""" """ # TODO try: import ir_datasets except ImportError as e: raise ImportError('ir-datasets package missing; `pip install ir-datasets`') import datasets IRDS_ID = 'beir/webis-touche2020' IRDS_ENTITY_TYPES = {'docs': {'doc_id': 'string', 'text': 'string', 'title': 'string', 'stance': 'string', 'url': 'string'}, 'queries': {'query_id': 'string', 'text': 'string', 'description': 'string', 'narrative': 'string'}, 'qrels': {'query_id': 'string', 'doc_id': 'string', 'relevance': 'int64', 'iteration': 'string'}} _CITATION = '@inproceedings{Bondarenko2020Tuche,\n title={Overview of Touch{\\\'e} 2020: Argument Retrieval},\n author={Alexander Bondarenko and Maik Fr{\\"o}be and Meriem Beloucif and Lukas Gienapp and Yamen Ajjour and Alexander Panchenko and Christian Biemann and Benno Stein and Henning Wachsmuth and Martin Potthast and Matthias Hagen},\n booktitle={CLEF},\n year={2020}\n}\n@article{Thakur2021Beir,\n title = "BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models",\n author = "Thakur, Nandan and Reimers, Nils and Rücklé, Andreas and Srivastava, Abhishek and Gurevych, Iryna", \n journal= "arXiv preprint arXiv:2104.08663",\n month = "4",\n year = "2021",\n url = "https://arxiv.org/abs/2104.08663",\n}' _DESCRIPTION = "" # TODO class beir_webis_touche2020(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [datasets.BuilderConfig(name=e) for e in IRDS_ENTITY_TYPES] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({k: datasets.Value(v) for k, v in IRDS_ENTITY_TYPES[self.config.name].items()}), homepage=f"https://ir-datasets.com/beir#beir/webis-touche2020", citation=_CITATION, ) def _split_generators(self, dl_manager): return [datasets.SplitGenerator(name=self.config.name)] def _generate_examples(self): dataset = ir_datasets.load(IRDS_ID) for i, item in enumerate(getattr(dataset, self.config.name)): key = i if self.config.name == 'docs': key = item.doc_id elif self.config.name == 'queries': key = item.query_id yield key, item._asdict() def as_dataset(self, split=None, *args, **kwargs): split = self.config.name # always return split corresponding with this config to avid returning a redundant DatasetDict layer return super().as_dataset(split, *args, **kwargs)