCamelCase = WavaVecaConfig.from_pretrained(UpperCamelCase__ ) else: __lowerCamelCase = WavaVecaConfig() if is_seq_class: __lowerCamelCase = read_txt_into_dict(UpperCamelCase__ ) __lowerCamelCase = idalabel __lowerCamelCase = WavaVecaForSequenceClassification(UpperCamelCase__ ) __lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) feature_extractor.save_pretrained(UpperCamelCase__ ) elif is_finetuned: if dict_path: __lowerCamelCase = Dictionary.load(UpperCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowerCamelCase = target_dict.pad_index __lowerCamelCase = target_dict.bos_index __lowerCamelCase = target_dict.eos_index __lowerCamelCase = len(target_dict.symbols ) __lowerCamelCase = os.path.join(UpperCamelCase__ , 'vocab.json' ) if not os.path.isdir(UpperCamelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCamelCase__ ) ) return os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) __lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched __lowerCamelCase = 0 __lowerCamelCase = 1 with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = WavaVecaCTCTokenizer( UpperCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCamelCase__ , ) __lowerCamelCase = True if config.feat_extract_norm == 'layer' else False __lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) __lowerCamelCase = WavaVecaProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) __lowerCamelCase = WavaVecaForCTC(UpperCamelCase__ ) else: __lowerCamelCase = WavaVecaForPreTraining(UpperCamelCase__ ) if is_finetuned or is_seq_class: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: __lowerCamelCase = argparse.Namespace(task='audio_pretraining' ) __lowerCamelCase = fairseq.tasks.setup_task(UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCamelCase__ ) __lowerCamelCase = model[0].eval() recursively_load_weights(UpperCamelCase__ , UpperCamelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) __A = parser.parse_args() __A = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
90
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : int = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = """mvp""" lowerCAmelCase__ : Optional[Any] = ["""past_key_values"""] lowerCAmelCase__ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self : Any , UpperCamelCase : Optional[int]=50267 , UpperCamelCase : Tuple=1024 , UpperCamelCase : int=12 , UpperCamelCase : Tuple=4096 , UpperCamelCase : Dict=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Union[str, Any]=1024 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=1 , UpperCamelCase : int=0 , UpperCamelCase : int=2 , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=False , UpperCamelCase : int=100 , UpperCamelCase : Optional[Any]=800 , **UpperCamelCase : str , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = classifier_dropout lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = use_prompt lowercase__ = prompt_length lowercase__ = prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase ): lowercase__ = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " '''The config can simply be saved and uploaded again to be fixed.''' )
2
0
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Tuple = getLogger(__name__) def _A (__a , __a , __a , __a = 8 , __a = 10_24 , __a="val" , __a=None , __a=False , __a="summarization" , __a=None , __a=1 , __a = None , __a="" , **__a , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = str(__a ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=__a ) SCREAMING_SNAKE_CASE_ : int = Path(__a ) SCREAMING_SNAKE_CASE_ : str = save_dir.joinpath(f'rank_{local_rank}_output.json' ) torch.cuda.set_device(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(__a ).cuda() if fpaa: SCREAMING_SNAKE_CASE_ : List[Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(__a , __a ) # update config with task specific params SCREAMING_SNAKE_CASE_ : str = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: SCREAMING_SNAKE_CASE_ : Tuple = num_return_sequences SCREAMING_SNAKE_CASE_ : Tuple = AutoTokenizer.from_pretrained(__a ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: SCREAMING_SNAKE_CASE_ : int = tokenizer.model_max_length if prefix is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = SeqaSeqDataset( __a , __a , __a , max_target_length=10_24 , type_path=__a , n_obs=__a , prefix=__a , **__a , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. SCREAMING_SNAKE_CASE_ : str = ds.make_sortish_sampler(__a , distributed=__a , add_extra_examples=__a , shuffle=__a ) SCREAMING_SNAKE_CASE_ : int = DataLoader(__a , sampler=__a , batch_size=__a , collate_fn=ds.collate_fn ) SCREAMING_SNAKE_CASE_ : str = [] for batch in tqdm(__a ): SCREAMING_SNAKE_CASE_ : Dict = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=__a , num_beams=__a , **__a , ) SCREAMING_SNAKE_CASE_ : int = tokenizer.batch_decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) SCREAMING_SNAKE_CASE_ : Tuple = batch['''ids'''] if num_return_sequences > 1: SCREAMING_SNAKE_CASE_ : Dict = chunks(__a , __a ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(__a ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(__a , __a ) return results, sampler.num_replicas def _A () -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=__a , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=__a , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=__a , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=__a , default=__a ) parser.add_argument( '''--type_path''' , type=__a , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=__a , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=__a , default=8 , required=__a , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=__a , default=-1 , required=__a , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=__a , default=__a , required=__a , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=__a , default=1 , required=__a , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=__a , default=6_00 , required=__a , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=__a , default=__a , required=__a ) parser.add_argument('''--tgt_lang''' , type=__a , default=__a , required=__a ) parser.add_argument( '''--prefix''' , type=__a , required=__a , default=__a , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) SCREAMING_SNAKE_CASE_ : Any = time.time() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = parser.parse_known_args() SCREAMING_SNAKE_CASE_ : Optional[Any] = parse_numeric_n_bool_cl_kwargs(__a ) if generate_kwargs and args.local_rank <= 0: print(f'parsed the following generate kwargs: {generate_kwargs}' ) SCREAMING_SNAKE_CASE_ : Dict = Path(args.save_dir + '''_tmp''' ) Path(__a ).mkdir(exist_ok=__a ) # this handles locking. SCREAMING_SNAKE_CASE_ : Optional[int] = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(f'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. SCREAMING_SNAKE_CASE_ : Dict = {} if args.src_lang is not None: SCREAMING_SNAKE_CASE_ : int = args.src_lang if args.tgt_lang is not None: SCREAMING_SNAKE_CASE_ : Tuple = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=__a ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = eval_data_dir( args.data_dir , __a , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__a , **__a , ) if args.local_rank <= 0: SCREAMING_SNAKE_CASE_ : str = Path(args.save_dir ) save_dir.mkdir(exist_ok=__a ) SCREAMING_SNAKE_CASE_ : Dict = gather_results_from_each_node(__a , __a , args.sync_timeout ) SCREAMING_SNAKE_CASE_ : Dict = combine_partial_results(__a ) if args.num_return_sequences > 1: SCREAMING_SNAKE_CASE_ : Any = save_dir.joinpath('''pseudolabel_results.json''' ) print(f'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(__a , __a ) return SCREAMING_SNAKE_CASE_ : Optional[int] = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(__a ) as f: SCREAMING_SNAKE_CASE_ : Any = [x.rstrip() for x in f.readlines()][: len(__a )] # Calculate metrics, save metrics, and save _generations.txt SCREAMING_SNAKE_CASE_ : int = '''translation''' in args.task SCREAMING_SNAKE_CASE_ : str = calculate_bleu if calc_bleu else calculate_rouge SCREAMING_SNAKE_CASE_ : Dict = '''bleu''' if calc_bleu else '''rouge''' SCREAMING_SNAKE_CASE_ : Dict = score_fn(__a , __a ) SCREAMING_SNAKE_CASE_ : int = len(__a ) SCREAMING_SNAKE_CASE_ : Optional[int] = time.time() - start_time SCREAMING_SNAKE_CASE_ : int = round(runtime / metrics['''n_obs'''] , 4 ) SCREAMING_SNAKE_CASE_ : Dict = num_replicas # TODO(@stas00): add whatever metadata to metrics SCREAMING_SNAKE_CASE_ : str = save_dir.joinpath(f'{args.type_path}_{metric_name}.json' ) save_json(__a , __a , indent=__a ) print(__a ) write_txt_file(__a , save_dir.joinpath(f'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(__a , save_dir.joinpath(f'{args.type_path}.target' ) ) else: shutil.rmtree(__a ) def _A (__a ) -> List: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [] for partial_result in partial_results: records.extend(__a ) SCREAMING_SNAKE_CASE_ : int = sorted(__a , key=lambda __a : x["id"] ) SCREAMING_SNAKE_CASE_ : Dict = [x['''pred'''] for x in records] return preds def _A (__a , __a , __a ) -> List[Dict[str, List]]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = time.time() logger.info('''waiting for all nodes to finish''' ) SCREAMING_SNAKE_CASE_ : Any = None while (time.time() - start_wait) < timeout: SCREAMING_SNAKE_CASE_ : Optional[int] = list(save_dir.glob('''rank_*.json''' ) ) if len(__a ) < num_replicas: continue try: # make sure all json files are fully saved SCREAMING_SNAKE_CASE_ : int = lmap(__a , __a ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
91
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : List[str] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : int = DebertaVaTokenizer lowerCAmelCase__ : List[Any] = DebertaVaTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Tuple = True def UpperCamelCase__ (self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ = DebertaVaTokenizer(UpperCamelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = '''this is a test''' lowercase__ = '''this is a test''' return input_text, output_text def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''<pad>''' lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(UpperCamelCase ) , 30001 ) def UpperCamelCase__ (self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''This is a test''' lowercase__ = [13, 1, 4398, 25, 21, 1289] lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = DebertaVaTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # fmt: off lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DebertaVaTokenizer(UpperCamelCase ) lowercase__ = tokenizer.encode('''sequence builders''' ) lowercase__ = tokenizer.encode('''multi-sequence build''' ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase , ) @slow def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class a__ ( snake_case__ ): _a : Optional[int] = """decision_transformer""" _a : Optional[int] = ["""past_key_values"""] _a : Dict = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , _A=1_7 , _A=4 , _A=1_2_8 , _A=4_0_9_6 , _A=True , _A=1 , _A=1_0_2_4 , _A=3 , _A=1 , _A=None , _A="relu" , _A=0.1 , _A=0.1 , _A=0.1 , _A=1E-5 , _A=0.02 , _A=True , _A=True , _A=5_0_2_5_6 , _A=5_0_2_5_6 , _A=False , _A=False , **_A , ): """simple docstring""" __lowerCAmelCase = state_dim __lowerCAmelCase = act_dim __lowerCAmelCase = hidden_size __lowerCAmelCase = max_ep_len __lowerCAmelCase = action_tanh __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = scale_attn_weights __lowerCAmelCase = use_cache __lowerCAmelCase = scale_attn_by_inverse_layer_idx __lowerCAmelCase = reorder_and_upcast_attn __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_A , eos_token_id=_A , **_A )
92
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _SCREAMING_SNAKE_CASE (A ) -> Optional[Any]: """simple docstring""" lowercase__ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A , A ) def _SCREAMING_SNAKE_CASE (A ) -> List[str]: """simple docstring""" lowercase__ ,lowercase__ = emb.weight.shape lowercase__ = nn.Linear(A , A , bias=A ) lowercase__ = emb.weight.data return lin_layer def _SCREAMING_SNAKE_CASE (A , A="facebook/mbart-large-en-ro" , A=False , A=False ) -> Union[str, Any]: """simple docstring""" lowercase__ = torch.load(A , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A ) lowercase__ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowercase__ = MBartConfig.from_pretrained(A , vocab_size=A ) if mbart_aa and finetuned: lowercase__ = '''relu''' lowercase__ = state_dict['''decoder.embed_tokens.weight'''] lowercase__ = MBartForConditionalGeneration(A ) model.model.load_state_dict(A ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') lowerCamelCase : Any = parser.parse_args() lowerCamelCase : List[str] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
2
0
'''simple docstring''' _lowercase : Union[str, Any] = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
93
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCamelCase : List[Any] = logging.getLogger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCamelCase : Any=-1 ): '''simple docstring''' lowercase__ = label_idx def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: lowercase__ = [] lowercase__ = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 lowercase__ = [] lowercase__ = [] else: lowercase__ = line.split(''' ''' ) words.append(splits[0] ) if len(UpperCamelCase ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) return examples def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(UpperCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase__ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(UpperCamelCase ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : List[Any] ): '''simple docstring''' super().__init__(label_idx=-2 ) def UpperCamelCase__ (self : List[Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def UpperCamelCase__ (self : Tuple , UpperCamelCase : int , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: for sentence in parse_incr(UpperCamelCase ): lowercase__ = [] lowercase__ = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(UpperCamelCase ) == len(UpperCamelCase ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 return examples def UpperCamelCase__ (self : Tuple , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for sentence in parse_incr(UpperCamelCase ): lowercase__ = preds_list[example_id] lowercase__ = '''''' for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(UpperCamelCase ) example_id += 1 def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
2
0
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def __lowerCamelCase ( ): """simple docstring""" print('''Making key files...''' ) make_key_files('''rsa''' , 1024 ) print('''Key files generation successful.''' ) def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" print('''Generating prime p...''' ) a :Dict = rabinMiller.generate_large_prime(UpperCAmelCase_ ) print('''Generating prime q...''' ) a :Optional[Any] = rabinMiller.generate_large_prime(UpperCAmelCase_ ) a :int = p * q print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''' ) while True: a :Optional[Any] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(UpperCAmelCase_ , (p - 1) * (q - 1) ) == 1: break print('''Calculating d that is mod inverse of e...''' ) a :Union[str, Any] = cryptoMath.find_mod_inverse(UpperCAmelCase_ , (p - 1) * (q - 1) ) a :Tuple = (n, e) a :Optional[int] = (n, d) return (public_key, private_key) def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : int ): """simple docstring""" if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print('''\nWARNING:''' ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' '''Use a different name or delete these files and re-run this program.''' ) sys.exit() a , a :List[str] = generate_key(UpperCAmelCase_ ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' , '''w''' ) as out_file: out_file.write(F'''{key_size},{public_key[0]},{public_key[1]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' , '''w''' ) as out_file: out_file.write(F'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
94
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = """megatron-bert""" def __init__(self : Tuple , UpperCamelCase : Optional[int]=29056 , UpperCamelCase : Optional[Any]=1024 , UpperCamelCase : Any=24 , UpperCamelCase : int=16 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : int="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=512 , UpperCamelCase : int=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Dict=1E-12 , UpperCamelCase : List[Any]=0 , UpperCamelCase : Optional[int]="absolute" , UpperCamelCase : List[Any]=True , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache
2
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__) class __lowerCAmelCase ( UpperCamelCase__): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _lowercase : str = field(default="""question-answering-extractive""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _lowercase : ClassVar[Features] = Features({"""question""": Value("""string"""), """context""": Value("""string""")}) _lowercase : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string"""), """answer_start""": Value("""int32"""), }) }) _lowercase : str = "question" _lowercase : str = "context" _lowercase : str = "answers" @property def _lowercase ( self ) -> Dict[str, str]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
95
'''simple docstring''' # Lint as: python3 import itertools import os import re lowerCamelCase : Any = re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCamelCase : str = re.compile(R'([a-z\d])([A-Z])') lowerCamelCase : Optional[int] = re.compile(R'(?<!_)_(?!_)') lowerCamelCase : List[Any] = re.compile(R'(_{2,})') lowerCamelCase : str = R'^\w+(\.\w+)*$' lowerCamelCase : Dict = R'<>:/\|?*' def _SCREAMING_SNAKE_CASE (A ) -> Any: """simple docstring""" lowercase__ = _uppercase_uppercase_re.sub(R'''\1_\2''' , A ) lowercase__ = _lowercase_uppercase_re.sub(R'''\1_\2''' , A ) return name.lower() def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" lowercase__ = _single_underscore_re.split(A ) lowercase__ = [_multiple_underscores_re.split(A ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A ) if n != '''''' ) def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , A ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(A )}-{split}" def _SCREAMING_SNAKE_CASE (A , A , A , A=None ) -> List[str]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) if filetype_suffix: prefix += f".{filetype_suffix}" lowercase__ = os.path.join(A , A ) return f"{filepath}*" def _SCREAMING_SNAKE_CASE (A , A , A , A=None , A=None ) -> Optional[Any]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) lowercase__ = os.path.join(A , A ) if shard_lengths: lowercase__ = len(A ) lowercase__ = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(A )] if filetype_suffix: lowercase__ = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: lowercase__ = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
2
0
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = """▁""" lowercase__ = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""} lowercase__ = { """sentencepiece_model_file""": """sentencepiece.bpe.model""", """vocab_file""": """vocab.txt""", } lowercase__ = { """vocab_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", }, """sentencepiece_model_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", }, } lowercase__ = { """ernie-m-base""": 514, """ernie-m-large""": 514, } lowercase__ = { """ernie-m-base""": {"""do_lower_case""": False}, """ernie-m-large""": {"""do_lower_case""": False}, } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["input_ids"] lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = RESOURCE_FILES_NAMES def __init__( self , lowercase , lowercase=None , lowercase=False , lowercase="utf8" , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase = None , **lowercase , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , vocab_file=lowercase , encoding=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) _lowerCamelCase : str = do_lower_case _lowerCamelCase : Optional[Any] = sentencepiece_model_ckpt _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: _lowerCamelCase : Dict = self.load_vocab(filepath=lowercase ) else: _lowerCamelCase : Optional[int] = {self.sp_model.id_to_piece(lowercase ): id for id in range(self.sp_model.get_piece_size() )} _lowerCamelCase : int = {v: k for k, v in self.vocab.items()} def A_ ( self , lowercase ): if text is None: return None _lowerCamelCase : Tuple = self.tokenize(lowercase ) _lowerCamelCase, _lowerCamelCase : Any = '', [] for i, ch in enumerate(lowercase ): if ch in self.SP_CHAR_MAPPING: _lowerCamelCase : List[str] = self.SP_CHAR_MAPPING.get(lowercase ) else: _lowerCamelCase : Dict = unicodedata.normalize('NFKC' , lowercase ) if self.is_whitespace(lowercase ): continue normalized_text += ch char_mapping.extend([i] * len(lowercase ) ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = normalized_text, [], 0 if self.do_lower_case: _lowerCamelCase : List[str] = text.lower() for token in split_tokens: if token[:1] == "▁": _lowerCamelCase : List[str] = token[1:] _lowerCamelCase : Union[str, Any] = text[offset:].index(lowercase ) + offset _lowerCamelCase : Optional[int] = start + len(lowercase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) _lowerCamelCase : Optional[Any] = end return token_mapping @property def A_ ( self ): return len(self.vocab ) def A_ ( self ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): _lowerCamelCase : str = self.__dict__.copy() _lowerCamelCase : Optional[int] = None return state def __setstate__( self , lowercase ): _lowerCamelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowerCamelCase : List[str] = {} _lowerCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def A_ ( self , lowercase ): return "".join((self.SP_CHAR_MAPPING.get(lowercase , lowercase ) for c in text) ) def A_ ( self , lowercase , lowercase=False , lowercase=64 , lowercase=0.1 ): if self.sp_model_kwargs.get('enable_sampling' ) is True: _lowerCamelCase : Optional[int] = True if self.sp_model_kwargs.get('alpha' ) is not None: _lowerCamelCase : Tuple = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: _lowerCamelCase : Tuple = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: _lowerCamelCase : Optional[Any] = self.sp_model.EncodeAsPieces(lowercase ) else: _lowerCamelCase : List[str] = self.sp_model.SampleEncodeAsPieces(lowercase , lowercase , lowercase ) _lowerCamelCase : Tuple = [] for pi, piece in enumerate(lowercase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(lowercase ) and pi != 0: new_pieces.append(lowercase ) continue else: continue _lowerCamelCase : Tuple = 0 for i, chunk in enumerate(lowercase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(lowercase ) or self.is_punct(lowercase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(lowercase ) _lowerCamelCase : int = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _lowerCamelCase : Any = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _lowerCamelCase : Tuple = i if len(lowercase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def A_ ( self , lowercase ): _lowerCamelCase : Optional[int] = ''.join(lowercase ).replace(lowercase , ' ' ).strip() return out_string def A_ ( self , lowercase ): _lowerCamelCase : Union[str, Any] = self.convert_ids_to_tokens(lowercase ) _lowerCamelCase : Any = ''.join(lowercase ).replace(lowercase , ' ' ).strip() return out_string def A_ ( self , lowercase ): return self.vocab.get(lowercase , self.vocab.get(self.unk_token ) ) def A_ ( self , lowercase ): return self.reverse_vocab.get(lowercase , self.unk_token ) def A_ ( self , lowercase , lowercase=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase : List[Any] = [self.cls_token_id] _lowerCamelCase : Optional[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def A_ ( self , lowercase , lowercase=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def A_ ( self , lowercase , lowercase=None , lowercase=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowercase )) + [1, 1] + ([0] * len(lowercase )) + [1] return [1] + ([0] * len(lowercase )) + [1] def A_ ( self , lowercase , lowercase = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(lowercase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(lowercase ) + 1) + [1] * (len(lowercase ) + 3) def A_ ( self , lowercase ): if "\u4e00" <= char <= "\u9fff": return True return False def A_ ( self , lowercase ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def A_ ( self , lowercase ): if char in ",;:.?!~,;:。?!《》【】": return True return False def A_ ( self , lowercase ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(lowercase ) == 1: _lowerCamelCase : Tuple = unicodedata.category(lowercase ) if cat == "Zs": return True return False def A_ ( self , lowercase ): _lowerCamelCase : Tuple = {} with io.open(lowercase , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(lowercase ): _lowerCamelCase : int = line.rstrip('\n' ) _lowerCamelCase : Optional[Any] = int(lowercase ) return token_to_idx def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : Union[str, Any] = 0 if os.path.isdir(lowercase ): _lowerCamelCase : List[Any] = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: _lowerCamelCase : Optional[int] = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(lowercase , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda lowercase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ' Please check that the vocabulary is not corrupted!' ) _lowerCamelCase : Optional[Any] = token_index writer.write(token + '\n' ) index += 1 _lowerCamelCase : List[str] = os.path.join(lowercase , 'sentencepiece.bpe.model' ) with open(lowercase , 'wb' ) as fi: _lowerCamelCase : Dict = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (vocab_file,)
96
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __lowerCAmelCase : '''simple docstring''' def __init__(self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : str=True , UpperCamelCase : Tuple=False , UpperCamelCase : str=True , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Any=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Tuple=30 , UpperCamelCase : str=0 , UpperCamelCase : Tuple=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : str=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = decoder_seq_length # For common tests lowercase__ = self.decoder_seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_model lowercase__ = decoder_layers lowercase__ = decoder_layers lowercase__ = decoder_ffn_dim lowercase__ = decoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = eos_token_id lowercase__ = bos_token_id lowercase__ = pad_token_id lowercase__ = decoder_start_token_id lowercase__ = use_cache lowercase__ = max_position_embeddings lowercase__ = None lowercase__ = decoder_seq_length lowercase__ = 2 lowercase__ = 1 def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , ): '''simple docstring''' lowercase__ = True lowercase__ = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval() lowercase__ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) lowercase__ = model(UpperCamelCase ) lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) lowercase__ = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowercase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ = model(UpperCamelCase )['''last_hidden_state'''] lowercase__ = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state'''] # select random slice lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowercase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class __lowerCAmelCase (lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase__ : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase__ : Optional[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[str] = False def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass
2
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = tempfile.mkdtemp() # fmt: off UpperCamelCase__ :int = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on UpperCamelCase__ :int = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) UpperCamelCase__ :Optional[int] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] UpperCamelCase__ :Union[str, Any] = {'''unk_token''': '''<unk>'''} UpperCamelCase__ :Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase_ ) ) UpperCamelCase__ :Union[str, Any] = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } UpperCamelCase__ :Any = os.path.join(self.tmpdirname , UpperCamelCase_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase__ :Optional[Any] = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self.get_tokenizer() UpperCamelCase__ :Dict = self.get_rust_tokenizer() UpperCamelCase__ :Dict = self.get_image_processor() UpperCamelCase__ :Optional[Any] = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase__ :str = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase__ :Any = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ :Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCamelCase__ :Optional[Any] = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 ) UpperCamelCase__ :List[str] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.get_image_processor() UpperCamelCase__ :str = self.get_tokenizer() UpperCamelCase__ :List[Any] = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :str = self.prepare_image_inputs() UpperCamelCase__ :Optional[int] = image_processor(UpperCamelCase_ , return_tensors='''np''' ) UpperCamelCase__ :Dict = processor(images=UpperCamelCase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.get_image_processor() UpperCamelCase__ :Optional[Any] = self.get_tokenizer() UpperCamelCase__ :List[str] = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :List[str] = '''lower newer''' UpperCamelCase__ :str = processor(text=UpperCamelCase_ ) UpperCamelCase__ :Any = tokenizer(UpperCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = self.get_image_processor() UpperCamelCase__ :Tuple = self.get_tokenizer() UpperCamelCase__ :List[str] = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :Tuple = '''lower newer''' UpperCamelCase__ :List[Any] = self.prepare_image_inputs() UpperCamelCase__ :List[Any] = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = self.get_image_processor() UpperCamelCase__ :Any = self.get_tokenizer() UpperCamelCase__ :Dict = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.prepare_image_inputs() UpperCamelCase__ :Optional[int] = self.prepare_image_inputs() UpperCamelCase__ :List[Any] = processor(images=UpperCamelCase_ , visual_prompt=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.get_image_processor() UpperCamelCase__ :Optional[Any] = self.get_tokenizer() UpperCamelCase__ :Optional[int] = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ :Union[str, Any] = processor.batch_decode(UpperCamelCase_ ) UpperCamelCase__ :Dict = tokenizer.batch_decode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
97
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" if not isinstance(A , A ): raise TypeError('''only integers accepted as input''' ) else: lowercase__ = str(abs(A ) ) lowercase__ = [list(A ) for char in range(len(A ) )] for index in range(len(A ) ): num_transpositions[index].pop(A ) return max( int(''''''.join(list(A ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
2
0
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class snake_case ( ctypes.Structure ): """simple docstring""" snake_case__ = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def a_ ( ): if os.name == "nt": UpperCAmelCase__ = CursorInfo() UpperCAmelCase__ = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCamelCase , ctypes.byref(lowerCamelCase ) ) UpperCAmelCase__ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCamelCase , ctypes.byref(lowerCamelCase ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def a_ ( ): if os.name == "nt": UpperCAmelCase__ = CursorInfo() UpperCAmelCase__ = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCamelCase , ctypes.byref(lowerCamelCase ) ) UpperCAmelCase__ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCamelCase , ctypes.byref(lowerCamelCase ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def a_ ( ): try: hide_cursor() yield finally: show_cursor()
98
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase : str = Mapping[str, np.ndarray] lowerCamelCase : List[Any] = Mapping[str, Any] # Is a nested dict. lowerCamelCase : Any = 0.0_1 @dataclasses.dataclass(frozen=lowercase_ ) class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCAmelCase__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCAmelCase__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCAmelCase__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCAmelCase__ : Optional[str] = None # Templates used to generate this protein (prediction-only) lowerCAmelCase__ : Optional[Sequence[str]] = None # Chain corresponding to each parent lowerCAmelCase__ : Optional[Sequence[int]] = None def _SCREAMING_SNAKE_CASE (A ) -> Protein: """simple docstring""" lowercase__ = R'''(\[[A-Z]+\]\n)''' lowercase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0] lowercase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) lowercase__ = ["N", "CA", "C"] lowercase__ = None lowercase__ = None lowercase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ = g[1][0].strip() for i in range(len(A ) ): if seq[i] not in residue_constants.restypes: lowercase__ = '''X''' # FIXME: strings are immutable lowercase__ = np.array( [residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ = [] for axis in range(3 ): tertiary.append(list(map(A , g[1][axis].split() ) ) ) lowercase__ = np.array(A ) lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) lowercase__ = np.zeros( ( len(A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , ) def _SCREAMING_SNAKE_CASE (A , A = 0 ) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) lowercase__ = prot.parents lowercase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ = [p for i, p in zip(A , A ) if i == chain_id] if parents is None or len(A ) == 0: lowercase__ = ['''N/A'''] pdb_headers.append(f"PARENT {' '.join(A )}" ) return pdb_headers def _SCREAMING_SNAKE_CASE (A , A ) -> str: """simple docstring""" lowercase__ = [] lowercase__ = pdb_str.split('''\n''' ) lowercase__ = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) lowercase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase__ = [] if prot.parents_chain_index is not None: lowercase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(A ) , [] ) parent_dict[str(A )].append(A ) lowercase__ = max([int(A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ = parent_dict.get(str(A ) , ['''N/A'''] ) parents_per_chain.append(A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ = [['''N/A''']] def make_parent_line(A ) -> str: return f"PARENT {' '.join(A )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ = 0 for i, l in enumerate(A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(A ): lowercase__ = parents_per_chain[chain_counter] else: lowercase__ = ['''N/A'''] out_pdb_lines.append(make_parent_line(A ) ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> str: """simple docstring""" lowercase__ = residue_constants.restypes + ['''X'''] def res_atoa(A ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) lowercase__ = residue_constants.atom_types lowercase__ = [] lowercase__ = prot.atom_mask lowercase__ = prot.aatype lowercase__ = prot.atom_positions lowercase__ = prot.residue_index.astype(np.intaa ) lowercase__ = prot.b_factors lowercase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) lowercase__ = get_pdb_headers(A ) if len(A ) > 0: pdb_lines.extend(A ) lowercase__ = aatype.shape[0] lowercase__ = 1 lowercase__ = 0 lowercase__ = string.ascii_uppercase lowercase__ = None # Add all atom sites. for i in range(A ): lowercase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase__ = '''ATOM''' lowercase__ = atom_name if len(A ) == 4 else f" {atom_name}" lowercase__ = '''''' lowercase__ = '''''' lowercase__ = 1.00 lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ = '''''' lowercase__ = '''A''' if chain_index is not None: lowercase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(A ) atom_index += 1 lowercase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ = True lowercase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ = '''TER''' lowercase__ = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(A , A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _SCREAMING_SNAKE_CASE (A , A , A = None , A = None , A = None , A = None , A = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
2
0
def A_ ( A__ , A__ ) -> float: if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(A__ ) * abs(A__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
99
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A , A ) -> list[list[int]]: """simple docstring""" lowercase__ = [] create_all_state(1 , A , A , [] , A ) return result def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def _SCREAMING_SNAKE_CASE (A ) -> None: """simple docstring""" for i in total_list: print(*A ) if __name__ == "__main__": lowerCamelCase : Tuple = 4 lowerCamelCase : Union[str, Any] = 2 lowerCamelCase : Dict = generate_all_combinations(n, k) print_all_state(total_list)
2
0
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Union[str, Any] = PhobertTokenizer __lowercase : Any = False def snake_case_ ( self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __SCREAMING_SNAKE_CASE = ["""T@@""", """i""", """I""", """R@@""", """r""", """e@@"""] __SCREAMING_SNAKE_CASE = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) __SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """l à</w>"""] __SCREAMING_SNAKE_CASE = {"""unk_token""": """<unk>"""} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n") with open(self.merges_file , """w""" , encoding="""utf-8""") as fp: fp.write("""\n""".join(lowerCAmelCase__)) def snake_case_ ( self , **lowerCAmelCase__): kwargs.update(self.special_tokens_map) return PhobertTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = """Tôi là VinAI Research""" __SCREAMING_SNAKE_CASE = """T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>""" return input_text, output_text def snake_case_ ( self): __SCREAMING_SNAKE_CASE = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) __SCREAMING_SNAKE_CASE = """Tôi là VinAI Research""" __SCREAMING_SNAKE_CASE = """T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h""".split() __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) print(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , lowerCAmelCase__)
100
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCamelCase : Optional[Any] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowerCamelCase : Tuple = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowerCamelCase : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowerCamelCase : Any = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowerCamelCase : Tuple = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowerCamelCase : Optional[int] = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowerCamelCase : Dict = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ ,lowercase__ = randrange(len(A ) ), randrange(len(A ) ) lowercase__ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowercase__ ,lowercase__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE (A = 100 ) -> str: """simple docstring""" return (generate_random_hand() for _ in range(A )) @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]: """simple docstring""" assert PokerHand(A )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Any: """simple docstring""" lowercase__ = PokerHand(A ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple: """simple docstring""" assert PokerHand(A )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected def _SCREAMING_SNAKE_CASE () -> Tuple: """simple docstring""" lowercase__ = [PokerHand(A ) for hand in SORTED_HANDS] lowercase__ = poker_hands.copy() shuffle(A ) lowercase__ = chain(sorted(A ) ) for index, hand in enumerate(A ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE () -> List[Any]: """simple docstring""" lowercase__ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=A ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE () -> int: """simple docstring""" lowercase__ = PokerHand('''2C 4S AS 3D 5C''' ) lowercase__ = True lowercase__ = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ = 0 lowercase__ = os.path.abspath(os.path.dirname(A ) ) lowercase__ = os.path.join(A , '''poker_hands.txt''' ) with open(A ) as file_hand: for line in file_hand: lowercase__ = line[:14].strip() lowercase__ = line[15:].strip() lowercase__ ,lowercase__ = PokerHand(A ), PokerHand(A ) lowercase__ = player.compare_with(A ) if output == "Win": answer += 1 assert answer == 376
2
0