code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = '''''' UpperCamelCase__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) UpperCamelCase__ = None # compression type in fsspec. ex: "gzip" UpperCamelCase__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self :str , __magic_name__ :str = "" , __magic_name__ :Optional[str] = None , __magic_name__ :Optional[dict] = None , **__magic_name__ :Union[str, Any] ): '''simple docstring''' super().__init__(self , **__magic_name__ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode a = fsspec.open( __magic_name__ , mode="""rb""" , protocol=__magic_name__ , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) a = os.path.basename(self.file.path.split("""::""" )[0] ) a = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) a = None @classmethod def lowerCamelCase__ ( cls :Dict , __magic_name__ :Union[str, Any] ): '''simple docstring''' return super()._strip_protocol(__magic_name__ ).lstrip("""/""" ) def lowerCamelCase__ ( self :str ): '''simple docstring''' if self.dir_cache is None: a = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} a = {f["""name"""]: f} def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :str ): '''simple docstring''' return self.file.open().read() def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :str , __magic_name__ :str = "rb" , __magic_name__ :List[str]=None , __magic_name__ :Optional[Any]=True , __magic_name__ :Dict=None , **__magic_name__ :Tuple , ): '''simple docstring''' a = self._strip_protocol(__magic_name__ ) if mode != "rb": raise ValueError(F'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = '''bz2''' UpperCamelCase__ = '''bz2''' UpperCamelCase__ = '''.bz2''' class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = '''gzip''' UpperCamelCase__ = '''gzip''' UpperCamelCase__ = '''.gz''' class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = '''lz4''' UpperCamelCase__ = '''lz4''' UpperCamelCase__ = '''.lz4''' class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = '''xz''' UpperCamelCase__ = '''xz''' UpperCamelCase__ = '''.xz''' class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = '''zstd''' UpperCamelCase__ = '''zstd''' UpperCamelCase__ = '''.zst''' def __init__( self :List[str] , __magic_name__ :str , __magic_name__ :str = "rb" , __magic_name__ :Optional[str] = None , __magic_name__ :Optional[dict] = None , __magic_name__ :int = DEFAULT_BLOCK_SIZE , **__magic_name__ :str , ): '''simple docstring''' super().__init__( fo=__magic_name__ , mode=__magic_name__ , target_protocol=__magic_name__ , target_options=__magic_name__ , block_size=__magic_name__ , **__magic_name__ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 a = self.file.__enter__ class __lowerCAmelCase : def __init__( self :Optional[Any] , __magic_name__ :Union[str, Any] ): '''simple docstring''' a = file_ def __enter__( self :Optional[Any] ): '''simple docstring''' self._file.__enter__() return self def __exit__( self :str , *__magic_name__ :int , **__magic_name__ :Union[str, Any] ): '''simple docstring''' self._file.__exit__(*__magic_name__ , **__magic_name__ ) def __iter__( self :Optional[int] ): '''simple docstring''' return iter(self._file ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' return next(self._file ) def __getattr__( self :Optional[int] , __magic_name__ :Optional[Any] ): '''simple docstring''' return getattr(self._file , __magic_name__ ) def fixed_enter(*__magic_name__ :str , **__magic_name__ :Optional[int] ): return WrappedFile(_enter(*__magic_name__ , **__magic_name__ ) ) a = fixed_enter
361
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = CanineTokenizer UpperCamelCase__ = False def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' super().setUp() a = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ ( self :Dict ): '''simple docstring''' return CanineTokenizer.from_pretrained("""google/canine-s""" ) def lowerCamelCase__ ( self :Tuple , **__magic_name__ :Dict ): '''simple docstring''' a = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) a = 1024 return tokenizer @require_torch def lowerCamelCase__ ( self :int ): '''simple docstring''' a = self.canine_tokenizer a = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off a = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = self.canine_tokenizer a = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , __magic_name__ ) self.assertIn("""attention_mask""" , __magic_name__ ) self.assertIn("""token_type_ids""" , __magic_name__ ) @require_torch def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = self.canine_tokenizer a = [ """What's the weater?""", """It's about 25 degrees.""", ] a = tokenizer( text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc a = tempfile.mkdtemp() a = """ He is very happy, UNwant\u00E9d,running""" a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) a = tokenizer.__class__.from_pretrained(__magic_name__ ) a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) a = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc a = tempfile.mkdtemp() a = """ He is very happy, UNwant\u00E9d,running""" a = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: a = chr(0Xe_0_0_7 ) additional_special_tokens.append(__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) a = tokenizer.__class__.from_pretrained(__magic_name__ ) a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) a = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): a , a = self.get_clean_sequence(__magic_name__ ) # a special token for Canine can be defined as follows: a = 0Xe_0_0_5 a = chr(__magic_name__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) a = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ ) a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , input_encoded + special_token_id ) a = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) self.assertTrue(special_token not in decoded ) def lowerCamelCase__ ( self :int ): '''simple docstring''' a = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): a = chr(0Xe_0_0_5 ) a = chr(0Xe_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) a = tokenizer.tokenize(__magic_name__ ) a = tokenizer.tokenize(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(token_a[0] , __magic_name__ ) self.assertEqual(token_a[0] , __magic_name__ ) @require_tokenizers def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: a = 0Xe_0_0_6 a = chr(__magic_name__ ) a = AddedToken(__magic_name__ , lstrip=__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__magic_name__ ) tokenizer.from_pretrained(__magic_name__ ) def lowerCamelCase__ ( self :int ): '''simple docstring''' a = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: a = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: a = json.load(__magic_name__ ) # a special token for Canine can be defined as follows: a = 0Xe_0_0_6 a = chr(__magic_name__ ) a = [new_token_a] a = [new_token_a] with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files a = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) a = 0Xe_0_0_7 a = chr(__magic_name__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained a = [AddedToken(__magic_name__ , lstrip=__magic_name__ )] a = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): a = """hello world""" if self.space_between_special_tokens: a = """[CLS] hello world [SEP]""" else: a = input a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) a = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__magic_name__ , [output, output.lower()] ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): a = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] a = """a""" a = ord(__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] ) a = 0Xe_0_0_6 a = chr(__magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' pass def lowerCamelCase__ ( self :str ): '''simple docstring''' pass def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' pass def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' pass def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' pass def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' pass def lowerCamelCase__ ( self :Any ): '''simple docstring''' pass def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' pass
347
0
__UpperCamelCase : Dict = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def __A ( ) -> None: a = input("""Enter message: """ ) a = input("""Enter key [alphanumeric]: """ ) a = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): a = """encrypt""" a = encrypt_message(__lowerCamelCase , __lowerCamelCase ) elif mode.lower().startswith("""d""" ): a = """decrypt""" a = decrypt_message(__lowerCamelCase , __lowerCamelCase ) print(f'\n{mode.title()}ed message:' ) print(__lowerCamelCase ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> str: return translate_message(__lowerCamelCase , __lowerCamelCase , """encrypt""" ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> str: return translate_message(__lowerCamelCase , __lowerCamelCase , """decrypt""" ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: a = [] a = 0 a = key.upper() for symbol in message: a = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__lowerCamelCase ): a = 0 else: translated.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) if __name__ == "__main__": main()
362
def __A ( __lowerCamelCase ) -> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
347
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = 42 @flax_register_to_config class __lowerCAmelCase ( nn.Module , __magic_name__ , __magic_name__ ): UpperCamelCase__ = 32 UpperCamelCase__ = 4 UpperCamelCase__ = 4 UpperCamelCase__ = ( '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''', '''DownBlock2D''', ) UpperCamelCase__ = ('''UpBlock2D''', '''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''') UpperCamelCase__ = False UpperCamelCase__ = (320, 640, 1280, 1280) UpperCamelCase__ = 2 UpperCamelCase__ = 8 UpperCamelCase__ = None UpperCamelCase__ = 1280 UpperCamelCase__ = 0.0 UpperCamelCase__ = False UpperCamelCase__ = jnp.floataa UpperCamelCase__ = True UpperCamelCase__ = 0 UpperCamelCase__ = False def lowerCamelCase__ ( self :List[str] , __magic_name__ :jax.random.KeyArray ): '''simple docstring''' a = (1, self.in_channels, self.sample_size, self.sample_size) a = jnp.zeros(__magic_name__ , dtype=jnp.floataa ) a = jnp.ones((1,) , dtype=jnp.intaa ) a = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) a , a = jax.random.split(__magic_name__ ) a = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )["params"] def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' a = self.block_out_channels a = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( """At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. a = self.num_attention_heads or self.attention_head_dim # input a = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time a = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) a = FlaxTimestepEmbedding(__magic_name__ , dtype=self.dtype ) a = self.only_cross_attention if isinstance(__magic_name__ , __magic_name__ ): a = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__magic_name__ , __magic_name__ ): a = (num_attention_heads,) * len(self.down_block_types ) # down a = [] a = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): a = output_channel a = block_out_channels[i] a = i == len(__magic_name__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": a = FlaxCrossAttnDownBlockaD( in_channels=__magic_name__ , out_channels=__magic_name__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a = FlaxDownBlockaD( in_channels=__magic_name__ , out_channels=__magic_name__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__magic_name__ ) a = down_blocks # mid a = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up a = [] a = list(reversed(__magic_name__ ) ) a = list(reversed(__magic_name__ ) ) a = list(reversed(__magic_name__ ) ) a = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): a = output_channel a = reversed_block_out_channels[i] a = reversed_block_out_channels[min(i + 1 , len(__magic_name__ ) - 1 )] a = i == len(__magic_name__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": a = FlaxCrossAttnUpBlockaD( in_channels=__magic_name__ , out_channels=__magic_name__ , prev_output_channel=__magic_name__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a = FlaxUpBlockaD( in_channels=__magic_name__ , out_channels=__magic_name__ , prev_output_channel=__magic_name__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__magic_name__ ) a = output_channel a = up_blocks # out a = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) a = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self :List[str] , __magic_name__ :Union[str, Any] , __magic_name__ :Optional[Any] , __magic_name__ :str , __magic_name__ :Tuple=None , __magic_name__ :List[str]=None , __magic_name__ :bool = True , __magic_name__ :bool = False , ): '''simple docstring''' if not isinstance(__magic_name__ , jnp.ndarray ): a = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__magic_name__ , jnp.ndarray ) and len(timesteps.shape ) == 0: a = timesteps.astype(dtype=jnp.floataa ) a = jnp.expand_dims(__magic_name__ , 0 ) a = self.time_proj(__magic_name__ ) a = self.time_embedding(__magic_name__ ) # 2. pre-process a = jnp.transpose(__magic_name__ , (0, 2, 3, 1) ) a = self.conv_in(__magic_name__ ) # 3. down a = (sample,) for down_block in self.down_blocks: if isinstance(__magic_name__ , __magic_name__ ): a , a = down_block(__magic_name__ , __magic_name__ , __magic_name__ , deterministic=not train ) else: a , a = down_block(__magic_name__ , __magic_name__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: a = () for down_block_res_sample, down_block_additional_residual in zip( __magic_name__ , __magic_name__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) a = new_down_block_res_samples # 4. mid a = self.mid_block(__magic_name__ , __magic_name__ , __magic_name__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: a = down_block_res_samples[-(self.layers_per_block + 1) :] a = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__magic_name__ , __magic_name__ ): a = up_block( __magic_name__ , temb=__magic_name__ , encoder_hidden_states=__magic_name__ , res_hidden_states_tuple=__magic_name__ , deterministic=not train , ) else: a = up_block(__magic_name__ , temb=__magic_name__ , res_hidden_states_tuple=__magic_name__ , deterministic=not train ) # 6. post-process a = self.conv_norm_out(__magic_name__ ) a = nn.silu(__magic_name__ ) a = self.conv_out(__magic_name__ ) a = jnp.transpose(__magic_name__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__magic_name__ )
363
def __A ( __lowerCamelCase ) -> int: if not numbers: return 0 if not isinstance(__lowerCamelCase , (list, tuple) ) or not all( isinstance(__lowerCamelCase , __lowerCamelCase ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) a = a = a = numbers[0] for i in range(1 , len(__lowerCamelCase ) ): # update the maximum and minimum subarray products a = numbers[i] if number < 0: a , a = min_till_now, max_till_now a = max(__lowerCamelCase , max_till_now * number ) a = min(__lowerCamelCase , min_till_now * number ) # update the maximum product found till now a = max(__lowerCamelCase , __lowerCamelCase ) return max_prod
347
0
def __A ( __lowerCamelCase ) -> "list[int]": if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) a = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 a = 1 if upper_limit > 0: a = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(__lowerCamelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("\n********* Catalan Numbers Using Dynamic Programming ************\n") print("\n*** Enter -1 at any time to quit ***") print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="") try: while True: __UpperCamelCase : Union[str, Any] = int(input().strip()) if N < 0: print("\n********* Goodbye!! ************") break else: print(F'The Catalan numbers from 0 through {N} are:') print(catalan_numbers(N)) print("Try another upper limit for the sequence: ", end="") except (NameError, ValueError): print("\n********* Invalid input, goodbye! ************\n") import doctest doctest.testmod()
364
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase : Optional[Any] = { "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
347
0
import cmath import math def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> complex: a = math.radians(__lowerCamelCase ) a = math.radians(__lowerCamelCase ) # Convert voltage and current to rectangular form a = cmath.rect(__lowerCamelCase , __lowerCamelCase ) a = cmath.rect(__lowerCamelCase , __lowerCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
365
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , __lowerCamelCase ) a = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: a = dataset_size < in_memory_max_size else: a = False a = is_small_dataset(__lowerCamelCase ) assert result == expected
347
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __UpperCamelCase : int = random.Random() def __A ( __lowerCamelCase , __lowerCamelCase=1.0 , __lowerCamelCase=None , __lowerCamelCase=None ) -> Dict: if rng is None: a = global_rng a = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowerCAmelCase ( unittest.TestCase ): def __init__( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :str=7 , __magic_name__ :str=400 , __magic_name__ :Any=2000 , __magic_name__ :Optional[Any]=10 , __magic_name__ :Tuple=160 , __magic_name__ :Tuple=8 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :Optional[Any]=4000 , __magic_name__ :Dict=False , __magic_name__ :int=True , ): '''simple docstring''' a = parent a = batch_size a = min_seq_length a = max_seq_length a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a = padding_value a = sampling_rate a = return_attention_mask a = do_normalize a = feature_size a = chunk_length a = hop_length def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :Tuple=False , __magic_name__ :Dict=False ): '''simple docstring''' def _flatten(__magic_name__ :List[Any] ): return list(itertools.chain(*__magic_name__ ) ) if equal_length: a = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a = [np.asarray(__magic_name__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = WhisperFeatureExtractor if is_speech_available() else None def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' a = WhisperFeatureExtractionTester(self ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a = feat_extract_first.save_pretrained(__magic_name__ )[0] check_json_file_has_correct_format(__magic_name__ ) a = self.feature_extraction_class.from_pretrained(__magic_name__ ) a = feat_extract_first.to_dict() a = feat_extract_second.to_dict() a = feat_extract_first.mel_filters a = feat_extract_second.mel_filters self.assertTrue(np.allclose(__magic_name__ , __magic_name__ ) ) self.assertEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a = os.path.join(__magic_name__ , """feat_extract.json""" ) feat_extract_first.to_json_file(__magic_name__ ) a = self.feature_extraction_class.from_json_file(__magic_name__ ) a = feat_extract_first.to_dict() a = feat_extract_second.to_dict() a = feat_extract_first.mel_filters a = feat_extract_second.mel_filters self.assertTrue(np.allclose(__magic_name__ , __magic_name__ ) ) self.assertEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a = [np.asarray(__magic_name__ ) for speech_input in speech_inputs] # Test feature size a = feature_extractor(__magic_name__ , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input a = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features a = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) # Test batched a = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features a = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. a = [floats_list((1, x) )[0] for x in (800, 800, 800)] a = np.asarray(__magic_name__ ) a = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features a = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) # Test truncation required a = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] a = [np.asarray(__magic_name__ ) for speech_input in speech_inputs] a = [x[: feature_extractor.n_samples] for x in speech_inputs] a = [np.asarray(__magic_name__ ) for speech_input in speech_inputs_truncated] a = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features a = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' import torch a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a = np.random.rand(100 , 32 ).astype(np.floataa ) a = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) a = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase__ ( self :List[str] , __magic_name__ :Any ): '''simple docstring''' a = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech a = ds.sort("""id""" ).select(range(__magic_name__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on a = self._load_datasamples(1 ) a = WhisperFeatureExtractor() a = feature_extractor(__magic_name__ , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __magic_name__ , atol=1E-4 ) ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a = self._load_datasamples(1 )[0] a = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue a = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__magic_name__ )[0] self.assertTrue(np.all(np.mean(__magic_name__ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__magic_name__ ) - 1 ) < 1E-3 ) )
366
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __A ( __lowerCamelCase ) -> bool: a = int(number**0.5 ) return number == sq * sq def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[int, int]: a = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den a = x_den * y_den * z_den a = gcd(__lowerCamelCase , __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def __A ( __lowerCamelCase = 35 ) -> int: a = set() a = 42 a = Fraction(0 ) a = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 a = x_num * y_den + x_den * y_num a = x_den * y_den a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 a = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) a = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): a = int(sqrt(__lowerCamelCase ) ) a = int(sqrt(__lowerCamelCase ) ) a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 a = x_num * y_num a = x_den * y_num + x_num * y_den a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 a = x_num * x_num * y_num * y_num a = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): a = int(sqrt(__lowerCamelCase ) ) a = int(sqrt(__lowerCamelCase ) ) a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase , __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F'{solution() = }')
347
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = XLMRobertaTokenizer UpperCamelCase__ = XLMRobertaTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing a = XLMRobertaTokenizer(__magic_name__ , keep_accents=__magic_name__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' a = """<pad>""" a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__magic_name__ ) , 1002 ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' a = XLMRobertaTokenizer(__magic_name__ , keep_accents=__magic_name__ ) a = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__magic_name__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __magic_name__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) a = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual( __magic_name__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) a = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def lowerCamelCase__ ( self :str ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return a = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): a = self.rust_tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) a = self.tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(__magic_name__ ) a = tokenizer_p.save_pretrained(__magic_name__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) a = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__magic_name__ , __magic_name__ ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(__magic_name__ ) a = tokenizer_p.from_pretrained(__magic_name__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__magic_name__ , __magic_name__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__magic_name__ ) # Save tokenizer rust, legacy_format=True a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(__magic_name__ , legacy_format=__magic_name__ ) a = tokenizer_p.save_pretrained(__magic_name__ ) # Checks it save with the same files self.assertSequenceEqual(__magic_name__ , __magic_name__ ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(__magic_name__ ) a = tokenizer_p.from_pretrained(__magic_name__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__magic_name__ , __magic_name__ ) ) shutil.rmtree(__magic_name__ ) # Save tokenizer rust, legacy_format=False a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(__magic_name__ , legacy_format=__magic_name__ ) a = tokenizer_p.save_pretrained(__magic_name__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(__magic_name__ ) a = tokenizer_p.from_pretrained(__magic_name__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__magic_name__ , __magic_name__ ) ) shutil.rmtree(__magic_name__ ) @cached_property def lowerCamelCase__ ( self :Dict ): '''simple docstring''' return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__magic_name__ , f.name ) a = XLMRobertaTokenizer(f.name , keep_accents=__magic_name__ ) a = pickle.dumps(__magic_name__ ) pickle.loads(__magic_name__ ) def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = """I was born in 92000, and this is falsé.""" a = tokenizer.tokenize(__magic_name__ ) a = rust_tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) a = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) a = self.get_rust_tokenizer() a = tokenizer.encode(__magic_name__ ) a = rust_tokenizer.encode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) @slow def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' a = """Hello World!""" a = [0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) ) @slow def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' a = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) a = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) ) @slow def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' a = {"""input_ids""": [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
367
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __lowerCAmelCase ( unittest.TestCase ): def __init__( self :List[str] , __magic_name__ :List[str] , __magic_name__ :List[Any]=13 , __magic_name__ :Any=7 , __magic_name__ :Optional[int]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :Any=99 , __magic_name__ :List[str]=32 , __magic_name__ :List[str]=5 , __magic_name__ :str=4 , __magic_name__ :str=37 , __magic_name__ :Optional[int]="gelu" , __magic_name__ :int=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :Tuple=16 , __magic_name__ :Tuple=2 , __magic_name__ :List[str]=0.02 , __magic_name__ :Any=4 , ): '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_attention_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_choices def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_attention_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = True UpperCamelCase__ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = FlaxRoFormerModelTester(self ) @slow def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: a = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__magic_name__ ) a = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) a = jnp.array([[0, 1, 2, 3, 4, 5]] ) a = model(__magic_name__ )[0] a = 5_0000 a = (1, 6, vocab_size) self.assertEqual(output.shape , __magic_name__ ) a = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
347
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __UpperCamelCase : str = datasets.utils.logging.get_logger(__name__) @dataclass class __lowerCAmelCase ( datasets.BuilderConfig ): UpperCamelCase__ = 10000 UpperCamelCase__ = None UpperCamelCase__ = None class __lowerCAmelCase ( datasets.ArrowBasedBuilder ): UpperCamelCase__ = ParquetConfig def lowerCamelCase__ ( self :Dict ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self :List[Any] , __magic_name__ :List[str] ): '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) a = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__magic_name__ , (str, list, tuple) ): a = data_files if isinstance(__magic_name__ , __magic_name__ ): a = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a = [dl_manager.iter_files(__magic_name__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] a = [] for split_name, files in data_files.items(): if isinstance(__magic_name__ , __magic_name__ ): a = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a = [dl_manager.iter_files(__magic_name__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__magic_name__ ): with open(__magic_name__ , """rb""" ) as f: a = datasets.Features.from_arrow_schema(pq.read_schema(__magic_name__ ) ) break splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"""files""": files} ) ) return splits def lowerCamelCase__ ( self :Dict , __magic_name__ :pa.Table ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example a = table_cast(__magic_name__ , self.info.features.arrow_schema ) return pa_table def lowerCamelCase__ ( self :str , __magic_name__ :List[str] ): '''simple docstring''' a = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ): with open(__magic_name__ , """rb""" ) as f: a = pq.ParquetFile(__magic_name__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): a = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'{file_idx}_{batch_idx}', self._cast_table(__magic_name__ ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' ) raise
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Optional[int] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
347
0
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : def __init__( self :List[Any] , __magic_name__ :Tuple , __magic_name__ :List[str]=14 , __magic_name__ :List[Any]=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :str=True , __magic_name__ :List[str]=False , __magic_name__ :Any=True , __magic_name__ :Optional[int]=99 , __magic_name__ :Dict=32 , __magic_name__ :int=4 , __magic_name__ :int=4 , __magic_name__ :str=4 , __magic_name__ :Any=37 , __magic_name__ :List[Any]="gelu" , __magic_name__ :Any=0.1 , __magic_name__ :Optional[int]=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :Any=0.02 , ): '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = rotary_dim a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = initializer_range a = None a = vocab_size - 1 a = vocab_size - 1 a = vocab_size - 1 def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__magic_name__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ ( self :int , __magic_name__ :int , __magic_name__ :str , __magic_name__ :str , __magic_name__ :Dict ): '''simple docstring''' a = 20 a = model_class_name(__magic_name__ ) a = model.init_cache(input_ids.shape[0] , __magic_name__ ) a = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) a = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) a = model( input_ids[:, :-1] , attention_mask=__magic_name__ , past_key_values=__magic_name__ , position_ids=__magic_name__ , ) a = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) a = model( input_ids[:, -1:] , attention_mask=__magic_name__ , past_key_values=outputs_cache.past_key_values , position_ids=__magic_name__ , ) a = model(__magic_name__ ) a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def lowerCamelCase__ ( self :Any , __magic_name__ :Tuple , __magic_name__ :List[str] , __magic_name__ :int , __magic_name__ :Any ): '''simple docstring''' a = 20 a = model_class_name(__magic_name__ ) a = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) a = model.init_cache(input_ids.shape[0] , __magic_name__ ) a = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) a = model( input_ids[:, :-1] , attention_mask=__magic_name__ , past_key_values=__magic_name__ , position_ids=__magic_name__ , ) a = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) a = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__magic_name__ , position_ids=__magic_name__ , ) a = model(__magic_name__ , attention_mask=__magic_name__ ) a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): UpperCamelCase__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () UpperCamelCase__ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowerCamelCase__ ( self :str ): '''simple docstring''' a = FlaxGPTJModelTester(self ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' for model_class_name in self.all_model_classes: a , a , a = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' for model_class_name in self.all_model_classes: a , a , a = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @tooslow def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' a = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) a = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=__magic_name__ , truncation=__magic_name__ ) a = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) a = False a = model.config.eos_token_id a = jax.jit(model.generate ) a = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences a = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) a = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(__magic_name__ , __magic_name__ ) @is_pt_flax_cross_test def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs a = self._prepare_for_class(__magic_name__ , __magic_name__ ) a = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class a = model_class.__name__[4:] # Skip the "Flax" at the beginning a = getattr(__magic_name__ , __magic_name__ ) a , a = pt_inputs["""input_ids"""].shape a = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__magic_name__ ): a = 0 a = 1 a = 0 a = 1 a = pt_model_class(__magic_name__ ).eval() a = model_class(__magic_name__ , dtype=jnp.floataa ) a = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __magic_name__ ) a = fx_state with torch.no_grad(): a = pt_model(**__magic_name__ ).to_tuple() a = fx_model(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(__magic_name__ , __magic_name__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__magic_name__ ) a = model_class.from_pretrained(__magic_name__ , from_pt=__magic_name__ ) a = fx_model_loaded(**__magic_name__ ).to_tuple() self.assertEqual( len(__magic_name__ ) , len(__magic_name__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(__magic_name__ , __magic_name__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs a = self._prepare_for_class(__magic_name__ , __magic_name__ ) a = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class a = model_class.__name__[4:] # Skip the "Flax" at the beginning a = getattr(__magic_name__ , __magic_name__ ) a = pt_model_class(__magic_name__ ).eval() a = model_class(__magic_name__ , dtype=jnp.floataa ) a = load_flax_weights_in_pytorch_model(__magic_name__ , fx_model.params ) a , a = pt_inputs["""input_ids"""].shape a = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__magic_name__ ): a = 0 a = 1 a = 0 a = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): a = pt_model(**__magic_name__ ).to_tuple() a = fx_model(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(__magic_name__ , __magic_name__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__magic_name__ ) a = pt_model_class.from_pretrained(__magic_name__ , from_flax=__magic_name__ ) with torch.no_grad(): a = pt_model_loaded(**__magic_name__ ).to_tuple() self.assertEqual( len(__magic_name__ ) , len(__magic_name__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(__magic_name__ , __magic_name__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: a = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) a = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ )
369
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = (IPNDMScheduler,) UpperCamelCase__ = (('''num_inference_steps''', 50),) def lowerCamelCase__ ( self :Any , **__magic_name__ :Optional[Any] ): '''simple docstring''' a = {"""num_train_timesteps""": 1000} config.update(**__magic_name__ ) return config def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple=0 , **__magic_name__ :Optional[int] ): '''simple docstring''' a = dict(self.forward_default_kwargs ) a = kwargs.pop("""num_inference_steps""" , __magic_name__ ) a = self.dummy_sample a = 0.1 * sample a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a = self.get_scheduler_config(**__magic_name__ ) a = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residuals a = dummy_past_residuals[:] if time_step is None: a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__magic_name__ ) a = scheduler_class.from_pretrained(__magic_name__ ) new_scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residuals a = dummy_past_residuals[:] a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' pass def lowerCamelCase__ ( self :List[Any] , __magic_name__ :List[Any]=0 , **__magic_name__ :Any ): '''simple docstring''' a = dict(self.forward_default_kwargs ) a = kwargs.pop("""num_inference_steps""" , __magic_name__ ) a = self.dummy_sample a = 0.1 * sample a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a = self.get_scheduler_config() a = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residuals (must be after setting timesteps) a = dummy_past_residuals[:] if time_step is None: a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__magic_name__ ) a = scheduler_class.from_pretrained(__magic_name__ ) # copy over dummy past residuals new_scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residual (must be after setting timesteps) a = dummy_past_residuals[:] a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self :Optional[Any] , **__magic_name__ :Optional[int] ): '''simple docstring''' a = self.scheduler_classes[0] a = self.get_scheduler_config(**__magic_name__ ) a = scheduler_class(**__magic_name__ ) a = 10 a = self.dummy_model() a = self.dummy_sample_deter scheduler.set_timesteps(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): a = model(__magic_name__ , __magic_name__ ) a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): a = model(__magic_name__ , __magic_name__ ) a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample return sample def lowerCamelCase__ ( self :str ): '''simple docstring''' a = dict(self.forward_default_kwargs ) a = kwargs.pop("""num_inference_steps""" , __magic_name__ ) for scheduler_class in self.scheduler_classes: a = self.get_scheduler_config() a = scheduler_class(**__magic_name__ ) a = self.dummy_sample a = 0.1 * sample if num_inference_steps is not None and hasattr(__magic_name__ , """set_timesteps""" ): scheduler.set_timesteps(__magic_name__ ) elif num_inference_steps is not None and not hasattr(__magic_name__ , """set_timesteps""" ): a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a = dummy_past_residuals[:] a = scheduler.timesteps[5] a = scheduler.timesteps[6] a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__magic_name__ , time_step=__magic_name__ ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__magic_name__ , time_step=__magic_name__ ) def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' a = self.full_loop() a = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_mean.item() - 254_0529 ) < 10
347
0
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __UpperCamelCase : int = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): def __init__( self :Optional[Any] , *__magic_name__ :Dict , **__magic_name__ :Tuple ): '''simple docstring''' warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
370
__UpperCamelCase : Dict = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def __A ( ) -> None: a = input("""Enter message: """ ) a = input("""Enter key [alphanumeric]: """ ) a = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): a = """encrypt""" a = encrypt_message(__lowerCamelCase , __lowerCamelCase ) elif mode.lower().startswith("""d""" ): a = """decrypt""" a = decrypt_message(__lowerCamelCase , __lowerCamelCase ) print(f'\n{mode.title()}ed message:' ) print(__lowerCamelCase ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> str: return translate_message(__lowerCamelCase , __lowerCamelCase , """encrypt""" ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> str: return translate_message(__lowerCamelCase , __lowerCamelCase , """decrypt""" ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: a = [] a = 0 a = key.upper() for symbol in message: a = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__lowerCamelCase ): a = 0 else: translated.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) if __name__ == "__main__": main()
347
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self :Dict , __magic_name__ :int , __magic_name__ :Optional[int]=7 , __magic_name__ :Optional[Any]=3 , __magic_name__ :Union[str, Any]=30 , __magic_name__ :List[Any]=400 , __magic_name__ :Optional[int]=True , __magic_name__ :Dict=None , __magic_name__ :List[Any]=True , __magic_name__ :int=[0.5, 0.5, 0.5] , __magic_name__ :Optional[Any]=[0.5, 0.5, 0.5] , __magic_name__ :Optional[Any]=True , __magic_name__ :str=1 / 255 , __magic_name__ :Union[str, Any]=True , ): '''simple docstring''' a = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} a = parent a = batch_size a = num_channels a = min_resolution a = max_resolution a = do_resize a = size a = do_normalize a = image_mean a = image_std a = do_rescale a = rescale_factor a = do_pad def lowerCamelCase__ ( self :Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase__ ( self :str , __magic_name__ :str , __magic_name__ :Tuple=False ): '''simple docstring''' if not batched: a = image_inputs[0] if isinstance(__magic_name__ , Image.Image ): a , a = image.size else: a , a = image.shape[1], image.shape[2] if w < h: a = int(self.size["""shortest_edge"""] * h / w ) a = self.size["""shortest_edge"""] elif w > h: a = self.size["""shortest_edge"""] a = int(self.size["""shortest_edge"""] * w / h ) else: a = self.size["""shortest_edge"""] a = self.size["""shortest_edge"""] else: a = [] for image in image_inputs: a , a = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a = max(__magic_name__ , key=lambda __magic_name__ : item[0] )[0] a = max(__magic_name__ , key=lambda __magic_name__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = YolosImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = YolosImageProcessingTester(self ) @property def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , """image_mean""" ) ) self.assertTrue(hasattr(__magic_name__ , """image_std""" ) ) self.assertTrue(hasattr(__magic_name__ , """do_normalize""" ) ) self.assertTrue(hasattr(__magic_name__ , """do_resize""" ) ) self.assertTrue(hasattr(__magic_name__ , """size""" ) ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __magic_name__ ) a = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__magic_name__ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , __magic_name__ ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' pass def lowerCamelCase__ ( self :str ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values a , a = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a , a = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) a = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values a , a = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values a , a = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self :int ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values a , a = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values a , a = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) a = self.image_processing_class(do_resize=__magic_name__ , do_normalize=__magic_name__ , do_rescale=__magic_name__ ) # create random PyTorch tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors a = image_processing_a.pad(__magic_name__ , return_tensors="""pt""" ) a = image_processing_a(__magic_name__ , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: a = json.loads(f.read() ) a = {"""image_id""": 3_9769, """annotations""": target} # encode them a = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) a = image_processing(images=__magic_name__ , annotations=__magic_name__ , return_tensors="""pt""" ) # verify pixel values a = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __magic_name__ ) a = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __magic_name__ , atol=1E-4 ) ) # verify area a = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __magic_name__ ) ) # verify boxes a = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __magic_name__ ) a = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __magic_name__ , atol=1E-3 ) ) # verify image_id a = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __magic_name__ ) ) # verify is_crowd a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __magic_name__ ) ) # verify class_labels a = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __magic_name__ ) ) # verify orig_size a = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __magic_name__ ) ) # verify size a = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __magic_name__ ) ) @slow def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: a = json.loads(f.read() ) a = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} a = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them a = YolosImageProcessor(format="""coco_panoptic""" ) a = image_processing(images=__magic_name__ , annotations=__magic_name__ , masks_path=__magic_name__ , return_tensors="""pt""" ) # verify pixel values a = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __magic_name__ ) a = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __magic_name__ , atol=1E-4 ) ) # verify area a = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __magic_name__ ) ) # verify boxes a = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __magic_name__ ) a = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __magic_name__ , atol=1E-3 ) ) # verify image_id a = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __magic_name__ ) ) # verify is_crowd a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __magic_name__ ) ) # verify class_labels a = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __magic_name__ ) ) # verify masks a = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __magic_name__ ) # verify orig_size a = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __magic_name__ ) ) # verify size a = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __magic_name__ ) )
371
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowerCAmelCase ( unittest.TestCase ): def __init__( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Tuple=13 , __magic_name__ :List[Any]=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[str]=True , __magic_name__ :str=99 , __magic_name__ :Optional[Any]=32 , __magic_name__ :Union[str, Any]=5 , __magic_name__ :Any=4 , __magic_name__ :int=37 , __magic_name__ :Tuple="gelu" , __magic_name__ :List[str]=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :Tuple=512 , __magic_name__ :Dict=16 , __magic_name__ :Optional[int]=2 , __magic_name__ :Optional[int]=0.02 , __magic_name__ :Optional[Any]=4 , ): '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_attention_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_choices def lowerCamelCase__ ( self :int ): '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_attention_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = True a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = True UpperCamelCase__ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = FlaxRobertaModelTester(self ) @slow def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: a = model_class_name.from_pretrained("""roberta-base""" , from_pt=__magic_name__ ) a = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ )
347
0
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] )
348
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowercase_ ( self , lowerCamelCase__=0 ) -> int: '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) ) __lowerCamelCase = np.random.RandomState(lowerCamelCase__ ) __lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) # warmup pass to apply optimizations __lowerCamelCase = pipe(**self.get_dummy_inputs() ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ) -> int: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = ort.SessionOptions() __lowerCamelCase = False return options def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) # using the PNDM scheduler by default __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) __lowerCamelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
348
1
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def lowerCamelCase_ ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : list ) -> float: """simple docstring""" __lowerCamelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(UpperCamelCase__ )] ) __lowerCamelCase = np.array(UpperCamelCase__ ) __lowerCamelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , UpperCamelCase__ ) ) , x.transpose() ) , UpperCamelCase__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def lowerCamelCase_ ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : list ) -> float: """simple docstring""" __lowerCamelCase = (1, 2, 1) __lowerCamelCase = (1, 1, 0, 7) __lowerCamelCase = SARIMAX( UpperCamelCase__ , exog=UpperCamelCase__ , order=UpperCamelCase__ , seasonal_order=UpperCamelCase__ ) __lowerCamelCase = model.fit(disp=UpperCamelCase__ , maxiter=600 , method='nm' ) __lowerCamelCase = model_fit.predict(1 , len(UpperCamelCase__ ) , exog=[test_match] ) return result[0] def lowerCamelCase_ ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : list ) -> float: """simple docstring""" __lowerCamelCase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = regressor.predict(UpperCamelCase__ ) return y_pred[0] def lowerCamelCase_ ( UpperCamelCase__ : list ) -> float: """simple docstring""" train_user.sort() __lowerCamelCase = np.percentile(UpperCamelCase__ , 25 ) __lowerCamelCase = np.percentile(UpperCamelCase__ , 75 ) __lowerCamelCase = qa - qa __lowerCamelCase = qa - (iqr * 0.1) return low_lim def lowerCamelCase_ ( UpperCamelCase__ : list , UpperCamelCase__ : float ) -> bool: """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = 0 for i in list_vote: if i > actual_result: __lowerCamelCase = not_safe + 1 else: if abs(abs(UpperCamelCase__ ) - abs(UpperCamelCase__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __A = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] __A = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) __A = Normalizer().fit_transform(data_input_df.values) # split data __A = normalize_df[:, 2].tolist() __A = normalize_df[:, 0].tolist() __A = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __A = normalize_df[:, [1, 2]].tolist() __A = x[: len(x) - 1] __A = x[len(x) - 1 :] # for linear regression & sarimax __A = total_date[: len(total_date) - 1] __A = total_user[: len(total_user) - 1] __A = total_match[: len(total_match) - 1] __A = total_date[len(total_date) - 1 :] __A = total_user[len(total_user) - 1 :] __A = total_match[len(total_match) - 1 :] # voting system with forecasting __A = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __A = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
348
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __A = logging.get_logger(__name__) __A = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''whisper''' snake_case_ = ['''past_key_values'''] snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCamelCase__=51_865 , lowerCamelCase__=80 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=1_536 , lowerCamelCase__=1_536 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=50_257 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=256 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=1_500 , lowerCamelCase__=448 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=None , lowerCamelCase__=[220, 50_256] , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=False , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=7 , **lowerCamelCase__ , ) -> str: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = num_mel_bins __lowerCamelCase = d_model __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase = max_source_positions __lowerCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size __lowerCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks __lowerCamelCase = median_filter_width super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , suppress_tokens=lowerCamelCase__ , begin_suppress_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowerCamelCase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: __lowerCamelCase = {0: 'batch'} else: __lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' ) return common_inputs def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 22_050 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 220 , ) -> Mapping[str, Any]: '''simple docstring''' __lowerCamelCase = OrderedDict() __lowerCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase__ , framework=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , time_duration=lowerCamelCase__ , frequency=lowerCamelCase__ , ) __lowerCamelCase = encoder_inputs['input_features'].shape[2] __lowerCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __lowerCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = encoder_inputs.pop('input_features' ) __lowerCamelCase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: __lowerCamelCase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def lowercase_ ( self ) -> float: '''simple docstring''' return 1e-3
348
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = XGLMTokenizer snake_case_ = XGLMTokenizerFast snake_case_ = True snake_case_ = True def lowercase_ ( self ) -> Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = XGLMTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = '<pad>' __lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(len(lowerCamelCase__ ) , 1_008 ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = XGLMTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) __lowerCamelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCamelCase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __lowerCamelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' return XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) def lowercase_ ( self ) -> int: '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase__ , f.name ) __lowerCamelCase = XGLMTokenizer(f.name , keep_accents=lowerCamelCase__ ) __lowerCamelCase = pickle.dumps(lowerCamelCase__ ) pickle.loads(lowerCamelCase__ ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' if not self.test_rust_tokenizer: return __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = 'I was born in 92000, and this is falsé.' __lowerCamelCase = tokenizer.tokenize(lowerCamelCase__ ) __lowerCamelCase = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) __lowerCamelCase = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = tokenizer.encode(lowerCamelCase__ ) __lowerCamelCase = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = 'Hello World!' __lowerCamelCase = [2, 31_227, 4_447, 35] self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off __lowerCamelCase = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' # fmt: off __lowerCamelCase = { 'input_ids': [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='facebook/xglm-564M' , padding=lowerCamelCase__ , )
348
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = rotary_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = None __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = FlaxGPTJModelTester(self ) def lowercase_ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @tooslow def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __lowerCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ ) __lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = False __lowerCamelCase = model.config.eos_token_id __lowerCamelCase = jax.jit(model.generate ) __lowerCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __lowerCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ ) __lowerCamelCase = fx_state with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = model_class.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __lowerCamelCase = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = pt_model_class.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ ) with torch.no_grad(): __lowerCamelCase = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowercase_ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
348
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''nllb-moe''' snake_case_ = ['''past_key_values'''] snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCamelCase__=128_112 , lowerCamelCase__=1_024 , lowerCamelCase__=12 , lowerCamelCase__=4_096 , lowerCamelCase__=16 , lowerCamelCase__=12 , lowerCamelCase__=4_096 , lowerCamelCase__=16 , lowerCamelCase__=0.05 , lowerCamelCase__=0.05 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="relu" , lowerCamelCase__=1_024 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__="float32" , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=64 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=0.0_01 , lowerCamelCase__=0.0_01 , lowerCamelCase__="all" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=1.0 , lowerCamelCase__=0.2 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , lowerCamelCase__=False , **lowerCamelCase__ , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = d_model __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase = router_z_loss_coef __lowerCamelCase = router_aux_loss_coef __lowerCamelCase = decoder_sparse_step __lowerCamelCase = encoder_sparse_step __lowerCamelCase = num_experts __lowerCamelCase = expert_capacity __lowerCamelCase = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) __lowerCamelCase = router_dtype __lowerCamelCase = router_ignore_padding_tokens __lowerCamelCase = batch_prioritized_routing __lowerCamelCase = second_expert_policy __lowerCamelCase = normalize_router_prob_before_dropping __lowerCamelCase = moe_eval_capacity_token_fraction __lowerCamelCase = moe_token_dropout __lowerCamelCase = output_router_logits super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
348
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __A = False class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self ) -> int: '''simple docstring''' return 12 @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return 12 @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowerCamelCase__ ) @property def lowercase_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = 12 __lowerCamelCase = 12 __lowerCamelCase = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } __lowerCamelCase = TransformeraDModel(**lowerCamelCase__ ) return model def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCamelCase__ ) __lowerCamelCase = VQDiffusionPipeline( vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'teddy bear playing in the pool' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings( learnable=lowerCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __lowerCamelCase = VQDiffusionPipeline( vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'teddy bear playing in the pool' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) __lowerCamelCase = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) __lowerCamelCase = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
348
1
import math def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __A = "Enter the base and the power separated by a comma: " __A , __A = map(int, input(prompt).split(",")) __A , __A = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. __A = res(xa, ya) __A = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
348
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = is_training __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = num_queries __lowerCamelCase = num_channels __lowerCamelCase = min_size __lowerCamelCase = max_size __lowerCamelCase = num_labels __lowerCamelCase = hidden_dim __lowerCamelCase = hidden_dim def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) __lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) __lowerCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() __lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() __lowerCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowerCamelCase = self.num_queries __lowerCamelCase = self.num_labels __lowerCamelCase = [1, 1, 1, 1] __lowerCamelCase = self.num_channels __lowerCamelCase = 64 __lowerCamelCase = 128 __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim return config def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = output.encoder_hidden_states __lowerCamelCase = output.pixel_decoder_hidden_states __lowerCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple: '''simple docstring''' with torch.no_grad(): __lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) __lowerCamelCase = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = MaskaFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowercase_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = (self.model_tester.min_size,) * 2 __lowerCamelCase = { 'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ), 'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } __lowerCamelCase = self.model_tester.get_config() __lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) __lowerCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A = 1e-4 def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase_ ( self ) -> Dict: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # masks_queries_logits __lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowerCamelCase = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] __lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits __lowerCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) __lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ ) __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']] __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']] with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
348
1
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __lowerCamelCase = tau * frequency / samplerate __lowerCamelCase = sin(UpperCamelCase__ ) __lowerCamelCase = cos(UpperCamelCase__ ) __lowerCamelCase = _sin / (2 * q_factor) __lowerCamelCase = (1 - _cos) / 2 __lowerCamelCase = 1 - _cos __lowerCamelCase = 1 + alpha __lowerCamelCase = -2 * _cos __lowerCamelCase = 1 - alpha __lowerCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __lowerCamelCase = tau * frequency / samplerate __lowerCamelCase = sin(UpperCamelCase__ ) __lowerCamelCase = cos(UpperCamelCase__ ) __lowerCamelCase = _sin / (2 * q_factor) __lowerCamelCase = (1 + _cos) / 2 __lowerCamelCase = -1 - _cos __lowerCamelCase = 1 + alpha __lowerCamelCase = -2 * _cos __lowerCamelCase = 1 - alpha __lowerCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __lowerCamelCase = tau * frequency / samplerate __lowerCamelCase = sin(UpperCamelCase__ ) __lowerCamelCase = cos(UpperCamelCase__ ) __lowerCamelCase = _sin / (2 * q_factor) __lowerCamelCase = _sin / 2 __lowerCamelCase = 0 __lowerCamelCase = -ba __lowerCamelCase = 1 + alpha __lowerCamelCase = -2 * _cos __lowerCamelCase = 1 - alpha __lowerCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __lowerCamelCase = tau * frequency / samplerate __lowerCamelCase = sin(UpperCamelCase__ ) __lowerCamelCase = cos(UpperCamelCase__ ) __lowerCamelCase = _sin / (2 * q_factor) __lowerCamelCase = 1 - alpha __lowerCamelCase = -2 * _cos __lowerCamelCase = 1 + alpha __lowerCamelCase = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : float = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" __lowerCamelCase = tau * frequency / samplerate __lowerCamelCase = sin(UpperCamelCase__ ) __lowerCamelCase = cos(UpperCamelCase__ ) __lowerCamelCase = _sin / (2 * q_factor) __lowerCamelCase = 10 ** (gain_db / 40) __lowerCamelCase = 1 + alpha * big_a __lowerCamelCase = -2 * _cos __lowerCamelCase = 1 - alpha * big_a __lowerCamelCase = 1 + alpha / big_a __lowerCamelCase = -2 * _cos __lowerCamelCase = 1 - alpha / big_a __lowerCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : float = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" __lowerCamelCase = tau * frequency / samplerate __lowerCamelCase = sin(UpperCamelCase__ ) __lowerCamelCase = cos(UpperCamelCase__ ) __lowerCamelCase = _sin / (2 * q_factor) __lowerCamelCase = 10 ** (gain_db / 40) __lowerCamelCase = (big_a + 1) - (big_a - 1) * _cos __lowerCamelCase = (big_a + 1) + (big_a - 1) * _cos __lowerCamelCase = (big_a - 1) - (big_a + 1) * _cos __lowerCamelCase = (big_a - 1) + (big_a + 1) * _cos __lowerCamelCase = 2 * sqrt(UpperCamelCase__ ) * alpha __lowerCamelCase = big_a * (pmc + aaa) __lowerCamelCase = 2 * big_a * mpc __lowerCamelCase = big_a * (pmc - aaa) __lowerCamelCase = ppmc + aaa __lowerCamelCase = -2 * pmpc __lowerCamelCase = ppmc - aaa __lowerCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : float = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" __lowerCamelCase = tau * frequency / samplerate __lowerCamelCase = sin(UpperCamelCase__ ) __lowerCamelCase = cos(UpperCamelCase__ ) __lowerCamelCase = _sin / (2 * q_factor) __lowerCamelCase = 10 ** (gain_db / 40) __lowerCamelCase = (big_a + 1) - (big_a - 1) * _cos __lowerCamelCase = (big_a + 1) + (big_a - 1) * _cos __lowerCamelCase = (big_a - 1) - (big_a + 1) * _cos __lowerCamelCase = (big_a - 1) + (big_a + 1) * _cos __lowerCamelCase = 2 * sqrt(UpperCamelCase__ ) * alpha __lowerCamelCase = big_a * (ppmc + aaa) __lowerCamelCase = -2 * big_a * pmpc __lowerCamelCase = big_a * (ppmc - aaa) __lowerCamelCase = pmc + aaa __lowerCamelCase = 2 * mpc __lowerCamelCase = pmc - aaa __lowerCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
348
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''mask2former''' snake_case_ = ['''swin'''] snake_case_ = {'''hidden_size''': '''hidden_dim'''} def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 1_024 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 6 , lowerCamelCase__ = 10 , lowerCamelCase__ = 8 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 2_048 , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 4 , lowerCamelCase__ = 255 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 12_544 , lowerCamelCase__ = 3.0 , lowerCamelCase__ = 0.75 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = True , lowerCamelCase__ = [4, 8, 16, 32] , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Tuple: '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowerCamelCase = CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = backbone_config.pop('model_type' ) __lowerCamelCase = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase = config_class.from_dict(lowerCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) __lowerCamelCase = backbone_config __lowerCamelCase = feature_size __lowerCamelCase = mask_feature_size __lowerCamelCase = hidden_dim __lowerCamelCase = encoder_feedforward_dim __lowerCamelCase = activation_function __lowerCamelCase = encoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = dropout __lowerCamelCase = dim_feedforward __lowerCamelCase = pre_norm __lowerCamelCase = enforce_input_projection __lowerCamelCase = common_stride __lowerCamelCase = ignore_value __lowerCamelCase = num_queries __lowerCamelCase = no_object_weight __lowerCamelCase = class_weight __lowerCamelCase = mask_weight __lowerCamelCase = dice_weight __lowerCamelCase = train_num_points __lowerCamelCase = oversample_ratio __lowerCamelCase = importance_sample_ratio __lowerCamelCase = init_std __lowerCamelCase = init_xavier_std __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = feature_strides __lowerCamelCase = output_auxiliary_logits __lowerCamelCase = decoder_layers super().__init__(**lowerCamelCase__ ) @classmethod def lowercase_ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' return cls( backbone_config=lowerCamelCase__ , **lowerCamelCase__ , ) def lowercase_ ( self ) -> Dict[str, any]: '''simple docstring''' __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.backbone_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
348
1
import os import jsonlines import numpy as np from tqdm import tqdm __A = 20_48 __A = 40_96 __A = 42 __A = os.environ.pop("PROCESS_TRAIN", "false") __A = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCamelCase_ ( UpperCamelCase__ : str ) -> str: """simple docstring""" def choose_first(UpperCamelCase__ : int , UpperCamelCase__ : List[Any]=False ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) if len(UpperCamelCase__ ) == 1: __lowerCamelCase = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __lowerCamelCase = {k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a __lowerCamelCase = {'id': example['id']} __lowerCamelCase = example['annotations'] __lowerCamelCase = annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: __lowerCamelCase = ['yes'] if 1 in yes_no_answer else ['no'] __lowerCamelCase = __lowerCamelCase = [] __lowerCamelCase = __lowerCamelCase = [] __lowerCamelCase = ['<cls>'] else: __lowerCamelCase = ['short'] __lowerCamelCase = choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available __lowerCamelCase = ['long'] __lowerCamelCase = choose_first(annotation['long_answer'] , is_long_answer=UpperCamelCase__ ) __lowerCamelCase = [] answer.update(UpperCamelCase__ ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: __lowerCamelCase = True else: __lowerCamelCase = False __lowerCamelCase = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , UpperCamelCase__ ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict=False ) -> int: """simple docstring""" __lowerCamelCase = _get_single_answer(UpperCamelCase__ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __lowerCamelCase = example['document']['tokens'] __lowerCamelCase = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(UpperCamelCase__ ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __lowerCamelCase = ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __lowerCamelCase = example['document']['tokens'] __lowerCamelCase = answer['start_token'] __lowerCamelCase = answer['end_token'] __lowerCamelCase = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __lowerCamelCase = ' '.join(context[start_token:end_token] ) # checking above code if assertion: __lowerCamelCase = doc['is_html'][answer['start_token'] : answer['end_token']] __lowerCamelCase = doc['token'][answer['start_token'] : answer['end_token']] __lowerCamelCase = ' '.join([old[i] for i in range(len(UpperCamelCase__ ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , UpperCamelCase__ , end='\n' ) print('Old:' , UpperCamelCase__ , end='\n\n' ) return { "context": " ".join(UpperCamelCase__ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any=2048 , UpperCamelCase__ : List[Any]=4096 , UpperCamelCase__ : List[str]=True ) -> Dict: """simple docstring""" __lowerCamelCase = get_context_and_ans(UpperCamelCase__ , assertion=UpperCamelCase__ ) __lowerCamelCase = out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __lowerCamelCase = tokenizer(example['question']['text'] , out['context'] ).input_ids __lowerCamelCase = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = input_ids[:q_len] __lowerCamelCase = range(UpperCamelCase__ , len(UpperCamelCase__ ) , max_length - doc_stride ) for i in doc_start_indices: __lowerCamelCase = i + max_length - q_len __lowerCamelCase = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(UpperCamelCase__ ), "end_token": [-100] * len(UpperCamelCase__ ), "category": category, }, } __lowerCamelCase = out['context'].split() __lowerCamelCase = splitted_context[answer['end_token']] __lowerCamelCase = len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=UpperCamelCase__ , ).input_ids ) __lowerCamelCase = len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=UpperCamelCase__ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __lowerCamelCase = len(tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __lowerCamelCase = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive __lowerCamelCase = answer['start_token'] __lowerCamelCase = answer['end_token'] if assertion: __lowerCamelCase = tokenizer.decode(UpperCamelCase__ ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , UpperCamelCase__ , end='\n\n' ) if len(UpperCamelCase__ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __lowerCamelCase = input_ids[:q_len] __lowerCamelCase = range(UpperCamelCase__ , len(UpperCamelCase__ ) , max_length - doc_stride ) __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] # null, yes, no, long, short for i in doc_start_indices: __lowerCamelCase = i + max_length - q_len __lowerCamelCase = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __lowerCamelCase = start_token - i + q_len __lowerCamelCase = end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: __lowerCamelCase = -100 __lowerCamelCase = -100 answers_category.append('null' ) __lowerCamelCase = inputs[-1][start_token : end_token + 1] answers_start_token.append(UpperCamelCase__ ) answers_end_token.append(UpperCamelCase__ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(UpperCamelCase__ ) ) print('Old:' , tokenizer.decode(UpperCamelCase__ ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : str=2048 , UpperCamelCase__ : int=4096 , UpperCamelCase__ : str=False ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = get_strided_contexts_and_ans( UpperCamelCase__ , UpperCamelCase__ , doc_stride=UpperCamelCase__ , max_length=UpperCamelCase__ , assertion=UpperCamelCase__ , ) return example def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ) -> List[Any]: """simple docstring""" with jsonlines.open(UpperCamelCase__ , 'a' ) as writer: for example in tqdm(UpperCamelCase__ , total=len(UpperCamelCase__ ) , desc='Saving samples ... ' ): __lowerCamelCase = example['labels'] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __A = load_dataset("natural_questions") __A = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") __A = data["train" if PROCESS_TRAIN == "true" else "validation"] __A = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } __A = data.map(prepare_inputs, fn_kwargs=fn_kwargs) __A = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) __A = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
348
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple: '''simple docstring''' super().__init__() __lowerCamelCase = num_attention_heads __lowerCamelCase = attention_head_dim __lowerCamelCase = num_attention_heads * attention_head_dim __lowerCamelCase = additional_embeddings __lowerCamelCase = time_embed_dim or inner_dim __lowerCamelCase = embedding_proj_dim or embedding_dim __lowerCamelCase = clip_embed_dim or embedding_dim __lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 ) __lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if embedding_proj_norm_type is None: __lowerCamelCase = None elif embedding_proj_norm_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if encoder_hid_proj_type is None: __lowerCamelCase = None elif encoder_hid_proj_type == "linear": __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) ) if added_emb_type == "prd": __lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) ) elif added_emb_type is None: __lowerCamelCase = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __lowerCamelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , ) for d in range(lowerCamelCase__ ) ] ) if norm_in_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) elif norm_in_type is None: __lowerCamelCase = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) __lowerCamelCase = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase_ ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return processors def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): module.set_processor(lowerCamelCase__ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int: '''simple docstring''' __lowerCamelCase = hidden_states.shape[0] __lowerCamelCase = timestep if not torch.is_tensor(lowerCamelCase__ ): __lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: __lowerCamelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase = self.time_proj(lowerCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __lowerCamelCase = timesteps_projected.to(dtype=self.dtype ) __lowerCamelCase = self.time_embedding(lowerCamelCase__ ) if self.embedding_proj_norm is not None: __lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ ) __lowerCamelCase = self.embedding_proj(lowerCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) __lowerCamelCase = self.proj_in(lowerCamelCase__ ) __lowerCamelCase = self.positional_embedding.to(hidden_states.dtype ) __lowerCamelCase = [] __lowerCamelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __lowerCamelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __lowerCamelCase = hidden_states[:, None, :] __lowerCamelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 ) additional_embeds.append(lowerCamelCase__ ) __lowerCamelCase = torch.cat( lowerCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __lowerCamelCase = F.pad( lowerCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __lowerCamelCase = hidden_states + positional_embeddings if attention_mask is not None: __lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 __lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) __lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __lowerCamelCase = self.norm_in(lowerCamelCase__ ) for block in self.transformer_blocks: __lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = self.norm_out(lowerCamelCase__ ) if self.prd_embedding is not None: __lowerCamelCase = hidden_states[:, -1] else: __lowerCamelCase = hidden_states[:, additional_embeddings_len:] __lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
348
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "tanreinama/GPTSAN-2.8B-spout_is_uniform": ( "https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json" ), } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''gptsan-japanese''' snake_case_ = [ '''past_key_values''', ] snake_case_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowerCamelCase__=36_000 , lowerCamelCase__=1_280 , lowerCamelCase__=1_024 , lowerCamelCase__=8_192 , lowerCamelCase__=4_096 , lowerCamelCase__=128 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=16 , lowerCamelCase__=16 , lowerCamelCase__=128 , lowerCamelCase__=0.0 , lowerCamelCase__=1e-5 , lowerCamelCase__=False , lowerCamelCase__=0.0 , lowerCamelCase__="float32" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=0.0_02 , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=35_998 , lowerCamelCase__=35_995 , lowerCamelCase__=35_999 , **lowerCamelCase__ , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = d_model __lowerCamelCase = d_ff __lowerCamelCase = d_ext __lowerCamelCase = d_spout __lowerCamelCase = num_switch_layers __lowerCamelCase = num_ext_layers __lowerCamelCase = num_switch_layers + num_ext_layers __lowerCamelCase = num_heads __lowerCamelCase = num_experts __lowerCamelCase = expert_capacity __lowerCamelCase = dropout_rate __lowerCamelCase = layer_norm_epsilon __lowerCamelCase = router_bias __lowerCamelCase = router_jitter_noise __lowerCamelCase = router_dtype __lowerCamelCase = router_ignore_padding_tokens __lowerCamelCase = output_hidden_states __lowerCamelCase = output_attentions __lowerCamelCase = initializer_factor __lowerCamelCase = output_router_logits __lowerCamelCase = use_cache super().__init__( separator_token_id=lowerCamelCase__ , pad_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
348
import sys from collections import defaultdict class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [] def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.node_position[vertex] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = pos def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase = 2 * start + 1 else: __lowerCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase = temp, tempa __lowerCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCamelCase__ ) self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = position[index] while index != 0: __lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase = heap[parent] __lowerCamelCase = position[parent] self.set_position(position[parent] , lowerCamelCase__ ) else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , lowerCamelCase__ ) break __lowerCamelCase = parent else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , 0 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1 for i in range(lowerCamelCase__ , -1 , -1 ): self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = positions[0] __lowerCamelCase = sys.maxsize self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ ) return temp def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = Heap() __lowerCamelCase = [0] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase = [] for vertex in range(len(UpperCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase__ ) heap.node_position.append(UpperCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = 1 __lowerCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase = 0 __lowerCamelCase = distance heap.heapify(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(1 , len(UpperCamelCase__ ) ): __lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase__ )] ): __lowerCamelCase = distance heap.bottom_to_top( UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
348
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = is_training __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = num_queries __lowerCamelCase = num_channels __lowerCamelCase = min_size __lowerCamelCase = max_size __lowerCamelCase = num_labels __lowerCamelCase = hidden_dim __lowerCamelCase = hidden_dim def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) __lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) __lowerCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() __lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() __lowerCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowerCamelCase = self.num_queries __lowerCamelCase = self.num_labels __lowerCamelCase = [1, 1, 1, 1] __lowerCamelCase = self.num_channels __lowerCamelCase = 64 __lowerCamelCase = 128 __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim return config def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = output.encoder_hidden_states __lowerCamelCase = output.pixel_decoder_hidden_states __lowerCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple: '''simple docstring''' with torch.no_grad(): __lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) __lowerCamelCase = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = MaskaFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowercase_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = (self.model_tester.min_size,) * 2 __lowerCamelCase = { 'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ), 'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } __lowerCamelCase = self.model_tester.get_config() __lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) __lowerCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A = 1e-4 def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase_ ( self ) -> Dict: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # masks_queries_logits __lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowerCamelCase = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] __lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits __lowerCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) __lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ ) __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']] __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']] with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
348
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) snake_case_ = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) snake_case_ = "question" snake_case_ = "context" snake_case_ = "answers" @property def lowercase_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
348
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 snake_case_ = None def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any=0.9_99 , UpperCamelCase__ : Dict="cosine" , ) -> Any: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ : str ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ : int ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __lowerCamelCase = [] for i in range(UpperCamelCase__ ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase__ ) / alpha_bar_fn(UpperCamelCase__ ) , UpperCamelCase__ ) ) return torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase__ = 1_000 , lowerCamelCase__ = "fixed_small_log" , lowerCamelCase__ = True , lowerCamelCase__ = 1.0 , lowerCamelCase__ = "epsilon" , lowerCamelCase__ = "squaredcos_cap_v2" , ) -> Union[str, Any]: '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' ) __lowerCamelCase = betas_for_alpha_bar(lowerCamelCase__ ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) __lowerCamelCase = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __lowerCamelCase = 1.0 # setable values __lowerCamelCase = None __lowerCamelCase = torch.from_numpy(np.arange(0 , lowerCamelCase__ )[::-1].copy() ) __lowerCamelCase = variance_type def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' return sample def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = num_inference_steps __lowerCamelCase = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __lowerCamelCase = (np.arange(0 , lowerCamelCase__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __lowerCamelCase = torch.from_numpy(lowerCamelCase__ ).to(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None ) -> Union[str, Any]: '''simple docstring''' if prev_timestep is None: __lowerCamelCase = t - 1 __lowerCamelCase = self.alphas_cumprod[t] __lowerCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __lowerCamelCase = 1 - alpha_prod_t __lowerCamelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __lowerCamelCase = self.betas[t] else: __lowerCamelCase = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __lowerCamelCase = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __lowerCamelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __lowerCamelCase = torch.log(torch.clamp(lowerCamelCase__ , min=1e-20 ) ) __lowerCamelCase = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __lowerCamelCase = variance.log() __lowerCamelCase = beta.log() __lowerCamelCase = (predicted_variance + 1) / 2 __lowerCamelCase = frac * max_log + (1 - frac) * min_log return variance def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__=None , lowerCamelCase__ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: '''simple docstring''' __lowerCamelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __lowerCamelCase , __lowerCamelCase = torch.split(lowerCamelCase__ , sample.shape[1] , dim=1 ) else: __lowerCamelCase = None # 1. compute alphas, betas if prev_timestep is None: __lowerCamelCase = t - 1 __lowerCamelCase = self.alphas_cumprod[t] __lowerCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __lowerCamelCase = 1 - alpha_prod_t __lowerCamelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __lowerCamelCase = self.betas[t] __lowerCamelCase = self.alphas[t] else: __lowerCamelCase = 1 - alpha_prod_t / alpha_prod_t_prev __lowerCamelCase = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __lowerCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __lowerCamelCase = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" ' for the UnCLIPScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __lowerCamelCase = torch.clamp( lowerCamelCase__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __lowerCamelCase = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __lowerCamelCase = 0 if t > 0: __lowerCamelCase = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowerCamelCase__ , device=model_output.device ) __lowerCamelCase = self._get_variance( lowerCamelCase__ , predicted_variance=lowerCamelCase__ , prev_timestep=lowerCamelCase__ , ) if self.variance_type == "fixed_small_log": __lowerCamelCase = variance elif self.variance_type == "learned_range": __lowerCamelCase = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" ' for the UnCLIPScheduler.' ) __lowerCamelCase = variance * variance_noise __lowerCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowerCamelCase__ , pred_original_sample=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> torch.FloatTensor: '''simple docstring''' # Make sure alphas_cumprod and timestep have same device and dtype as original_samples __lowerCamelCase = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = alphas_cumprod[timesteps] ** 0.5 __lowerCamelCase = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __lowerCamelCase = sqrt_alpha_prod.unsqueeze(-1 ) __lowerCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowerCamelCase = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __lowerCamelCase = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __lowerCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
348
import requests __A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
348
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=100 , lowerCamelCase__=13 , lowerCamelCase__=30 , lowerCamelCase__=2 , lowerCamelCase__=3 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=10 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=None , lowerCamelCase__=[0, 1, 2, 3] , ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = 100 __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = scope __lowerCamelCase = out_indices __lowerCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase = (image_size // patch_size) ** 2 __lowerCamelCase = num_patches + 1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ) -> Dict: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = BeitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = BeitForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: '''simple docstring''' __lowerCamelCase = self.type_sequence_label_size __lowerCamelCase = BeitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase = 1 __lowerCamelCase = BeitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = BeitForSemanticSegmentation(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __lowerCamelCase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) snake_case_ = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = BeitModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def lowercase_ ( self ) -> str: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' if not self.model_tester.is_training: return __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(lowerCamelCase__ ), BeitForMaskedImageModeling]: continue __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ ).loss loss.backward() def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowerCamelCase = False __lowerCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(lowerCamelCase__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __lowerCamelCase = model_class(lowerCamelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCamelCase__ ) model.train() __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ ).loss loss.backward() def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: __lowerCamelCase = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def lowercase_ ( self ) -> List[Any]: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = BeitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCamelCase_ ( ) -> Optional[int]: """simple docstring""" __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> Dict: '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).pixel_values.to(lowerCamelCase__ ) # prepare bool_masked_pos __lowerCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(pixel_values=lowerCamelCase__ , bool_masked_pos=lowerCamelCase__ ) __lowerCamelCase = outputs.logits # verify the logits __lowerCamelCase = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , lowerCamelCase__ ) __lowerCamelCase = torch.tensor( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , lowerCamelCase__ , atol=1e-2 ) ) @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = outputs.logits # verify the logits __lowerCamelCase = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , lowerCamelCase__ ) __lowerCamelCase = torch.tensor([-1.23_85, -1.09_87, -1.01_08] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) ) __lowerCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase__ ) @slow def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = outputs.logits # verify the logits __lowerCamelCase = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , lowerCamelCase__ ) __lowerCamelCase = torch.tensor([1.68_81, -0.27_87, 0.59_01] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) ) __lowerCamelCase = 2_396 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase__ ) @slow def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __lowerCamelCase = model.to(lowerCamelCase__ ) __lowerCamelCase = BeitImageProcessor(do_resize=lowerCamelCase__ , size=640 , do_center_crop=lowerCamelCase__ ) __lowerCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __lowerCamelCase = Image.open(ds[0]['file'] ) __lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = outputs.logits # verify the logits __lowerCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , lowerCamelCase__ ) __lowerCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __lowerCamelCase = torch.tensor( [ [[-4.92_25, -2.39_54, -3.05_22], [-2.88_22, -1.00_46, -1.75_61], [-2.95_49, -1.32_28, -2.13_47]], [[-5.81_68, -3.41_29, -4.07_78], [-3.86_51, -2.22_14, -3.02_77], [-3.83_56, -2.46_43, -3.35_35]], [[-0.00_78, 3.99_52, 4.07_54], [2.98_56, 4.69_44, 5.00_35], [3.24_13, 4.78_13, 4.99_69]], ] , device=lowerCamelCase__ , ) else: __lowerCamelCase = torch.tensor( [ [[-4.89_60, -2.36_88, -3.03_55], [-2.84_78, -0.98_36, -1.74_18], [-2.94_49, -1.33_32, -2.14_56]], [[-5.80_81, -3.41_24, -4.10_06], [-3.85_61, -2.20_81, -3.03_23], [-3.83_65, -2.46_01, -3.36_69]], [[-0.03_09, 3.98_68, 4.05_40], [2.96_40, 4.68_77, 4.99_76], [3.20_81, 4.76_90, 4.99_42]], ] , device=lowerCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) @slow def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __lowerCamelCase = model.to(lowerCamelCase__ ) __lowerCamelCase = BeitImageProcessor(do_resize=lowerCamelCase__ , size=640 , do_center_crop=lowerCamelCase__ ) __lowerCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __lowerCamelCase = Image.open(ds[0]['file'] ) __lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = outputs.logits.detach().cpu() __lowerCamelCase = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ , target_sizes=[(500, 300)] ) __lowerCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ ) __lowerCamelCase = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ ) __lowerCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ )
348
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __A = logging.get_logger(__name__) __A = TypeVar("DatasetType", Dataset, IterableDataset) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[List[float]] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) else: return _interleave_iterable_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : int = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ ) else: return _concatenate_iterable_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
348
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , lowerCamelCase__ = False ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = scheduler __lowerCamelCase = optimizers if isinstance(lowerCamelCase__ , (list, tuple) ) else [optimizers] __lowerCamelCase = split_batches __lowerCamelCase = step_with_optimizer __lowerCamelCase = GradientState() def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowerCamelCase__ , **lowerCamelCase__ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowerCamelCase__ , **lowerCamelCase__ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __lowerCamelCase = AcceleratorState().num_processes for _ in range(lowerCamelCase__ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowerCamelCase__ , **lowerCamelCase__ ) else: self.scheduler.step(*lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return self.scheduler.get_last_lr() def lowercase_ ( self ) -> List[Any]: '''simple docstring''' return self.scheduler.state_dict() def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' self.scheduler.load_state_dict(lowerCamelCase__ ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' return self.scheduler.get_lr() def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' return self.scheduler.print_lr(*lowerCamelCase__ , **lowerCamelCase__ )
348
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = ["model.decoder.embed_positions.weights"] def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" if "emb" in name: __lowerCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: __lowerCamelCase = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: __lowerCamelCase = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: __lowerCamelCase = name.replace('linear1' , 'fc1' ) if "linear2" in name: __lowerCamelCase = name.replace('linear2' , 'fc2' ) if "norm1" in name: __lowerCamelCase = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: __lowerCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: __lowerCamelCase = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: __lowerCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: __lowerCamelCase = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ) -> Tuple[Dict, Dict]: """simple docstring""" __lowerCamelCase = list(state_dict.keys() ) __lowerCamelCase = {} for key in keys: __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = rename_keys(UpperCamelCase__ ) if "in_proj_weight" in key: # split fused qkv proj __lowerCamelCase = val[:hidden_size, :] __lowerCamelCase = val[hidden_size : 2 * hidden_size, :] __lowerCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCamelCase = val else: __lowerCamelCase = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase_ ( UpperCamelCase__ : str ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values __lowerCamelCase = 1024 __lowerCamelCase = 24 __lowerCamelCase = 16 elif checkpoint == "medium": __lowerCamelCase = 1536 __lowerCamelCase = 48 __lowerCamelCase = 24 elif checkpoint == "large": __lowerCamelCase = 2048 __lowerCamelCase = 48 __lowerCamelCase = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) __lowerCamelCase = MusicgenDecoderConfig( hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , ) return config @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]="cpu" ) -> List[Any]: """simple docstring""" __lowerCamelCase = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ ) __lowerCamelCase = decoder_config_from_checkpoint(UpperCamelCase__ ) __lowerCamelCase = fairseq_model.lm.state_dict() __lowerCamelCase , __lowerCamelCase = rename_state_dict( UpperCamelCase__ , hidden_size=decoder_config.hidden_size ) __lowerCamelCase = TaEncoderModel.from_pretrained('t5-base' ) __lowerCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' ) __lowerCamelCase = MusicgenForCausalLM(UpperCamelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model __lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ ) # check we can do a forward pass __lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCamelCase = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError('Incorrect shape for logits' ) # now construct the processor __lowerCamelCase = AutoTokenizer.from_pretrained('t5-base' ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) __lowerCamelCase = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # set the appropriate bos/pad token ids __lowerCamelCase = 2048 __lowerCamelCase = 2048 # set other default generation config params __lowerCamelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCamelCase = True __lowerCamelCase = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(UpperCamelCase__ ) processor.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) __A = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
348
1
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def lowerCamelCase_ ( UpperCamelCase__ : int = 8 ) -> str: """simple docstring""" __lowerCamelCase = ascii_letters + digits + punctuation return "".join(secrets.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : int ) -> str: """simple docstring""" i -= len(UpperCamelCase__ ) __lowerCamelCase = i // 3 __lowerCamelCase = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) __lowerCamelCase = ( chars_incl + random(UpperCamelCase__ , quotient + remainder ) + random(UpperCamelCase__ , UpperCamelCase__ ) + random(UpperCamelCase__ , UpperCamelCase__ ) ) __lowerCamelCase = list(UpperCamelCase__ ) shuffle(UpperCamelCase__ ) return "".join(UpperCamelCase__ ) # random is a generalised function for letters, characters and numbers def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : int ) -> str: """simple docstring""" return "".join(secrets.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Any: """simple docstring""" pass # Put your code here... def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] ) -> Dict: """simple docstring""" pass # Put your code here... def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any ) -> str: """simple docstring""" pass # Put your code here... def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : int = 8 ) -> bool: """simple docstring""" if len(UpperCamelCase__ ) < min_length: # Your Password must be at least 8 characters long return False __lowerCamelCase = any(char in ascii_uppercase for char in password ) __lowerCamelCase = any(char in ascii_lowercase for char in password ) __lowerCamelCase = any(char in digits for char in password ) __lowerCamelCase = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def lowerCamelCase_ ( ) -> Any: """simple docstring""" __lowerCamelCase = int(input('Please indicate the max length of your password: ' ).strip() ) __lowerCamelCase = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(UpperCamelCase__ ) ) print( 'Alternative Password generated:' , alternative_password_generator(UpperCamelCase__ , UpperCamelCase__ ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
348
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''sew-d''' def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=2 , lowerCamelCase__=512 , lowerCamelCase__=256 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=("p2c", "c2p") , lowerCamelCase__="layer_norm" , lowerCamelCase__="gelu_python" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-7 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = squeeze_factor __lowerCamelCase = max_position_embeddings __lowerCamelCase = position_buckets __lowerCamelCase = share_att_key __lowerCamelCase = relative_attention __lowerCamelCase = norm_rel_ebd __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layer_norm_eps __lowerCamelCase = feature_layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # sequence classification __lowerCamelCase = use_weighted_layer_sum __lowerCamelCase = classifier_proj_size @property def lowercase_ ( self ) -> Any: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
348
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __A = False class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self ) -> int: '''simple docstring''' return 12 @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return 12 @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowerCamelCase__ ) @property def lowercase_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = 12 __lowerCamelCase = 12 __lowerCamelCase = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } __lowerCamelCase = TransformeraDModel(**lowerCamelCase__ ) return model def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCamelCase__ ) __lowerCamelCase = VQDiffusionPipeline( vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'teddy bear playing in the pool' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings( learnable=lowerCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __lowerCamelCase = VQDiffusionPipeline( vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'teddy bear playing in the pool' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) __lowerCamelCase = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) __lowerCamelCase = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
348
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __A = logging.get_logger("transformers.models.speecht5") __A = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __A = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __A = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __A = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __A = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __A = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __A = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __A = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __A = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = [] __A = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Dict: """simple docstring""" for attribute in key.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value elif weight_type == "running_mean": __lowerCamelCase = value elif weight_type == "running_var": __lowerCamelCase = value elif weight_type == "num_batches_tracked": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Any: """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = [] if task == "s2t": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2T __lowerCamelCase = IGNORE_KEYS_S2T elif task == "t2s": __lowerCamelCase = None __lowerCamelCase = MAPPING_T2S __lowerCamelCase = IGNORE_KEYS_T2S elif task == "s2s": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2S __lowerCamelCase = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(UpperCamelCase__ , UpperCamelCase__ ): logger.info(F"""{name} was ignored""" ) continue __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: __lowerCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2] __lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: __lowerCamelCase = 'weight_g' elif "weight_v" in name: __lowerCamelCase = 'weight_v' elif "bias" in name: __lowerCamelCase = 'bias' elif "weight" in name: __lowerCamelCase = 'weight' elif "running_mean" in name: __lowerCamelCase = 'running_mean' elif "running_var" in name: __lowerCamelCase = 'running_var' elif "num_batches_tracked" in name: __lowerCamelCase = 'num_batches_tracked' else: __lowerCamelCase = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> Tuple: """simple docstring""" __lowerCamelCase = full_name.split('conv_layers.' )[-1] __lowerCamelCase = name.split('.' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=None , ) -> Tuple: """simple docstring""" if config_path is not None: __lowerCamelCase = SpeechTaConfig.from_pretrained(UpperCamelCase__ ) else: __lowerCamelCase = SpeechTaConfig() if task == "s2t": __lowerCamelCase = config.max_text_positions __lowerCamelCase = SpeechTaForSpeechToText(UpperCamelCase__ ) elif task == "t2s": __lowerCamelCase = 1876 __lowerCamelCase = 600 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForTextToSpeech(UpperCamelCase__ ) elif task == "s2s": __lowerCamelCase = 1876 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForSpeechToSpeech(UpperCamelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: __lowerCamelCase = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken('<mask>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) __lowerCamelCase = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) __lowerCamelCase = SpeechTaFeatureExtractor() __lowerCamelCase = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) __lowerCamelCase = torch.load(UpperCamelCase__ ) recursively_load_weights(fairseq_checkpoint['model'] , UpperCamelCase__ , UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(UpperCamelCase__ ) model.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __A = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
348
1
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor __A = logging.getLogger(__name__) __A = 50 # max width of layer names __A = 70 # max width of quantizer names def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> Dict: """simple docstring""" __lowerCamelCase = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=UpperCamelCase__ , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=UpperCamelCase__ , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=UpperCamelCase__ , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=UpperCamelCase__ , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=UpperCamelCase__ , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=UpperCamelCase__ , type=UpperCamelCase__ , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=UpperCamelCase__ , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" if args.calibrator == "max": __lowerCamelCase = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) __lowerCamelCase = 'histogram' elif args.calibrator == "mse": __lowerCamelCase = 'histogram' else: raise ValueError(F"""Invalid calibrator {args.calibrator}""" ) __lowerCamelCase = QuantDescriptor(num_bits=args.aprec , calib_method=UpperCamelCase__ ) __lowerCamelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(UpperCamelCase__ ) quant_nn.QuantLinear.set_default_quant_desc_weight(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : List[str]=False ) -> Tuple: """simple docstring""" logger.info('Configuring Model for Quantization' ) logger.info(F"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(UpperCamelCase__ , ['embeddings'] , which='weight' , _disabled=UpperCamelCase__ ) if args.quant_disable: set_quantizer_by_name(UpperCamelCase__ , [''] , _disabled=UpperCamelCase__ ) if args.quant_disable_keyword: set_quantizer_by_name(UpperCamelCase__ , args.quant_disable_keyword , _disabled=UpperCamelCase__ ) if args.quant_disable_layer_module: set_quantizer_by_name(UpperCamelCase__ , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=UpperCamelCase__ ) if args.quant_enable_layer_module: set_quantizer_by_name(UpperCamelCase__ , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=UpperCamelCase__ ) if args.recalibrate_weights: recalibrate_weights(UpperCamelCase__ ) if args.fuse_qkv: fuse_qkv(UpperCamelCase__ , UpperCamelCase__ ) if args.clip_gelu: clip_gelu(UpperCamelCase__ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> Optional[int]: """simple docstring""" logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"""{name:80}: {module}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ) -> str: """simple docstring""" logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ) -> Optional[int]: """simple docstring""" def fusea(UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ): for mod in [qq, qk, qv]: if not hasattr(UpperCamelCase__ , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return __lowerCamelCase = qq._amax.detach().item() __lowerCamelCase = qk._amax.detach().item() __lowerCamelCase = qv._amax.detach().item() __lowerCamelCase = max(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) qq._amax.fill_(UpperCamelCase__ ) qk._amax.fill_(UpperCamelCase__ ) qv._amax.fill_(UpperCamelCase__ ) logger.info(F""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ) -> Any: """simple docstring""" for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): __lowerCamelCase = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=UpperCamelCase__ ) __lowerCamelCase = mod._input_quantizer._amax.data.detach().item() logger.info(F"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def lowerCamelCase_ ( UpperCamelCase__ : int ) -> List[Any]: """simple docstring""" for name, mod in model.named_modules(): if hasattr(UpperCamelCase__ , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: __lowerCamelCase = mod.weight.shape[0] __lowerCamelCase = mod._weight_quantizer._amax.detach() __lowerCamelCase = torch.ones(UpperCamelCase__ , dtype=amax.dtype , device=amax.device ) * amax print(F"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ) -> int: """simple docstring""" for name, mod in model.named_modules(): if hasattr(UpperCamelCase__ , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) __lowerCamelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) __lowerCamelCase = set(range(len(mod.weight.size() ) ) ) - axis_set __lowerCamelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=UpperCamelCase__ , keepdims=UpperCamelCase__ ).detach() logger.info(F"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) __lowerCamelCase = amax def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any]=25 , UpperCamelCase__ : List[Any]=180 , UpperCamelCase__ : Any=None ) -> str: """simple docstring""" if ignore is None: __lowerCamelCase = [] elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __lowerCamelCase = [ignore] __lowerCamelCase = 0 for name, mod in model.named_modules(): if not hasattr(UpperCamelCase__ , 'weight' ): continue __lowerCamelCase = max(UpperCamelCase__ , len(UpperCamelCase__ ) ) for name, mod in model.named_modules(): __lowerCamelCase = getattr(UpperCamelCase__ , '_input_quantizer' , UpperCamelCase__ ) __lowerCamelCase = getattr(UpperCamelCase__ , '_weight_quantizer' , UpperCamelCase__ ) if not hasattr(UpperCamelCase__ , 'weight' ): continue if type(UpperCamelCase__ ) in ignore: continue if [True for s in ignore if type(UpperCamelCase__ ) is str and s in name]: continue __lowerCamelCase = F"""Act:{input_q.extra_repr()}""" __lowerCamelCase = F"""Wgt:{weight_q.extra_repr()}""" __lowerCamelCase = F"""{name:{name_width}} {act_str} {wgt_str}""" if len(UpperCamelCase__ ) <= line_width: logger.info(UpperCamelCase__ ) else: logger.info(F"""{name:{name_width}} {act_str}""" ) logger.info(F"""{' ':{name_width}} {wgt_str}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> str: """simple docstring""" __lowerCamelCase = 0 for name, mod in model.named_modules(): if isinstance(UpperCamelCase__ , pytorch_quantization.nn.TensorQuantizer ): print(F"""{name:80} {mod}""" ) count += 1 print(F"""{count} TensorQuantizers found in model""" ) def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ) -> Optional[int]: """simple docstring""" __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if quantizer_mod is not None: assert hasattr(UpperCamelCase__ , UpperCamelCase__ ) setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: logger.warning(F"""{name} has no {quantizer}""" ) def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int]="both" , **UpperCamelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowerCamelCase = F"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += F""" {k}={v}""" if which in ["input", "both"]: set_quantizer(UpperCamelCase__ , UpperCamelCase__ , '_input_quantizer' , UpperCamelCase__ , UpperCamelCase__ ) if which in ["weight", "both"]: set_quantizer(UpperCamelCase__ , UpperCamelCase__ , '_weight_quantizer' , UpperCamelCase__ , UpperCamelCase__ ) logger.info(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : str , **UpperCamelCase__ : Tuple ) -> List[str]: """simple docstring""" for name, mod in model.named_modules(): if hasattr(UpperCamelCase__ , '_input_quantizer' ) or hasattr(UpperCamelCase__ , '_weight_quantizer' ): for n in names: if re.search(UpperCamelCase__ , UpperCamelCase__ ): set_quantizers(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) elif name.endswith('_quantizer' ): for n in names: if re.search(UpperCamelCase__ , UpperCamelCase__ ): __lowerCamelCase = F"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += F""" {k}={v}""" setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) logger.info(UpperCamelCase__ )
348
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = [False] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) def dfs(UpperCamelCase__ : int , UpperCamelCase__ : int ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase__ , 1 - c ) for i in range(len(UpperCamelCase__ ) ): if not visited[i]: dfs(UpperCamelCase__ , 0 ) for i in range(len(UpperCamelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
348
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''encoder-decoder''' snake_case_ = True def __init__( self , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __lowerCamelCase = kwargs.pop('encoder' ) __lowerCamelCase = encoder_config.pop('model_type' ) __lowerCamelCase = kwargs.pop('decoder' ) __lowerCamelCase = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig __lowerCamelCase = AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = True @classmethod def lowercase_ ( cls , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> PretrainedConfig: '''simple docstring''' logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) __lowerCamelCase = True __lowerCamelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.encoder.to_dict() __lowerCamelCase = self.decoder.to_dict() __lowerCamelCase = self.__class__.model_type return output
348
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __lowerCamelCase = tokenizer('Hello there' , return_tensors='pt' ).input_ids __lowerCamelCase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids __lowerCamelCase = model(input_ids.to(lowerCamelCase__ ) , labels=labels.to(lowerCamelCase__ ) ).loss __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( ) -> Any: """simple docstring""" __lowerCamelCase = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } __lowerCamelCase = Dataset.from_dict(UpperCamelCase__ ) return dataset class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = get_dataset() __lowerCamelCase = make_duplicate_clusters(lowerCamelCase__ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = get_dataset() __lowerCamelCase , __lowerCamelCase = deduplicate_dataset(lowerCamelCase__ ) self.assertEqual(len(lowerCamelCase__ ) , 2 ) print(lowerCamelCase__ ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , lowerCamelCase__ )
348
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" __lowerCamelCase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowerCamelCase = [3, 3, 3, 3] __lowerCamelCase = [5, 5, 5, 5] elif "fl4" in model_name: __lowerCamelCase = [4, 4, 4, 4] __lowerCamelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowerCamelCase = [3, 3, 3, 3] if "lrf" in model_name: __lowerCamelCase = [3, 3, 3, 3] else: __lowerCamelCase = [2, 2, 2, 2] if "tiny" in model_name: __lowerCamelCase = 96 elif "small" in model_name: __lowerCamelCase = 96 elif "base" in model_name: __lowerCamelCase = 128 elif "large" in model_name: __lowerCamelCase = 192 elif "xlarge" in model_name: __lowerCamelCase = 256 elif "huge" in model_name: __lowerCamelCase = 352 # set label information __lowerCamelCase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowerCamelCase = 'imagenet-22k-id2label.json' else: __lowerCamelCase = 'imagenet-1k-id2label.json' __lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) __lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = FocalNetConfig( embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , focal_levels=UpperCamelCase__ , focal_windows=UpperCamelCase__ , use_conv_embed=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , use_post_layernorm=UpperCamelCase__ , use_layerscale=UpperCamelCase__ , ) return config def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> str: """simple docstring""" if "patch_embed.proj" in name: __lowerCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowerCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowerCamelCase = 'encoder.' + name if "encoder.layers" in name: __lowerCamelCase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowerCamelCase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowerCamelCase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowerCamelCase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowerCamelCase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowerCamelCase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowerCamelCase = 'layernorm.weight' if name == "norm.bias": __lowerCamelCase = 'layernorm.bias' if "head" in name: __lowerCamelCase = name.replace('head' , 'classifier' ) else: __lowerCamelCase = 'focalnet.' + name return name def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Dict: """simple docstring""" __lowerCamelCase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowerCamelCase = model_name_to_url[model_name] print('Checkpoint URL: ' , UpperCamelCase__ ) __lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val __lowerCamelCase = get_focalnet_config(UpperCamelCase__ ) __lowerCamelCase = FocalNetForImageClassification(UpperCamelCase__ ) model.eval() # load state dict model.load_state_dict(UpperCamelCase__ ) # verify conversion __lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase = BitImageProcessor( do_resize=UpperCamelCase__ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ , crop_size=224 , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , ) __lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) __lowerCamelCase = processor(images=UpperCamelCase__ , return_tensors='pt' ) __lowerCamelCase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) __lowerCamelCase = image_transforms(UpperCamelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCamelCase__ , atol=1E-4 ) __lowerCamelCase = model(**UpperCamelCase__ ) __lowerCamelCase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": __lowerCamelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": __lowerCamelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": __lowerCamelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": __lowerCamelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": __lowerCamelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) __A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
348
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''xlm-roberta-xl''' def __init__( self , lowerCamelCase__=250_880 , lowerCamelCase__=2_560 , lowerCamelCase__=36 , lowerCamelCase__=32 , lowerCamelCase__=10_240 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=514 , lowerCamelCase__=1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-05 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , lowerCamelCase__="absolute" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = classifier_dropout class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __lowerCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowerCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
348
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : list[float] , UpperCamelCase__ : list[float] ) -> float: """simple docstring""" __lowerCamelCase = sorted(numsa + numsa ) __lowerCamelCase , __lowerCamelCase = divmod(len(UpperCamelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __A = [float(x) for x in input("Enter the elements of first array: ").split()] __A = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
348
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __A = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __A = {"facebook/blenderbot-3B": 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" __lowerCamelCase = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) __lowerCamelCase = bs[:] __lowerCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 __lowerCamelCase = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Tuple: """simple docstring""" __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char return pairs class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="replace" , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=False , **lowerCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else bos_token __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else eos_token __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else sep_token __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cls_token __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else unk_token __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) with open(lowerCamelCase__ , encoding='utf-8' ) as vocab_handle: __lowerCamelCase = json.load(lowerCamelCase__ ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} __lowerCamelCase = errors # how to handle errors in decoding __lowerCamelCase = bytes_to_unicode() __lowerCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase__ , encoding='utf-8' ) as merges_handle: __lowerCamelCase = merges_handle.read().split('\n' )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in bpe_merges] __lowerCamelCase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __lowerCamelCase = {} __lowerCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowerCamelCase = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def lowercase_ ( self ) -> Tuple: '''simple docstring''' return len(self.encoder ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' if token in self.cache: return self.cache[token] __lowerCamelCase = tuple(lowerCamelCase__ ) __lowerCamelCase = get_pairs(lowerCamelCase__ ) if not pairs: return token while True: __lowerCamelCase = min(lowerCamelCase__ , key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(lowerCamelCase__ ): try: __lowerCamelCase = word.index(lowerCamelCase__ , lowerCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCamelCase = j if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(lowerCamelCase__ ) __lowerCamelCase = new_word if len(lowerCamelCase__ ) == 1: break else: __lowerCamelCase = get_pairs(lowerCamelCase__ ) __lowerCamelCase = ' '.join(lowerCamelCase__ ) __lowerCamelCase = word return word def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [] for token in re.findall(self.pat , lowerCamelCase__ ): __lowerCamelCase = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase__ ).split(' ' ) ) return bpe_tokens def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) ) def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ''.join(lowerCamelCase__ ) __lowerCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) + '\n' ) __lowerCamelCase = 0 with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) __lowerCamelCase = token_index writer.write(' '.join(lowerCamelCase__ ) + '\n' ) index += 1 return vocab_file, merge_file def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=False , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase__ ) > 0 and not text[0].isspace()): __lowerCamelCase = ' ' + text return (text, kwargs) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Optional[Any]: '''simple docstring''' return token_ids_a + [self.eos_token_id] def lowercase_ ( self , lowerCamelCase__ ) -> List[int]: '''simple docstring''' __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(lowerCamelCase__ ) __lowerCamelCase = ' '.join(lowerCamelCase__ ) __lowerCamelCase = self.encode(lowerCamelCase__ ) if len(lowerCamelCase__ ) > self.model_max_length: __lowerCamelCase = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
348
__A = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.3_5_5_8_1_8, } def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __lowerCamelCase = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {', '.join(UpperCamelCase__ )}""" ) raise ValueError(UpperCamelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
348
1
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = DDIMPipeline snake_case_ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case_ = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''latents''', '''callback''', '''callback_steps''', } snake_case_ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS snake_case_ = False def lowercase_ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) __lowerCamelCase = DDIMScheduler() __lowerCamelCase = {'unet': unet, 'scheduler': scheduler} return components def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> Optional[Any]: '''simple docstring''' if str(lowerCamelCase__ ).startswith('mps' ): __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) else: __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __lowerCamelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) __lowerCamelCase = np.array( [1.0_00e00, 5.7_17e-01, 4.7_17e-01, 1.0_00e00, 0.0_00e00, 1.0_00e00, 3.0_00e-04, 0.0_00e00, 9.0_00e-04] ) __lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase__ , 1e-3 ) def lowercase_ ( self ) -> Any: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def lowercase_ ( self ) -> int: '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def lowercase_ ( self ) -> int: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = 'google/ddpm-cifar10-32' __lowerCamelCase = UNetaDModel.from_pretrained(lowerCamelCase__ ) __lowerCamelCase = DDIMScheduler() __lowerCamelCase = DDIMPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) ddim.to(lowerCamelCase__ ) ddim.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = ddim(generator=lowerCamelCase__ , eta=0.0 , output_type='numpy' ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = 'google/ddpm-ema-bedroom-256' __lowerCamelCase = UNetaDModel.from_pretrained(lowerCamelCase__ ) __lowerCamelCase = DDIMScheduler.from_pretrained(lowerCamelCase__ ) __lowerCamelCase = DDIMPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) ddpm.to(lowerCamelCase__ ) ddpm.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = ddpm(generator=lowerCamelCase__ , output_type='numpy' ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __lowerCamelCase = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
348
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''philschmid/bart-large-cnn-samsum''' snake_case_ = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) snake_case_ = '''summarizer''' snake_case_ = AutoTokenizer snake_case_ = AutoModelForSeqaSeqLM snake_case_ = ['''text'''] snake_case_ = ['''text'''] def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.pre_processor(lowerCamelCase__ , return_tensors='pt' , truncation=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' return self.model.generate(**lowerCamelCase__ )[0] def lowercase_ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' return self.pre_processor.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ )
348
1
from __future__ import annotations from fractions import Fraction def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> bool: """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCamelCase_ ( UpperCamelCase__ : int ) -> list[str]: """simple docstring""" __lowerCamelCase = [] __lowerCamelCase = 11 __lowerCamelCase = int('1' + '0' * digit_len ) for num in range(UpperCamelCase__ , UpperCamelCase__ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(UpperCamelCase__ , UpperCamelCase__ ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 __lowerCamelCase = 10 return solutions def lowerCamelCase_ ( UpperCamelCase__ : int = 2 ) -> int: """simple docstring""" __lowerCamelCase = 1.0 for fraction in fraction_list(UpperCamelCase__ ): __lowerCamelCase = Fraction(UpperCamelCase__ ) result *= frac.denominator / frac.numerator return int(UpperCamelCase__ ) if __name__ == "__main__": print(solution())
348
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = True snake_case_ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] __lowerCamelCase = [1, 11, 50_265] self.assertEqual(list(output.shape ) , lowerCamelCase__ ) # compare the actual values for a slice. __lowerCamelCase = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] # compare the actual values for a slice. __lowerCamelCase = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
348
1
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowerCamelCase_ ( UpperCamelCase__ : int ) -> Any: """simple docstring""" __lowerCamelCase = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : str ) -> int: """simple docstring""" __lowerCamelCase = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ) -> List[str]: """simple docstring""" __lowerCamelCase = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", 'stage2.cls_token') ) return token def lowerCamelCase_ ( ) -> Any: """simple docstring""" __lowerCamelCase = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] ) -> Optional[int]: """simple docstring""" __lowerCamelCase = 'imagenet-1k-id2label.json' __lowerCamelCase = 1000 __lowerCamelCase = 'huggingface/label-files' __lowerCamelCase = num_labels __lowerCamelCase = json.load(open(cached_download(hf_hub_url(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) ) , 'r' ) ) __lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = __lowerCamelCase = CvtConfig(num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": __lowerCamelCase = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": __lowerCamelCase = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __lowerCamelCase = [2, 2, 20] __lowerCamelCase = [3, 12, 16] __lowerCamelCase = [192, 768, 1024] __lowerCamelCase = CvtForImageClassification(UpperCamelCase__ ) __lowerCamelCase = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) __lowerCamelCase = image_size __lowerCamelCase = torch.load(UpperCamelCase__ , map_location=torch.device('cpu' ) ) __lowerCamelCase = OrderedDict() __lowerCamelCase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __lowerCamelCase = list_of_state_dict + cls_token(UpperCamelCase__ ) __lowerCamelCase = list_of_state_dict + embeddings(UpperCamelCase__ ) for cnt in range(config.depth[idx] ): __lowerCamelCase = list_of_state_dict + attention(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = list_of_state_dict + final() for gg in list_of_state_dict: print(UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) ): __lowerCamelCase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) image_processor.save_pretrained(UpperCamelCase__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_84, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __A = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
348
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] )
348
1
__A = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __A = [{"type": "code", "content": INSTALL_CONTENT}] __A = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
348
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowercase_ ( self , lowerCamelCase__=0 ) -> int: '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) ) __lowerCamelCase = np.random.RandomState(lowerCamelCase__ ) __lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) # warmup pass to apply optimizations __lowerCamelCase = pipe(**self.get_dummy_inputs() ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ) -> int: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = ort.SessionOptions() __lowerCamelCase = False return options def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) # using the PNDM scheduler by default __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) __lowerCamelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
348
1
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : int ) -> list: """simple docstring""" __lowerCamelCase = word.split() def justify(UpperCamelCase__ : list , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> str: __lowerCamelCase = max_width - width __lowerCamelCase = len(UpperCamelCase__ ) if len(UpperCamelCase__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: __lowerCamelCase = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] __lowerCamelCase = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] __lowerCamelCase = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCamelCase__ ): num_spaces_between_words_list[i] += 1 __lowerCamelCase = [] for i in range(UpperCamelCase__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = 0 for word in words: if width + len(UpperCamelCase__ ) + len(UpperCamelCase__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCamelCase__ ) width += len(UpperCamelCase__ ) else: # justify the line and add it to result answer.append(justify(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) # reset new line and new width __lowerCamelCase , __lowerCamelCase = [word], len(UpperCamelCase__ ) __lowerCamelCase = max_width - width - len(UpperCamelCase__ ) answer.append(' '.join(UpperCamelCase__ ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
348
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __A = logging.get_logger(__name__) __A = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''whisper''' snake_case_ = ['''past_key_values'''] snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCamelCase__=51_865 , lowerCamelCase__=80 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=1_536 , lowerCamelCase__=1_536 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=50_257 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=256 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=1_500 , lowerCamelCase__=448 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=None , lowerCamelCase__=[220, 50_256] , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=False , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=7 , **lowerCamelCase__ , ) -> str: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = num_mel_bins __lowerCamelCase = d_model __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase = max_source_positions __lowerCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size __lowerCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks __lowerCamelCase = median_filter_width super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , suppress_tokens=lowerCamelCase__ , begin_suppress_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowerCamelCase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: __lowerCamelCase = {0: 'batch'} else: __lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' ) return common_inputs def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 22_050 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 220 , ) -> Mapping[str, Any]: '''simple docstring''' __lowerCamelCase = OrderedDict() __lowerCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase__ , framework=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , time_duration=lowerCamelCase__ , frequency=lowerCamelCase__ , ) __lowerCamelCase = encoder_inputs['input_features'].shape[2] __lowerCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __lowerCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = encoder_inputs.pop('input_features' ) __lowerCamelCase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: __lowerCamelCase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def lowercase_ ( self ) -> float: '''simple docstring''' return 1e-3
348
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } __A = { "gpt2": 10_24, "gpt2-medium": 10_24, "gpt2-large": 10_24, "gpt2-xl": 10_24, "distilgpt2": 10_24, } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] snake_case_ = GPTaTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__=False , **lowerCamelCase__ , ) -> str: '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCamelCase = kwargs.pop('add_bos_token' , lowerCamelCase__ ) __lowerCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase__ ) != add_prefix_space: __lowerCamelCase = getattr(lowerCamelCase__ , pre_tok_state.pop('type' ) ) __lowerCamelCase = add_prefix_space __lowerCamelCase = pre_tok_class(**lowerCamelCase__ ) __lowerCamelCase = add_prefix_space def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> BatchEncoding: '''simple docstring''' __lowerCamelCase = kwargs.get('is_split_into_words' , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> BatchEncoding: '''simple docstring''' __lowerCamelCase = kwargs.get('is_split_into_words' , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' __lowerCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[int]: '''simple docstring''' __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) + [self.eos_token_id] ) if len(lowerCamelCase__ ) > self.model_max_length: __lowerCamelCase = input_ids[-self.model_max_length :] return input_ids
348
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = rotary_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = None __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = FlaxGPTJModelTester(self ) def lowercase_ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @tooslow def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __lowerCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ ) __lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = False __lowerCamelCase = model.config.eos_token_id __lowerCamelCase = jax.jit(model.generate ) __lowerCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __lowerCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ ) __lowerCamelCase = fx_state with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = model_class.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __lowerCamelCase = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = pt_model_class.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ ) with torch.no_grad(): __lowerCamelCase = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowercase_ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
348
1
def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ) -> Dict: """simple docstring""" __lowerCamelCase = [0] * len(UpperCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = [1] * len(UpperCamelCase__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(UpperCamelCase__ ) ): if indegree[i] == 0: queue.append(UpperCamelCase__ ) while queue: __lowerCamelCase = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __lowerCamelCase = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(UpperCamelCase__ ) print(max(UpperCamelCase__ ) ) # Adjacency list of Graph __A = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
348
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __A = False class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self ) -> int: '''simple docstring''' return 12 @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return 12 @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowerCamelCase__ ) @property def lowercase_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = 12 __lowerCamelCase = 12 __lowerCamelCase = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } __lowerCamelCase = TransformeraDModel(**lowerCamelCase__ ) return model def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCamelCase__ ) __lowerCamelCase = VQDiffusionPipeline( vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'teddy bear playing in the pool' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings( learnable=lowerCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __lowerCamelCase = VQDiffusionPipeline( vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'teddy bear playing in the pool' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) __lowerCamelCase = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) __lowerCamelCase = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
348
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } __A = { "google/bigbird-roberta-base": 40_96, "google/bigbird-roberta-large": 40_96, "google/bigbird-base-trivia-itc": 40_96, } __A = "▁" class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = BigBirdTokenizer snake_case_ = ['''input_ids''', '''attention_mask'''] snake_case_ = [] def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<unk>" , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<pad>" , lowerCamelCase__="[SEP]" , lowerCamelCase__="[MASK]" , lowerCamelCase__="[CLS]" , **lowerCamelCase__ , ) -> Any: '''simple docstring''' __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else bos_token __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else eos_token __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else unk_token __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else pad_token __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cls_token __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCamelCase = vocab_file __lowerCamelCase = False if not self.vocab_file else True def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
348
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = is_training __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = num_queries __lowerCamelCase = num_channels __lowerCamelCase = min_size __lowerCamelCase = max_size __lowerCamelCase = num_labels __lowerCamelCase = hidden_dim __lowerCamelCase = hidden_dim def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) __lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) __lowerCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() __lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() __lowerCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowerCamelCase = self.num_queries __lowerCamelCase = self.num_labels __lowerCamelCase = [1, 1, 1, 1] __lowerCamelCase = self.num_channels __lowerCamelCase = 64 __lowerCamelCase = 128 __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim return config def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = output.encoder_hidden_states __lowerCamelCase = output.pixel_decoder_hidden_states __lowerCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple: '''simple docstring''' with torch.no_grad(): __lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) __lowerCamelCase = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = MaskaFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowercase_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = (self.model_tester.min_size,) * 2 __lowerCamelCase = { 'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ), 'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } __lowerCamelCase = self.model_tester.get_config() __lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) __lowerCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A = 1e-4 def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase_ ( self ) -> Dict: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # masks_queries_logits __lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowerCamelCase = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] __lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits __lowerCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) __lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ ) __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']] __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']] with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
348
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.dummy_uncond_unet __lowerCamelCase = KarrasVeScheduler() __lowerCamelCase = KarrasVePipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe(num_inference_steps=2 , generator=lowerCamelCase__ , output_type='numpy' ).images __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe(num_inference_steps=2 , generator=lowerCamelCase__ , output_type='numpy' , return_dict=lowerCamelCase__ )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = 'google/ncsnpp-celebahq-256' __lowerCamelCase = UNetaDModel.from_pretrained(lowerCamelCase__ ) __lowerCamelCase = KarrasVeScheduler() __lowerCamelCase = KarrasVePipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe(num_inference_steps=20 , generator=lowerCamelCase__ , output_type='numpy' ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __lowerCamelCase = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
348
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''mask2former''' snake_case_ = ['''swin'''] snake_case_ = {'''hidden_size''': '''hidden_dim'''} def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 1_024 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 6 , lowerCamelCase__ = 10 , lowerCamelCase__ = 8 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 2_048 , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 4 , lowerCamelCase__ = 255 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 12_544 , lowerCamelCase__ = 3.0 , lowerCamelCase__ = 0.75 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = True , lowerCamelCase__ = [4, 8, 16, 32] , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Tuple: '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowerCamelCase = CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = backbone_config.pop('model_type' ) __lowerCamelCase = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase = config_class.from_dict(lowerCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) __lowerCamelCase = backbone_config __lowerCamelCase = feature_size __lowerCamelCase = mask_feature_size __lowerCamelCase = hidden_dim __lowerCamelCase = encoder_feedforward_dim __lowerCamelCase = activation_function __lowerCamelCase = encoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = dropout __lowerCamelCase = dim_feedforward __lowerCamelCase = pre_norm __lowerCamelCase = enforce_input_projection __lowerCamelCase = common_stride __lowerCamelCase = ignore_value __lowerCamelCase = num_queries __lowerCamelCase = no_object_weight __lowerCamelCase = class_weight __lowerCamelCase = mask_weight __lowerCamelCase = dice_weight __lowerCamelCase = train_num_points __lowerCamelCase = oversample_ratio __lowerCamelCase = importance_sample_ratio __lowerCamelCase = init_std __lowerCamelCase = init_xavier_std __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = feature_strides __lowerCamelCase = output_auxiliary_logits __lowerCamelCase = decoder_layers super().__init__(**lowerCamelCase__ ) @classmethod def lowercase_ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' return cls( backbone_config=lowerCamelCase__ , **lowerCamelCase__ , ) def lowercase_ ( self ) -> Dict[str, any]: '''simple docstring''' __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.backbone_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
348
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __A = logging.get_logger(__name__) # General docstring __A = "MobileNetV1Config" # Base docstring __A = "google/mobilenet_v1_1.0_224" __A = [1, 10_24, 7, 7] # Image classification docstring __A = "google/mobilenet_v1_1.0_224" __A = "tabby, tabby cat" __A = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple=None ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = {} if isinstance(UpperCamelCase__ , UpperCamelCase__ ): __lowerCamelCase = model.mobilenet_va else: __lowerCamelCase = model __lowerCamelCase = 'MobilenetV1/Conv2d_0/' __lowerCamelCase = backbone.conv_stem.convolution.weight __lowerCamelCase = backbone.conv_stem.normalization.bias __lowerCamelCase = backbone.conv_stem.normalization.weight __lowerCamelCase = backbone.conv_stem.normalization.running_mean __lowerCamelCase = backbone.conv_stem.normalization.running_var for i in range(13 ): __lowerCamelCase = i + 1 __lowerCamelCase = i * 2 __lowerCamelCase = backbone.layer[pt_index] __lowerCamelCase = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" __lowerCamelCase = pointer.convolution.weight __lowerCamelCase = pointer.normalization.bias __lowerCamelCase = pointer.normalization.weight __lowerCamelCase = pointer.normalization.running_mean __lowerCamelCase = pointer.normalization.running_var __lowerCamelCase = backbone.layer[pt_index + 1] __lowerCamelCase = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" __lowerCamelCase = pointer.convolution.weight __lowerCamelCase = pointer.normalization.bias __lowerCamelCase = pointer.normalization.weight __lowerCamelCase = pointer.normalization.running_mean __lowerCamelCase = pointer.normalization.running_var if isinstance(UpperCamelCase__ , UpperCamelCase__ ): __lowerCamelCase = 'MobilenetV1/Logits/Conv2d_1c_1x1/' __lowerCamelCase = model.classifier.weight __lowerCamelCase = model.classifier.bias return tf_to_pt_map def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : str ) -> Optional[Any]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model __lowerCamelCase = tf.train.list_variables(UpperCamelCase__ ) __lowerCamelCase = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) __lowerCamelCase = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = array # Build TF to PyTorch weights loading map __lowerCamelCase = _build_tf_to_pytorch_map(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue __lowerCamelCase = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) __lowerCamelCase = np.transpose(UpperCamelCase__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer __lowerCamelCase = array.squeeze().transpose() else: __lowerCamelCase = np.transpose(UpperCamelCase__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) __lowerCamelCase = torch.from_numpy(UpperCamelCase__ ) tf_weights.pop(UpperCamelCase__ , UpperCamelCase__ ) tf_weights.pop(name + '/RMSProp' , UpperCamelCase__ ) tf_weights.pop(name + '/RMSProp_1' , UpperCamelCase__ ) tf_weights.pop(name + '/ExponentialMovingAverage' , UpperCamelCase__ ) logger.info(F"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}""" ) return model def lowerCamelCase_ ( UpperCamelCase__ : torch.Tensor , UpperCamelCase__ : nn.Convad ) -> torch.Tensor: """simple docstring""" __lowerCamelCase , __lowerCamelCase = features.shape[-2:] __lowerCamelCase , __lowerCamelCase = conv_layer.stride __lowerCamelCase , __lowerCamelCase = conv_layer.kernel_size if in_height % stride_height == 0: __lowerCamelCase = max(kernel_height - stride_height , 0 ) else: __lowerCamelCase = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __lowerCamelCase = max(kernel_width - stride_width , 0 ) else: __lowerCamelCase = max(kernel_width - (in_width % stride_width) , 0 ) __lowerCamelCase = pad_along_width // 2 __lowerCamelCase = pad_along_width - pad_left __lowerCamelCase = pad_along_height // 2 __lowerCamelCase = pad_along_height - pad_top __lowerCamelCase = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(UpperCamelCase__ , UpperCamelCase__ , 'constant' , 0.0 ) class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 , lowerCamelCase__ = 1 , lowerCamelCase__ = False , lowerCamelCase__ = True , lowerCamelCase__ = True , ) -> None: '''simple docstring''' super().__init__() __lowerCamelCase = config if in_channels % groups != 0: raise ValueError(f"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(f"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) __lowerCamelCase = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) __lowerCamelCase = nn.Convad( in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , kernel_size=lowerCamelCase__ , stride=lowerCamelCase__ , padding=lowerCamelCase__ , groups=lowerCamelCase__ , bias=lowerCamelCase__ , padding_mode='zeros' , ) if use_normalization: __lowerCamelCase = nn.BatchNormad( num_features=lowerCamelCase__ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=lowerCamelCase__ , track_running_stats=lowerCamelCase__ , ) else: __lowerCamelCase = None if use_activation: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCamelCase__ ): __lowerCamelCase = ACTaFN[config.hidden_act] else: __lowerCamelCase = config.hidden_act else: __lowerCamelCase = None def lowercase_ ( self , lowerCamelCase__ ) -> torch.Tensor: '''simple docstring''' if self.config.tf_padding: __lowerCamelCase = apply_tf_padding(lowerCamelCase__ , self.convolution ) __lowerCamelCase = self.convolution(lowerCamelCase__ ) if self.normalization is not None: __lowerCamelCase = self.normalization(lowerCamelCase__ ) if self.activation is not None: __lowerCamelCase = self.activation(lowerCamelCase__ ) return features class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = MobileNetVaConfig snake_case_ = load_tf_weights_in_mobilenet_va snake_case_ = '''mobilenet_v1''' snake_case_ = '''pixel_values''' snake_case_ = False def lowercase_ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' if isinstance(lowerCamelCase__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCamelCase__ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __A = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __A = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ = True ) -> Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ ) __lowerCamelCase = config __lowerCamelCase = 32 __lowerCamelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) __lowerCamelCase = MobileNetVaConvLayer( lowerCamelCase__ , in_channels=config.num_channels , out_channels=lowerCamelCase__ , kernel_size=3 , stride=2 , ) __lowerCamelCase = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __lowerCamelCase = nn.ModuleList() for i in range(13 ): __lowerCamelCase = out_channels if strides[i] == 2 or i == 0: depth *= 2 __lowerCamelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( lowerCamelCase__ , in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCamelCase__ , ) ) self.layer.append( MobileNetVaConvLayer( lowerCamelCase__ , in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , kernel_size=1 , ) ) __lowerCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase_ ( self , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: '''simple docstring''' __lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) __lowerCamelCase = self.conv_stem(lowerCamelCase__ ) __lowerCamelCase = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): __lowerCamelCase = layer_module(lowerCamelCase__ ) if output_hidden_states: __lowerCamelCase = all_hidden_states + (hidden_states,) __lowerCamelCase = hidden_states if self.pooler is not None: __lowerCamelCase = torch.flatten(self.pooler(lowerCamelCase__ ) , start_dim=1 ) else: __lowerCamelCase = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=lowerCamelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowerCamelCase__ ) -> None: '''simple docstring''' super().__init__(lowerCamelCase__ ) __lowerCamelCase = config.num_labels __lowerCamelCase = MobileNetVaModel(lowerCamelCase__ ) __lowerCamelCase = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __lowerCamelCase = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase_ ( self , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = self.mobilenet_va(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ ) __lowerCamelCase = outputs.pooler_output if return_dict else outputs[1] __lowerCamelCase = self.classifier(self.dropout(lowerCamelCase__ ) ) __lowerCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowerCamelCase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowerCamelCase = 'single_label_classification' else: __lowerCamelCase = 'multi_label_classification' if self.config.problem_type == "regression": __lowerCamelCase = MSELoss() if self.num_labels == 1: __lowerCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowerCamelCase = loss_fct(lowerCamelCase__ , lowerCamelCase__ ) elif self.config.problem_type == "single_label_classification": __lowerCamelCase = CrossEntropyLoss() __lowerCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowerCamelCase = BCEWithLogitsLoss() __lowerCamelCase = loss_fct(lowerCamelCase__ , lowerCamelCase__ ) if not return_dict: __lowerCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states , )
348
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple: '''simple docstring''' super().__init__() __lowerCamelCase = num_attention_heads __lowerCamelCase = attention_head_dim __lowerCamelCase = num_attention_heads * attention_head_dim __lowerCamelCase = additional_embeddings __lowerCamelCase = time_embed_dim or inner_dim __lowerCamelCase = embedding_proj_dim or embedding_dim __lowerCamelCase = clip_embed_dim or embedding_dim __lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 ) __lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if embedding_proj_norm_type is None: __lowerCamelCase = None elif embedding_proj_norm_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if encoder_hid_proj_type is None: __lowerCamelCase = None elif encoder_hid_proj_type == "linear": __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) ) if added_emb_type == "prd": __lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) ) elif added_emb_type is None: __lowerCamelCase = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __lowerCamelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , ) for d in range(lowerCamelCase__ ) ] ) if norm_in_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) elif norm_in_type is None: __lowerCamelCase = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) __lowerCamelCase = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase_ ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return processors def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): module.set_processor(lowerCamelCase__ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int: '''simple docstring''' __lowerCamelCase = hidden_states.shape[0] __lowerCamelCase = timestep if not torch.is_tensor(lowerCamelCase__ ): __lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: __lowerCamelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase = self.time_proj(lowerCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __lowerCamelCase = timesteps_projected.to(dtype=self.dtype ) __lowerCamelCase = self.time_embedding(lowerCamelCase__ ) if self.embedding_proj_norm is not None: __lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ ) __lowerCamelCase = self.embedding_proj(lowerCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) __lowerCamelCase = self.proj_in(lowerCamelCase__ ) __lowerCamelCase = self.positional_embedding.to(hidden_states.dtype ) __lowerCamelCase = [] __lowerCamelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __lowerCamelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __lowerCamelCase = hidden_states[:, None, :] __lowerCamelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 ) additional_embeds.append(lowerCamelCase__ ) __lowerCamelCase = torch.cat( lowerCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __lowerCamelCase = F.pad( lowerCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __lowerCamelCase = hidden_states + positional_embeddings if attention_mask is not None: __lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 __lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) __lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __lowerCamelCase = self.norm_in(lowerCamelCase__ ) for block in self.transformer_blocks: __lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = self.norm_out(lowerCamelCase__ ) if self.prd_embedding is not None: __lowerCamelCase = hidden_states[:, -1] else: __lowerCamelCase = hidden_states[:, additional_embeddings_len:] __lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
348
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = (KDPMaDiscreteScheduler,) snake_case_ = 10 def lowercase_ ( self , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = { 'num_train_timesteps': 1_100, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**lowerCamelCase__ ) return config def lowercase_ ( self ) -> List[str]: '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase__ , beta_end=lowerCamelCase__ ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase__ ) def lowercase_ ( self ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config(prediction_type='v_prediction' ) __lowerCamelCase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCamelCase = sample.to(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): __lowerCamelCase = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = output.prev_sample __lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) __lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2 assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2 assert abs(result_mean.item() - 0.00_02 ) < 1e-3 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' if torch_device == "mps": return __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCamelCase = sample.to(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): __lowerCamelCase = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = output.prev_sample __lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) __lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' if torch_device == "mps": return __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase__ ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter.to(lowerCamelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowerCamelCase = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = output.prev_sample __lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) __lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) if str(lowerCamelCase__ ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3
348
import sys from collections import defaultdict class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [] def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.node_position[vertex] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = pos def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase = 2 * start + 1 else: __lowerCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase = temp, tempa __lowerCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCamelCase__ ) self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = position[index] while index != 0: __lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase = heap[parent] __lowerCamelCase = position[parent] self.set_position(position[parent] , lowerCamelCase__ ) else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , lowerCamelCase__ ) break __lowerCamelCase = parent else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , 0 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1 for i in range(lowerCamelCase__ , -1 , -1 ): self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = positions[0] __lowerCamelCase = sys.maxsize self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ ) return temp def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = Heap() __lowerCamelCase = [0] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase = [] for vertex in range(len(UpperCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase__ ) heap.node_position.append(UpperCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = 1 __lowerCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase = 0 __lowerCamelCase = distance heap.heapify(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(1 , len(UpperCamelCase__ ) ): __lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase__ )] ): __lowerCamelCase = distance heap.bottom_to_top( UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
348
1
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __A = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=18 , lowerCamelCase__=30 , lowerCamelCase__=400 , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=None , ) -> str: '''simple docstring''' __lowerCamelCase = size if size is not None else {'height': 20, 'width': 20} __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = num_channels __lowerCamelCase = image_size __lowerCamelCase = min_resolution __lowerCamelCase = max_resolution __lowerCamelCase = size __lowerCamelCase = do_normalize __lowerCamelCase = do_convert_rgb __lowerCamelCase = [512, 1_024, 2_048, 4_096] __lowerCamelCase = patch_size if patch_size is not None else {'height': 16, 'width': 16} def lowercase_ ( self ) -> int: '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' __lowerCamelCase = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = PixaStructImageProcessor if is_vision_available() else None def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = PixaStructImageProcessingTester(self ) @property def lowercase_ ( self ) -> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_convert_rgb' ) ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = self.image_processor_tester.prepare_dummy_image() __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) __lowerCamelCase = 2_048 __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' , max_patches=lowerCamelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1e-3 , rtol=1e-3 ) ) def lowercase_ ( self ) -> Dict: '''simple docstring''' # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( lowerCamelCase__ , return_tensors='pt' , max_patches=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowercase_ ( self ) -> int: '''simple docstring''' # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 __lowerCamelCase = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCamelCase__ ): __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowerCamelCase__ ).flattened_patches __lowerCamelCase = 'Hello' __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowerCamelCase__ , header_text=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( lowerCamelCase__ , return_tensors='pt' , max_patches=lowerCamelCase__ , header_text=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) __lowerCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( lowerCamelCase__ , return_tensors='pt' , max_patches=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowercase_ ( self ) -> str: '''simple docstring''' # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( lowerCamelCase__ , return_tensors='pt' , max_patches=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = PixaStructImageProcessor if is_vision_available() else None def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = PixaStructImageProcessingTester(self , num_channels=4 ) __lowerCamelCase = 3 @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_convert_rgb' ) ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( lowerCamelCase__ , return_tensors='pt' , max_patches=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
348
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) snake_case_ = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) snake_case_ = "question" snake_case_ = "context" snake_case_ = "answers" @property def lowercase_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
348
1
import argparse import copy def lowerCamelCase_ ( UpperCamelCase__ : str ) -> List[str]: """simple docstring""" __lowerCamelCase = {} with open(UpperCamelCase__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __lowerCamelCase = [] _list.append([line.split()[1], line.split()[2]] ) __lowerCamelCase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __lowerCamelCase = [] _list.append([line.split()[0], line.split()[2]] ) __lowerCamelCase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : int ) -> Optional[int]: """simple docstring""" with open(UpperCamelCase__ ) as f: __lowerCamelCase = f.read(1 ) __lowerCamelCase = start_node __lowerCamelCase = [] __lowerCamelCase = start_node __lowerCamelCase = 0 while visiting not in first_solution: __lowerCamelCase = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(UpperCamelCase__ ) and k[0] not in first_solution: __lowerCamelCase = k[1] __lowerCamelCase = k[0] first_solution.append(UpperCamelCase__ ) __lowerCamelCase = distance_of_first_solution + int(UpperCamelCase__ ) __lowerCamelCase = best_node first_solution.append(UpperCamelCase__ ) __lowerCamelCase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __lowerCamelCase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] ) -> str: """simple docstring""" __lowerCamelCase = [] for n in solution[1:-1]: __lowerCamelCase = solution.index(UpperCamelCase__ ) for kn in solution[1:-1]: __lowerCamelCase = solution.index(UpperCamelCase__ ) if n == kn: continue __lowerCamelCase = copy.deepcopy(UpperCamelCase__ ) __lowerCamelCase = kn __lowerCamelCase = n __lowerCamelCase = 0 for k in _tmp[:-1]: __lowerCamelCase = _tmp[_tmp.index(UpperCamelCase__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __lowerCamelCase = distance + int(i[1] ) _tmp.append(UpperCamelCase__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __lowerCamelCase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda UpperCamelCase__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] ) -> int: """simple docstring""" __lowerCamelCase = 1 __lowerCamelCase = first_solution __lowerCamelCase = [] __lowerCamelCase = distance_of_first_solution __lowerCamelCase = solution while count <= iters: __lowerCamelCase = find_neighborhood(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = 0 __lowerCamelCase = neighborhood[index_of_best_solution] __lowerCamelCase = len(UpperCamelCase__ ) - 1 __lowerCamelCase = False while not found: __lowerCamelCase = 0 while i < len(UpperCamelCase__ ): if best_solution[i] != solution[i]: __lowerCamelCase = best_solution[i] __lowerCamelCase = solution[i] break __lowerCamelCase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __lowerCamelCase = True __lowerCamelCase = best_solution[:-1] __lowerCamelCase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __lowerCamelCase = cost __lowerCamelCase = solution else: __lowerCamelCase = index_of_best_solution + 1 __lowerCamelCase = neighborhood[index_of_best_solution] if len(UpperCamelCase__ ) >= size: tabu_list.pop(0 ) __lowerCamelCase = count + 1 return best_solution_ever, best_cost def lowerCamelCase_ ( UpperCamelCase__ : Tuple=None ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = generate_neighbours(args.File ) __lowerCamelCase , __lowerCamelCase = generate_first_solution( args.File , UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase = tabu_search( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.Iterations , args.Size , ) print(F"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": __A = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
348
import requests __A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
348
1
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = MgpstrTokenizer snake_case_ = False snake_case_ = {} snake_case_ = False def lowercase_ ( self ) -> List[Any]: '''simple docstring''' super().setUp() # fmt: off __lowerCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __lowerCamelCase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '\n' ) def lowercase_ ( self , **lowerCamelCase__ ) -> str: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = 'tester' __lowerCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def lowercase_ ( self ) -> int: '''simple docstring''' pass def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __lowerCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __lowerCamelCase = tokenizer.encode([special_token] , add_special_tokens=lowerCamelCase__ ) self.assertEqual(len(lowerCamelCase__ ) , 1 ) __lowerCamelCase = tokenizer.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) self.assertTrue(special_token not in decoded ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __lowerCamelCase , __lowerCamelCase = self.get_input_output_texts(lowerCamelCase__ ) __lowerCamelCase = tokenizer.tokenize(lowerCamelCase__ ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) __lowerCamelCase = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertNotEqual(len(lowerCamelCase__ ) , 0 ) __lowerCamelCase = tokenizer.decode(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(text_a.replace(' ' , '' ) , lowerCamelCase__ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def lowercase_ ( self ) -> str: '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' pass
348
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __A = logging.get_logger(__name__) __A = TypeVar("DatasetType", Dataset, IterableDataset) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[List[float]] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) else: return _interleave_iterable_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : int = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ ) else: return _concatenate_iterable_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
348
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict=False ) -> List[Any]: """simple docstring""" try: __lowerCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCamelCase = default else: # KEY is set, convert it to True or False. try: __lowerCamelCase = strtobool(UpperCamelCase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __A = parse_flag_from_env("RUN_SLOW", default=False) __A = parse_flag_from_env("RUN_REMOTE", default=False) __A = parse_flag_from_env("RUN_LOCAL", default=True) __A = parse_flag_from_env("RUN_PACKAGED", default=True) # Compression __A = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4") __A = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr") __A = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard") # Audio __A = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"), reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ", ) # Beam __A = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"), reason="test requires apache-beam and a compatible dill version", ) # Dill-cloudpickle compatibility __A = pytest.mark.skipif( config.DILL_VERSION <= version.parse("0.3.2"), reason="test requires dill>0.3.2 for cloudpickle compatibility", ) # Windows __A = pytest.mark.skipif( sys.platform == "win32", reason="test should not be run on Windows", ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> int: """simple docstring""" try: import faiss # noqa except ImportError: __lowerCamelCase = unittest.skip('test requires faiss' )(UpperCamelCase__ ) return test_case def lowerCamelCase_ ( UpperCamelCase__ : int ) -> Union[str, Any]: """simple docstring""" try: import regex # noqa except ImportError: __lowerCamelCase = unittest.skip('test requires regex' )(UpperCamelCase__ ) return test_case def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" try: import elasticsearch # noqa except ImportError: __lowerCamelCase = unittest.skip('test requires elasticsearch' )(UpperCamelCase__ ) return test_case def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> Optional[Any]: """simple docstring""" try: import sqlalchemy # noqa except ImportError: __lowerCamelCase = unittest.skip('test requires sqlalchemy' )(UpperCamelCase__ ) return test_case def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> Optional[int]: """simple docstring""" if not config.TORCH_AVAILABLE: __lowerCamelCase = unittest.skip('test requires PyTorch' )(UpperCamelCase__ ) return test_case def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Union[str, Any]: """simple docstring""" if not config.TF_AVAILABLE: __lowerCamelCase = unittest.skip('test requires TensorFlow' )(UpperCamelCase__ ) return test_case def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> Optional[Any]: """simple docstring""" if not config.JAX_AVAILABLE: __lowerCamelCase = unittest.skip('test requires JAX' )(UpperCamelCase__ ) return test_case def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Tuple: """simple docstring""" if not config.PIL_AVAILABLE: __lowerCamelCase = unittest.skip('test requires Pillow' )(UpperCamelCase__ ) return test_case def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ) -> Dict: """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(UpperCamelCase__ ) else: return test_case def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> Any: """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(UpperCamelCase__ ) else: return test_case def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> List[Any]: """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(UpperCamelCase__ ) else: return test_case def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" def _require_spacy_model(UpperCamelCase__ : Optional[int] ): try: import spacy # noqa F401 spacy.load(UpperCamelCase__ ) except ImportError: return unittest.skip('test requires spacy' )(UpperCamelCase__ ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(UpperCamelCase__ ) )(UpperCamelCase__ ) else: return test_case return _require_spacy_model def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> Optional[Any]: """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(UpperCamelCase__ ) else: return test_case def lowerCamelCase_ ( UpperCamelCase__ : Tuple ) -> Optional[int]: """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(UpperCamelCase__ ) else: return test_case def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: __lowerCamelCase = unittest.skip('test is slow' )(UpperCamelCase__ ) return test_case def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> Any: """simple docstring""" if not _run_local_tests or _run_local_tests == 0: __lowerCamelCase = unittest.skip('test is local' )(UpperCamelCase__ ) return test_case def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> int: """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: __lowerCamelCase = unittest.skip('test is packaged' )(UpperCamelCase__ ) return test_case def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: __lowerCamelCase = unittest.skip('test requires remote' )(UpperCamelCase__ ) return test_case def lowerCamelCase_ ( *UpperCamelCase__ : Optional[Any] ) -> List[str]: """simple docstring""" def decorate(cls : Any ): for name, fn in cls.__dict__.items(): if callable(UpperCamelCase__ ) and name.startswith('test' ): for decorator in decorators: __lowerCamelCase = decorator(UpperCamelCase__ ) setattr(cls , UpperCamelCase__ , UpperCamelCase__ ) return cls return decorate class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" pass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 0 snake_case_ = 1 snake_case_ = 2 @contextmanager def lowerCamelCase_ ( UpperCamelCase__ : int=OfflineSimulationMode.CONNECTION_FAILS , UpperCamelCase__ : Optional[Any]=1E-16 ) -> List[str]: """simple docstring""" __lowerCamelCase = requests.Session().request def timeout_request(UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , **UpperCamelCase__ : Optional[int] ): # Change the url to an invalid url so that the connection hangs __lowerCamelCase = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __lowerCamelCase = timeout try: return online_request(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __lowerCamelCase = url __lowerCamelCase = e.args[0] __lowerCamelCase = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) __lowerCamelCase = (max_retry_error,) raise def raise_connection_error(UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , **UpperCamelCase__ : Optional[Any] ): raise requests.ConnectionError('Offline mode is enabled.' , request=UpperCamelCase__ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , UpperCamelCase__ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , UpperCamelCase__ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , UpperCamelCase__ ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def lowerCamelCase_ ( *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Tuple ) -> List[str]: """simple docstring""" __lowerCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*UpperCamelCase__ , **UpperCamelCase__ ) as tmp_dir: try: os.chdir(UpperCamelCase__ ) yield finally: os.chdir(UpperCamelCase__ ) @contextmanager def lowerCamelCase_ ( ) -> Tuple: """simple docstring""" import gc gc.collect() __lowerCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" import gc gc.collect() __lowerCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] ) -> Optional[int]: """simple docstring""" return deepcopy(UpperCamelCase__ ).integers(0 , 100 , 10 ).tolist() == deepcopy(UpperCamelCase__ ).integers(0 , 100 , 10 ).tolist() def lowerCamelCase_ ( UpperCamelCase__ : Tuple ) -> Optional[int]: """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(UpperCamelCase__ : List[Any] , *UpperCamelCase__ : Any , **UpperCamelCase__ : Dict ): try: return func(*UpperCamelCase__ , **UpperCamelCase__ ) except HTTPError as err: if str(UpperCamelCase__ ).startswith('500' ) or str(UpperCamelCase__ ).startswith('502' ): pytest.xfail(str(UpperCamelCase__ ) ) raise err return decorator.decorator(_wrapper , UpperCamelCase__ ) class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = returncode __lowerCamelCase = stdout __lowerCamelCase = stderr async def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ) -> List[str]: """simple docstring""" while True: __lowerCamelCase = await stream.readline() if line: callback(UpperCamelCase__ ) else: break async def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('\nRunning: ' , ' '.join(UpperCamelCase__ ) ) __lowerCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=UpperCamelCase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=UpperCamelCase__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCamelCase = [] __lowerCamelCase = [] def tee(UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Dict="" ): __lowerCamelCase = line.decode('utf-8' ).rstrip() sink.append(UpperCamelCase__ ) if not quiet: print(UpperCamelCase__ , UpperCamelCase__ , file=UpperCamelCase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda UpperCamelCase__ : tee(UpperCamelCase__ , UpperCamelCase__ , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda UpperCamelCase__ : tee(UpperCamelCase__ , UpperCamelCase__ , sys.stderr , label='stderr:' ) ), ] , timeout=UpperCamelCase__ , ) return _RunOutput(await p.wait() , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Optional[Any]=180 , UpperCamelCase__ : str=False , UpperCamelCase__ : Dict=True ) -> _RunOutput: """simple docstring""" __lowerCamelCase = asyncio.get_event_loop() __lowerCamelCase = loop.run_until_complete( _stream_subprocess(UpperCamelCase__ , env=UpperCamelCase__ , stdin=UpperCamelCase__ , timeout=UpperCamelCase__ , quiet=UpperCamelCase__ , echo=UpperCamelCase__ ) ) __lowerCamelCase = ' '.join(UpperCamelCase__ ) if result.returncode > 0: __lowerCamelCase = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def lowerCamelCase_ ( ) -> Tuple: """simple docstring""" __lowerCamelCase = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) __lowerCamelCase = re.sub(R'^gw' , '' , UpperCamelCase__ , 0 , re.M ) return int(UpperCamelCase__ ) def lowerCamelCase_ ( ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = 2_9500 __lowerCamelCase = pytest_xdist_worker_id() return port + uniq_delta
348
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = ["model.decoder.embed_positions.weights"] def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" if "emb" in name: __lowerCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: __lowerCamelCase = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: __lowerCamelCase = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: __lowerCamelCase = name.replace('linear1' , 'fc1' ) if "linear2" in name: __lowerCamelCase = name.replace('linear2' , 'fc2' ) if "norm1" in name: __lowerCamelCase = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: __lowerCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: __lowerCamelCase = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: __lowerCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: __lowerCamelCase = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ) -> Tuple[Dict, Dict]: """simple docstring""" __lowerCamelCase = list(state_dict.keys() ) __lowerCamelCase = {} for key in keys: __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = rename_keys(UpperCamelCase__ ) if "in_proj_weight" in key: # split fused qkv proj __lowerCamelCase = val[:hidden_size, :] __lowerCamelCase = val[hidden_size : 2 * hidden_size, :] __lowerCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCamelCase = val else: __lowerCamelCase = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase_ ( UpperCamelCase__ : str ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values __lowerCamelCase = 1024 __lowerCamelCase = 24 __lowerCamelCase = 16 elif checkpoint == "medium": __lowerCamelCase = 1536 __lowerCamelCase = 48 __lowerCamelCase = 24 elif checkpoint == "large": __lowerCamelCase = 2048 __lowerCamelCase = 48 __lowerCamelCase = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) __lowerCamelCase = MusicgenDecoderConfig( hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , ) return config @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]="cpu" ) -> List[Any]: """simple docstring""" __lowerCamelCase = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ ) __lowerCamelCase = decoder_config_from_checkpoint(UpperCamelCase__ ) __lowerCamelCase = fairseq_model.lm.state_dict() __lowerCamelCase , __lowerCamelCase = rename_state_dict( UpperCamelCase__ , hidden_size=decoder_config.hidden_size ) __lowerCamelCase = TaEncoderModel.from_pretrained('t5-base' ) __lowerCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' ) __lowerCamelCase = MusicgenForCausalLM(UpperCamelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model __lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ ) # check we can do a forward pass __lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCamelCase = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError('Incorrect shape for logits' ) # now construct the processor __lowerCamelCase = AutoTokenizer.from_pretrained('t5-base' ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) __lowerCamelCase = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # set the appropriate bos/pad token ids __lowerCamelCase = 2048 __lowerCamelCase = 2048 # set other default generation config params __lowerCamelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCamelCase = True __lowerCamelCase = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(UpperCamelCase__ ) processor.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) __A = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
348
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''mvp''' snake_case_ = ['''past_key_values'''] snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCamelCase__=50_267 , lowerCamelCase__=1_024 , lowerCamelCase__=12 , lowerCamelCase__=4_096 , lowerCamelCase__=16 , lowerCamelCase__=12 , lowerCamelCase__=4_096 , lowerCamelCase__=16 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__="gelu" , lowerCamelCase__=1_024 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=0.0 , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=2 , lowerCamelCase__=2 , lowerCamelCase__=False , lowerCamelCase__=100 , lowerCamelCase__=800 , **lowerCamelCase__ , ) -> str: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = d_model __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = classifier_dropout __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase = use_prompt __lowerCamelCase = prompt_length __lowerCamelCase = prompt_mid_dim super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , forced_eos_token_id=lowerCamelCase__ , **lowerCamelCase__ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , lowerCamelCase__ ): __lowerCamelCase = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ 'The config can simply be saved and uploaded again to be fixed.' )
348
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''sew-d''' def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=2 , lowerCamelCase__=512 , lowerCamelCase__=256 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=("p2c", "c2p") , lowerCamelCase__="layer_norm" , lowerCamelCase__="gelu_python" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-7 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = squeeze_factor __lowerCamelCase = max_position_embeddings __lowerCamelCase = position_buckets __lowerCamelCase = share_att_key __lowerCamelCase = relative_attention __lowerCamelCase = norm_rel_ebd __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layer_norm_eps __lowerCamelCase = feature_layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # sequence classification __lowerCamelCase = use_weighted_layer_sum __lowerCamelCase = classifier_proj_size @property def lowercase_ ( self ) -> Any: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
348
1
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) # TODO Update this __A = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''esm''' def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=1_026 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-12 , lowerCamelCase__="absolute" , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ , mask_token_id=lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = emb_layer_norm_before __lowerCamelCase = token_dropout __lowerCamelCase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __lowerCamelCase = EsmFoldConfig() elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = EsmFoldConfig(**lowerCamelCase__ ) __lowerCamelCase = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __lowerCamelCase = get_default_vocab_list() else: __lowerCamelCase = vocab_list else: __lowerCamelCase = None __lowerCamelCase = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , lowerCamelCase__ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = super().to_dict() if isinstance(self.esmfold_config , lowerCamelCase__ ): __lowerCamelCase = self.esmfold_config.to_dict() return output @dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = None snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = 0 snake_case_ = True snake_case_ = False snake_case_ = 1_28 snake_case_ = None def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' if self.trunk is None: __lowerCamelCase = TrunkConfig() elif isinstance(self.trunk , lowerCamelCase__ ): __lowerCamelCase = TrunkConfig(**self.trunk ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = asdict(self ) __lowerCamelCase = self.trunk.to_dict() return output @dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = 48 snake_case_ = 10_24 snake_case_ = 1_28 snake_case_ = 32 snake_case_ = 32 snake_case_ = 32 snake_case_ = 0 snake_case_ = 0 snake_case_ = False snake_case_ = 4 snake_case_ = 1_28 snake_case_ = None def lowercase_ ( self ) -> int: '''simple docstring''' if self.structure_module is None: __lowerCamelCase = StructureModuleConfig() elif isinstance(self.structure_module , lowerCamelCase__ ): __lowerCamelCase = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) __lowerCamelCase = self.sequence_state_dim // self.sequence_head_width __lowerCamelCase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = asdict(self ) __lowerCamelCase = self.structure_module.to_dict() return output @dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = 3_84 snake_case_ = 1_28 snake_case_ = 16 snake_case_ = 1_28 snake_case_ = 12 snake_case_ = 4 snake_case_ = 8 snake_case_ = 0.1 snake_case_ = 8 snake_case_ = 1 snake_case_ = 2 snake_case_ = 7 snake_case_ = 10 snake_case_ = 1E-8 snake_case_ = 1E5 def lowercase_ ( self ) -> str: '''simple docstring''' return asdict(self ) def lowerCamelCase_ ( ) -> Optional[Any]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
348
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __A = logging.get_logger("transformers.models.speecht5") __A = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __A = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __A = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __A = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __A = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __A = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __A = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __A = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __A = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = [] __A = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Dict: """simple docstring""" for attribute in key.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value elif weight_type == "running_mean": __lowerCamelCase = value elif weight_type == "running_var": __lowerCamelCase = value elif weight_type == "num_batches_tracked": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Any: """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = [] if task == "s2t": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2T __lowerCamelCase = IGNORE_KEYS_S2T elif task == "t2s": __lowerCamelCase = None __lowerCamelCase = MAPPING_T2S __lowerCamelCase = IGNORE_KEYS_T2S elif task == "s2s": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2S __lowerCamelCase = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(UpperCamelCase__ , UpperCamelCase__ ): logger.info(F"""{name} was ignored""" ) continue __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: __lowerCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2] __lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: __lowerCamelCase = 'weight_g' elif "weight_v" in name: __lowerCamelCase = 'weight_v' elif "bias" in name: __lowerCamelCase = 'bias' elif "weight" in name: __lowerCamelCase = 'weight' elif "running_mean" in name: __lowerCamelCase = 'running_mean' elif "running_var" in name: __lowerCamelCase = 'running_var' elif "num_batches_tracked" in name: __lowerCamelCase = 'num_batches_tracked' else: __lowerCamelCase = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> Tuple: """simple docstring""" __lowerCamelCase = full_name.split('conv_layers.' )[-1] __lowerCamelCase = name.split('.' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=None , ) -> Tuple: """simple docstring""" if config_path is not None: __lowerCamelCase = SpeechTaConfig.from_pretrained(UpperCamelCase__ ) else: __lowerCamelCase = SpeechTaConfig() if task == "s2t": __lowerCamelCase = config.max_text_positions __lowerCamelCase = SpeechTaForSpeechToText(UpperCamelCase__ ) elif task == "t2s": __lowerCamelCase = 1876 __lowerCamelCase = 600 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForTextToSpeech(UpperCamelCase__ ) elif task == "s2s": __lowerCamelCase = 1876 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForSpeechToSpeech(UpperCamelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: __lowerCamelCase = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken('<mask>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) __lowerCamelCase = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) __lowerCamelCase = SpeechTaFeatureExtractor() __lowerCamelCase = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) __lowerCamelCase = torch.load(UpperCamelCase__ ) recursively_load_weights(fairseq_checkpoint['model'] , UpperCamelCase__ , UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(UpperCamelCase__ ) model.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __A = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
348
1
import math import tensorflow as tf from packaging import version def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[str]: """simple docstring""" __lowerCamelCase = tf.convert_to_tensor(UpperCamelCase__ ) __lowerCamelCase = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCamelCase_ ( UpperCamelCase__ : str ) -> Dict: """simple docstring""" __lowerCamelCase = tf.convert_to_tensor(UpperCamelCase__ ) __lowerCamelCase = tf.cast(math.pi , x.dtype ) __lowerCamelCase = tf.cast(0.04_47_15 , x.dtype ) __lowerCamelCase = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(UpperCamelCase__ , 3 )) )) return x * cdf def lowerCamelCase_ ( UpperCamelCase__ : int ) -> List[Any]: """simple docstring""" __lowerCamelCase = tf.convert_to_tensor(UpperCamelCase__ ) return x * tf.tanh(tf.math.softplus(UpperCamelCase__ ) ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = tf.convert_to_tensor(UpperCamelCase__ ) __lowerCamelCase = tf.cast(0.04_47_15 , x.dtype ) __lowerCamelCase = tf.cast(0.79_78_84_56_08 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = tf.convert_to_tensor(UpperCamelCase__ ) __lowerCamelCase = tf.cast(1.7_02 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return tf.clip_by_value(_gelu(UpperCamelCase__ ) , -10 , 10 ) def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any]=-1 ) -> Tuple: """simple docstring""" __lowerCamelCase , __lowerCamelCase = tf.split(UpperCamelCase__ , 2 , axis=UpperCamelCase__ ) return a * tf.math.sigmoid(UpperCamelCase__ ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Union[str, Any]: """simple docstring""" return tf.keras.activations.gelu(UpperCamelCase__ , approximate=UpperCamelCase__ ) __A = tf.keras.activations.gelu __A = approximate_gelu_wrap else: __A = _gelu __A = _gelu_new __A = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCamelCase_ ( UpperCamelCase__ : Tuple ) -> Any: """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}""" )
348
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = [False] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) def dfs(UpperCamelCase__ : int , UpperCamelCase__ : int ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase__ , 1 - c ) for i in range(len(UpperCamelCase__ ) ): if not visited[i]: dfs(UpperCamelCase__ , 0 ) for i in range(len(UpperCamelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
348
1
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> str: """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
348
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __lowerCamelCase = tokenizer('Hello there' , return_tensors='pt' ).input_ids __lowerCamelCase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids __lowerCamelCase = model(input_ids.to(lowerCamelCase__ ) , labels=labels.to(lowerCamelCase__ ) ).loss __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } __A = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } __A = { "ctrl": 2_56, } __A = { "Pregnancy": 16_86_29, "Christianity": 76_75, "Explain": 10_64_23, "Fitness": 6_34_40, "Saving": 6_31_63, "Ask": 2_71_71, "Ass": 9_59_85, "Joke": 16_35_09, "Questions": 4_56_22, "Thoughts": 4_96_05, "Retail": 5_23_42, "Feminism": 16_43_38, "Writing": 1_19_92, "Atheism": 19_22_63, "Netflix": 4_86_16, "Computing": 3_96_39, "Opinion": 4_32_13, "Alone": 4_49_67, "Funny": 5_89_17, "Gaming": 4_03_58, "Human": 40_88, "India": 13_31, "Joker": 7_71_38, "Diet": 3_62_06, "Legal": 1_18_59, "Norman": 49_39, "Tip": 7_26_89, "Weight": 5_23_43, "Movies": 4_62_73, "Running": 2_34_25, "Science": 20_90, "Horror": 3_77_93, "Confession": 6_05_72, "Finance": 1_22_50, "Politics": 1_63_60, "Scary": 19_19_85, "Support": 1_26_54, "Technologies": 3_25_16, "Teenage": 6_61_60, "Event": 3_27_69, "Learned": 6_74_60, "Notion": 18_27_70, "Wikipedia": 3_75_83, "Books": 66_65, "Extract": 7_60_50, "Confessions": 10_27_01, "Conspiracy": 7_59_32, "Links": 6_36_74, "Narcissus": 15_04_25, "Relationship": 5_47_66, "Relationships": 13_47_96, "Reviews": 4_16_71, "News": 42_56, "Translation": 2_68_20, "multilingual": 12_84_06, } def lowerCamelCase_ ( UpperCamelCase__ : str ) -> Any: """simple docstring""" __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char __lowerCamelCase = set(UpperCamelCase__ ) return pairs class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = CONTROL_CODES def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="<unk>" , **lowerCamelCase__ ) -> str: '''simple docstring''' super().__init__(unk_token=lowerCamelCase__ , **lowerCamelCase__ ) with open(lowerCamelCase__ , encoding='utf-8' ) as vocab_handle: __lowerCamelCase = json.load(lowerCamelCase__ ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase__ , encoding='utf-8' ) as merges_handle: __lowerCamelCase = merges_handle.read().split('\n' )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in merges] __lowerCamelCase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __lowerCamelCase = {} @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' return len(self.encoder ) def lowercase_ ( self ) -> int: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if token in self.cache: return self.cache[token] __lowerCamelCase = tuple(lowerCamelCase__ ) __lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) __lowerCamelCase = get_pairs(lowerCamelCase__ ) if not pairs: return token while True: __lowerCamelCase = min(lowerCamelCase__ , key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(lowerCamelCase__ ): try: __lowerCamelCase = word.index(lowerCamelCase__ , lowerCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCamelCase = j if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(lowerCamelCase__ ) __lowerCamelCase = new_word if len(lowerCamelCase__ ) == 1: break else: __lowerCamelCase = get_pairs(lowerCamelCase__ ) __lowerCamelCase = '@@ '.join(lowerCamelCase__ ) __lowerCamelCase = word[:-4] __lowerCamelCase = word return word def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = re.findall(R'\S+\n?' , lowerCamelCase__ ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase__ ).split(' ' ) ) ) return split_tokens def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) ) def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' return self.decoder.get(lowerCamelCase__ , self.unk_token ) def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = ' '.join(lowerCamelCase__ ).replace('@@ ' , '' ).strip() return out_string def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) + '\n' ) __lowerCamelCase = 0 with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) __lowerCamelCase = token_index writer.write(' '.join(lowerCamelCase__ ) + '\n' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
348
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" __lowerCamelCase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowerCamelCase = [3, 3, 3, 3] __lowerCamelCase = [5, 5, 5, 5] elif "fl4" in model_name: __lowerCamelCase = [4, 4, 4, 4] __lowerCamelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowerCamelCase = [3, 3, 3, 3] if "lrf" in model_name: __lowerCamelCase = [3, 3, 3, 3] else: __lowerCamelCase = [2, 2, 2, 2] if "tiny" in model_name: __lowerCamelCase = 96 elif "small" in model_name: __lowerCamelCase = 96 elif "base" in model_name: __lowerCamelCase = 128 elif "large" in model_name: __lowerCamelCase = 192 elif "xlarge" in model_name: __lowerCamelCase = 256 elif "huge" in model_name: __lowerCamelCase = 352 # set label information __lowerCamelCase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowerCamelCase = 'imagenet-22k-id2label.json' else: __lowerCamelCase = 'imagenet-1k-id2label.json' __lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) __lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = FocalNetConfig( embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , focal_levels=UpperCamelCase__ , focal_windows=UpperCamelCase__ , use_conv_embed=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , use_post_layernorm=UpperCamelCase__ , use_layerscale=UpperCamelCase__ , ) return config def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> str: """simple docstring""" if "patch_embed.proj" in name: __lowerCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowerCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowerCamelCase = 'encoder.' + name if "encoder.layers" in name: __lowerCamelCase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowerCamelCase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowerCamelCase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowerCamelCase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowerCamelCase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowerCamelCase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowerCamelCase = 'layernorm.weight' if name == "norm.bias": __lowerCamelCase = 'layernorm.bias' if "head" in name: __lowerCamelCase = name.replace('head' , 'classifier' ) else: __lowerCamelCase = 'focalnet.' + name return name def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Dict: """simple docstring""" __lowerCamelCase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowerCamelCase = model_name_to_url[model_name] print('Checkpoint URL: ' , UpperCamelCase__ ) __lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val __lowerCamelCase = get_focalnet_config(UpperCamelCase__ ) __lowerCamelCase = FocalNetForImageClassification(UpperCamelCase__ ) model.eval() # load state dict model.load_state_dict(UpperCamelCase__ ) # verify conversion __lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase = BitImageProcessor( do_resize=UpperCamelCase__ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ , crop_size=224 , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , ) __lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) __lowerCamelCase = processor(images=UpperCamelCase__ , return_tensors='pt' ) __lowerCamelCase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) __lowerCamelCase = image_transforms(UpperCamelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCamelCase__ , atol=1E-4 ) __lowerCamelCase = model(**UpperCamelCase__ ) __lowerCamelCase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": __lowerCamelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": __lowerCamelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": __lowerCamelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": __lowerCamelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": __lowerCamelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) __A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
348
1
def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : bool = False ) -> bool: """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis __lowerCamelCase = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] __lowerCamelCase = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(UpperCamelCase__ , 1 ): if n < _p: # then we have our last prime to check __lowerCamelCase = primes[:idx] break __lowerCamelCase , __lowerCamelCase = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: __lowerCamelCase = False for r in range(UpperCamelCase__ ): __lowerCamelCase = pow(UpperCamelCase__ , d * 2**r , UpperCamelCase__ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): __lowerCamelCase = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowerCamelCase_ ( ) -> None: """simple docstring""" assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
348
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : list[float] , UpperCamelCase__ : list[float] ) -> float: """simple docstring""" __lowerCamelCase = sorted(numsa + numsa ) __lowerCamelCase , __lowerCamelCase = divmod(len(UpperCamelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __A = [float(x) for x in input("Enter the elements of first array: ").split()] __A = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
348
1
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> tuple[int, int]: """simple docstring""" if b == 0: return (1, 0) ((__lowerCamelCase) , (__lowerCamelCase)) = extended_euclid(UpperCamelCase__ , a % b ) __lowerCamelCase = a // b return (y, x - k * y) def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" ((__lowerCamelCase) , (__lowerCamelCase)) = extended_euclid(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = na * na __lowerCamelCase = ra * x * na + ra * y * na return (n % m + m) % m def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" ((__lowerCamelCase) , (__lowerCamelCase)) = extended_euclid(UpperCamelCase__ , UpperCamelCase__ ) if b < 0: __lowerCamelCase = (b % n + n) % n return b def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" __lowerCamelCase , __lowerCamelCase = invert_modulo(UpperCamelCase__ , UpperCamelCase__ ), invert_modulo(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = na * na __lowerCamelCase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
348
__A = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.3_5_5_8_1_8, } def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __lowerCamelCase = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {', '.join(UpperCamelCase__ )}""" ) raise ValueError(UpperCamelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
348
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __A = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __A = { "facebook/bart-base": 10_24, "facebook/bart-large": 10_24, "facebook/bart-large-mnli": 10_24, "facebook/bart-large-cnn": 10_24, "facebook/bart-large-xsum": 10_24, "yjernite/bart_eli5": 10_24, } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] snake_case_ = BartTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="replace" , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=False , lowerCamelCase__=True , **lowerCamelCase__ , ) -> Any: '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase__ ) != add_prefix_space: __lowerCamelCase = getattr(lowerCamelCase__ , pre_tok_state.pop('type' ) ) __lowerCamelCase = add_prefix_space __lowerCamelCase = pre_tok_class(**lowerCamelCase__ ) __lowerCamelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __lowerCamelCase = 'post_processor' __lowerCamelCase = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: __lowerCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowerCamelCase = tuple(state['sep'] ) if "cls" in state: __lowerCamelCase = tuple(state['cls'] ) __lowerCamelCase = False if state.get('add_prefix_space' , lowerCamelCase__ ) != add_prefix_space: __lowerCamelCase = add_prefix_space __lowerCamelCase = True if state.get('trim_offsets' , lowerCamelCase__ ) != trim_offsets: __lowerCamelCase = trim_offsets __lowerCamelCase = True if changes_to_apply: __lowerCamelCase = getattr(lowerCamelCase__ , state.pop('type' ) ) __lowerCamelCase = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property def lowercase_ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value __lowerCamelCase = value def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> BatchEncoding: '''simple docstring''' __lowerCamelCase = kwargs.get('is_split_into_words' , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> BatchEncoding: '''simple docstring''' __lowerCamelCase = kwargs.get('is_split_into_words' , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' __lowerCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> Tuple: '''simple docstring''' __lowerCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
348
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''philschmid/bart-large-cnn-samsum''' snake_case_ = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) snake_case_ = '''summarizer''' snake_case_ = AutoTokenizer snake_case_ = AutoModelForSeqaSeqLM snake_case_ = ['''text'''] snake_case_ = ['''text'''] def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.pre_processor(lowerCamelCase__ , return_tensors='pt' , truncation=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' return self.model.generate(**lowerCamelCase__ )[0] def lowercase_ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' return self.pre_processor.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ )
348
1
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __lowerCAmelCase : """simple docstring""" snake_case_ = BlenderbotConfig snake_case_ = {} snake_case_ = '''gelu''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=20 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=0 , ) -> List[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = bos_token_id def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowerCamelCase = prepare_blenderbot_inputs_dict(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = TFBlenderbotModel(config=lowerCamelCase__ ).get_decoder() __lowerCamelCase = inputs_dict['input_ids'] __lowerCamelCase = input_ids[:1, :] __lowerCamelCase = inputs_dict['attention_mask'][:1, :] __lowerCamelCase = inputs_dict['head_mask'] __lowerCamelCase = 1 # first forward pass __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , head_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx] __lowerCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase__ , lowerCamelCase__ , rtol=1e-3 ) def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : int=None , ) -> List[str]: """simple docstring""" if attention_mask is None: __lowerCamelCase = tf.cast(tf.math.not_equal(UpperCamelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () snake_case_ = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () snake_case_ = ( { '''conversational''': TFBlenderbotForConditionalGeneration, '''feature-extraction''': TFBlenderbotModel, '''summarization''': TFBlenderbotForConditionalGeneration, '''text2text-generation''': TFBlenderbotForConditionalGeneration, '''translation''': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = TFBlenderbotModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ ) def lowercase_ ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase__ ) @require_tokenizers @require_tf class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ['''My friends are cool but they eat too many carbs.'''] snake_case_ = '''facebook/blenderbot-400M-distill''' @cached_property def lowercase_ ( self ) -> Tuple: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.tokenizer(self.src_text , return_tensors='tf' ) __lowerCamelCase = self.model.generate( model_inputs.input_ids , ) __lowerCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCamelCase__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
348
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = True snake_case_ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] __lowerCamelCase = [1, 11, 50_265] self.assertEqual(list(output.shape ) , lowerCamelCase__ ) # compare the actual values for a slice. __lowerCamelCase = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] # compare the actual values for a slice. __lowerCamelCase = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
348
1
import os from typing import Dict, List, Tuple, TypeVar, Union __A = TypeVar("T") __A = Union[List[T], Tuple[T, ...]] __A = Union[T, List[T], Dict[str, T]] __A = Union[str, bytes, os.PathLike]
348
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] )
348
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __A = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __A = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" __A = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> Dict: """simple docstring""" def remove_articles(UpperCamelCase__ : Any ): __lowerCamelCase = re.compile(R'\b(a|an|the)\b' , re.UNICODE ) return re.sub(UpperCamelCase__ , ' ' , UpperCamelCase__ ) def white_space_fix(UpperCamelCase__ : Optional[int] ): return " ".join(text.split() ) def remove_punc(UpperCamelCase__ : List[Any] ): __lowerCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCamelCase__ : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase__ ) ) ) ) def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" return int(normalize_answer(UpperCamelCase__ ) == normalize_answer(UpperCamelCase__ ) ) def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> int: """simple docstring""" __lowerCamelCase = [any(compute_exact(UpperCamelCase__ , UpperCamelCase__ ) for ref in refs ) for pred, refs in zip(UpperCamelCase__ , UpperCamelCase__ )] return (sum(UpperCamelCase__ ) / len(UpperCamelCase__ )) * 100 def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ) -> List[str]: """simple docstring""" __lowerCamelCase = [rgram for rgrams in rgramslist for rgram in rgrams] __lowerCamelCase = Counter(UpperCamelCase__ ) __lowerCamelCase = Counter(UpperCamelCase__ ) __lowerCamelCase = Counter() for sgram, scount in sgramcounter.items(): __lowerCamelCase = scount * numref __lowerCamelCase = Counter(UpperCamelCase__ ) __lowerCamelCase = Counter() for cgram, ccount in cgramcounter.items(): __lowerCamelCase = ccount * numref # KEEP __lowerCamelCase = sgramcounter_rep & cgramcounter_rep __lowerCamelCase = keepgramcounter_rep & rgramcounter __lowerCamelCase = sgramcounter_rep & rgramcounter __lowerCamelCase = 0 __lowerCamelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __lowerCamelCase = 1 __lowerCamelCase = 1 if len(UpperCamelCase__ ) > 0: __lowerCamelCase = keeptmpscorea / len(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) __lowerCamelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) __lowerCamelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: __lowerCamelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION __lowerCamelCase = sgramcounter_rep - cgramcounter_rep __lowerCamelCase = delgramcounter_rep - rgramcounter __lowerCamelCase = sgramcounter_rep - rgramcounter __lowerCamelCase = 0 __lowerCamelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __lowerCamelCase = 1 if len(UpperCamelCase__ ) > 0: __lowerCamelCase = deltmpscorea / len(UpperCamelCase__ ) # ADDITION __lowerCamelCase = set(UpperCamelCase__ ) - set(UpperCamelCase__ ) __lowerCamelCase = set(UpperCamelCase__ ) & set(UpperCamelCase__ ) __lowerCamelCase = set(UpperCamelCase__ ) - set(UpperCamelCase__ ) __lowerCamelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __lowerCamelCase = 1 __lowerCamelCase = 1 if len(UpperCamelCase__ ) > 0: __lowerCamelCase = addtmpscore / len(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __lowerCamelCase = addtmpscore / len(UpperCamelCase__ ) __lowerCamelCase = 0 if addscore_precision > 0 or addscore_recall > 0: __lowerCamelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = len(UpperCamelCase__ ) __lowerCamelCase = ssent.split(' ' ) __lowerCamelCase = csent.split(' ' ) __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for rsent in rsents: __lowerCamelCase = rsent.split(' ' ) __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] ragramslist.append(UpperCamelCase__ ) for i in range(0 , len(UpperCamelCase__ ) - 1 ): if i < len(UpperCamelCase__ ) - 1: __lowerCamelCase = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(UpperCamelCase__ ) if i < len(UpperCamelCase__ ) - 2: __lowerCamelCase = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(UpperCamelCase__ ) if i < len(UpperCamelCase__ ) - 3: __lowerCamelCase = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(UpperCamelCase__ ) ragramslist.append(UpperCamelCase__ ) ragramslist.append(UpperCamelCase__ ) ragramslist.append(UpperCamelCase__ ) for i in range(0 , len(UpperCamelCase__ ) - 1 ): if i < len(UpperCamelCase__ ) - 1: __lowerCamelCase = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(UpperCamelCase__ ) if i < len(UpperCamelCase__ ) - 2: __lowerCamelCase = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(UpperCamelCase__ ) if i < len(UpperCamelCase__ ) - 3: __lowerCamelCase = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(UpperCamelCase__ ) for i in range(0 , len(UpperCamelCase__ ) - 1 ): if i < len(UpperCamelCase__ ) - 1: __lowerCamelCase = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(UpperCamelCase__ ) if i < len(UpperCamelCase__ ) - 2: __lowerCamelCase = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(UpperCamelCase__ ) if i < len(UpperCamelCase__ ) - 3: __lowerCamelCase = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(UpperCamelCase__ ) ((__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase)) = SARIngram(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ((__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase)) = SARIngram(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ((__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase)) = SARIngram(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ((__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase)) = SARIngram(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 __lowerCamelCase = sum([delascore, delascore, delascore, delascore] ) / 4 __lowerCamelCase = sum([addascore, addascore, addascore, addascore] ) / 4 __lowerCamelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : bool = True , UpperCamelCase__ : str = "13a" , UpperCamelCase__ : bool = True ) -> List[str]: """simple docstring""" if lowercase: __lowerCamelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: __lowerCamelCase = sacrebleu.metrics.bleu._get_tokenizer(UpperCamelCase__ )()(UpperCamelCase__ ) else: __lowerCamelCase = sacrebleu.TOKENIZERS[tokenizer]()(UpperCamelCase__ ) elif tokenizer == "moses": __lowerCamelCase = sacremoses.MosesTokenizer().tokenize(UpperCamelCase__ , return_str=UpperCamelCase__ , escape=UpperCamelCase__ ) elif tokenizer == "penn": __lowerCamelCase = sacremoses.MosesTokenizer().penn_tokenize(UpperCamelCase__ , return_str=UpperCamelCase__ ) else: __lowerCamelCase = sentence if not return_str: __lowerCamelCase = normalized_sent.split() return normalized_sent def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ) -> int: """simple docstring""" if not (len(UpperCamelCase__ ) == len(UpperCamelCase__ ) == len(UpperCamelCase__ )): raise ValueError('Sources length must match predictions and references lengths.' ) __lowerCamelCase = 0 for src, pred, refs in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): sari_score += SARIsent(normalize(UpperCamelCase__ ) , normalize(UpperCamelCase__ ) , [normalize(UpperCamelCase__ ) for sent in refs] ) __lowerCamelCase = sari_score / len(UpperCamelCase__ ) return 100 * sari_score def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str]="exp" , UpperCamelCase__ : int=None , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Any=False , UpperCamelCase__ : Union[str, Any]=False , ) -> List[str]: """simple docstring""" __lowerCamelCase = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) __lowerCamelCase = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] __lowerCamelCase = sacrebleu.corpus_bleu( UpperCamelCase__ , UpperCamelCase__ , smooth_method=UpperCamelCase__ , smooth_value=UpperCamelCase__ , force=UpperCamelCase__ , lowercase=UpperCamelCase__ , use_effective_order=UpperCamelCase__ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase_ ( self ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = {} result.update({'sari': compute_sari(sources=lowerCamelCase__ , predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) result.update({'exact': compute_em(predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) return result
348
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowercase_ ( self , lowerCamelCase__=0 ) -> int: '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) ) __lowerCamelCase = np.random.RandomState(lowerCamelCase__ ) __lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) # warmup pass to apply optimizations __lowerCamelCase = pipe(**self.get_dummy_inputs() ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ) -> int: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = ort.SessionOptions() __lowerCamelCase = False return options def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) # using the PNDM scheduler by default __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) __lowerCamelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
348
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''autoformer''' snake_case_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "student_t" , lowerCamelCase__ = "nll" , lowerCamelCase__ = 1 , lowerCamelCase__ = [1, 2, 3, 4, 5, 6, 7] , lowerCamelCase__ = True , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 64 , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 32 , lowerCamelCase__ = 32 , lowerCamelCase__ = "gelu" , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = True , lowerCamelCase__=True , lowerCamelCase__ = 10 , lowerCamelCase__ = 25 , lowerCamelCase__ = 3 , **lowerCamelCase__ , ) -> List[Any]: '''simple docstring''' # time series specific configuration __lowerCamelCase = prediction_length __lowerCamelCase = context_length if context_length is not None else prediction_length __lowerCamelCase = distribution_output __lowerCamelCase = loss __lowerCamelCase = input_size __lowerCamelCase = num_time_features __lowerCamelCase = lags_sequence __lowerCamelCase = scaling __lowerCamelCase = num_dynamic_real_features __lowerCamelCase = num_static_real_features __lowerCamelCase = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowerCamelCase__ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __lowerCamelCase = cardinality else: __lowerCamelCase = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowerCamelCase__ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __lowerCamelCase = embedding_dimension else: __lowerCamelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __lowerCamelCase = num_parallel_samples # Transformer architecture configuration __lowerCamelCase = input_size * len(self.lags_sequence ) + self._number_of_features __lowerCamelCase = d_model __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_attention_heads __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = encoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = use_cache # Autoformer __lowerCamelCase = label_length __lowerCamelCase = moving_average __lowerCamelCase = autocorrelation_factor super().__init__(is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ ) @property def lowercase_ ( self ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
348
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __A = logging.get_logger(__name__) __A = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''whisper''' snake_case_ = ['''past_key_values'''] snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCamelCase__=51_865 , lowerCamelCase__=80 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=1_536 , lowerCamelCase__=1_536 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=50_257 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=256 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=1_500 , lowerCamelCase__=448 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=None , lowerCamelCase__=[220, 50_256] , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=False , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=7 , **lowerCamelCase__ , ) -> str: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = num_mel_bins __lowerCamelCase = d_model __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase = max_source_positions __lowerCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size __lowerCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks __lowerCamelCase = median_filter_width super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , suppress_tokens=lowerCamelCase__ , begin_suppress_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowerCamelCase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: __lowerCamelCase = {0: 'batch'} else: __lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' ) return common_inputs def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 22_050 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 220 , ) -> Mapping[str, Any]: '''simple docstring''' __lowerCamelCase = OrderedDict() __lowerCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase__ , framework=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , time_duration=lowerCamelCase__ , frequency=lowerCamelCase__ , ) __lowerCamelCase = encoder_inputs['input_features'].shape[2] __lowerCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __lowerCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = encoder_inputs.pop('input_features' ) __lowerCamelCase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: __lowerCamelCase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def lowercase_ ( self ) -> float: '''simple docstring''' return 1e-3
348
1
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process __A = logging.getLogger(__name__) __A = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) __A = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = field( default=__magic_name__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) snake_case_ = field( default=__magic_name__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(__magic_name__ )} , ) snake_case_ = field( default=__magic_name__ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) snake_case_ = field( default=__magic_name__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) snake_case_ = field( default=__magic_name__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) snake_case_ = field( default=__magic_name__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) snake_case_ = field( default=__magic_name__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) snake_case_ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) snake_case_ = field( default=__magic_name__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = field( default=__magic_name__ , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) snake_case_ = field( default=__magic_name__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) snake_case_ = field(default=__magic_name__ , metadata={'''help''': '''The input training data file (a text file).'''} ) snake_case_ = field( default=__magic_name__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) snake_case_ = field( default=__magic_name__ , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) snake_case_ = field( default=__magic_name__ , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) snake_case_ = field( default=__magic_name__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) snake_case_ = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) snake_case_ = field( default=__magic_name__ , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) snake_case_ = field( default=__magic_name__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) snake_case_ = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) snake_case_ = field( default=__magic_name__ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' if self.train_file is not None: __lowerCamelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCamelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> List[Any]: """simple docstring""" with open(UpperCamelCase__ , 'r' , encoding='utf-8' ) as f: __lowerCamelCase = [json.loads(UpperCamelCase__ ) for line in f.read().splitlines() if (len(UpperCamelCase__ ) > 0 and not line.isspace())] assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) __lowerCamelCase = {c: dataset[c] for c in dataset.column_names} __lowerCamelCase = refs return Dataset.from_dict(UpperCamelCase__ ) def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCamelCase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCamelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) __lowerCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: __lowerCamelCase = {} if data_args.train_file is not None: __lowerCamelCase = data_args.train_file if data_args.validation_file is not None: __lowerCamelCase = data_args.validation_file __lowerCamelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCamelCase = 'text' __lowerCamelCase = load_dataset(UpperCamelCase__ , data_files=UpperCamelCase__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCamelCase = AutoConfig.from_pretrained(model_args.config_name , **UpperCamelCase__ ) elif model_args.model_name_or_path: __lowerCamelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCamelCase__ ) else: __lowerCamelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCamelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCamelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **UpperCamelCase__ ) elif model_args.model_name_or_path: __lowerCamelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **UpperCamelCase__ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCamelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) __lowerCamelCase = AutoModelForMaskedLM.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCamelCase = datasets['train'].column_names else: __lowerCamelCase = datasets['validation'].column_names __lowerCamelCase = 'text' if 'text' in column_names else column_names[0] __lowerCamelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(UpperCamelCase__ : Tuple ): # Remove empty lines __lowerCamelCase = [line for line in examples['text'] if len(UpperCamelCase__ ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=data_args.max_seq_length ) __lowerCamelCase = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCamelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCamelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCamelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCamelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCamelCase = DataCollatorForWholeWordMask(tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCamelCase = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCamelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCamelCase = model_args.model_name_or_path else: __lowerCamelCase = None __lowerCamelCase = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCamelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(UpperCamelCase__ , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation __lowerCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCamelCase = trainer.evaluate() __lowerCamelCase = math.exp(eval_output['eval_loss'] ) __lowerCamelCase = perplexity __lowerCamelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(UpperCamelCase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> str: """simple docstring""" main() if __name__ == "__main__": main()
348
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = rotary_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = None __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = FlaxGPTJModelTester(self ) def lowercase_ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @tooslow def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __lowerCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ ) __lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = False __lowerCamelCase = model.config.eos_token_id __lowerCamelCase = jax.jit(model.generate ) __lowerCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __lowerCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ ) __lowerCamelCase = fx_state with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = model_class.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __lowerCamelCase = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = pt_model_class.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ ) with torch.no_grad(): __lowerCamelCase = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowercase_ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
348
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = ['''input_features''', '''is_longer'''] def __init__( self , lowerCamelCase__=64 , lowerCamelCase__=48_000 , lowerCamelCase__=480 , lowerCamelCase__=10 , lowerCamelCase__=1_024 , lowerCamelCase__=0.0 , lowerCamelCase__=False , lowerCamelCase__ = 0 , lowerCamelCase__ = 14_000 , lowerCamelCase__ = None , lowerCamelCase__ = "fusion" , lowerCamelCase__ = "repeatpad" , **lowerCamelCase__ , ) -> Dict: '''simple docstring''' super().__init__( feature_size=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , padding_value=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCamelCase = top_db __lowerCamelCase = truncation __lowerCamelCase = padding __lowerCamelCase = fft_window_size __lowerCamelCase = (fft_window_size >> 1) + 1 __lowerCamelCase = hop_length __lowerCamelCase = max_length_s __lowerCamelCase = max_length_s * sampling_rate __lowerCamelCase = sampling_rate __lowerCamelCase = frequency_min __lowerCamelCase = frequency_max __lowerCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase__ , min_frequency=lowerCamelCase__ , max_frequency=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , norm=lowerCamelCase__ , mel_scale='htk' , ) __lowerCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase__ , min_frequency=lowerCamelCase__ , max_frequency=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , norm='slaney' , mel_scale='slaney' , ) def lowercase_ ( self ) -> Dict[str, Any]: '''simple docstring''' __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> np.ndarray: '''simple docstring''' __lowerCamelCase = spectrogram( lowerCamelCase__ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCamelCase__ , log_mel='dB' , ) return log_mel_spectrogram.T def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __lowerCamelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __lowerCamelCase = [0] # randomly choose index for each part __lowerCamelCase = np.random.choice(ranges[0] ) __lowerCamelCase = np.random.choice(ranges[1] ) __lowerCamelCase = np.random.choice(ranges[2] ) __lowerCamelCase = mel[idx_front : idx_front + chunk_frames, :] __lowerCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] __lowerCamelCase = mel[idx_back : idx_back + chunk_frames, :] __lowerCamelCase = torch.tensor(mel[None, None, :] ) __lowerCamelCase = torch.nn.functional.interpolate( lowerCamelCase__ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=lowerCamelCase__ ) __lowerCamelCase = mel_shrink[0][0].numpy() __lowerCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": __lowerCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __lowerCamelCase = len(lowerCamelCase__ ) - max_length __lowerCamelCase = np.random.randint(0 , overflow + 1 ) __lowerCamelCase = waveform[idx : idx + max_length] __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters ) __lowerCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __lowerCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __lowerCamelCase = np.stack([mel, mel, mel, mel] , axis=0 ) __lowerCamelCase = False else: __lowerCamelCase = self._random_mel_fusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: __lowerCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __lowerCamelCase = int(max_length / len(lowerCamelCase__ ) ) __lowerCamelCase = np.stack(np.tile(lowerCamelCase__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __lowerCamelCase = int(max_length / len(lowerCamelCase__ ) ) __lowerCamelCase = np.stack(np.tile(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = np.pad(lowerCamelCase__ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters ) __lowerCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> BatchFeature: '''simple docstring''' __lowerCamelCase = truncation if truncation is not None else self.truncation __lowerCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __lowerCamelCase = isinstance(lowerCamelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __lowerCamelCase = is_batched_numpy or ( isinstance(lowerCamelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCamelCase = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase__ , np.ndarray ): __lowerCamelCase = np.asarray(lowerCamelCase__ , dtype=np.floataa ) elif isinstance(lowerCamelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowerCamelCase = [np.asarray(lowerCamelCase__ )] # convert to mel spectrogram, truncate and pad if needed. __lowerCamelCase = [ self._get_input_mel(lowerCamelCase__ , max_length if max_length else self.nb_max_samples , lowerCamelCase__ , lowerCamelCase__ ) for waveform in raw_speech ] __lowerCamelCase = [] __lowerCamelCase = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase__ ) is_longer.append(lowerCamelCase__ ) if truncation == "fusion" and sum(lowerCamelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __lowerCamelCase = np.random.randint(0 , len(lowerCamelCase__ ) ) __lowerCamelCase = True if isinstance(input_mel[0] , lowerCamelCase__ ): __lowerCamelCase = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __lowerCamelCase = [[longer] for longer in is_longer] __lowerCamelCase = {'input_features': input_mel, 'is_longer': is_longer} __lowerCamelCase = BatchFeature(lowerCamelCase__ ) if return_tensors is not None: __lowerCamelCase = input_features.convert_to_tensors(lowerCamelCase__ ) return input_features
348
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __A = False class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self ) -> int: '''simple docstring''' return 12 @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return 12 @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowerCamelCase__ ) @property def lowercase_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = 12 __lowerCamelCase = 12 __lowerCamelCase = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } __lowerCamelCase = TransformeraDModel(**lowerCamelCase__ ) return model def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCamelCase__ ) __lowerCamelCase = VQDiffusionPipeline( vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'teddy bear playing in the pool' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings( learnable=lowerCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __lowerCamelCase = VQDiffusionPipeline( vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'teddy bear playing in the pool' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) __lowerCamelCase = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) __lowerCamelCase = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
348
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCamelCase_ ( UpperCamelCase__ : dict ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def lowerCamelCase_ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray ) -> XGBClassifier: """simple docstring""" __lowerCamelCase = XGBClassifier() classifier.fit(UpperCamelCase__ , UpperCamelCase__ ) return classifier def lowerCamelCase_ ( ) -> None: """simple docstring""" __lowerCamelCase = load_iris() __lowerCamelCase , __lowerCamelCase = data_handling(UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = train_test_split( UpperCamelCase__ , UpperCamelCase__ , test_size=0.25 ) __lowerCamelCase = iris['target_names'] # Create an XGBoost Classifier from the training data __lowerCamelCase = xgboost(UpperCamelCase__ , UpperCamelCase__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , display_labels=UpperCamelCase__ , cmap='Blues' , normalize='true' , ) plt.title('Normalized Confusion Matrix - IRIS Dataset' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
348
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = is_training __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = num_queries __lowerCamelCase = num_channels __lowerCamelCase = min_size __lowerCamelCase = max_size __lowerCamelCase = num_labels __lowerCamelCase = hidden_dim __lowerCamelCase = hidden_dim def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) __lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) __lowerCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() __lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() __lowerCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowerCamelCase = self.num_queries __lowerCamelCase = self.num_labels __lowerCamelCase = [1, 1, 1, 1] __lowerCamelCase = self.num_channels __lowerCamelCase = 64 __lowerCamelCase = 128 __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim return config def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = output.encoder_hidden_states __lowerCamelCase = output.pixel_decoder_hidden_states __lowerCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple: '''simple docstring''' with torch.no_grad(): __lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) __lowerCamelCase = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = MaskaFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowercase_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = (self.model_tester.min_size,) * 2 __lowerCamelCase = { 'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ), 'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } __lowerCamelCase = self.model_tester.get_config() __lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) __lowerCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A = 1e-4 def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase_ ( self ) -> Dict: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # masks_queries_logits __lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowerCamelCase = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] __lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits __lowerCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) __lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ ) __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']] __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']] with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
348
1
from scipy.stats import spearmanr import datasets __A = "\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n" __A = "\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n" __A = R"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase_ ( self ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = spearmanr(lowerCamelCase__ , lowerCamelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
348
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''mask2former''' snake_case_ = ['''swin'''] snake_case_ = {'''hidden_size''': '''hidden_dim'''} def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 1_024 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 6 , lowerCamelCase__ = 10 , lowerCamelCase__ = 8 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 2_048 , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 4 , lowerCamelCase__ = 255 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 12_544 , lowerCamelCase__ = 3.0 , lowerCamelCase__ = 0.75 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = True , lowerCamelCase__ = [4, 8, 16, 32] , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Tuple: '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowerCamelCase = CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = backbone_config.pop('model_type' ) __lowerCamelCase = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase = config_class.from_dict(lowerCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) __lowerCamelCase = backbone_config __lowerCamelCase = feature_size __lowerCamelCase = mask_feature_size __lowerCamelCase = hidden_dim __lowerCamelCase = encoder_feedforward_dim __lowerCamelCase = activation_function __lowerCamelCase = encoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = dropout __lowerCamelCase = dim_feedforward __lowerCamelCase = pre_norm __lowerCamelCase = enforce_input_projection __lowerCamelCase = common_stride __lowerCamelCase = ignore_value __lowerCamelCase = num_queries __lowerCamelCase = no_object_weight __lowerCamelCase = class_weight __lowerCamelCase = mask_weight __lowerCamelCase = dice_weight __lowerCamelCase = train_num_points __lowerCamelCase = oversample_ratio __lowerCamelCase = importance_sample_ratio __lowerCamelCase = init_std __lowerCamelCase = init_xavier_std __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = feature_strides __lowerCamelCase = output_auxiliary_logits __lowerCamelCase = decoder_layers super().__init__(**lowerCamelCase__ ) @classmethod def lowercase_ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' return cls( backbone_config=lowerCamelCase__ , **lowerCamelCase__ , ) def lowercase_ ( self ) -> Dict[str, any]: '''simple docstring''' __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.backbone_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
348
1
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = [False] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) def dfs(UpperCamelCase__ : int , UpperCamelCase__ : int ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase__ , 1 - c ) for i in range(len(UpperCamelCase__ ) ): if not visited[i]: dfs(UpperCamelCase__ , 0 ) for i in range(len(UpperCamelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
348
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple: '''simple docstring''' super().__init__() __lowerCamelCase = num_attention_heads __lowerCamelCase = attention_head_dim __lowerCamelCase = num_attention_heads * attention_head_dim __lowerCamelCase = additional_embeddings __lowerCamelCase = time_embed_dim or inner_dim __lowerCamelCase = embedding_proj_dim or embedding_dim __lowerCamelCase = clip_embed_dim or embedding_dim __lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 ) __lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if embedding_proj_norm_type is None: __lowerCamelCase = None elif embedding_proj_norm_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if encoder_hid_proj_type is None: __lowerCamelCase = None elif encoder_hid_proj_type == "linear": __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) ) if added_emb_type == "prd": __lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) ) elif added_emb_type is None: __lowerCamelCase = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __lowerCamelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , ) for d in range(lowerCamelCase__ ) ] ) if norm_in_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) elif norm_in_type is None: __lowerCamelCase = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) __lowerCamelCase = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase_ ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return processors def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): module.set_processor(lowerCamelCase__ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int: '''simple docstring''' __lowerCamelCase = hidden_states.shape[0] __lowerCamelCase = timestep if not torch.is_tensor(lowerCamelCase__ ): __lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: __lowerCamelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase = self.time_proj(lowerCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __lowerCamelCase = timesteps_projected.to(dtype=self.dtype ) __lowerCamelCase = self.time_embedding(lowerCamelCase__ ) if self.embedding_proj_norm is not None: __lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ ) __lowerCamelCase = self.embedding_proj(lowerCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) __lowerCamelCase = self.proj_in(lowerCamelCase__ ) __lowerCamelCase = self.positional_embedding.to(hidden_states.dtype ) __lowerCamelCase = [] __lowerCamelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __lowerCamelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __lowerCamelCase = hidden_states[:, None, :] __lowerCamelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 ) additional_embeds.append(lowerCamelCase__ ) __lowerCamelCase = torch.cat( lowerCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __lowerCamelCase = F.pad( lowerCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __lowerCamelCase = hidden_states + positional_embeddings if attention_mask is not None: __lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 __lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) __lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __lowerCamelCase = self.norm_in(lowerCamelCase__ ) for block in self.transformer_blocks: __lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = self.norm_out(lowerCamelCase__ ) if self.prd_embedding is not None: __lowerCamelCase = hidden_states[:, -1] else: __lowerCamelCase = hidden_states[:, additional_embeddings_len:] __lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
348
1
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __A = {"allegro/herbert-base-cased": 5_14} __A = {} class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_INIT_CONFIGURATION snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = HerbertTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__="</s>" , **lowerCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , **lowerCamelCase__ , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' __lowerCamelCase = [self.cls_token_id] __lowerCamelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' __lowerCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
348
import sys from collections import defaultdict class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [] def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.node_position[vertex] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = pos def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase = 2 * start + 1 else: __lowerCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase = temp, tempa __lowerCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCamelCase__ ) self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = position[index] while index != 0: __lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase = heap[parent] __lowerCamelCase = position[parent] self.set_position(position[parent] , lowerCamelCase__ ) else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , lowerCamelCase__ ) break __lowerCamelCase = parent else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , 0 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1 for i in range(lowerCamelCase__ , -1 , -1 ): self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = positions[0] __lowerCamelCase = sys.maxsize self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ ) return temp def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = Heap() __lowerCamelCase = [0] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase = [] for vertex in range(len(UpperCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase__ ) heap.node_position.append(UpperCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = 1 __lowerCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase = 0 __lowerCamelCase = distance heap.heapify(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(1 , len(UpperCamelCase__ ) ): __lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase__ )] ): __lowerCamelCase = distance heap.bottom_to_top( UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
348
1
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __A = 50_00_00 __A , __A = os.path.split(__file__) __A = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def lowerCamelCase_ ( UpperCamelCase__ : datasets.Dataset , **UpperCamelCase__ : str ) -> List[str]: """simple docstring""" __lowerCamelCase = dataset.map(**UpperCamelCase__ ) @get_duration def lowerCamelCase_ ( UpperCamelCase__ : datasets.Dataset , **UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = dataset.filter(**UpperCamelCase__ ) def lowerCamelCase_ ( ) -> Any: """simple docstring""" __lowerCamelCase = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) __lowerCamelCase = generate_example_dataset( os.path.join(UpperCamelCase__ , 'dataset.arrow' ) , UpperCamelCase__ , num_examples=UpperCamelCase__ ) __lowerCamelCase = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=UpperCamelCase__ ) def tokenize(UpperCamelCase__ : List[Any] ): return tokenizer(examples['text'] ) __lowerCamelCase = map(UpperCamelCase__ ) __lowerCamelCase = map(UpperCamelCase__ , batched=UpperCamelCase__ ) __lowerCamelCase = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ ) with dataset.formatted_as(type='numpy' ): __lowerCamelCase = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ ) with dataset.formatted_as(type='pandas' ): __lowerCamelCase = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ ) with dataset.formatted_as(type='torch' , columns='numbers' ): __lowerCamelCase = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): __lowerCamelCase = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ ) __lowerCamelCase = map(UpperCamelCase__ , function=UpperCamelCase__ , batched=UpperCamelCase__ ) __lowerCamelCase = filter(UpperCamelCase__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(UpperCamelCase__ , 'wb' ) as f: f.write(json.dumps(UpperCamelCase__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
348
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) snake_case_ = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) snake_case_ = "question" snake_case_ = "context" snake_case_ = "answers" @property def lowercase_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
348
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = True snake_case_ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] __lowerCamelCase = [1, 11, 50_265] self.assertEqual(list(output.shape ) , lowerCamelCase__ ) # compare the actual values for a slice. __lowerCamelCase = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] # compare the actual values for a slice. __lowerCamelCase = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
348
import requests __A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
348
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A = logging.get_logger(__name__) __A = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" snake_case_ = '''swin''' snake_case_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowerCamelCase__=224 , lowerCamelCase__=4 , lowerCamelCase__=3 , lowerCamelCase__=96 , lowerCamelCase__=[2, 2, 6, 2] , lowerCamelCase__=[3, 6, 12, 24] , lowerCamelCase__=7 , lowerCamelCase__=4.0 , lowerCamelCase__=True , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__="gelu" , lowerCamelCase__=False , lowerCamelCase__=0.02 , lowerCamelCase__=1e-5 , lowerCamelCase__=32 , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ , ) -> List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = embed_dim __lowerCamelCase = depths __lowerCamelCase = len(lowerCamelCase__ ) __lowerCamelCase = num_heads __lowerCamelCase = window_size __lowerCamelCase = mlp_ratio __lowerCamelCase = qkv_bias __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = drop_path_rate __lowerCamelCase = hidden_act __lowerCamelCase = use_absolute_embeddings __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowerCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) ) __lowerCamelCase = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] __lowerCamelCase , __lowerCamelCase = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = version.parse('''1.11''' ) @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowercase_ ( self ) -> float: '''simple docstring''' return 1e-4
348
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __A = logging.get_logger(__name__) __A = TypeVar("DatasetType", Dataset, IterableDataset) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[List[float]] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) else: return _interleave_iterable_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : int = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ ) else: return _concatenate_iterable_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
348
1
def lowerCamelCase_ ( UpperCamelCase__ : int = 10 ) -> str: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or n < 0: raise ValueError('Invalid input' ) __lowerCamelCase = 10**n __lowerCamelCase = 2_8433 * (pow(2 , 783_0457 , UpperCamelCase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(10) = }''')
348
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = ["model.decoder.embed_positions.weights"] def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" if "emb" in name: __lowerCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: __lowerCamelCase = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: __lowerCamelCase = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: __lowerCamelCase = name.replace('linear1' , 'fc1' ) if "linear2" in name: __lowerCamelCase = name.replace('linear2' , 'fc2' ) if "norm1" in name: __lowerCamelCase = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: __lowerCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: __lowerCamelCase = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: __lowerCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: __lowerCamelCase = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ) -> Tuple[Dict, Dict]: """simple docstring""" __lowerCamelCase = list(state_dict.keys() ) __lowerCamelCase = {} for key in keys: __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = rename_keys(UpperCamelCase__ ) if "in_proj_weight" in key: # split fused qkv proj __lowerCamelCase = val[:hidden_size, :] __lowerCamelCase = val[hidden_size : 2 * hidden_size, :] __lowerCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCamelCase = val else: __lowerCamelCase = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase_ ( UpperCamelCase__ : str ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values __lowerCamelCase = 1024 __lowerCamelCase = 24 __lowerCamelCase = 16 elif checkpoint == "medium": __lowerCamelCase = 1536 __lowerCamelCase = 48 __lowerCamelCase = 24 elif checkpoint == "large": __lowerCamelCase = 2048 __lowerCamelCase = 48 __lowerCamelCase = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) __lowerCamelCase = MusicgenDecoderConfig( hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , ) return config @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]="cpu" ) -> List[Any]: """simple docstring""" __lowerCamelCase = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ ) __lowerCamelCase = decoder_config_from_checkpoint(UpperCamelCase__ ) __lowerCamelCase = fairseq_model.lm.state_dict() __lowerCamelCase , __lowerCamelCase = rename_state_dict( UpperCamelCase__ , hidden_size=decoder_config.hidden_size ) __lowerCamelCase = TaEncoderModel.from_pretrained('t5-base' ) __lowerCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' ) __lowerCamelCase = MusicgenForCausalLM(UpperCamelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model __lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ ) # check we can do a forward pass __lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCamelCase = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError('Incorrect shape for logits' ) # now construct the processor __lowerCamelCase = AutoTokenizer.from_pretrained('t5-base' ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) __lowerCamelCase = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # set the appropriate bos/pad token ids __lowerCamelCase = 2048 __lowerCamelCase = 2048 # set other default generation config params __lowerCamelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCamelCase = True __lowerCamelCase = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(UpperCamelCase__ ) processor.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) __A = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
348
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = (PNDMScheduler,) snake_case_ = (('''num_inference_steps''', 50),) def lowercase_ ( self , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = { 'num_train_timesteps': 1_000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**lowerCamelCase__ ) return config def lowercase_ ( self , lowerCamelCase__=0 , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = dict(self.forward_default_kwargs ) __lowerCamelCase = kwargs.pop('num_inference_steps' , lowerCamelCase__ ) __lowerCamelCase = self.dummy_sample __lowerCamelCase = 0.1 * sample __lowerCamelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __lowerCamelCase = self.get_scheduler_config(**lowerCamelCase__ ) __lowerCamelCase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals __lowerCamelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) __lowerCamelCase = scheduler_class.from_pretrained(lowerCamelCase__ ) new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals __lowerCamelCase = dummy_past_residuals[:] __lowerCamelCase = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample __lowerCamelCase = new_scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __lowerCamelCase = scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample __lowerCamelCase = new_scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass def lowercase_ ( self , lowerCamelCase__=0 , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = dict(self.forward_default_kwargs ) __lowerCamelCase = kwargs.pop('num_inference_steps' , lowerCamelCase__ ) __lowerCamelCase = self.dummy_sample __lowerCamelCase = 0.1 * sample __lowerCamelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) __lowerCamelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) __lowerCamelCase = scheduler_class.from_pretrained(lowerCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) __lowerCamelCase = dummy_past_residuals[:] __lowerCamelCase = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample __lowerCamelCase = new_scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __lowerCamelCase = scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample __lowerCamelCase = new_scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase_ ( self , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config(**lowerCamelCase__ ) __lowerCamelCase = scheduler_class(**lowerCamelCase__ ) __lowerCamelCase = 10 __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.prk_timesteps ): __lowerCamelCase = model(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): __lowerCamelCase = model(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample return sample def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = dict(self.forward_default_kwargs ) __lowerCamelCase = kwargs.pop('num_inference_steps' , lowerCamelCase__ ) for scheduler_class in self.scheduler_classes: __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**lowerCamelCase__ ) __lowerCamelCase = self.dummy_sample __lowerCamelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase__ , 'set_timesteps' ): scheduler.set_timesteps(lowerCamelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase__ , 'set_timesteps' ): __lowerCamelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __lowerCamelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __lowerCamelCase = dummy_past_residuals[:] __lowerCamelCase = scheduler.step_prk(lowerCamelCase__ , 0 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample __lowerCamelCase = scheduler.step_prk(lowerCamelCase__ , 1 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __lowerCamelCase = scheduler.step_plms(lowerCamelCase__ , 0 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample __lowerCamelCase = scheduler.step_plms(lowerCamelCase__ , 1 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase__ ) __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config(steps_offset=1 ) __lowerCamelCase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase__ , beta_end=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def lowercase_ ( self ) -> int: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 __lowerCamelCase = 27 for scheduler_class in self.scheduler_classes: __lowerCamelCase = self.dummy_sample __lowerCamelCase = 0.1 * sample __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): __lowerCamelCase = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample def lowercase_ ( self ) -> str: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**lowerCamelCase__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.full_loop() __lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) __lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1e-2 assert abs(result_mean.item() - 0.25_80 ) < 1e-3 def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = self.full_loop(prediction_type='v_prediction' ) __lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) __lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1e-2 assert abs(result_mean.item() - 0.08_78 ) < 1e-3 def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' # We specify different beta, so that the first alpha is 0.99 __lowerCamelCase = self.full_loop(set_alpha_to_one=lowerCamelCase__ , beta_start=0.01 ) __lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) __lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1e-2 assert abs(result_mean.item() - 0.29_95 ) < 1e-3 def lowercase_ ( self ) -> str: '''simple docstring''' # We specify different beta, so that the first alpha is 0.99 __lowerCamelCase = self.full_loop(set_alpha_to_one=lowerCamelCase__ , beta_start=0.01 ) __lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) __lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1e-2 assert abs(result_mean.item() - 0.24_34 ) < 1e-3
348
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''sew-d''' def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=2 , lowerCamelCase__=512 , lowerCamelCase__=256 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=("p2c", "c2p") , lowerCamelCase__="layer_norm" , lowerCamelCase__="gelu_python" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-7 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = squeeze_factor __lowerCamelCase = max_position_embeddings __lowerCamelCase = position_buckets __lowerCamelCase = share_att_key __lowerCamelCase = relative_attention __lowerCamelCase = norm_rel_ebd __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layer_norm_eps __lowerCamelCase = feature_layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # sequence classification __lowerCamelCase = use_weighted_layer_sum __lowerCamelCase = classifier_proj_size @property def lowercase_ ( self ) -> Any: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
348
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __A = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) __A = [] __A = [] __A = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} __A = [ { "type": "header", "text": { "type": "plain_text", "text": f'''🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results''', "emoji": True, }, } ] __A = 0 for log in Path().glob("*.log"): __A = 0 with open(log, "r") as f: for line in f: __A = json.loads(line) if line.get("nodeid", "") != "": __A = line["nodeid"] if line.get("duration", None) is not None: __A = f'''{line['duration']:.4f}''' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __A = [] log.unlink() __A = "" __A = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" __A = [] __A = {} for test in failed_tests: __A = test[0].split("::") __A = data[0].split("/")[-1] if data[0] not in filesafailed: __A = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __A = [test[0] for test in failed_table] __A = list(set(files)) # Count number of instances in failed_tests __A = [] for file in individual_files: table.append([file, len(filesafailed[file])]) __A = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: __A = "Too many failed tests, please see the full report in the Action results." __A = len(err) + 10 __A = message[: 30_00 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: __A = "No failed tests! 🤗" print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient __A = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": __A = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) __A = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f'''https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } payload.append(action_button) __A = { "type": "context", "elements": [ { "type": "plain_text", "text": f'''Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}''', } ], } payload.append(date_report) __A = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) __A = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __A = "" for i, row in enumerate(test_failures): if row[0] != test_class: __A = row[0] else: __A = "" __A = { "type": "section", "text": { "type": "mrkdwn", "text": f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```''', }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
348
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __A = logging.get_logger("transformers.models.speecht5") __A = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __A = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __A = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __A = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __A = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __A = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __A = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __A = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __A = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = [] __A = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Dict: """simple docstring""" for attribute in key.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value elif weight_type == "running_mean": __lowerCamelCase = value elif weight_type == "running_var": __lowerCamelCase = value elif weight_type == "num_batches_tracked": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Any: """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = [] if task == "s2t": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2T __lowerCamelCase = IGNORE_KEYS_S2T elif task == "t2s": __lowerCamelCase = None __lowerCamelCase = MAPPING_T2S __lowerCamelCase = IGNORE_KEYS_T2S elif task == "s2s": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2S __lowerCamelCase = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(UpperCamelCase__ , UpperCamelCase__ ): logger.info(F"""{name} was ignored""" ) continue __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: __lowerCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2] __lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: __lowerCamelCase = 'weight_g' elif "weight_v" in name: __lowerCamelCase = 'weight_v' elif "bias" in name: __lowerCamelCase = 'bias' elif "weight" in name: __lowerCamelCase = 'weight' elif "running_mean" in name: __lowerCamelCase = 'running_mean' elif "running_var" in name: __lowerCamelCase = 'running_var' elif "num_batches_tracked" in name: __lowerCamelCase = 'num_batches_tracked' else: __lowerCamelCase = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> Tuple: """simple docstring""" __lowerCamelCase = full_name.split('conv_layers.' )[-1] __lowerCamelCase = name.split('.' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=None , ) -> Tuple: """simple docstring""" if config_path is not None: __lowerCamelCase = SpeechTaConfig.from_pretrained(UpperCamelCase__ ) else: __lowerCamelCase = SpeechTaConfig() if task == "s2t": __lowerCamelCase = config.max_text_positions __lowerCamelCase = SpeechTaForSpeechToText(UpperCamelCase__ ) elif task == "t2s": __lowerCamelCase = 1876 __lowerCamelCase = 600 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForTextToSpeech(UpperCamelCase__ ) elif task == "s2s": __lowerCamelCase = 1876 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForSpeechToSpeech(UpperCamelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: __lowerCamelCase = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken('<mask>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) __lowerCamelCase = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) __lowerCamelCase = SpeechTaFeatureExtractor() __lowerCamelCase = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) __lowerCamelCase = torch.load(UpperCamelCase__ ) recursively_load_weights(fairseq_checkpoint['model'] , UpperCamelCase__ , UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(UpperCamelCase__ ) model.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __A = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
348
1
import requests __A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
348
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = [False] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) def dfs(UpperCamelCase__ : int , UpperCamelCase__ : int ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase__ , 1 - c ) for i in range(len(UpperCamelCase__ ) ): if not visited[i]: dfs(UpperCamelCase__ , 0 ) for i in range(len(UpperCamelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
348
1
from sklearn.metrics import matthews_corrcoef import datasets __A = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __A = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __A = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> Optional[Any]: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(lowerCamelCase__ , lowerCamelCase__ , sample_weight=lowerCamelCase__ ) ), }
348
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __lowerCamelCase = tokenizer('Hello there' , return_tensors='pt' ).input_ids __lowerCamelCase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids __lowerCamelCase = model(input_ids.to(lowerCamelCase__ ) , labels=labels.to(lowerCamelCase__ ) ).loss __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''text''': Value('''string''' )} ) snake_case_ = Features({'''labels''': ClassLabel} ) snake_case_ = "text" snake_case_ = "labels" def lowercase_ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , lowerCamelCase__ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) __lowerCamelCase = copy.deepcopy(self ) __lowerCamelCase = self.label_schema.copy() __lowerCamelCase = features[self.label_column] __lowerCamelCase = label_schema return task_template @property def lowercase_ ( self ) -> Dict[str, str]: '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
348
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" __lowerCamelCase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowerCamelCase = [3, 3, 3, 3] __lowerCamelCase = [5, 5, 5, 5] elif "fl4" in model_name: __lowerCamelCase = [4, 4, 4, 4] __lowerCamelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowerCamelCase = [3, 3, 3, 3] if "lrf" in model_name: __lowerCamelCase = [3, 3, 3, 3] else: __lowerCamelCase = [2, 2, 2, 2] if "tiny" in model_name: __lowerCamelCase = 96 elif "small" in model_name: __lowerCamelCase = 96 elif "base" in model_name: __lowerCamelCase = 128 elif "large" in model_name: __lowerCamelCase = 192 elif "xlarge" in model_name: __lowerCamelCase = 256 elif "huge" in model_name: __lowerCamelCase = 352 # set label information __lowerCamelCase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowerCamelCase = 'imagenet-22k-id2label.json' else: __lowerCamelCase = 'imagenet-1k-id2label.json' __lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) __lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = FocalNetConfig( embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , focal_levels=UpperCamelCase__ , focal_windows=UpperCamelCase__ , use_conv_embed=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , use_post_layernorm=UpperCamelCase__ , use_layerscale=UpperCamelCase__ , ) return config def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> str: """simple docstring""" if "patch_embed.proj" in name: __lowerCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowerCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowerCamelCase = 'encoder.' + name if "encoder.layers" in name: __lowerCamelCase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowerCamelCase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowerCamelCase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowerCamelCase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowerCamelCase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowerCamelCase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowerCamelCase = 'layernorm.weight' if name == "norm.bias": __lowerCamelCase = 'layernorm.bias' if "head" in name: __lowerCamelCase = name.replace('head' , 'classifier' ) else: __lowerCamelCase = 'focalnet.' + name return name def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Dict: """simple docstring""" __lowerCamelCase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowerCamelCase = model_name_to_url[model_name] print('Checkpoint URL: ' , UpperCamelCase__ ) __lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val __lowerCamelCase = get_focalnet_config(UpperCamelCase__ ) __lowerCamelCase = FocalNetForImageClassification(UpperCamelCase__ ) model.eval() # load state dict model.load_state_dict(UpperCamelCase__ ) # verify conversion __lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase = BitImageProcessor( do_resize=UpperCamelCase__ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ , crop_size=224 , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , ) __lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) __lowerCamelCase = processor(images=UpperCamelCase__ , return_tensors='pt' ) __lowerCamelCase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) __lowerCamelCase = image_transforms(UpperCamelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCamelCase__ , atol=1E-4 ) __lowerCamelCase = model(**UpperCamelCase__ ) __lowerCamelCase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": __lowerCamelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": __lowerCamelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": __lowerCamelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": __lowerCamelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": __lowerCamelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) __A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
348
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small' ) __lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __lowerCamelCase = tokenizer('Hello there' , return_tensors='np' ).input_ids __lowerCamelCase = tokenizer('Hi I am' , return_tensors='np' ).input_ids __lowerCamelCase = shift_tokens_right(lowerCamelCase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) __lowerCamelCase = model(lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ ).logits __lowerCamelCase = optax.softmax_cross_entropy(lowerCamelCase__ , onehot(lowerCamelCase__ , logits.shape[-1] ) ).mean() __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : list[float] , UpperCamelCase__ : list[float] ) -> float: """simple docstring""" __lowerCamelCase = sorted(numsa + numsa ) __lowerCamelCase , __lowerCamelCase = divmod(len(UpperCamelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __A = [float(x) for x in input("Enter the elements of first array: ").split()] __A = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
348
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : int ) -> Optional[int]: """simple docstring""" __lowerCamelCase = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: __lowerCamelCase = s_dict.pop(UpperCamelCase__ ) elif "subsample" in key: __lowerCamelCase = s_dict.pop(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> str: """simple docstring""" __lowerCamelCase , __lowerCamelCase = emb.weight.shape __lowerCamelCase = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) __lowerCamelCase = emb.weight.data return lin_layer def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Tuple: """simple docstring""" __lowerCamelCase = torch.load(UpperCamelCase__ , map_location='cpu' ) __lowerCamelCase = mam_aaa['args'] __lowerCamelCase = mam_aaa['model'] __lowerCamelCase = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(UpperCamelCase__ ) rename_keys(UpperCamelCase__ ) __lowerCamelCase = state_dict['decoder.embed_tokens.weight'].shape[0] __lowerCamelCase = args.share_decoder_input_output_embed __lowerCamelCase = [int(UpperCamelCase__ ) for i in args.conv_kernel_sizes.split(',' )] __lowerCamelCase = SpeechaTextConfig( vocab_size=UpperCamelCase__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , num_conv_layers=len(UpperCamelCase__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=UpperCamelCase__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=UpperCamelCase__ , num_beams=5 , max_length=200 , use_cache=UpperCamelCase__ , decoder_start_token_id=2 , early_stopping=UpperCamelCase__ , ) __lowerCamelCase = SpeechaTextForConditionalGeneration(UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase = model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0 and not set(UpperCamelCase__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F""" but all the following weights are missing {missing}""" ) if tie_embeds: __lowerCamelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: __lowerCamelCase = lm_head_weights model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") __A = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
348
__A = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.3_5_5_8_1_8, } def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __lowerCamelCase = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {', '.join(UpperCamelCase__ )}""" ) raise ValueError(UpperCamelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
348
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
348
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''philschmid/bart-large-cnn-samsum''' snake_case_ = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) snake_case_ = '''summarizer''' snake_case_ = AutoTokenizer snake_case_ = AutoModelForSeqaSeqLM snake_case_ = ['''text'''] snake_case_ = ['''text'''] def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.pre_processor(lowerCamelCase__ , return_tensors='pt' , truncation=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' return self.model.generate(**lowerCamelCase__ )[0] def lowercase_ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' return self.pre_processor.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ )
348
1
def lowerCamelCase_ ( UpperCamelCase__ : bytes ) -> str: """simple docstring""" return "".join([hex(UpperCamelCase__ )[2:].zfill(2 ).upper() for byte in list(UpperCamelCase__ )] ) def lowerCamelCase_ ( UpperCamelCase__ : str ) -> bytes: """simple docstring""" if (len(UpperCamelCase__ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(UpperCamelCase__ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(UpperCamelCase__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
348
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = True snake_case_ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] __lowerCamelCase = [1, 11, 50_265] self.assertEqual(list(output.shape ) , lowerCamelCase__ ) # compare the actual values for a slice. __lowerCamelCase = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] # compare the actual values for a slice. __lowerCamelCase = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
348
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): __lowerCamelCase = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = 'sshleifer/tiny-gpt2' __lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=lowerCamelCase__ , multi_process=lowerCamelCase__ , ) __lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ ) __lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = 'sgugger/tiny-distilbert-classification' __lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , only_pretrain_model=lowerCamelCase__ , ) __lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ ) __lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = 'sshleifer/tiny-gpt2' __lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) __lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ ) __lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = 'sshleifer/tiny-gpt2' __lowerCamelCase = AutoConfig.from_pretrained(lowerCamelCase__ ) __lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=lowerCamelCase__ , multi_process=lowerCamelCase__ , ) __lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ , [config] ) __lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = 'sshleifer/tiny-gpt2' __lowerCamelCase = AutoConfig.from_pretrained(lowerCamelCase__ ) __lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) __lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ , [config] ) __lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = 'sshleifer/tiny-gpt2' __lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) __lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ ) __lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = 'sshleifer/tiny-gpt2' __lowerCamelCase = AutoConfig.from_pretrained(lowerCamelCase__ ) __lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) __lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ , [config] ) __lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = 'patrickvonplaten/t5-tiny-random' __lowerCamelCase = AutoConfig.from_pretrained(lowerCamelCase__ ) __lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) __lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ , configs=[config] ) __lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = 'sshleifer/tiny-gpt2' __lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=lowerCamelCase__ , multi_process=lowerCamelCase__ , ) __lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ ) __lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=lowerCamelCase__ , save_to_csv=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowerCamelCase__ , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(lowerCamelCase__ , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(lowerCamelCase__ , 'env.csv' ) , multi_process=lowerCamelCase__ , ) __lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ ) benchmark.run() self.assertTrue(Path(os.path.join(lowerCamelCase__ , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase__ , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase__ , 'env.csv' ) ).exists() ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(lowerCamelCase__ ): self.assertTrue(hasattr(lowerCamelCase__ , 'sequential' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'cumulative' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'current' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowerCamelCase__ , 'log.txt' ) , log_print=lowerCamelCase__ , trace_memory_line_by_line=lowerCamelCase__ , eager_mode=lowerCamelCase__ , multi_process=lowerCamelCase__ , ) __lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ ) __lowerCamelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(lowerCamelCase__ , 'log.txt' ) ).exists() )
348
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] )
348
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
348
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowercase_ ( self , lowerCamelCase__=0 ) -> int: '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) ) __lowerCamelCase = np.random.RandomState(lowerCamelCase__ ) __lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) # warmup pass to apply optimizations __lowerCamelCase = pipe(**self.get_dummy_inputs() ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ) -> int: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = ort.SessionOptions() __lowerCamelCase = False return options def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) # using the PNDM scheduler by default __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) __lowerCamelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
348
1
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ) -> Any: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = ort.SessionOptions() __lowerCamelCase = False return options def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) __lowerCamelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A red cat sitting on a park bench' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , mask_image=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __lowerCamelCase = np.array([0.25_14, 0.30_07, 0.35_17, 0.17_90, 0.23_82, 0.31_67, 0.19_44, 0.22_73, 0.24_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) __lowerCamelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' ) __lowerCamelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A red cat sitting on a park bench' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , mask_image=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __lowerCamelCase = np.array([0.00_86, 0.00_77, 0.00_83, 0.00_93, 0.01_07, 0.01_39, 0.00_94, 0.00_97, 0.01_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
348
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __A = logging.get_logger(__name__) __A = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''whisper''' snake_case_ = ['''past_key_values'''] snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCamelCase__=51_865 , lowerCamelCase__=80 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=1_536 , lowerCamelCase__=1_536 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=50_257 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=256 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=1_500 , lowerCamelCase__=448 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=None , lowerCamelCase__=[220, 50_256] , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=False , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=7 , **lowerCamelCase__ , ) -> str: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = num_mel_bins __lowerCamelCase = d_model __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase = max_source_positions __lowerCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size __lowerCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks __lowerCamelCase = median_filter_width super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , suppress_tokens=lowerCamelCase__ , begin_suppress_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowerCamelCase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: __lowerCamelCase = {0: 'batch'} else: __lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' ) return common_inputs def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 22_050 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 220 , ) -> Mapping[str, Any]: '''simple docstring''' __lowerCamelCase = OrderedDict() __lowerCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase__ , framework=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , time_duration=lowerCamelCase__ , frequency=lowerCamelCase__ , ) __lowerCamelCase = encoder_inputs['input_features'].shape[2] __lowerCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __lowerCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = encoder_inputs.pop('input_features' ) __lowerCamelCase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: __lowerCamelCase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def lowercase_ ( self ) -> float: '''simple docstring''' return 1e-3
348
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
348
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = rotary_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = None __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = FlaxGPTJModelTester(self ) def lowercase_ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @tooslow def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __lowerCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ ) __lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = False __lowerCamelCase = model.config.eos_token_id __lowerCamelCase = jax.jit(model.generate ) __lowerCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __lowerCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ ) __lowerCamelCase = fx_state with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = model_class.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __lowerCamelCase = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = pt_model_class.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ ) with torch.no_grad(): __lowerCamelCase = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowercase_ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
348
1
__A = "Input must be a string of 8 numbers plus letter" __A = "TRWAGMYFPDXBNJZSQVHLCKE" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> bool: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __lowerCamelCase = F"""Expected string as input, found {type(UpperCamelCase__ ).__name__}""" raise TypeError(UpperCamelCase__ ) __lowerCamelCase = spanish_id.replace('-' , '' ).upper() if len(UpperCamelCase__ ) != 9: raise ValueError(UpperCamelCase__ ) try: __lowerCamelCase = int(spanish_id_clean[0:8] ) __lowerCamelCase = spanish_id_clean[8] except ValueError as ex: raise ValueError(UpperCamelCase__ ) from ex if letter.isdigit(): raise ValueError(UpperCamelCase__ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
348
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __A = False class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self ) -> int: '''simple docstring''' return 12 @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return 12 @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowerCamelCase__ ) @property def lowercase_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = 12 __lowerCamelCase = 12 __lowerCamelCase = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } __lowerCamelCase = TransformeraDModel(**lowerCamelCase__ ) return model def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCamelCase__ ) __lowerCamelCase = VQDiffusionPipeline( vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'teddy bear playing in the pool' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings( learnable=lowerCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __lowerCamelCase = VQDiffusionPipeline( vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'teddy bear playing in the pool' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) __lowerCamelCase = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) __lowerCamelCase = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
348
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __A = logging.get_logger(__name__) @dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) snake_case_ = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) snake_case_ = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=__magic_name__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.task_name.lower() class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''train''' snake_case_ = '''dev''' snake_case_ = '''test''' class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = Split.train , lowerCamelCase__ = None , ) -> int: '''simple docstring''' warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , lowerCamelCase__ , ) __lowerCamelCase = args __lowerCamelCase = glue_processors[args.task_name]() __lowerCamelCase = glue_output_modes[args.task_name] if isinstance(lowerCamelCase__ , lowerCamelCase__ ): try: __lowerCamelCase = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file __lowerCamelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) __lowerCamelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowerCamelCase , __lowerCamelCase = label_list[2], label_list[1] __lowerCamelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCamelCase = cached_features_file + '.lock' with FileLock(lowerCamelCase__ ): if os.path.exists(lowerCamelCase__ ) and not args.overwrite_cache: __lowerCamelCase = time.time() __lowerCamelCase = torch.load(lowerCamelCase__ ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: __lowerCamelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowerCamelCase = self.processor.get_test_examples(args.data_dir ) else: __lowerCamelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowerCamelCase = examples[:limit_length] __lowerCamelCase = glue_convert_examples_to_features( lowerCamelCase__ , lowerCamelCase__ , max_length=args.max_seq_length , label_list=lowerCamelCase__ , output_mode=self.output_mode , ) __lowerCamelCase = time.time() torch.save(self.features , lowerCamelCase__ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ) -> List[Any]: '''simple docstring''' return len(self.features ) def __getitem__( self , lowerCamelCase__ ) -> InputFeatures: '''simple docstring''' return self.features[i] def lowercase_ ( self ) -> int: '''simple docstring''' return self.label_list
348
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = is_training __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = num_queries __lowerCamelCase = num_channels __lowerCamelCase = min_size __lowerCamelCase = max_size __lowerCamelCase = num_labels __lowerCamelCase = hidden_dim __lowerCamelCase = hidden_dim def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) __lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) __lowerCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() __lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() __lowerCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowerCamelCase = self.num_queries __lowerCamelCase = self.num_labels __lowerCamelCase = [1, 1, 1, 1] __lowerCamelCase = self.num_channels __lowerCamelCase = 64 __lowerCamelCase = 128 __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim return config def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = output.encoder_hidden_states __lowerCamelCase = output.pixel_decoder_hidden_states __lowerCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple: '''simple docstring''' with torch.no_grad(): __lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) __lowerCamelCase = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = MaskaFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowercase_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = (self.model_tester.min_size,) * 2 __lowerCamelCase = { 'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ), 'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } __lowerCamelCase = self.model_tester.get_config() __lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) __lowerCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A = 1e-4 def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase_ ( self ) -> Dict: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # masks_queries_logits __lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowerCamelCase = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] __lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits __lowerCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) __lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ ) __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']] __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']] with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
348
1
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = RoFormerTokenizer snake_case_ = RoFormerTokenizerFast snake_case_ = True snake_case_ = True def lowercase_ ( self ) -> List[str]: '''simple docstring''' super().setUp() def lowercase_ ( self , **lowerCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **lowerCamelCase__ ) def lowercase_ ( self , **lowerCamelCase__ ) -> Any: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = '永和服装饰品有限公司,今天天气非常好' __lowerCamelCase = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.get_tokenizer() __lowerCamelCase , __lowerCamelCase = self.get_chinese_input_output_texts() __lowerCamelCase = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , output_text.split() ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [22_943, 21_332, 34_431, 45_904, 117, 306, 1_231, 1_231, 2_653, 33_994, 1_266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase , __lowerCamelCase = self.get_chinese_input_output_texts() __lowerCamelCase = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , output_text.split() ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [22_943, 21_332, 34_431, 45_904, 117, 306, 1_231, 1_231, 2_653, 33_994, 1_266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass def lowercase_ ( self ) -> Dict: '''simple docstring''' pass
348
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''mask2former''' snake_case_ = ['''swin'''] snake_case_ = {'''hidden_size''': '''hidden_dim'''} def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 1_024 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 6 , lowerCamelCase__ = 10 , lowerCamelCase__ = 8 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 2_048 , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 4 , lowerCamelCase__ = 255 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 12_544 , lowerCamelCase__ = 3.0 , lowerCamelCase__ = 0.75 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = True , lowerCamelCase__ = [4, 8, 16, 32] , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Tuple: '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowerCamelCase = CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = backbone_config.pop('model_type' ) __lowerCamelCase = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase = config_class.from_dict(lowerCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) __lowerCamelCase = backbone_config __lowerCamelCase = feature_size __lowerCamelCase = mask_feature_size __lowerCamelCase = hidden_dim __lowerCamelCase = encoder_feedforward_dim __lowerCamelCase = activation_function __lowerCamelCase = encoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = dropout __lowerCamelCase = dim_feedforward __lowerCamelCase = pre_norm __lowerCamelCase = enforce_input_projection __lowerCamelCase = common_stride __lowerCamelCase = ignore_value __lowerCamelCase = num_queries __lowerCamelCase = no_object_weight __lowerCamelCase = class_weight __lowerCamelCase = mask_weight __lowerCamelCase = dice_weight __lowerCamelCase = train_num_points __lowerCamelCase = oversample_ratio __lowerCamelCase = importance_sample_ratio __lowerCamelCase = init_std __lowerCamelCase = init_xavier_std __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = feature_strides __lowerCamelCase = output_auxiliary_logits __lowerCamelCase = decoder_layers super().__init__(**lowerCamelCase__ ) @classmethod def lowercase_ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' return cls( backbone_config=lowerCamelCase__ , **lowerCamelCase__ , ) def lowercase_ ( self ) -> Dict[str, any]: '''simple docstring''' __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.backbone_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
348
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) __A = parser.parse_args() __A = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __A = CLIPImageProcessor() __A = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") __A = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
348
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple: '''simple docstring''' super().__init__() __lowerCamelCase = num_attention_heads __lowerCamelCase = attention_head_dim __lowerCamelCase = num_attention_heads * attention_head_dim __lowerCamelCase = additional_embeddings __lowerCamelCase = time_embed_dim or inner_dim __lowerCamelCase = embedding_proj_dim or embedding_dim __lowerCamelCase = clip_embed_dim or embedding_dim __lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 ) __lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if embedding_proj_norm_type is None: __lowerCamelCase = None elif embedding_proj_norm_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if encoder_hid_proj_type is None: __lowerCamelCase = None elif encoder_hid_proj_type == "linear": __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) ) if added_emb_type == "prd": __lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) ) elif added_emb_type is None: __lowerCamelCase = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __lowerCamelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , ) for d in range(lowerCamelCase__ ) ] ) if norm_in_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) elif norm_in_type is None: __lowerCamelCase = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) __lowerCamelCase = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase_ ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return processors def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): module.set_processor(lowerCamelCase__ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int: '''simple docstring''' __lowerCamelCase = hidden_states.shape[0] __lowerCamelCase = timestep if not torch.is_tensor(lowerCamelCase__ ): __lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: __lowerCamelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase = self.time_proj(lowerCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __lowerCamelCase = timesteps_projected.to(dtype=self.dtype ) __lowerCamelCase = self.time_embedding(lowerCamelCase__ ) if self.embedding_proj_norm is not None: __lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ ) __lowerCamelCase = self.embedding_proj(lowerCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) __lowerCamelCase = self.proj_in(lowerCamelCase__ ) __lowerCamelCase = self.positional_embedding.to(hidden_states.dtype ) __lowerCamelCase = [] __lowerCamelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __lowerCamelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __lowerCamelCase = hidden_states[:, None, :] __lowerCamelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 ) additional_embeds.append(lowerCamelCase__ ) __lowerCamelCase = torch.cat( lowerCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __lowerCamelCase = F.pad( lowerCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __lowerCamelCase = hidden_states + positional_embeddings if attention_mask is not None: __lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 __lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) __lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __lowerCamelCase = self.norm_in(lowerCamelCase__ ) for block in self.transformer_blocks: __lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = self.norm_out(lowerCamelCase__ ) if self.prd_embedding is not None: __lowerCamelCase = hidden_states[:, -1] else: __lowerCamelCase = hidden_states[:, additional_embeddings_len:] __lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
348
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __A = logging.get_logger(__name__) __A = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''longformer''' def __init__( self , lowerCamelCase__ = 512 , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 0 , lowerCamelCase__ = 2 , lowerCamelCase__ = 30_522 , lowerCamelCase__ = 768 , lowerCamelCase__ = 12 , lowerCamelCase__ = 12 , lowerCamelCase__ = 3_072 , lowerCamelCase__ = "gelu" , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 512 , lowerCamelCase__ = 2 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1e-12 , lowerCamelCase__ = False , **lowerCamelCase__ , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = attention_window __lowerCamelCase = sep_token_id __lowerCamelCase = bos_token_id __lowerCamelCase = eos_token_id __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = onnx_export class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ = "default" , lowerCamelCase__ = None ) -> int: '''simple docstring''' super().__init__(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = True @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __lowerCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowerCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowerCamelCase = super().outputs if self.task == "default": __lowerCamelCase = {0: 'batch'} return outputs @property def lowercase_ ( self ) -> float: '''simple docstring''' return 1e-4 @property def lowercase_ ( self ) -> int: '''simple docstring''' # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , ) -> Mapping[str, Any]: '''simple docstring''' __lowerCamelCase = super().generate_dummy_inputs( preprocessor=lowerCamelCase__ , batch_size=lowerCamelCase__ , seq_length=lowerCamelCase__ , is_pair=lowerCamelCase__ , framework=lowerCamelCase__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly __lowerCamelCase = torch.zeros_like(inputs['input_ids'] ) # make every second token global __lowerCamelCase = 1 return inputs
348
import sys from collections import defaultdict class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [] def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.node_position[vertex] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = pos def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase = 2 * start + 1 else: __lowerCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase = temp, tempa __lowerCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCamelCase__ ) self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = position[index] while index != 0: __lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase = heap[parent] __lowerCamelCase = position[parent] self.set_position(position[parent] , lowerCamelCase__ ) else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , lowerCamelCase__ ) break __lowerCamelCase = parent else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , 0 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1 for i in range(lowerCamelCase__ , -1 , -1 ): self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = positions[0] __lowerCamelCase = sys.maxsize self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ ) return temp def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = Heap() __lowerCamelCase = [0] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase = [] for vertex in range(len(UpperCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase__ ) heap.node_position.append(UpperCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = 1 __lowerCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase = 0 __lowerCamelCase = distance heap.heapify(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(1 , len(UpperCamelCase__ ) ): __lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase__ )] ): __lowerCamelCase = distance heap.bottom_to_top( UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
348
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[Any]="pt" ) -> Tuple: """simple docstring""" __lowerCamelCase = {'add_prefix_space': True} if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and not line.startswith(' ' ) else {} __lowerCamelCase = padding_side return tokenizer( [line] , max_length=UpperCamelCase__ , padding='max_length' if pad_to_max_length else None , truncation=UpperCamelCase__ , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any]=None , ) -> Tuple: """simple docstring""" __lowerCamelCase = input_ids.ne(UpperCamelCase__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="train" , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="" , ) -> int: '''simple docstring''' super().__init__() __lowerCamelCase = Path(lowerCamelCase__ ).joinpath(type_path + '.source' ) __lowerCamelCase = Path(lowerCamelCase__ ).joinpath(type_path + '.target' ) __lowerCamelCase = self.get_char_lens(self.src_file ) __lowerCamelCase = max_source_length __lowerCamelCase = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" __lowerCamelCase = tokenizer __lowerCamelCase = prefix if n_obs is not None: __lowerCamelCase = self.src_lens[:n_obs] __lowerCamelCase = src_lang __lowerCamelCase = tgt_lang def __len__( self ) -> str: '''simple docstring''' return len(self.src_lens ) def __getitem__( self , lowerCamelCase__ ) -> Dict[str, torch.Tensor]: '''simple docstring''' __lowerCamelCase = index + 1 # linecache starts at 1 __lowerCamelCase = self.prefix + linecache.getline(str(self.src_file ) , lowerCamelCase__ ).rstrip('\n' ) __lowerCamelCase = linecache.getline(str(self.tgt_file ) , lowerCamelCase__ ).rstrip('\n' ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCamelCase__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __lowerCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCamelCase__ ) else self.tokenizer ) __lowerCamelCase = self.tokenizer.generator if isinstance(self.tokenizer , lowerCamelCase__ ) else self.tokenizer __lowerCamelCase = encode_line(lowerCamelCase__ , lowerCamelCase__ , self.max_source_length , 'right' ) __lowerCamelCase = encode_line(lowerCamelCase__ , lowerCamelCase__ , self.max_target_length , 'right' ) __lowerCamelCase = source_inputs['input_ids'].squeeze() __lowerCamelCase = target_inputs['input_ids'].squeeze() __lowerCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowercase_ ( lowerCamelCase__ ) -> Tuple: '''simple docstring''' return [len(lowerCamelCase__ ) for x in Path(lowerCamelCase__ ).open().readlines()] def lowercase_ ( self , lowerCamelCase__ ) -> Dict[str, torch.Tensor]: '''simple docstring''' __lowerCamelCase = torch.stack([x['input_ids'] for x in batch] ) __lowerCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __lowerCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __lowerCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCamelCase__ ) else self.tokenizer.pad_token_id ) __lowerCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCamelCase__ ) else self.tokenizer.pad_token_id ) __lowerCamelCase = trim_batch(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase = trim_batch(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __A = getLogger(__name__) def lowerCamelCase_ ( UpperCamelCase__ : List[List] ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(UpperCamelCase__ ) ) def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = get_git_info() save_json(UpperCamelCase__ , os.path.join(UpperCamelCase__ , 'git_log.json' ) ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str]=4 , **UpperCamelCase__ : Any ) -> Optional[Any]: """simple docstring""" with open(UpperCamelCase__ , 'w' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ , indent=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> Tuple: """simple docstring""" with open(UpperCamelCase__ ) as f: return json.load(UpperCamelCase__ ) def lowerCamelCase_ ( ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = git.Repo(search_parent_directories=UpperCamelCase__ ) __lowerCamelCase = { 'repo_id': str(UpperCamelCase__ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def lowerCamelCase_ ( UpperCamelCase__ : Callable , UpperCamelCase__ : Iterable ) -> List: """simple docstring""" return list(map(UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" with open(UpperCamelCase__ , 'wb' ) as f: return pickle.dump(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> Tuple: """simple docstring""" def remove_articles(UpperCamelCase__ : str ): return re.sub(R'\b(a|an|the)\b' , ' ' , UpperCamelCase__ ) def white_space_fix(UpperCamelCase__ : Any ): return " ".join(text.split() ) def remove_punc(UpperCamelCase__ : Optional[Any] ): __lowerCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCamelCase__ : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase__ ) ) ) ) def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ) -> List[Any]: """simple docstring""" __lowerCamelCase = normalize_answer(UpperCamelCase__ ).split() __lowerCamelCase = normalize_answer(UpperCamelCase__ ).split() __lowerCamelCase = Counter(UpperCamelCase__ ) & Counter(UpperCamelCase__ ) __lowerCamelCase = sum(common.values() ) if num_same == 0: return 0 __lowerCamelCase = 1.0 * num_same / len(UpperCamelCase__ ) __lowerCamelCase = 1.0 * num_same / len(UpperCamelCase__ ) __lowerCamelCase = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" return normalize_answer(UpperCamelCase__ ) == normalize_answer(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ) -> Dict: """simple docstring""" assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) __lowerCamelCase = 0 for hypo, pred in zip(UpperCamelCase__ , UpperCamelCase__ ): em += exact_match_score(UpperCamelCase__ , UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: em /= len(UpperCamelCase__ ) return {"em": em} def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> Tuple: """simple docstring""" return model_prefix.startswith('rag' ) def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] ) -> Optional[int]: """simple docstring""" __lowerCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __lowerCamelCase = 'dropout_rate' for p in extra_params: if getattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and not hasattr(UpperCamelCase__ , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(UpperCamelCase__ ) ) delattr(UpperCamelCase__ , UpperCamelCase__ ) continue __lowerCamelCase = p if hasattr(UpperCamelCase__ , UpperCamelCase__ ) else equivalent_param[p] setattr(UpperCamelCase__ , UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) ) delattr(UpperCamelCase__ , UpperCamelCase__ ) return hparams, config
348
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) snake_case_ = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) snake_case_ = "question" snake_case_ = "context" snake_case_ = "answers" @property def lowercase_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
348
1
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __A = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" for attribute in key.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: __lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] ) -> str: """simple docstring""" __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __lowerCamelCase = None for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase = True elif name.split('.' )[0] == "proj": __lowerCamelCase = fairseq_model.proj __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2] __lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: __lowerCamelCase = 'weight_g' elif "weight_v" in name: __lowerCamelCase = 'weight_v' elif "bias" in name: __lowerCamelCase = 'bias' elif "weight" in name: __lowerCamelCase = 'weight' else: __lowerCamelCase = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = full_name.split('conv_layers.' )[-1] __lowerCamelCase = name.split('.' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" __lowerCamelCase , __lowerCamelCase = emb.weight.shape __lowerCamelCase = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) __lowerCamelCase = emb.weight.data return lin_layer def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[str]: """simple docstring""" with open(UpperCamelCase__ , 'r' , encoding='utf-8' ) as f: __lowerCamelCase = f.readlines() __lowerCamelCase = [line.split(' ' )[0] for line in lines] __lowerCamelCase = len(UpperCamelCase__ ) __lowerCamelCase = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(UpperCamelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = WavaVecaConfig.from_pretrained(UpperCamelCase__ ) __lowerCamelCase = SpeechaTextaConfig.from_pretrained( UpperCamelCase__ , vocab_size=UpperCamelCase__ , decoder_layers=UpperCamelCase__ , do_stable_layer_norm=UpperCamelCase__ ) __lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) __lowerCamelCase = model[0].eval() # set weights for wav2vec2 encoder __lowerCamelCase = WavaVecaModel(UpperCamelCase__ ) __lowerCamelCase = recursively_load_weights_wavaveca(model.encoder , UpperCamelCase__ ) __lowerCamelCase = SpeechaTextaForCausalLM(UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCamelCase__ ) # set output linear layer unexpected_keys.remove('embed_out' ) __lowerCamelCase = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __lowerCamelCase = SpeechEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) __lowerCamelCase = False # add projection layer __lowerCamelCase = nn.Parameter(projection_layer.weight ) __lowerCamelCase = nn.Parameter(projection_layer.bias ) __lowerCamelCase = create_vocab_dict(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , 'vocab.json' ) , 'w' ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = SpeechaTextaTokenizer(os.path.join(UpperCamelCase__ , 'vocab.json' ) ) tokenizer.save_pretrained(UpperCamelCase__ ) __lowerCamelCase = hf_wavavec.config.to_dict() __lowerCamelCase = tokenizer.pad_token_id __lowerCamelCase = tokenizer.bos_token_id __lowerCamelCase = tokenizer.eos_token_id __lowerCamelCase = 'speech_to_text_2' __lowerCamelCase = 'wav2vec2' __lowerCamelCase = SpeechEncoderDecoderConfig.from_dict(UpperCamelCase__ ) hf_wavavec.save_pretrained(UpperCamelCase__ ) feature_extractor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_02_24, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __A = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
348
import requests __A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
348
1
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : list[float] ) -> bool: """simple docstring""" if len(UpperCamelCase__ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCamelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
348
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __A = logging.get_logger(__name__) __A = TypeVar("DatasetType", Dataset, IterableDataset) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[List[float]] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) else: return _interleave_iterable_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : int = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ ) else: return _concatenate_iterable_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
348
1
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int ) -> List[str]: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] ) -> List[str]: """simple docstring""" __lowerCamelCase = [[float('inf' ) for _ in range(UpperCamelCase__ )] for _ in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __lowerCamelCase = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(UpperCamelCase__ ): # looping through rows of graph array for i in range(UpperCamelCase__ ): # looping through columns of graph array for j in range(UpperCamelCase__ ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): __lowerCamelCase = dist[i][k] + dist[k][j] _print_dist(UpperCamelCase__ , UpperCamelCase__ ) return dist, v if __name__ == "__main__": __A = int(input("Enter number of vertices: ")) __A = int(input("Enter number of edges: ")) __A = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A = int(input("Enter source:")) __A = int(input("Enter destination:")) __A = float(input("Enter weight:")) __A = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
348
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = ["model.decoder.embed_positions.weights"] def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" if "emb" in name: __lowerCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: __lowerCamelCase = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: __lowerCamelCase = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: __lowerCamelCase = name.replace('linear1' , 'fc1' ) if "linear2" in name: __lowerCamelCase = name.replace('linear2' , 'fc2' ) if "norm1" in name: __lowerCamelCase = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: __lowerCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: __lowerCamelCase = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: __lowerCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: __lowerCamelCase = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ) -> Tuple[Dict, Dict]: """simple docstring""" __lowerCamelCase = list(state_dict.keys() ) __lowerCamelCase = {} for key in keys: __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = rename_keys(UpperCamelCase__ ) if "in_proj_weight" in key: # split fused qkv proj __lowerCamelCase = val[:hidden_size, :] __lowerCamelCase = val[hidden_size : 2 * hidden_size, :] __lowerCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCamelCase = val else: __lowerCamelCase = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase_ ( UpperCamelCase__ : str ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values __lowerCamelCase = 1024 __lowerCamelCase = 24 __lowerCamelCase = 16 elif checkpoint == "medium": __lowerCamelCase = 1536 __lowerCamelCase = 48 __lowerCamelCase = 24 elif checkpoint == "large": __lowerCamelCase = 2048 __lowerCamelCase = 48 __lowerCamelCase = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) __lowerCamelCase = MusicgenDecoderConfig( hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , ) return config @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]="cpu" ) -> List[Any]: """simple docstring""" __lowerCamelCase = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ ) __lowerCamelCase = decoder_config_from_checkpoint(UpperCamelCase__ ) __lowerCamelCase = fairseq_model.lm.state_dict() __lowerCamelCase , __lowerCamelCase = rename_state_dict( UpperCamelCase__ , hidden_size=decoder_config.hidden_size ) __lowerCamelCase = TaEncoderModel.from_pretrained('t5-base' ) __lowerCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' ) __lowerCamelCase = MusicgenForCausalLM(UpperCamelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model __lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ ) # check we can do a forward pass __lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCamelCase = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError('Incorrect shape for logits' ) # now construct the processor __lowerCamelCase = AutoTokenizer.from_pretrained('t5-base' ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) __lowerCamelCase = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # set the appropriate bos/pad token ids __lowerCamelCase = 2048 __lowerCamelCase = 2048 # set other default generation config params __lowerCamelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCamelCase = True __lowerCamelCase = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(UpperCamelCase__ ) processor.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) __A = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
348
1
import json import sys def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" with open(UpperCamelCase__ , encoding='utf-8' ) as f: __lowerCamelCase = json.load(UpperCamelCase__ ) __lowerCamelCase = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(UpperCamelCase__ ): __lowerCamelCase = results[benchmark_name] __lowerCamelCase = benchmark_name.split('/' )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) __lowerCamelCase = '| metric |' __lowerCamelCase = '|--------|' __lowerCamelCase = '| new / old (diff) |' for metric_name in sorted(UpperCamelCase__ ): __lowerCamelCase = benchmark_res[metric_name] __lowerCamelCase = metric_vals['new'] __lowerCamelCase = metric_vals.get('old' , UpperCamelCase__ ) __lowerCamelCase = metric_vals.get('diff' , UpperCamelCase__ ) __lowerCamelCase = F""" {new_val:f}""" if isinstance(UpperCamelCase__ , (int, float) ) else 'None' if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(UpperCamelCase__ , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(UpperCamelCase__ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(UpperCamelCase__ ) ) if __name__ == "__main__": __A = sys.argv[1] __A = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
348
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''sew-d''' def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=2 , lowerCamelCase__=512 , lowerCamelCase__=256 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=("p2c", "c2p") , lowerCamelCase__="layer_norm" , lowerCamelCase__="gelu_python" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-7 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = squeeze_factor __lowerCamelCase = max_position_embeddings __lowerCamelCase = position_buckets __lowerCamelCase = share_att_key __lowerCamelCase = relative_attention __lowerCamelCase = norm_rel_ebd __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layer_norm_eps __lowerCamelCase = feature_layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # sequence classification __lowerCamelCase = use_weighted_layer_sum __lowerCamelCase = classifier_proj_size @property def lowercase_ ( self ) -> Any: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
348
1
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __A = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None ) -> Union[str, Any]: '''simple docstring''' super().__init__() __lowerCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __lowerCamelCase = torch.zeros(lowerCamelCase__ , lowerCamelCase__ ) else: __lowerCamelCase = None __lowerCamelCase = torch.nn.Parameter(lowerCamelCase__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__() self.register_modules( vqvae=lowerCamelCase__ , transformer=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = len(lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else 1 # get prompt text embeddings __lowerCamelCase = self.tokenizer( lowerCamelCase__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] __lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=lowerCamelCase__ ) # duplicate text embeddings for each generation per prompt __lowerCamelCase = prompt_embeds.repeat_interleave(lowerCamelCase__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings __lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(lowerCamelCase__ , 1 , 1 ) else: __lowerCamelCase = [''] * batch_size __lowerCamelCase = text_input_ids.shape[-1] __lowerCamelCase = self.tokenizer( lowerCamelCase__ , padding='max_length' , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='pt' , ) __lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=lowerCamelCase__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCamelCase = negative_prompt_embeds.shape[1] __lowerCamelCase = negative_prompt_embeds.repeat(1 , lowerCamelCase__ , 1 ) __lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowerCamelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , lowerCamelCase__ , lowerCamelCase__ = 100 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = 1 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = 1 , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = 1 elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = len(lowerCamelCase__ ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase__ )}""" ) __lowerCamelCase = batch_size * num_images_per_prompt __lowerCamelCase = guidance_scale > 1.0 __lowerCamelCase = self._encode_prompt(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(lowerCamelCase__ )}.""" ) # get the initial completely masked latents unless the user supplied it __lowerCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: __lowerCamelCase = self.transformer.num_vector_embeds - 1 __lowerCamelCase = torch.full(lowerCamelCase__ , lowerCamelCase__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) __lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) __lowerCamelCase = self.scheduler.timesteps.to(self.device ) __lowerCamelCase = latents for i, t in enumerate(self.progress_bar(lowerCamelCase__ ) ): # expand the sample if we are doing classifier free guidance __lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __lowerCamelCase = self.transformer(lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , timestep=lowerCamelCase__ ).sample if do_classifier_free_guidance: __lowerCamelCase , __lowerCamelCase = model_output.chunk(2 ) __lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(lowerCamelCase__ , dim=1 , keepdim=lowerCamelCase__ ) __lowerCamelCase = self.truncate(lowerCamelCase__ , lowerCamelCase__ ) # remove `log(0)`'s (`-inf`s) __lowerCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(lowerCamelCase__ , timestep=lowerCamelCase__ , sample=lowerCamelCase__ , generator=lowerCamelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = self.vqvae.config.vq_embed_dim __lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __lowerCamelCase = self.vqvae.quantize.get_codebook_entry(lowerCamelCase__ , shape=lowerCamelCase__ ) __lowerCamelCase = self.vqvae.decode(lowerCamelCase__ , force_not_quantize=lowerCamelCase__ ).sample __lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> torch.FloatTensor: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = torch.sort(lowerCamelCase__ , 1 , descending=lowerCamelCase__ ) __lowerCamelCase = torch.exp(lowerCamelCase__ ) __lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , lowerCamelCase__ ) __lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) __lowerCamelCase = keep_mask[:, :-1, :] __lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) __lowerCamelCase = log_p_x_0.clone() __lowerCamelCase = -torch.inf # -inf = log(0) return rv
348
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __A = logging.get_logger("transformers.models.speecht5") __A = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __A = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __A = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __A = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __A = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __A = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __A = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __A = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __A = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = [] __A = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Dict: """simple docstring""" for attribute in key.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value elif weight_type == "running_mean": __lowerCamelCase = value elif weight_type == "running_var": __lowerCamelCase = value elif weight_type == "num_batches_tracked": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Any: """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = [] if task == "s2t": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2T __lowerCamelCase = IGNORE_KEYS_S2T elif task == "t2s": __lowerCamelCase = None __lowerCamelCase = MAPPING_T2S __lowerCamelCase = IGNORE_KEYS_T2S elif task == "s2s": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2S __lowerCamelCase = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(UpperCamelCase__ , UpperCamelCase__ ): logger.info(F"""{name} was ignored""" ) continue __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: __lowerCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2] __lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: __lowerCamelCase = 'weight_g' elif "weight_v" in name: __lowerCamelCase = 'weight_v' elif "bias" in name: __lowerCamelCase = 'bias' elif "weight" in name: __lowerCamelCase = 'weight' elif "running_mean" in name: __lowerCamelCase = 'running_mean' elif "running_var" in name: __lowerCamelCase = 'running_var' elif "num_batches_tracked" in name: __lowerCamelCase = 'num_batches_tracked' else: __lowerCamelCase = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> Tuple: """simple docstring""" __lowerCamelCase = full_name.split('conv_layers.' )[-1] __lowerCamelCase = name.split('.' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=None , ) -> Tuple: """simple docstring""" if config_path is not None: __lowerCamelCase = SpeechTaConfig.from_pretrained(UpperCamelCase__ ) else: __lowerCamelCase = SpeechTaConfig() if task == "s2t": __lowerCamelCase = config.max_text_positions __lowerCamelCase = SpeechTaForSpeechToText(UpperCamelCase__ ) elif task == "t2s": __lowerCamelCase = 1876 __lowerCamelCase = 600 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForTextToSpeech(UpperCamelCase__ ) elif task == "s2s": __lowerCamelCase = 1876 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForSpeechToSpeech(UpperCamelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: __lowerCamelCase = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken('<mask>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) __lowerCamelCase = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) __lowerCamelCase = SpeechTaFeatureExtractor() __lowerCamelCase = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) __lowerCamelCase = torch.load(UpperCamelCase__ ) recursively_load_weights(fairseq_checkpoint['model'] , UpperCamelCase__ , UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(UpperCamelCase__ ) model.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __A = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
348
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["ConditionalDetrFeatureExtractor"] __A = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
348
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = [False] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) def dfs(UpperCamelCase__ : int , UpperCamelCase__ : int ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase__ , 1 - c ) for i in range(len(UpperCamelCase__ ) ): if not visited[i]: dfs(UpperCamelCase__ , 0 ) for i in range(len(UpperCamelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
348
1
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = ["model.decoder.embed_positions.weights"] def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" if "emb" in name: __lowerCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: __lowerCamelCase = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: __lowerCamelCase = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: __lowerCamelCase = name.replace('linear1' , 'fc1' ) if "linear2" in name: __lowerCamelCase = name.replace('linear2' , 'fc2' ) if "norm1" in name: __lowerCamelCase = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: __lowerCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: __lowerCamelCase = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: __lowerCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: __lowerCamelCase = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ) -> Tuple[Dict, Dict]: """simple docstring""" __lowerCamelCase = list(state_dict.keys() ) __lowerCamelCase = {} for key in keys: __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = rename_keys(UpperCamelCase__ ) if "in_proj_weight" in key: # split fused qkv proj __lowerCamelCase = val[:hidden_size, :] __lowerCamelCase = val[hidden_size : 2 * hidden_size, :] __lowerCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCamelCase = val else: __lowerCamelCase = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase_ ( UpperCamelCase__ : str ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values __lowerCamelCase = 1024 __lowerCamelCase = 24 __lowerCamelCase = 16 elif checkpoint == "medium": __lowerCamelCase = 1536 __lowerCamelCase = 48 __lowerCamelCase = 24 elif checkpoint == "large": __lowerCamelCase = 2048 __lowerCamelCase = 48 __lowerCamelCase = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) __lowerCamelCase = MusicgenDecoderConfig( hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , ) return config @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]="cpu" ) -> List[Any]: """simple docstring""" __lowerCamelCase = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ ) __lowerCamelCase = decoder_config_from_checkpoint(UpperCamelCase__ ) __lowerCamelCase = fairseq_model.lm.state_dict() __lowerCamelCase , __lowerCamelCase = rename_state_dict( UpperCamelCase__ , hidden_size=decoder_config.hidden_size ) __lowerCamelCase = TaEncoderModel.from_pretrained('t5-base' ) __lowerCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' ) __lowerCamelCase = MusicgenForCausalLM(UpperCamelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model __lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ ) # check we can do a forward pass __lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCamelCase = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError('Incorrect shape for logits' ) # now construct the processor __lowerCamelCase = AutoTokenizer.from_pretrained('t5-base' ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) __lowerCamelCase = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # set the appropriate bos/pad token ids __lowerCamelCase = 2048 __lowerCamelCase = 2048 # set other default generation config params __lowerCamelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCamelCase = True __lowerCamelCase = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(UpperCamelCase__ ) processor.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) __A = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
348
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __lowerCamelCase = tokenizer('Hello there' , return_tensors='pt' ).input_ids __lowerCamelCase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids __lowerCamelCase = model(input_ids.to(lowerCamelCase__ ) , labels=labels.to(lowerCamelCase__ ) ).loss __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = tempfile.mkdtemp() # fmt: off __lowerCamelCase = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __lowerCamelCase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __lowerCamelCase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __lowerCamelCase = {'unk_token': '<unk>'} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase__ ) ) __lowerCamelCase = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } __lowerCamelCase = os.path.join(self.tmpdirname , lowerCamelCase__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowercase_ ( self , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowercase_ ( self , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowercase_ ( self ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(lowerCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase__ ) __lowerCamelCase = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase__ ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __lowerCamelCase = self.get_image_processor(do_normalize=lowerCamelCase__ , padding_value=1.0 ) __lowerCamelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='np' ) __lowerCamelCase = processor(images=lowerCamelCase__ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowerCamelCase = 'lower newer' __lowerCamelCase = processor(text=lowerCamelCase__ ) __lowerCamelCase = tokenizer(lowerCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowerCamelCase = 'lower newer' __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase = processor.batch_decode(lowerCamelCase__ ) __lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowerCamelCase = 'lower newer' __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
348
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" __lowerCamelCase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowerCamelCase = [3, 3, 3, 3] __lowerCamelCase = [5, 5, 5, 5] elif "fl4" in model_name: __lowerCamelCase = [4, 4, 4, 4] __lowerCamelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowerCamelCase = [3, 3, 3, 3] if "lrf" in model_name: __lowerCamelCase = [3, 3, 3, 3] else: __lowerCamelCase = [2, 2, 2, 2] if "tiny" in model_name: __lowerCamelCase = 96 elif "small" in model_name: __lowerCamelCase = 96 elif "base" in model_name: __lowerCamelCase = 128 elif "large" in model_name: __lowerCamelCase = 192 elif "xlarge" in model_name: __lowerCamelCase = 256 elif "huge" in model_name: __lowerCamelCase = 352 # set label information __lowerCamelCase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowerCamelCase = 'imagenet-22k-id2label.json' else: __lowerCamelCase = 'imagenet-1k-id2label.json' __lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) __lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = FocalNetConfig( embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , focal_levels=UpperCamelCase__ , focal_windows=UpperCamelCase__ , use_conv_embed=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , use_post_layernorm=UpperCamelCase__ , use_layerscale=UpperCamelCase__ , ) return config def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> str: """simple docstring""" if "patch_embed.proj" in name: __lowerCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowerCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowerCamelCase = 'encoder.' + name if "encoder.layers" in name: __lowerCamelCase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowerCamelCase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowerCamelCase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowerCamelCase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowerCamelCase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowerCamelCase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowerCamelCase = 'layernorm.weight' if name == "norm.bias": __lowerCamelCase = 'layernorm.bias' if "head" in name: __lowerCamelCase = name.replace('head' , 'classifier' ) else: __lowerCamelCase = 'focalnet.' + name return name def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Dict: """simple docstring""" __lowerCamelCase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowerCamelCase = model_name_to_url[model_name] print('Checkpoint URL: ' , UpperCamelCase__ ) __lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val __lowerCamelCase = get_focalnet_config(UpperCamelCase__ ) __lowerCamelCase = FocalNetForImageClassification(UpperCamelCase__ ) model.eval() # load state dict model.load_state_dict(UpperCamelCase__ ) # verify conversion __lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase = BitImageProcessor( do_resize=UpperCamelCase__ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ , crop_size=224 , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , ) __lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) __lowerCamelCase = processor(images=UpperCamelCase__ , return_tensors='pt' ) __lowerCamelCase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) __lowerCamelCase = image_transforms(UpperCamelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCamelCase__ , atol=1E-4 ) __lowerCamelCase = model(**UpperCamelCase__ ) __lowerCamelCase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": __lowerCamelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": __lowerCamelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": __lowerCamelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": __lowerCamelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": __lowerCamelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) __A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
348
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''mra''' def __init__( self , lowerCamelCase__=50_265 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-5 , lowerCamelCase__="absolute" , lowerCamelCase__=4 , lowerCamelCase__="full" , lowerCamelCase__=0 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = type_vocab_size __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = block_per_row __lowerCamelCase = approx_mode __lowerCamelCase = initial_prior_first_n_blocks __lowerCamelCase = initial_prior_diagonal_n_blocks
348
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : list[float] , UpperCamelCase__ : list[float] ) -> float: """simple docstring""" __lowerCamelCase = sorted(numsa + numsa ) __lowerCamelCase , __lowerCamelCase = divmod(len(UpperCamelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __A = [float(x) for x in input("Enter the elements of first array: ").split()] __A = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
348
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , ) -> Any: """simple docstring""" __lowerCamelCase = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } __lowerCamelCase , __lowerCamelCase = input_paths_and_base_extractors[compression_format] if input_path is None: __lowerCamelCase = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase__ ) assert base_extractor.is_extractable(UpperCamelCase__ ) __lowerCamelCase = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(UpperCamelCase__ , UpperCamelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __lowerCamelCase = file_path.read_text(encoding='utf-8' ) else: __lowerCamelCase = output_path.read_text(encoding='utf-8' ) __lowerCamelCase = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } __lowerCamelCase = input_paths[compression_format] if input_path is None: __lowerCamelCase = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase__ ) __lowerCamelCase = Extractor.infer_extractor_format(UpperCamelCase__ ) assert extractor_format is not None __lowerCamelCase = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __lowerCamelCase = file_path.read_text(encoding='utf-8' ) else: __lowerCamelCase = output_path.read_text(encoding='utf-8' ) __lowerCamelCase = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any ) -> Optional[int]: """simple docstring""" import tarfile __lowerCamelCase = tmp_path / 'data_dot_dot' directory.mkdir() __lowerCamelCase = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(UpperCamelCase__ , 'w' ) as f: f.add(UpperCamelCase__ , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> Optional[Any]: """simple docstring""" import tarfile __lowerCamelCase = tmp_path / 'data_sym_link' directory.mkdir() __lowerCamelCase = directory / 'tar_file_with_sym_link.tar' os.symlink('..' , directory / 'subdir' , target_is_directory=UpperCamelCase__ ) with tarfile.TarFile(UpperCamelCase__ , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : str ) -> Optional[int]: """simple docstring""" __lowerCamelCase = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } __lowerCamelCase = insecure_tar_files[insecure_tar_file] __lowerCamelCase = tmp_path / 'extracted' TarExtractor.extract(UpperCamelCase__ , UpperCamelCase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ) -> Any: """simple docstring""" __lowerCamelCase = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 __lowerCamelCase = ( b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' b'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' b'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' b'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(UpperCamelCase__ ) assert zipfile.is_zipfile(str(UpperCamelCase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(UpperCamelCase__ ) # but we're right
348
__A = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.3_5_5_8_1_8, } def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __lowerCamelCase = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {', '.join(UpperCamelCase__ )}""" ) raise ValueError(UpperCamelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
348
1
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : list , UpperCamelCase__ : int | None = None , UpperCamelCase__ : int | None = None ) -> None: """simple docstring""" if start is None: __lowerCamelCase = 0 if end is None: __lowerCamelCase = len(UpperCamelCase__ ) - 1 if start >= end: return __lowerCamelCase = (start + end) // 2 slowsort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) slowsort(UpperCamelCase__ , mid + 1 , UpperCamelCase__ ) if sequence[end] < sequence[mid]: __lowerCamelCase , __lowerCamelCase = sequence[mid], sequence[end] slowsort(UpperCamelCase__ , UpperCamelCase__ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
348
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''philschmid/bart-large-cnn-samsum''' snake_case_ = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) snake_case_ = '''summarizer''' snake_case_ = AutoTokenizer snake_case_ = AutoModelForSeqaSeqLM snake_case_ = ['''text'''] snake_case_ = ['''text'''] def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.pre_processor(lowerCamelCase__ , return_tensors='pt' , truncation=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' return self.model.generate(**lowerCamelCase__ )[0] def lowercase_ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' return self.pre_processor.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ )
348
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple: '''simple docstring''' super().__init__() __lowerCamelCase = num_attention_heads __lowerCamelCase = attention_head_dim __lowerCamelCase = num_attention_heads * attention_head_dim __lowerCamelCase = additional_embeddings __lowerCamelCase = time_embed_dim or inner_dim __lowerCamelCase = embedding_proj_dim or embedding_dim __lowerCamelCase = clip_embed_dim or embedding_dim __lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 ) __lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if embedding_proj_norm_type is None: __lowerCamelCase = None elif embedding_proj_norm_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if encoder_hid_proj_type is None: __lowerCamelCase = None elif encoder_hid_proj_type == "linear": __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) ) if added_emb_type == "prd": __lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) ) elif added_emb_type is None: __lowerCamelCase = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __lowerCamelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , ) for d in range(lowerCamelCase__ ) ] ) if norm_in_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) elif norm_in_type is None: __lowerCamelCase = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) __lowerCamelCase = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase_ ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return processors def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): module.set_processor(lowerCamelCase__ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int: '''simple docstring''' __lowerCamelCase = hidden_states.shape[0] __lowerCamelCase = timestep if not torch.is_tensor(lowerCamelCase__ ): __lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: __lowerCamelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase = self.time_proj(lowerCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __lowerCamelCase = timesteps_projected.to(dtype=self.dtype ) __lowerCamelCase = self.time_embedding(lowerCamelCase__ ) if self.embedding_proj_norm is not None: __lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ ) __lowerCamelCase = self.embedding_proj(lowerCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) __lowerCamelCase = self.proj_in(lowerCamelCase__ ) __lowerCamelCase = self.positional_embedding.to(hidden_states.dtype ) __lowerCamelCase = [] __lowerCamelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __lowerCamelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __lowerCamelCase = hidden_states[:, None, :] __lowerCamelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 ) additional_embeds.append(lowerCamelCase__ ) __lowerCamelCase = torch.cat( lowerCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __lowerCamelCase = F.pad( lowerCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __lowerCamelCase = hidden_states + positional_embeddings if attention_mask is not None: __lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 __lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) __lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __lowerCamelCase = self.norm_in(lowerCamelCase__ ) for block in self.transformer_blocks: __lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = self.norm_out(lowerCamelCase__ ) if self.prd_embedding is not None: __lowerCamelCase = hidden_states[:, -1] else: __lowerCamelCase = hidden_states[:, additional_embeddings_len:] __lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
348
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = True snake_case_ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] __lowerCamelCase = [1, 11, 50_265] self.assertEqual(list(output.shape ) , lowerCamelCase__ ) # compare the actual values for a slice. __lowerCamelCase = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] # compare the actual values for a slice. __lowerCamelCase = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
348
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __lowerCamelCase = tokenizer('Hello there' , return_tensors='pt' ).input_ids __lowerCamelCase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids __lowerCamelCase = model(input_ids.to(lowerCamelCase__ ) , labels=labels.to(lowerCamelCase__ ) ).loss __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] )
348
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=99 , lowerCamelCase__=13 , lowerCamelCase__=16 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=2 , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=30 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , lowerCamelCase__=None , ) -> str: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = decoder_seq_length # For common tests __lowerCamelCase = self.decoder_seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = d_model __lowerCamelCase = d_model __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = decoder_attention_heads __lowerCamelCase = decoder_attention_heads __lowerCamelCase = eos_token_id __lowerCamelCase = bos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = decoder_start_token_id __lowerCamelCase = use_cache __lowerCamelCase = max_position_embeddings __lowerCamelCase = None __lowerCamelCase = decoder_seq_length __lowerCamelCase = 2 __lowerCamelCase = 1 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __lowerCamelCase = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> Any: '''simple docstring''' __lowerCamelCase = True __lowerCamelCase = TrOCRDecoder(config=lowerCamelCase__ ).to(lowerCamelCase__ ).eval() __lowerCamelCase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __lowerCamelCase = model(lowerCamelCase__ , use_cache=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , use_cache=lowerCamelCase__ ) self.parent.assertTrue(len(lowerCamelCase__ ) == len(lowerCamelCase__ ) ) self.parent.assertTrue(len(lowerCamelCase__ ) == len(lowerCamelCase__ ) + 1 ) __lowerCamelCase = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = model(lowerCamelCase__ )['last_hidden_state'] __lowerCamelCase = model(lowerCamelCase__ , past_key_values=lowerCamelCase__ )['last_hidden_state'] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () snake_case_ = (TrOCRForCausalLM,) if is_torch_available() else () snake_case_ = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} snake_case_ = True snake_case_ = False def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = TrOCRStandaloneDecoderModelTester(self , is_training=lowerCamelCase__ ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass def lowercase_ ( self ) -> Dict: '''simple docstring''' pass def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*lowerCamelCase__ ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowercase_ ( self ) -> Any: '''simple docstring''' pass
348
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowercase_ ( self , lowerCamelCase__=0 ) -> int: '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) ) __lowerCamelCase = np.random.RandomState(lowerCamelCase__ ) __lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) # warmup pass to apply optimizations __lowerCamelCase = pipe(**self.get_dummy_inputs() ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ) -> int: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = ort.SessionOptions() __lowerCamelCase = False return options def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) # using the PNDM scheduler by default __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) __lowerCamelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
348
1