Datasets:
irds
/

Languages:
English
ArXiv:
Sean MacAvaney commited on
Commit
4a8d29d
1 Parent(s): d15b589

commit files to HF hub

Browse files
Files changed (2) hide show
  1. README.md +45 -0
  2. dpr-w100.py +43 -0
README.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pretty_name: '`dpr-w100`'
3
+ viewer: false
4
+ source_datasets: []
5
+ task_categories:
6
+ - text-retrieval
7
+ ---
8
+
9
+ # Dataset Card for `dpr-w100`
10
+
11
+ The `dpr-w100` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
12
+ For more information about the dataset, see the [documentation](https://ir-datasets.com/dpr-w100#dpr-w100).
13
+
14
+ # Data
15
+
16
+ This dataset provides:
17
+ - `docs` (documents, i.e., the corpus); count=21,015,324
18
+
19
+
20
+ ## Usage
21
+
22
+ ```python
23
+ from datasets import load_dataset
24
+
25
+ docs = load_dataset('irds/dpr-w100', 'docs')
26
+ for record in docs:
27
+ record # {'doc_id': ..., 'text': ..., 'title': ...}
28
+
29
+ ```
30
+
31
+ Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
32
+ data in 🤗 Dataset format.
33
+
34
+ ## Citation Information
35
+
36
+ ```
37
+ @misc{Karpukhin2020Dpr,
38
+ title={Dense Passage Retrieval for Open-Domain Question Answering},
39
+ author={Vladimir Karpukhin and Barlas Oğuz and Sewon Min and Patrick Lewis and Ledell Wu and Sergey Edunov and Danqi Chen and Wen-tau Yih},
40
+ year={2020},
41
+ eprint={2004.04906},
42
+ archivePrefix={arXiv},
43
+ primaryClass={cs.CL}
44
+ }
45
+ ```
dpr-w100.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ """
3
+ """ # TODO
4
+ try:
5
+ import ir_datasets
6
+ except ImportError as e:
7
+ raise ImportError('ir-datasets package missing; `pip install ir-datasets`')
8
+ import datasets
9
+
10
+ IRDS_ID = 'dpr-w100'
11
+ IRDS_ENTITY_TYPES = {'docs': {'doc_id': 'string', 'text': 'string', 'title': 'string'}}
12
+
13
+ _CITATION = '@misc{Karpukhin2020Dpr,\n title={Dense Passage Retrieval for Open-Domain Question Answering},\n author={Vladimir Karpukhin and Barlas Oğuz and Sewon Min and Patrick Lewis and Ledell Wu and Sergey Edunov and Danqi Chen and Wen-tau Yih},\n year={2020},\n eprint={2004.04906},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}'
14
+
15
+ _DESCRIPTION = "" # TODO
16
+
17
+ class dpr_w100(datasets.GeneratorBasedBuilder):
18
+ BUILDER_CONFIGS = [datasets.BuilderConfig(name=e) for e in IRDS_ENTITY_TYPES]
19
+
20
+ def _info(self):
21
+ return datasets.DatasetInfo(
22
+ description=_DESCRIPTION,
23
+ features=datasets.Features({k: datasets.Value(v) for k, v in IRDS_ENTITY_TYPES[self.config.name].items()}),
24
+ homepage=f"https://ir-datasets.com/dpr-w100#dpr-w100",
25
+ citation=_CITATION,
26
+ )
27
+
28
+ def _split_generators(self, dl_manager):
29
+ return [datasets.SplitGenerator(name=self.config.name)]
30
+
31
+ def _generate_examples(self):
32
+ dataset = ir_datasets.load(IRDS_ID)
33
+ for i, item in enumerate(getattr(dataset, self.config.name)):
34
+ key = i
35
+ if self.config.name == 'docs':
36
+ key = item.doc_id
37
+ elif self.config.name == 'queries':
38
+ key = item.query_id
39
+ yield key, item._asdict()
40
+
41
+ def as_dataset(self, split=None, *args, **kwargs):
42
+ split = self.config.name # always return split corresponding with this config to avid returning a redundant DatasetDict layer
43
+ return super().as_dataset(split, *args, **kwargs)