isaacchung commited on
Commit
957e075
1 Parent(s): e555cbf

add details to dataset card

Browse files
Files changed (1) hide show
  1. README.md +58 -1
README.md CHANGED
@@ -4,7 +4,64 @@ task_categories:
4
  - text-classification
5
  language:
6
  - mk
 
 
7
  pretty_name: Macedonian Tweet Sentiment Classification
8
  size_categories:
9
  - 1K<n<10K
10
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  - text-classification
5
  language:
6
  - mk
7
+ multilinguality:
8
+ - monolingual
9
  pretty_name: Macedonian Tweet Sentiment Classification
10
  size_categories:
11
  - 1K<n<10K
12
+ ---
13
+
14
+ # Dataset Card for Macedonian Tweet Sentiment Classification
15
+
16
+ ## Dataset Description
17
+
18
+ ### Dataset Summary
19
+ This is a Macedonian dataset is a collection of tweets for sentiment classification.
20
+
21
+ ### Supported Tasks and Leaderboards
22
+ text-classification, sentiment-classification: The dataset can be used to train a model for sentiment classification. The model performance is evaluated based on the accuracy of the predicted labels as compared to the given labels in the dataset. The BCP-47 code for Macedonian is mk.
23
+
24
+ ### Languages
25
+ The text is in Macedonian.
26
+
27
+ ## Dataset Structure
28
+
29
+ ### Data Fields
30
+ - `text`: String of a tweet.
31
+ - `label`: An integer indicating annotated sentiment level: -1 for negative, 0 for neutral, and 1 for positive.
32
+
33
+ ### Data Splits
34
+
35
+ The dataset has 2 splits: _train_, and _test_.
36
+
37
+ | Dataset | Positive | Neutral | Negative | Total |
38
+ |---------|----------|---------|----------|-------|
39
+ | Train | 2,610 (30%) | 1,280 (15%) | 4,693 (55%) | 8,583 |
40
+ | Test | 431 (38%) | 200 (18%) | 508 (44%) | 1,139 |
41
+
42
+
43
+ ## Dataset Creation
44
+ Please see the [paper](https://aclanthology.org/R15-1034/) for details.
45
+
46
+ ## Additional Information
47
+
48
+ ### Citation Information
49
+ The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
50
+ ```
51
+ @inproceedings{jovanoski-etal-2015-sentiment,
52
+ title = "Sentiment Analysis in {T}witter for {M}acedonian",
53
+ author = "Jovanoski, Dame and
54
+ Pachovski, Veno and
55
+ Nakov, Preslav",
56
+ editor = "Mitkov, Ruslan and
57
+ Angelova, Galia and
58
+ Bontcheva, Kalina",
59
+ booktitle = "Proceedings of the International Conference Recent Advances in Natural Language Processing",
60
+ month = sep,
61
+ year = "2015",
62
+ address = "Hissar, Bulgaria",
63
+ publisher = "INCOMA Ltd. Shoumen, BULGARIA",
64
+ url = "https://aclanthology.org/R15-1034",
65
+ pages = "249--257",
66
+ }
67
+ ```