iseddik commited on
Commit
b6249dd
·
1 Parent(s): 4e5a464

feat: add use cases

Browse files
ANN_Tifinagh_MNIST_Model.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Classification by a classical ANN (MLP) - Tifinagh-MNIST
2
+
3
+ ## The libraries we will use
4
+ """
5
+
6
+ import os
7
+ import numpy as np
8
+ from matplotlib import pyplot as plt
9
+ import cv2
10
+ import keras
11
+ from keras.models import Sequential
12
+ from keras.layers import Dense, Dropout
13
+ from tensorflow.keras.utils import to_categorical
14
+
15
+ """## Data loading and adaptation"""
16
+
17
+ def upload_data(path_name, number_of_class, number_of_images):
18
+ X_Data = []
19
+ Y_Data = []
20
+ for i in range(number_of_class):
21
+ images = os.listdir(path_name + str(i))
22
+ for j in range(number_of_images):
23
+ img = cv2.imread(path_name + str(i)+ '/' + images[j], 0)
24
+ X_Data.append(img)
25
+ Y_Data.append(i)
26
+ print("> the " + str(i) + "-th file is successfully uploaded.", end='\r')
27
+ return np.array(X_Data), np.array(Y_Data)
28
+
29
+ n_class = 33
30
+ n_train = 2000
31
+ n_test = 500
32
+ #here we upload our data (Tifinagh data)
33
+ x_train, y_train = upload_data('/media/etabook/etadisk1/EducFils/PFE/DATA2/train_data/', n_class, n_train)
34
+ x_test, y_test = upload_data('/media/etabook/etadisk1/EducFils/PFE/DATA2/test_data/', n_class, n_test)
35
+
36
+
37
+ print("The x_train's shape is :", x_train.shape)
38
+ print("The x_test's shape is :", x_test.shape)
39
+ print("The y_train's shape is :", y_train.shape)
40
+ print("The y_test's shape is :", y_test.shape)
41
+
42
+ def plot_data(num=3):
43
+ fig, axes = plt.subplots(1, num, figsize=(12, 8))
44
+ for i in range(num):
45
+ index = np.random.randint(len(x_test))
46
+ axes[i].imshow(np.reshape(x_test[index], (28, 28)))
47
+ axes[i].set_title('image label: %d' % y_test[index])
48
+ axes[i].axis('off')
49
+
50
+ plt.show()
51
+
52
+ plot_data(num=5)
53
+
54
+ plot_data(num=5)
55
+
56
+ num_classes = 33
57
+ size = 28
58
+
59
+ x_train = x_train.astype('float32')
60
+ x_test = x_test.astype('float32')
61
+ x_train = np.reshape(x_train, (x_train.shape[0], size*size))
62
+ x_test = np.reshape(x_test, (x_test.shape[0], size*size))
63
+ x_train /= 255
64
+ x_test /= 255
65
+ print('x_train shape:', x_train.shape)
66
+ print(x_train.shape[0], 'train samples')
67
+ print(x_test.shape[0], 'test samples')
68
+
69
+ # convert class vectors to binary class matrices
70
+ y_train = to_categorical(y_train, num_classes)
71
+ y_test = to_categorical(y_test, num_classes)
72
+
73
+ """## Define our neural network model (Architecture)"""
74
+
75
+ model = Sequential()
76
+ model.add(Dense(512, input_shape=(size*size,), activation='relu'))
77
+ model.add(Dense(128, activation='relu'))
78
+ model.add(Dropout(0.3))
79
+ model.add(Dense(num_classes, activation='softmax'))
80
+
81
+ model.compile(loss=keras.losses.categorical_crossentropy,
82
+ metrics=['accuracy'])
83
+
84
+ model.summary()
85
+
86
+ """## Model prediction on test data before training """
87
+
88
+ def plot_predictions(model, num=3):
89
+ fig, axes = plt.subplots(1, num, figsize=(12, 8))
90
+ for i in range(num):
91
+ index = np.random.randint(len(x_test))
92
+ pred = np.argmax(model.predict(np.reshape(x_test[index], (1, size*size))))
93
+ axes[i].imshow(np.reshape(x_test[index], (size, size)))
94
+ axes[i].set_title('Predicted label: '+ str(pred) + '\n/ true label :'+ str([e for e, x in enumerate(y_test[index]) if x == 1][0]))
95
+ axes[i].axis('off')
96
+
97
+ plt.show()
98
+
99
+ plot_predictions(model, num=5)
100
+
101
+ """## Training"""
102
+
103
+ history = model.fit(x_train, y_train, batch_size=128, epochs=20, validation_data=(x_test, y_test))
104
+
105
+ """## Model prediction on test data after training"""
106
+
107
+ plot_predictions(model, num=5)
108
+ score = model.evaluate(x_test, y_test, verbose = 0)
109
+ print('Test loss:', score[0])
110
+ print('Test accuracy:', score[1])
111
+
112
+ """## Model history during training"""
113
+
114
+ import matplotlib.pyplot as plt
115
+ import numpy as np
116
+ with plt.xkcd():
117
+ plt.plot(history.history['accuracy'], color='c')
118
+ plt.plot(history.history['val_accuracy'], color='red')
119
+ plt.title('Tifinagh-MNIST model accuracy')
120
+ plt.legend(['acc', 'val_acc'])
121
+ plt.savefig('acc_Tifinagh_MNIST.png')
122
+ plt.show()
123
+
124
+ with plt.xkcd():
125
+ plt.plot(history.history['loss'], color='c')
126
+ plt.plot(history.history['val_loss'], color='red')
127
+ plt.title('Tifinagh-MNIST model loss')
128
+ plt.legend(['loss', 'val_loss'])
129
+ plt.savefig('loss_Tifinagh_MNIST.png')
130
+ plt.show()
CNN_Tifinagh_MNIST_Model.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # CNN - Tifinagh-MNIST
2
+
3
+ ## Libraries
4
+ """
5
+
6
+ import numpy as np
7
+ import os
8
+ import cv2
9
+ from matplotlib import pyplot as plt
10
+ from tensorflow import keras
11
+ from keras.models import *
12
+ from keras.layers import *
13
+ from keras.utils import *
14
+ from tensorflow.keras.utils import to_categorical
15
+ from keras.utils.vis_utils import plot_model
16
+
17
+ """## Data loading and adaptation """
18
+
19
+ def upload_data(path_name, number_of_class, number_of_images):
20
+ X_Data = []
21
+ Y_Data = []
22
+ for i in range(number_of_class):
23
+ images = os.listdir(path_name + str(i))
24
+ for j in range(number_of_images):
25
+ img = cv2.imread(path_name + str(i)+ '/' + images[j], 0)
26
+ X_Data.append(img)
27
+ Y_Data.append(i)
28
+ print("> the " + str(i) + "-th file is successfully uploaded.", end='\r')
29
+ return np.array(X_Data), np.array(Y_Data)
30
+
31
+
32
+ n_class = 33
33
+ n_train = 2000
34
+ n_test = 500
35
+ #here we upload our data (Tifinagh data)
36
+ x_train, y_train = upload_data('drive/MyDrive/DATA2/train_data/', n_class, n_train)
37
+ x_test, y_test = upload_data('drive/MyDrive/DATA2/test_data/', n_class, n_test)
38
+
39
+
40
+ print("The x_train's shape is :", x_train.shape)
41
+ print("The x_test's shape is :", x_test.shape)
42
+ print("The y_train's shape is :", y_train.shape)
43
+ print("The y_test's shape is :", y_test.shape)
44
+
45
+ def plot_data(num=3):
46
+ fig, axes = plt.subplots(1, num, figsize=(12, 8))
47
+ for i in range(num):
48
+ index = np.random.randint(len(x_test))
49
+ axes[i].imshow(np.reshape(x_test[index], (28, 28)))
50
+ axes[i].set_title('image label: %d' % y_test[index])
51
+ axes[i].axis('off')
52
+
53
+ plt.show()
54
+
55
+ plot_data(num=5)
56
+
57
+ x_train = x_train.astype('float32')
58
+ x_test = x_test.astype('float32')
59
+ x_train /= 255
60
+ x_test /= 255
61
+ print('x_train shape:', x_train.shape)
62
+ print(x_train.shape[0], 'train samples')
63
+ print(x_test.shape[0], 'test samples')
64
+ y_train = to_categorical(y_train, n_class)
65
+ y_test = to_categorical(y_test, n_class)
66
+
67
+ """## Architecture of the model"""
68
+
69
+ def define_model(input_size = (28, 28, 1)):
70
+ inputs = Input(input_size)
71
+ conv1 = Conv2D(128, 3, activation='relu', padding='same')(inputs)
72
+ conv1 = Conv2D(128, 3, activation='relu', padding='same')(conv1)
73
+ pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
74
+
75
+
76
+ conv3 = Conv2D(64, 3, activation='relu', padding='same')(pool1)
77
+ conv3 = Conv2D(64, 3, activation='relu', padding='same')(conv3)
78
+ pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
79
+
80
+ conv4 = Conv2D(32, 3, activation='relu', padding='same')(pool3)
81
+
82
+ fltt = Flatten()(conv4)
83
+
84
+ dan = Dense(33, activation='softmax')(fltt)
85
+
86
+ model = Model(inputs=inputs, outputs=dan)
87
+
88
+ model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy'])
89
+
90
+
91
+ return model
92
+
93
+ model = define_model((28, 28, 1))
94
+ model.summary()
95
+
96
+ his = model.fit(x_train, y_train, epochs=10, batch_size=128, validation_data=(x_test, y_test))
97
+
98
+ """## Model prediction on test data after training"""
99
+
100
+ def plot_predictions(model, num=3):
101
+ fig, axes = plt.subplots(1, num, figsize=(12, 8))
102
+ for i in range(num):
103
+ index = np.random.randint(len(y_test))
104
+ pred = np.argmax(model.predict(np.reshape(x_test[index], (1, 28, 28))))
105
+ axes[i].imshow(np.reshape(x_test[index], (28, 28)))
106
+ axes[i].set_title('Predicted label: '+ str(pred) + '\n/ true label :'+ str([e for e, x in enumerate(y_test[index]) if x == 1][0]))
107
+ axes[i].axis('off')
108
+
109
+ plt.show()
110
+
111
+
112
+ plot_predictions(model, num=5)
113
+ score = model.evaluate(x_test, y_test, verbose = 0)
114
+ print('Test loss:', score[0])
115
+ print('Test accuracy:', score[1])
116
+
117
+ import matplotlib.pyplot as plt
118
+ import numpy as np
119
+ with plt.xkcd():
120
+ plt.plot(his.history['accuracy'], color='c')
121
+ plt.plot(his.history['val_accuracy'], color='red')
122
+ plt.title('Tifinagh-MNIST model accuracy')
123
+ plt.legend(['acc', 'val_acc'])
124
+ plt.savefig('acc_Tifinagh_MNIST_cnn.png')
125
+ plt.show()
126
+
127
+ with plt.xkcd():
128
+ plt.plot(his.history['loss'], color='c')
129
+ plt.plot(his.history['val_loss'], color='red')
130
+ plt.title('Tifinagh-MNIST model loss')
131
+ plt.legend(['loss', 'val_loss'])
132
+ plt.savefig('loss_Tifinagh_MNIST_cnn.png')
133
+ plt.show()
Gans_For_One_Simples_Tifinagh_MNIST.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Gans for one Tifinagh-MNIST letter
2
+
3
+ ## The libraries we will use
4
+ """
5
+
6
+ import os
7
+ import cv2
8
+ from numpy import array
9
+ from numpy import expand_dims
10
+ from numpy import zeros
11
+ from numpy import ones
12
+ from numpy import vstack
13
+ from numpy.random import randn
14
+ from numpy.random import randint
15
+ from keras.datasets.mnist import load_data
16
+ from keras.optimizer_v2.adam import Adam
17
+ from keras.models import Sequential
18
+ from keras.layers import Dense
19
+ from keras.layers import Reshape
20
+ from keras.layers import Flatten
21
+ from keras.layers import Conv2D
22
+ from keras.layers import Conv2DTranspose
23
+ from keras.layers import LeakyReLU
24
+ from keras.layers import Dropout
25
+ from matplotlib import pyplot
26
+
27
+ n_class = 1 #number of classes
28
+ n_train_Tifinagh_mnist = 2000
29
+
30
+ def upload_data_Tfinagh_MNIST(path_name, number_of_class, number_of_images):
31
+ X_Data = []
32
+ for i in range(number_of_class):
33
+ images = os.listdir(path_name + str(i+11))
34
+ for j in range(number_of_images):
35
+ img = cv2.imread(path_name + str(i+11)+ '/' + images[j], 0)
36
+ X_Data.append(img)
37
+ print("> the " + str(i) + "-th file is successfully uploaded.", end='\r')
38
+ return array(X_Data)
39
+
40
+ n_class = 1 #number of classes
41
+ n_train_Tifinagh_mnist = 2000
42
+
43
+ def upload_data_Tfinagh_MNIST(path_name, num_of_class, number_of_images):
44
+ X_Data = []
45
+ images = os.listdir(path_name + str(num_of_class))
46
+ for j in range(len(images)):
47
+ img = cv2.imread(path_name + str(num_of_class) + '/' + images[j], 0)
48
+ X_Data.append(img)
49
+ return array(X_Data)
50
+
51
+ def define_discriminator(in_shape=(28,28,1)):
52
+ model = Sequential()
53
+ model.add(Conv2D(64, (3,3), strides=(2, 2), padding='same', input_shape=in_shape))
54
+ model.add(LeakyReLU(alpha=0.2))
55
+ model.add(Dropout(0.4))
56
+ model.add(Conv2D(64, (3,3), strides=(2, 2), padding='same'))
57
+ model.add(LeakyReLU(alpha=0.2))
58
+ model.add(Dropout(0.4))
59
+ model.add(Flatten())
60
+ model.add(Dense(1, activation='sigmoid'))
61
+ # compile model
62
+ opt = Adam(lr=0.0002, beta_1=0.5)
63
+ model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])
64
+ return model
65
+
66
+ def define_generator(latent_dim):
67
+ model = Sequential()
68
+ n_nodes = 128 * 7 * 7
69
+ model.add(Dense(n_nodes, input_dim=latent_dim))
70
+ model.add(LeakyReLU(alpha=0.2))
71
+ model.add(Reshape((7, 7, 128)))
72
+ model.add(Conv2DTranspose(128, (4,4), strides=(2,2), padding='same'))
73
+ model.add(LeakyReLU(alpha=0.2))
74
+ model.add(Conv2DTranspose(128, (4,4), strides=(2,2), padding='same'))
75
+ model.add(LeakyReLU(alpha=0.2))
76
+ model.add(Conv2D(1, (7,7), activation='sigmoid', padding='same'))
77
+ return model
78
+
79
+ def define_gan(g_model, d_model):
80
+ d_model.trainable = False
81
+ model = Sequential()
82
+ model.add(g_model)
83
+ model.add(d_model)
84
+ opt = Adam(lr=0.0002, beta_1=0.5)
85
+ model.compile(loss='binary_crossentropy', optimizer=opt)
86
+ return model
87
+
88
+ def load_real_samples(num_class):
89
+ trainX = upload_data_Tfinagh_MNIST('drive/MyDrive/DATA2/train_data/', num_class, n_train_Tifinagh_mnist)
90
+ X = expand_dims(trainX, axis=-1)
91
+ X = X.astype('float32')
92
+ X = X / 255.0
93
+ return X
94
+
95
+ def generate_real_samples(dataset, n_samples):
96
+ ix = randint(0, dataset.shape[0], n_samples)
97
+ X = dataset[ix]
98
+ y = ones((n_samples, 1))
99
+ return X, y
100
+
101
+ def generate_latent_points(latent_dim, n_samples):
102
+ x_input = randn(latent_dim * n_samples)
103
+ x_input = x_input.reshape(n_samples, latent_dim)
104
+ return x_input
105
+
106
+ def generate_fake_samples(g_model, latent_dim, n_samples):
107
+ x_input = generate_latent_points(latent_dim, n_samples)
108
+ X = g_model.predict(x_input)
109
+ y = zeros((n_samples, 1))
110
+ return X, y
111
+
112
+ def save_plot(examples, epoch, n=10):
113
+ for i in range(n * n):
114
+ pyplot.subplot(n, n, 1 + i)
115
+ pyplot.axis('off')
116
+ pyplot.imshow(examples[i, :, :, 0], cmap='gray_r')
117
+ filename = 'generated_plot_e%03d.png' % (epoch+1)
118
+ pyplot.savefig(filename)
119
+ pyplot.close()
120
+
121
+ def summarize_performance(epoch, g_model, d_model, dataset, latent_dim, n_samples=100):
122
+ X_real, y_real = generate_real_samples(dataset, n_samples)
123
+ _, acc_real = d_model.evaluate(X_real, y_real, verbose=0)
124
+ x_fake, y_fake = generate_fake_samples(g_model, latent_dim, n_samples)
125
+ _, acc_fake = d_model.evaluate(x_fake, y_fake, verbose=0)
126
+ print('>Accuracy real: %.0f%%, fake: %.0f%%' % (acc_real*100, acc_fake*100))
127
+ #save_plot(x_fake, epoch)
128
+ filename = 'generator_model_%03d.h5' % (epoch + 1)
129
+ g_model.save(filename)
130
+
131
+ def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=100, n_batch=128):
132
+ bat_per_epo = int(dataset.shape[0] / n_batch)
133
+ half_batch = int(n_batch / 2)
134
+ for i in range(n_epochs):
135
+ for j in range(bat_per_epo):
136
+ X_real, y_real = generate_real_samples(dataset, half_batch)
137
+ X_fake, y_fake = generate_fake_samples(g_model, latent_dim, half_batch)
138
+ X, y = vstack((X_real, X_fake)), vstack((y_real, y_fake))
139
+ d_loss, _ = d_model.train_on_batch(X, y)
140
+ X_gan = generate_latent_points(latent_dim, n_batch)
141
+ y_gan = ones((n_batch, 1))
142
+ g_loss = gan_model.train_on_batch(X_gan, y_gan)
143
+ print('>%d, %d/%d, d=%.3f, g=%.3f' % (i+1, j+1, bat_per_epo, d_loss, g_loss))
144
+ if (i+1) % 10 == 0:
145
+ summarize_performance(i, g_model, d_model, dataset, latent_dim)
146
+
147
+ # size of the latent space
148
+ latent_dim = 100
149
+ # create the discriminator
150
+ d_model = define_discriminator()
151
+ # create the generator
152
+ g_model = define_generator(latent_dim)
153
+ # create the gan
154
+ gan_model = define_gan(g_model, d_model)
155
+ # load image data
156
+ dataset = load_real_samples(29)
157
+ # train model
158
+ train(g_model, d_model, gan_model, dataset, latent_dim)
159
+
160
+ z = generate_latent_points(100, 9)
161
+ im = g_model.predict(z)
162
+
163
+ from matplotlib import pyplot as plt
164
+ plt.figure(figsize=(9, 9))
165
+ for i in range(9):
166
+ orig_map=plt.cm.get_cmap()
167
+
168
+ # reversing the original colormap using reversed() function
169
+ reversed_map = orig_map.reversed()
170
+ plt.subplot(3, 3, i+1)
171
+ plt.imshow(im[i, :, :, 0], cmap = reversed_map);
172
+ plt.axis('off')
README.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # Contribution to creation, classification and generation of a new hand-written Tifinagh alphabet letters dataset using ANN, CNN and GAN
3
+
4
+ In this work, we present a new dataset called Tifinagh-MNIST: handwritten letters of the Tifinagh alphabetic script, which is used to write the Tamazight languages. The presented dataset contains 82,500 gray scale images of size 28 x 28 pixels belonging to 33 classes (letters), with 2500 images per class. In particular, the training set is composed of 66,000 images while the test set contains 16,500 images. Tifinagh-MNIST is intended for the development of AI tools to process handwritten Tifinagh characters. We also propose use cases of this corpus through neural network models for classification and data generation. The corpus will be made available to the public in order to promote the development of artificial intelligence solutions for the processing of handwritten Tamazight texts.
5
+
6
+
7
+
8
+
9
+ ![Logo](https://media.licdn.com/dms/image/C4E22AQGE6ZG-gNJhXg/feedshare-shrink_800/0/1656066492444?e=1678924800&v=beta&t=6on0spkXPm5NK4kY4SFEttnzkUrII9OUfvHxWeM8zO0)
10
+
T_SNE_Tifinagh_MNIST.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Visualization of the Tifinag-MNIST database using the T-SNE algorithm
2
+
3
+ ## The libraries we will use
4
+ """
5
+
6
+ import time
7
+ import os
8
+ import cv2
9
+ import numpy as np
10
+ import pandas as pd
11
+ from sklearn.manifold import TSNE
12
+ import matplotlib.pyplot as plt
13
+ import seaborn as sns
14
+
15
+ """## Data loading and adaptation"""
16
+
17
+ def upload_data(path_name, number_of_class, number_of_images):
18
+ X_Data = []
19
+ Y_Data = []
20
+ for i in range(number_of_class):
21
+ images = os.listdir(path_name + str(i))
22
+ for j in range(number_of_images):
23
+ img = cv2.imread(path_name + str(i)+ '/' + images[j], 0)
24
+ X_Data.append(img)
25
+ Y_Data.append(i)
26
+ print("> the " + str(i) + "-th file is successfully uploaded.", end='\r')
27
+ return np.array(X_Data), np.array(Y_Data)
28
+
29
+ n_class = 33
30
+ n_train = 2000
31
+
32
+ x_data, y_data = upload_data('/media/etabook/etadisk1/EducFils/PFE/DATA2/train_data/', n_class, n_train)
33
+
34
+ x_data = x_data.astype('float32')
35
+ x_data = np.reshape(x_data, (x_data.shape[0], 28*28))
36
+ x_data /= 255
37
+ print('x_data shape:', x_data.shape)
38
+ print(x_data.shape[0], 'data samples')
39
+
40
+ """## Convert images and label vector to a Pandas DataFrame"""
41
+
42
+ feat_cols = [ 'pixel'+str(i) for i in range(x_data.shape[1]) ]
43
+ df = pd.DataFrame(x_data,columns=feat_cols)
44
+ df['y'] = y_data
45
+ df['label'] = df['y'].apply(lambda i: str(i))
46
+ x_data, y_data = None, None
47
+ print('Size of the dataframe: {}'.format(df.shape))
48
+ df.head()
49
+
50
+ """## Displaying images from the Dataframe"""
51
+
52
+ np.random.seed(42)
53
+ rndperm = np.random.permutation(df.shape[0])
54
+
55
+ plt.gray()
56
+ fig = plt.figure( figsize=(18,12) )
57
+ for i in range(0,15):
58
+ ax = fig.add_subplot(3,5,i+1, title="Letter: {}".format(str(df.loc[rndperm[i],'label'])) )
59
+ ax.matshow(df.loc[rndperm[i],feat_cols].values.reshape((28,28)).astype(float))
60
+ plt.show()
61
+
62
+ """## Launch of the T-SNE algorithm
63
+
64
+
65
+ """
66
+
67
+ N = 50000
68
+ df_subset = df.loc[rndperm[:N],:].copy()
69
+ data_subset = df_subset[feat_cols].values
70
+
71
+ time_start = time.time()
72
+ tsne = TSNE(n_components=2, verbose=1, perplexity=40, n_iter=300)
73
+ tsne_results = tsne.fit_transform(data_subset)
74
+ print('t-SNE done! Time elapsed: {} seconds'.format(time.time()-time_start))
75
+
76
+ """## Visualisation"""
77
+
78
+ df_subset['tsne-2d-one'] = tsne_results[:,0]
79
+ df_subset['tsne-2d-two'] = tsne_results[:,1]
80
+ plt.figure(figsize=(16,10))
81
+ sns.scatterplot(
82
+ x="tsne-2d-one", y="tsne-2d-two",
83
+ hue="y",
84
+ palette=sns.color_palette("hls", 33),
85
+ data=df_subset,
86
+ legend="full",
87
+ alpha=0.3
88
+ )