|
|
|
|
|
from glob import glob |
|
import json |
|
import os |
|
from pathlib import Path |
|
|
|
import datasets |
|
|
|
|
|
|
|
_HOMEPAGE = "https://sites.google.com/view/cppe5" |
|
|
|
_LICENSE = "Unknown" |
|
|
|
_CATEGORIES = ["Coverall", "Face_Shield", "Gloves", "Goggles", "Mask"] |
|
|
|
_CITATION = """\ |
|
@misc{dagli2021cppe5, |
|
title={CPPE-5: Medical Personal Protective Equipment Dataset}, |
|
author={Rishit Dagli and Ali Mustufa Shaikh}, |
|
year={2021}, |
|
eprint={2112.09569}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal |
|
to allow the study of subordinate categorization of medical personal protective equipments, |
|
which is not possible with other popular data sets that focus on broad level categories. |
|
""" |
|
|
|
|
|
class CPPE5(datasets.GeneratorBasedBuilder): |
|
"""CPPE - 5 dataset.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"image_id": datasets.Value("int64"), |
|
"image": datasets.Image(), |
|
"width": datasets.Value("int32"), |
|
"height": datasets.Value("int32"), |
|
"objects": datasets.Sequence( |
|
{ |
|
"id": datasets.Value("int64"), |
|
"area": datasets.Value("int64"), |
|
"bbox": datasets.Sequence(datasets.Value("float32"), length=4), |
|
"category": datasets.ClassLabel(names=_CATEGORIES), |
|
} |
|
), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
train_json = dl_manager.download("data/annotations/train.jsonl") |
|
test_json = dl_manager.download("data/annotations/test.jsonl") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"archive_path": train_json, |
|
"dl_manager": dl_manager, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"archive_path": test_json, |
|
"dl_manager": dl_manager, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, archive_path, dl_manager): |
|
"""Yields examples.""" |
|
archive_path = Path(archive_path) |
|
|
|
idx = 0 |
|
|
|
with open(archive_path, "r", encoding="utf-8") as f: |
|
for row in f: |
|
sample = json.loads(row) |
|
|
|
file_path = sample["image"] |
|
file_path = os.path.join("data/images", file_path) |
|
file_path = dl_manager.download(file_path) |
|
|
|
with open(file_path, "rb") as image_f: |
|
image_bytes = image_f.read() |
|
|
|
yield idx, { |
|
"image_id": sample["image_id"], |
|
"image": {"path": file_path, "bytes": image_bytes}, |
|
"width": sample["width"], |
|
"height": sample["height"], |
|
"objects": sample["objects"], |
|
} |
|
idx += 1 |
|
|
|
|
|
if __name__ == '__main__': |
|
pass |
|
|