File size: 31,228 Bytes
3dcad1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 |
;;; srfi-1.scm --- List Library
;; Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2009, 2010, 2011, 2014, 2020, 2021 Free Software Foundation, Inc.
;;
;; This library is free software; you can redistribute it and/or
;; modify it under the terms of the GNU Lesser General Public
;; License as published by the Free Software Foundation; either
;; version 3 of the License, or (at your option) any later version.
;;
;; This library is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; Lesser General Public License for more details.
;;
;; You should have received a copy of the GNU Lesser General Public
;; License along with this library; if not, write to the Free Software
;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;; Some parts from the reference implementation, which is
;;; Copyright (c) 1998, 1999 by Olin Shivers. You may do as you please with
;;; this code as long as you do not remove this copyright notice or
;;; hold me liable for its use.
;;; Author: Martin Grabmueller <mgrabmue@cs.tu-berlin.de>
;;; Date: 2001-06-06
;;; Commentary:
;; This is an implementation of SRFI-1 (List Library).
;;
;; All procedures defined in SRFI-1, which are not already defined in
;; the Guile core library, are exported. The procedures in this
;; implementation work, but they have not been tuned for speed or
;; memory usage.
;;
;; This module is fully documented in the Guile Reference Manual.
;;; Code:
(define-module (srfi srfi-1)
:export (
;;; Constructors
;; cons <= in the core
;; list <= in the core
xcons
;; cons* <= in the core
;; make-list <= in the core
list-tabulate
list-copy
circular-list
;; iota <= in the core
;;; Predicates
proper-list?
circular-list?
dotted-list?
;; pair? <= in the core
;; null? <= in the core
null-list?
not-pair?
list=
;;; Selectors
;; car <= in the core
;; cdr <= in the core
;; caar <= in the core
;; cadr <= in the core
;; cdar <= in the core
;; cddr <= in the core
;; caaar <= in the core
;; caadr <= in the core
;; cadar <= in the core
;; caddr <= in the core
;; cdaar <= in the core
;; cdadr <= in the core
;; cddar <= in the core
;; cdddr <= in the core
;; caaaar <= in the core
;; caaadr <= in the core
;; caadar <= in the core
;; caaddr <= in the core
;; cadaar <= in the core
;; cadadr <= in the core
;; caddar <= in the core
;; cadddr <= in the core
;; cdaaar <= in the core
;; cdaadr <= in the core
;; cdadar <= in the core
;; cdaddr <= in the core
;; cddaar <= in the core
;; cddadr <= in the core
;; cdddar <= in the core
;; cddddr <= in the core
;; list-ref <= in the core
first
second
third
fourth
fifth
sixth
seventh
eighth
ninth
tenth
car+cdr
take
drop
take-right
drop-right
take!
drop-right!
split-at
split-at!
last
;; last-pair <= in the core
;;; Miscelleneous: length, append, concatenate, reverse, zip & count
;; length <= in the core
length+
;; append <= in the core
;; append! <= in the core
concatenate
concatenate!
;; reverse <= in the core
;; reverse! <= in the core
append-reverse
append-reverse!
zip
unzip1
unzip2
unzip3
unzip4
unzip5
count
;;; Fold, unfold & map
fold
fold-right
pair-fold
pair-fold-right
reduce
reduce-right
unfold
unfold-right
;; map ; Extended.
;; for-each ; Extended.
append-map
append-map!
map!
;; map-in-order ; Extended.
pair-for-each
filter-map
;;; Filtering & partitioning
;; filter <= in the core
partition
remove
;; filter! <= in the core
partition!
remove!
;;; Searching
find
find-tail
take-while
take-while!
drop-while
span
span!
break
break!
any
every
;; list-index ; Extended.
;; member ; Extended.
;; memq <= in the core
;; memv <= in the core
;;; Deletion
;; delete ; Extended.
;; delete! ; Extended.
delete-duplicates
delete-duplicates!
;;; Association lists
;; assoc ; Extended.
;; assq <= in the core
;; assv <= in the core
alist-cons
alist-copy
alist-delete
alist-delete!
;;; Set operations on lists
lset<=
lset=
lset-adjoin
lset-union
lset-intersection
lset-difference
lset-xor
lset-diff+intersection
lset-union!
lset-intersection!
lset-difference!
lset-xor!
lset-diff+intersection!
;;; Primitive side-effects
;; set-car! <= in the core
;; set-cdr! <= in the core
)
:re-export (cons list cons* make-list pair? null?
car cdr caar cadr cdar cddr
caaar caadr cadar caddr cdaar cdadr cddar cdddr
caaaar caaadr caadar caaddr cadaar cadadr caddar cadddr
cdaaar cdaadr cdadar cdaddr cddaar cddadr cdddar cddddr
list-ref last-pair length append append! reverse reverse!
filter filter! memq memv assq assv set-car! set-cdr!
iota)
:replace (map for-each map-in-order list-copy list-index member
delete delete! assoc)
)
(cond-expand-provide (current-module) '(srfi-1))
;; Load the compiled primitives from the shared library.
;;
(load-extension (string-append "libguile-" (effective-version))
"scm_init_srfi_1")
;;; Constructors
(define (xcons d a)
"Like `cons', but with interchanged arguments. Useful mostly when passed to
higher-order procedures."
(cons a d))
(define (wrong-type-arg caller arg)
(scm-error 'wrong-type-arg (symbol->string caller)
"Wrong type argument: ~S" (list arg) '()))
(define-syntax-rule (check-arg pred arg caller)
(if (not (pred arg))
(wrong-type-arg 'caller arg)))
(define (out-of-range proc arg)
(scm-error 'out-of-range proc
"Value out of range: ~A" (list arg) (list arg)))
;; the srfi spec doesn't seem to forbid inexact integers.
(define (non-negative-integer? x) (and (integer? x) (>= x 0)))
(define (list-tabulate n init-proc)
"Return an N-element list, where each list element is produced by applying the
procedure INIT-PROC to the corresponding list index. The order in which
INIT-PROC is applied to the indices is not specified."
(check-arg non-negative-integer? n list-tabulate)
(let lp ((n n) (acc '()))
(if (<= n 0)
acc
(lp (- n 1) (cons (init-proc (- n 1)) acc)))))
(define (circular-list elt1 . elts)
(set! elts (cons elt1 elts))
(set-cdr! (last-pair elts) elts)
elts)
;;; Predicates
(define (proper-list? x)
(list? x))
(define (circular-list? x)
(if (not-pair? x)
#f
(let lp ((hare (cdr x)) (tortoise x))
(if (not-pair? hare)
#f
(let ((hare (cdr hare)))
(if (not-pair? hare)
#f
(if (eq? hare tortoise)
#t
(lp (cdr hare) (cdr tortoise)))))))))
(define (dotted-list? x)
(cond
((null? x) #f)
((not-pair? x) #t)
(else
(let lp ((hare (cdr x)) (tortoise x))
(cond
((null? hare) #f)
((not-pair? hare) #t)
(else
(let ((hare (cdr hare)))
(cond
((null? hare) #f)
((not-pair? hare) #t)
((eq? hare tortoise) #f)
(else
(lp (cdr hare) (cdr tortoise)))))))))))
(define (null-list? x)
(cond
((proper-list? x)
(null? x))
((circular-list? x)
#f)
(else
(error "not a proper list in null-list?"))))
(define (not-pair? x)
"Return #t if X is not a pair, #f otherwise.
This is shorthand notation `(not (pair? X))' and is supposed to be used for
end-of-list checking in contexts where dotted lists are allowed."
(not (pair? x)))
(define (list= elt= . rest)
(define (lists-equal a b)
(let lp ((a a) (b b))
(cond ((null? a)
(null? b))
((null? b)
#f)
(else
(and (elt= (car a) (car b))
(lp (cdr a) (cdr b)))))))
(check-arg procedure? elt= list=)
(or (null? rest)
(let lp ((lists rest))
(or (null? (cdr lists))
(and (lists-equal (car lists) (cadr lists))
(lp (cdr lists)))))))
;;; Selectors
(define first car)
(define second cadr)
(define third caddr)
(define fourth cadddr)
(define (fifth x) (car (cddddr x)))
(define (sixth x) (cadr (cddddr x)))
(define (seventh x) (caddr (cddddr x)))
(define (eighth x) (cadddr (cddddr x)))
(define (ninth x) (car (cddddr (cddddr x))))
(define (tenth x) (cadr (cddddr (cddddr x))))
(define (car+cdr x)
"Return two values, the `car' and the `cdr' of PAIR."
(values (car x) (cdr x)))
(define take list-head)
(define drop list-tail)
;;; TAKE-RIGHT and DROP-RIGHT work by getting two pointers into the list,
;;; off by K, then chasing down the list until the lead pointer falls off
;;; the end. Note that they diverge for circular lists.
(define (take-right lis k)
(let lp ((lag lis) (lead (drop lis k)))
(if (pair? lead)
(lp (cdr lag) (cdr lead))
lag)))
(define (drop-right lis k)
(let recur ((lag lis) (lead (drop lis k)))
(if (pair? lead)
(cons (car lag) (recur (cdr lag) (cdr lead)))
'())))
(define (take! lst i)
"Linear-update variant of `take'."
(if (= i 0)
'()
(let ((tail (drop lst (- i 1))))
(set-cdr! tail '())
lst)))
(define (drop-right! lst i)
"Linear-update variant of `drop-right'."
(let ((tail (drop lst i)))
(if (null? tail)
'()
(let loop ((prev lst)
(tail (cdr tail)))
(if (null? tail)
(if (pair? prev)
(begin
(set-cdr! prev '())
lst)
lst)
(loop (cdr prev)
(cdr tail)))))))
(define (split-at lst i)
"Return two values, a list of the elements before index I in LST, and
a list of those after."
(if (< i 0)
(out-of-range 'split-at i)
(let lp ((l lst) (n i) (acc '()))
(if (<= n 0)
(values (reverse! acc) l)
(lp (cdr l) (- n 1) (cons (car l) acc))))))
(define (split-at! lst i)
"Linear-update variant of `split-at'."
(cond ((< i 0)
(out-of-range 'split-at! i))
((= i 0)
(values '() lst))
(else
(let lp ((l lst) (n (- i 1)))
(if (<= n 0)
(let ((tmp (cdr l)))
(set-cdr! l '())
(values lst tmp))
(lp (cdr l) (- n 1)))))))
(define (last pair)
"Return the last element of the non-empty, finite list PAIR."
(car (last-pair pair)))
;;; Miscelleneous: length, append, concatenate, reverse, zip & count
(define (zip clist1 . rest)
(let lp ((l (cons clist1 rest)) (acc '()))
(if (any null? l)
(reverse! acc)
(lp (map cdr l) (cons (map car l) acc)))))
(define (unzip1 l)
(map first l))
(define (unzip2 l)
(values (map first l) (map second l)))
(define (unzip3 l)
(values (map first l) (map second l) (map third l)))
(define (unzip4 l)
(values (map first l) (map second l) (map third l) (map fourth l)))
(define (unzip5 l)
(values (map first l) (map second l) (map third l) (map fourth l)
(map fifth l)))
;;; Fold, unfold & map
(define fold
(case-lambda
"Apply PROC to the elements of LIST1 ... LISTN to build a result, and return
that result. See the manual for details."
((kons knil list1)
(check-arg procedure? kons fold)
(check-arg list? list1 fold)
(let fold1 ((knil knil) (list1 list1))
(if (pair? list1)
(fold1 (kons (car list1) knil) (cdr list1))
knil)))
((kons knil list1 list2)
(check-arg procedure? kons fold)
(let* ((len1 (length+ list1))
(len2 (length+ list2))
(len (if (and len1 len2)
(min len1 len2)
(or len1 len2))))
(unless len
(scm-error 'wrong-type-arg "fold"
"Args do not contain a proper (finite) list: ~S"
(list (list list1 list2)) #f))
(let fold2 ((knil knil) (list1 list1) (list2 list2) (len len))
(if (zero? len)
knil
(fold2 (kons (car list1) (car list2) knil)
(cdr list1) (cdr list2) (1- len))))))
((kons knil list1 . rest)
(check-arg procedure? kons fold)
(let foldn ((knil knil) (lists (cons list1 rest)))
(if (any null? lists)
knil
(let ((cars (map car lists))
(cdrs (map cdr lists)))
(foldn (apply kons (append! cars (list knil))) cdrs)))))))
(define (fold-right kons knil clist1 . rest)
(check-arg procedure? kons fold-right)
(if (null? rest)
(let loop ((lst (reverse clist1))
(result knil))
(if (null? lst)
result
(loop (cdr lst)
(kons (car lst) result))))
(let loop ((lists (map reverse (cons clist1 rest)))
(result knil))
(if (any1 null? lists)
result
(loop (map cdr lists)
(apply kons (append! (map car lists) (list result))))))))
(define (pair-fold kons knil clist1 . rest)
(check-arg procedure? kons pair-fold)
(if (null? rest)
(let f ((knil knil) (list1 clist1))
(if (null? list1)
knil
(let ((tail (cdr list1)))
(f (kons list1 knil) tail))))
(let f ((knil knil) (lists (cons clist1 rest)))
(if (any null? lists)
knil
(let ((tails (map cdr lists)))
(f (apply kons (append! lists (list knil))) tails))))))
(define (pair-fold-right kons knil clist1 . rest)
(check-arg procedure? kons pair-fold-right)
(if (null? rest)
(let f ((list1 clist1))
(if (null? list1)
knil
(kons list1 (f (cdr list1)))))
(let f ((lists (cons clist1 rest)))
(if (any null? lists)
knil
(apply kons (append! lists (list (f (map cdr lists)))))))))
(define* (unfold p f g seed #:optional (tail-gen (lambda (x) '())))
(define (reverse+tail lst seed)
(let loop ((lst lst)
(result (tail-gen seed)))
(if (null? lst)
result
(loop (cdr lst)
(cons (car lst) result)))))
(check-arg procedure? p unfold)
(check-arg procedure? f unfold)
(check-arg procedure? g unfold)
(check-arg procedure? tail-gen unfold)
(let loop ((seed seed)
(result '()))
(if (p seed)
(reverse+tail result seed)
(loop (g seed)
(cons (f seed) result)))))
(define* (unfold-right p f g seed #:optional (tail '()))
(check-arg procedure? p unfold-right)
(check-arg procedure? f unfold-right)
(check-arg procedure? g unfold-right)
(let uf ((seed seed) (lis tail))
(if (p seed)
lis
(uf (g seed) (cons (f seed) lis)))))
(define (reduce f ridentity lst)
"`reduce' is a variant of `fold', where the first call to F is on two
elements from LST, rather than one element and a given initial value.
If LST is empty, RIDENTITY is returned. If LST has just one element
then that's the return value."
(check-arg procedure? f reduce)
(if (null? lst)
ridentity
(fold f (car lst) (cdr lst))))
(define (reduce-right f ridentity lst)
"`reduce-right' is a variant of `fold-right', where the first call to
F is on two elements from LST, rather than one element and a given
initial value. If LST is empty, RIDENTITY is returned. If LST
has just one element then that's the return value."
(check-arg procedure? f reduce)
(if (null? lst)
ridentity
(fold-right f (last lst) (drop-right lst 1))))
(define map
(case-lambda
((f l)
(check-arg procedure? f map)
(check-arg list? l map)
(let map1 ((l l))
(if (pair? l)
(cons (f (car l)) (map1 (cdr l)))
'())))
((f l1 l2)
(check-arg procedure? f map)
(let* ((len1 (length+ l1))
(len2 (length+ l2))
(len (if (and len1 len2)
(min len1 len2)
(or len1 len2))))
(unless len
(scm-error 'wrong-type-arg "map"
"Args do not contain a proper (finite) list: ~S"
(list (list l1 l2)) #f))
(let map2 ((l1 l1) (l2 l2) (len len))
(if (zero? len)
'()
(cons (f (car l1) (car l2))
(map2 (cdr l1) (cdr l2) (1- len)))))))
((f l1 . rest)
(check-arg procedure? f map)
(let ((len (fold (lambda (ls len)
(let ((ls-len (length+ ls)))
(if len
(if ls-len (min ls-len len) len)
ls-len)))
(length+ l1)
rest)))
(if (not len)
(scm-error 'wrong-type-arg "map"
"Args do not contain a proper (finite) list: ~S"
(list (cons l1 rest)) #f))
(let mapn ((l1 l1) (rest rest) (len len))
(if (zero? len)
'()
(cons (apply f (car l1) (map car rest))
(mapn (cdr l1) (map cdr rest) (1- len)))))))))
(define map-in-order map)
(define for-each
(case-lambda
((f l)
(check-arg procedure? f for-each)
(check-arg list? l for-each)
(let for-each1 ((l l))
(unless (null? l)
(f (car l))
(for-each1 (cdr l)))))
((f l1 l2)
(check-arg procedure? f for-each)
(let* ((len1 (length+ l1))
(len2 (length+ l2))
(len (if (and len1 len2)
(min len1 len2)
(or len1 len2))))
(unless len
(scm-error 'wrong-type-arg "for-each"
"Args do not contain a proper (finite) list: ~S"
(list (list l1 l2)) #f))
(let for-each2 ((l1 l1) (l2 l2) (len len))
(unless (zero? len)
(f (car l1) (car l2))
(for-each2 (cdr l1) (cdr l2) (1- len))))))
((f l1 . rest)
(check-arg procedure? f for-each)
(let ((len (fold (lambda (ls len)
(let ((ls-len (length+ ls)))
(if len
(if ls-len (min ls-len len) len)
ls-len)))
(length+ l1)
rest)))
(if (not len)
(scm-error 'wrong-type-arg "for-each"
"Args do not contain a proper (finite) list: ~S"
(list (cons l1 rest)) #f))
(let for-eachn ((l1 l1) (rest rest) (len len))
(if (> len 0)
(begin
(apply f (car l1) (map car rest))
(for-eachn (cdr l1) (map cdr rest) (1- len)))))))))
(define (append-map f clist1 . rest)
(concatenate (apply map f clist1 rest)))
(define (append-map! f clist1 . rest)
(concatenate! (apply map f clist1 rest)))
;; OPTIMIZE-ME: Re-use cons cells of list1
(define map! map)
(define (filter-map proc list1 . rest)
"Apply PROC to the elements of LIST1... and return a list of the
results as per SRFI-1 `map', except that any #f results are omitted from
the list returned."
(check-arg procedure? proc filter-map)
(if (null? rest)
(let lp ((l list1)
(rl '()))
(if (null? l)
(reverse! rl)
(let ((res (proc (car l))))
(if res
(lp (cdr l) (cons res rl))
(lp (cdr l) rl)))))
(let lp ((l (cons list1 rest))
(rl '()))
(if (any1 null? l)
(reverse! rl)
(let ((res (apply proc (map car l))))
(if res
(lp (map cdr l) (cons res rl))
(lp (map cdr l) rl)))))))
(define (pair-for-each f clist1 . rest)
(check-arg procedure? f pair-for-each)
(if (null? rest)
(let lp ((l clist1))
(if (null? l)
(if #f #f)
(begin
(f l)
(lp (cdr l)))))
(let lp ((l (cons clist1 rest)))
(if (any1 null? l)
(if #f #f)
(begin
(apply f l)
(lp (map cdr l)))))))
;;; Searching
(define (find pred lst)
"Return the first element of @var{lst} that satisfies the predicate
@var{pred}, or return @code{#f} if no such element is found."
(check-arg procedure? pred find)
(let loop ((lst lst))
(and (not (null? lst))
(let ((head (car lst)))
(if (pred head)
head
(loop (cdr lst)))))))
(define (find-tail pred lst)
"Return the first pair of @var{lst} whose @sc{car} satisfies the
predicate @var{pred}, or return @code{#f} if no such element is found."
(check-arg procedure? pred find-tail)
(let loop ((lst lst))
(and (not (null? lst))
(let ((head (car lst)))
(if (pred head)
lst
(loop (cdr lst)))))))
(define (take-while pred ls)
"Return a new list which is the longest initial prefix of LS whose
elements all satisfy the predicate PRED."
(check-arg procedure? pred take-while)
(cond ((null? ls) '())
((not (pred (car ls))) '())
(else
(let ((result (list (car ls))))
(let lp ((ls (cdr ls)) (p result))
(cond ((null? ls) result)
((not (pred (car ls))) result)
(else
(set-cdr! p (list (car ls)))
(lp (cdr ls) (cdr p)))))))))
(define (take-while! pred lst)
"Linear-update variant of `take-while'."
(check-arg procedure? pred take-while!)
(let loop ((prev #f)
(rest lst))
(cond ((null? rest)
lst)
((pred (car rest))
(loop rest (cdr rest)))
(else
(if (pair? prev)
(begin
(set-cdr! prev '())
lst)
'())))))
(define (drop-while pred lst)
"Drop the longest initial prefix of LST whose elements all satisfy the
predicate PRED."
(check-arg procedure? pred drop-while)
(let loop ((lst lst))
(cond ((null? lst)
'())
((pred (car lst))
(loop (cdr lst)))
(else lst))))
(define (span pred lst)
"Return two values, the longest initial prefix of LST whose elements
all satisfy the predicate PRED, and the remainder of LST."
(check-arg procedure? pred span)
(let lp ((lst lst) (rl '()))
(if (and (not (null? lst))
(pred (car lst)))
(lp (cdr lst) (cons (car lst) rl))
(values (reverse! rl) lst))))
(define (span! pred list)
"Linear-update variant of `span'."
(check-arg procedure? pred span!)
(let loop ((prev #f)
(rest list))
(cond ((null? rest)
(values list '()))
((pred (car rest))
(loop rest (cdr rest)))
(else
(if (pair? prev)
(begin
(set-cdr! prev '())
(values list rest))
(values '() list))))))
(define (break pred clist)
"Return two values, the longest initial prefix of LST whose elements
all fail the predicate PRED, and the remainder of LST."
(check-arg procedure? pred break)
(let lp ((clist clist) (rl '()))
(if (or (null? clist)
(pred (car clist)))
(values (reverse! rl) clist)
(lp (cdr clist) (cons (car clist) rl)))))
(define (break! pred list)
"Linear-update variant of `break'."
(check-arg procedure? pred break!)
(let loop ((l list)
(prev #f))
(cond ((null? l)
(values list '()))
((pred (car l))
(if (pair? prev)
(begin
(set-cdr! prev '())
(values list l))
(values '() list)))
(else
(loop (cdr l) l)))))
(define (any pred ls . lists)
(check-arg procedure? pred any)
(if (null? lists)
(any1 pred ls)
(let lp ((lists (cons ls lists)))
(cond ((any1 null? lists)
#f)
((any1 null? (map cdr lists))
(apply pred (map car lists)))
(else
(or (apply pred (map car lists)) (lp (map cdr lists))))))))
(define (any1 pred ls)
(let lp ((ls ls))
(cond ((null? ls)
#f)
((null? (cdr ls))
(pred (car ls)))
(else
(or (pred (car ls)) (lp (cdr ls)))))))
(define (every pred ls . lists)
(check-arg procedure? pred every)
(if (null? lists)
(every1 pred ls)
(let lp ((lists (cons ls lists)))
(cond ((any1 null? lists)
#t)
((any1 null? (map cdr lists))
(apply pred (map car lists)))
(else
(and (apply pred (map car lists)) (lp (map cdr lists))))))))
(define (every1 pred ls)
(let lp ((ls ls))
(cond ((null? ls)
#t)
((null? (cdr ls))
(pred (car ls)))
(else
(and (pred (car ls)) (lp (cdr ls)))))))
(define (list-index pred clist1 . rest)
"Return the index of the first set of elements, one from each of
CLIST1 ... CLISTN, that satisfies PRED."
(check-arg procedure? pred list-index)
(if (null? rest)
(let lp ((l clist1) (i 0))
(if (null? l)
#f
(if (pred (car l))
i
(lp (cdr l) (+ i 1)))))
(let lp ((lists (cons clist1 rest)) (i 0))
(cond ((any1 null? lists)
#f)
((apply pred (map car lists)) i)
(else
(lp (map cdr lists) (+ i 1)))))))
;;; Association lists
(define alist-cons acons)
(define (alist-copy alist)
"Return a copy of ALIST, copying both the pairs comprising the list
and those making the associations."
(let lp ((a alist)
(rl '()))
(if (null? a)
(reverse! rl)
(lp (cdr a) (alist-cons (caar a) (cdar a) rl)))))
(define* (alist-delete key alist #:optional (k= equal?))
(check-arg procedure? k= alist-delete)
(let lp ((a alist) (rl '()))
(if (null? a)
(reverse! rl)
(if (k= key (caar a))
(lp (cdr a) rl)
(lp (cdr a) (cons (car a) rl))))))
(define* (alist-delete! key alist #:optional (k= equal?))
(alist-delete key alist k=)) ; XXX:optimize
;;; Delete / assoc / member
(define* (assoc key alist #:optional (= equal?))
"Behaves like @code{assq} but uses third argument @var{pred} for key
comparison. If @var{pred} is not supplied, @code{equal?} is
used. (Extended from R5RS.)"
(cond
((eq? = eq?) (assq key alist))
((eq? = eqv?) (assv key alist))
(else
(check-arg procedure? = assoc)
(let loop ((alist alist))
(and (pair? alist)
(let ((item (car alist)))
(check-arg pair? item assoc)
(if (= key (car item))
item
(loop (cdr alist)))))))))
(define* (member x ls #:optional (= equal?))
(cond
;; This might be performance-sensitive, so punt on the check here,
;; relying on memq/memv to check that = is a procedure.
((eq? = eq?) (memq x ls))
((eq? = eqv?) (memv x ls))
(else
(check-arg procedure? = member)
(find-tail (lambda (y) (= x y)) ls))))
;;; Set operations on lists
(define (lset<= = . rest)
(check-arg procedure? = lset<=)
(if (null? rest)
#t
(let lp ((f (car rest)) (r (cdr rest)))
(or (null? r)
(and (every (lambda (el) (member el (car r) =)) f)
(lp (car r) (cdr r)))))))
(define (lset= = . rest)
(check-arg procedure? = lset<=)
(if (null? rest)
#t
(let lp ((f (car rest)) (r (cdr rest)))
(or (null? r)
(and (every (lambda (el) (member el (car r) =)) f)
(every (lambda (el) (member el f (lambda (x y) (= y x)))) (car r))
(lp (car r) (cdr r)))))))
;; It's not quite clear if duplicates among the `rest' elements are meant to
;; be cast out. The spec says `=' is called as (= lstelem restelem),
;; suggesting perhaps not, but the reference implementation shows the "list"
;; at each stage as including those elements already added. The latter
;; corresponds to what's described for lset-union, so that's what's done.
;;
(define (lset-adjoin = list . rest)
"Add to LIST any of the elements of REST not already in the list.
These elements are `cons'ed onto the start of LIST (so the return shares
a common tail with LIST), but the order they're added is unspecified.
The given `=' procedure is used for comparing elements, called
as `(@var{=} listelem elem)', i.e., the second argument is one of the
given REST parameters."
;; If `=' is `eq?' or `eqv?', users won't be able to tell which arg is
;; first, so we can pass the raw procedure through to `member',
;; allowing `memq' / `memv' to be selected.
(define pred
(if (or (eq? = eq?) (eq? = eqv?))
=
(begin
(check-arg procedure? = lset-adjoin)
(lambda (x y) (= y x)))))
(let lp ((ans list) (rest rest))
(if (null? rest)
ans
(lp (if (member (car rest) ans pred)
ans
(cons (car rest) ans))
(cdr rest)))))
(define (lset-union = . rest)
;; Likewise, allow memq / memv to be used if possible.
(define pred
(if (or (eq? = eq?) (eq? = eqv?))
=
(begin
(check-arg procedure? = lset-union)
(lambda (x y) (= y x)))))
(fold (lambda (lis ans) ; Compute ANS + LIS.
(cond ((null? lis) ans) ; Don't copy any lists
((null? ans) lis) ; if we don't have to.
((eq? lis ans) ans)
(else
(fold (lambda (elt ans)
(if (member elt ans pred)
ans
(cons elt ans)))
ans lis))))
'()
rest))
(define (lset-intersection = list1 . rest)
(check-arg procedure? = lset-intersection)
(let lp ((l list1) (acc '()))
(if (null? l)
(reverse! acc)
(if (every (lambda (ll) (member (car l) ll =)) rest)
(lp (cdr l) (cons (car l) acc))
(lp (cdr l) acc)))))
(define (lset-difference = list1 . rest)
(check-arg procedure? = lset-difference)
(if (null? rest)
list1
(let lp ((l list1) (acc '()))
(if (null? l)
(reverse! acc)
(if (any (lambda (ll) (member (car l) ll =)) rest)
(lp (cdr l) acc)
(lp (cdr l) (cons (car l) acc)))))))
;(define (fold kons knil list1 . rest)
(define (lset-xor = . rest)
(check-arg procedure? = lset-xor)
(fold (lambda (lst res)
(let lp ((l lst) (acc '()))
(if (null? l)
(let lp0 ((r res) (acc acc))
(if (null? r)
(reverse! acc)
(if (member (car r) lst =)
(lp0 (cdr r) acc)
(lp0 (cdr r) (cons (car r) acc)))))
(if (member (car l) res =)
(lp (cdr l) acc)
(lp (cdr l) (cons (car l) acc))))))
'()
rest))
(define (lset-diff+intersection = list1 . rest)
(check-arg procedure? = lset-diff+intersection)
(let lp ((l list1) (accd '()) (acci '()))
(if (null? l)
(values (reverse! accd) (reverse! acci))
(let ((appears (every (lambda (ll) (member (car l) ll =)) rest)))
(if appears
(lp (cdr l) accd (cons (car l) acci))
(lp (cdr l) (cons (car l) accd) acci))))))
(define (lset-union! = . rest)
(check-arg procedure? = lset-union!)
(apply lset-union = rest)) ; XXX:optimize
(define (lset-intersection! = list1 . rest)
(check-arg procedure? = lset-intersection!)
(apply lset-intersection = list1 rest)) ; XXX:optimize
(define (lset-xor! = . rest)
(check-arg procedure? = lset-xor!)
(apply lset-xor = rest)) ; XXX:optimize
(define (lset-diff+intersection! = list1 . rest)
(check-arg procedure? = lset-diff+intersection!)
(apply lset-diff+intersection = list1 rest)) ; XXX:optimize
;;; srfi-1.scm ends here
|