Datasets:
File size: 6,263 Bytes
8730a1d dc938c7 5db17a7 dc938c7 5db17a7 dc938c7 fcce857 dc938c7 5db17a7 dc938c7 5db17a7 dc938c7 5db17a7 dc938c7 fcce857 5db17a7 dc938c7 5db17a7 dc938c7 5db17a7 555bc10 5db17a7 555bc10 5db17a7 dc938c7 5db17a7 dc938c7 5db17a7 dc938c7 5db17a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
---
license: cc0-1.0
task_categories:
- image-segmentation
language:
- en
tags:
- clouds
- earth-observation
- remote-sensing
- sentinel-2
- deep-learning
- multi-spectral
- satellite
- geospatial
pretty_name: cloudsen12
size_categories:
- 100K<n<1M
---
<center>
<img src="cloudsen12.gif" alt="drawing" width="35%"/>
</center>
**CloudSEN12+** is a significant extension of the [CloudSEN12](https://cloudsen12.github.io/) dataset, which doubles the number of expert-reviewed labels, making it, by
a large margin, the largest cloud detection dataset to date for Sentinel-2. All labels from the previous version have been curated and refined, enhancing the
dataset's trustworthiness. This new release is licensed **under CC0**, which puts it in the public domain and allows anyone to use, modify, and distribute
it without permission or attribution.
## Data Folder order
The CloudSEN12+ dataset is organized into `train`, `val`, and `test` splits. The images have
been padded from 509x509 to 512x512 and 2000x2000 to 2048x2048 to ensure that the patches are divisible by 32. The padding is filled with zeros in the left and bottom sides of the image. For
those who prefer traditional storage formats, GeoTIFF files are available in our [ScienceDataBank](https://www.scidb.cn/en/detail?dataSetId=2036f4657b094edfbb099053d6024b08&version=V1) repository.
<center>
<img src="https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/9UA4U3WObVeq7BAcf37-C.png" alt="drawing" width="50%"/>
</center>
*CloudSEN12+ spatial coverage. The terms p509 and p2000 denote the patch size 509 × 509 and 2000 × 2000, respectively. ‘high’, ‘scribble’, and ‘nolabel’ refer to the types of expert-labeled annotations*
**ML-STAC Snippet**
```python
import mlstac
dataset = mlstac.load('isp-uv-es/CloudSEN12Plus')
```
**Sensor: Sentinel2 - MSI**
**ML-STAC Task: image-segmentation**
**ML-STAC Dataset Version: 1.0.0**
**Data raw repository: [https://cloudsen12.github.io/](https://cloudsen12.github.io/)**
**Dataset discussion: [https://huggingface.co/datasets/isp-uv-es/CloudSEN12Plus/discussions](https://huggingface.co/datasets/isp-uv-es/CloudSEN12Plus/discussions)**
**Split_strategy: stratified**
**Paper: [https://www.sciencedirect.com/science/article/pii/S2352340924008163](https://www.sciencedirect.com/science/article/pii/S2352340924008163)**
## Data Providers
|Name|Role|URL|
| :---: | :---: | :---: |
|Image & Signal Processing|['host']|https://isp.uv.es/|
|ESA|['producer']|https://www.esa.int/|
## Curators
|Name|Organization|URL|
| :---: | :---: | :---: |
|Cesar Aybar|Image & Signal Processing|http://csaybar.github.io/|
## Labels
For human **_high-quality_** labels (also UnetMobV2_V2 & UnetMobV2_V1 predictions).
|Name|Value|
| :---: | :---: |
|clear|0|
|thick-cloud|1|
|thin-cloud|2|
|cloud-shadow|3|
For human **_scribble_** labels.
|Name|Value|
| :---: | :---: |
|clear|0|
|thick-cloud border|1|
|thick-cloud center|2|
|thin-cloud border|3|
|thin-cloud center|4|
|cloud-shadow border|5|
|cloud-shadow center|6|
## Dimensions
|Axis|Name|Description|
| :---: | :---: | :---: |
|0|C|Spectral bands|
|1|H|Height|
|2|W|Width|
## Spectral Bands
|Name|Common Name|Description|Center Wavelength|Full Width Half Max|Index|
| :---: | :---: | :---: | :---: | :---: | :---: |
|B01|coastal aerosol|Band 1 - Coastal aerosol - 60m|443.5|17.0|0|
|B02|blue|Band 2 - Blue - 10m|496.5|53.0|1|
|B03|green|Band 3 - Green - 10m|560.0|34.0|2|
|B04|red|Band 4 - Red - 10m|664.5|29.0|3|
|B05|red edge 1|Band 5 - Vegetation red edge 1 - 20m|704.5|13.0|4|
|B06|red edge 2|Band 6 - Vegetation red edge 2 - 20m|740.5|13.0|5|
|B07|red edge 3|Band 7 - Vegetation red edge 3 - 20m|783.0|18.0|6|
|B08|NIR|Band 8 - Near infrared - 10m|840.0|114.0|7|
|B8A|red edge 4|Band 8A - Vegetation red edge 4 - 20m|864.5|19.0|8|
|B09|water vapor|Band 9 - Water vapor - 60m|945.0|18.0|9|
|B10|cirrus|Band 10 - Cirrus - 60m|1375.5|31.0|10|
|B11|SWIR 1|Band 11 - Shortwave infrared 1 - 20m|1613.5|89.0|11|
|B12|SWIR 2|Band 12 - Shortwave infrared 2 - 20m|2199.5|173.0|12|
|CM1| Cloud Mask 1| Expert-labeled image. |-|-|13|
|CM2| Cloud Mask 2| UnetMobV2-V1 labeled image. |-|-|14|
## Data Structure
We use `.mls` format to store the data in HugginFace and GeoTIFF for ScienceDataBank.
## Folder Structure
The **fixed/** folder contains high and scribble labels, which have been improved in this new version. These changes have already been integrated.
The **demo/** folder contains examples illustrating how to utilize the models trained with CLoudSEN12 to estimate the hardness and trustworthiness indices.
The **images/** folder contains the CloudSEN12+ imagery
## Download
The code below can be used to download the dataset using the `mlstac` library. For a more detailed example, please refer to the `examples` section in our
website [https://cloudsen12.github.io/](https://cloudsen12.github.io/).
```python
import mlstac
import matplotlib.pyplot as plt
import numpy as np
ds = mlstac.load(snippet="isp-uv-es/CloudSEN12Plus")
subset = ds.metadata[(ds.metadata["split"] == "test") & (ds.metadata["label_type"] == "high") & (ds.metadata["proj_shape"] == 509)][10:14]
datacube = mlstac.get_data(dataset=subset)
```
Make a plot of the data point downloaded
```python
datapoint = datacube[2]
datapoint_rgb = np.moveaxis(datapoint[[3, 2, 1]], 0, -1) / 5_000
fig, ax = plt.subplots(1, 3, figsize=(10, 5))
ax[0].imshow(datapoint_rgb)
ax[0].set_title("RGB")
ax[1].imshow(datapoint[13], cmap="gray")
ax[1].set_title("Human label")
ax[2].imshow(datapoint[14], cmap="gray")
ax[2].set_title("UnetMobV2 v1.0")
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/scVhZf3rkB3uWkZZ6Epmu.png)
## Citation
Cite the dataset as:
```bibtex
@article{aybar2024cloudsen12+,
title={CloudSEN12+: The largest dataset of expert-labeled pixels for cloud and cloud shadow detection in Sentinel-2},
author={Aybar, Cesar and Bautista, Lesly and Montero, David and Contreras, Julio and Ayala, Daryl and Prudencio, Fernando and Loja, Jhomira and Ysuhuaylas, Luis and Herrera, Fernando and Gonzales, Karen and others},
journal={Data in Brief},
pages={110852},
year={2024},
publisher={Elsevier}
}
``` |