|
import numpy as np |
|
import torch |
|
from sklearn.cluster import KMeans |
|
|
|
def get_cluster_model(ckpt_path): |
|
checkpoint = torch.load(ckpt_path) |
|
kmeans_dict = {} |
|
for spk, ckpt in checkpoint.items(): |
|
km = KMeans(ckpt["n_features_in_"]) |
|
km.__dict__["n_features_in_"] = ckpt["n_features_in_"] |
|
km.__dict__["_n_threads"] = ckpt["_n_threads"] |
|
km.__dict__["cluster_centers_"] = ckpt["cluster_centers_"] |
|
kmeans_dict[spk] = km |
|
return kmeans_dict |
|
|
|
def get_cluster_result(model, x, speaker): |
|
""" |
|
x: np.array [t, 256] |
|
return cluster class result |
|
""" |
|
return model[speaker].predict(x) |
|
|
|
def get_cluster_center_result(model, x,speaker): |
|
"""x: np.array [t, 256]""" |
|
predict = model[speaker].predict(x) |
|
return model[speaker].cluster_centers_[predict] |
|
|
|
def get_center(model, x,speaker): |
|
return model[speaker].cluster_centers_[x] |
|
|