File size: 6,263 Bytes
8730a1d
dc938c7
 
 
 
 
 
5db17a7
 
 
 
 
 
 
 
dc938c7
 
5db17a7
dc938c7
 
fcce857
 
 
dc938c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5db17a7
 
 
 
 
dc938c7
5db17a7
dc938c7
5db17a7
dc938c7
fcce857
 
5db17a7
dc938c7
5db17a7
dc938c7
5db17a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555bc10
 
5db17a7
 
 
 
 
 
 
555bc10
 
 
 
 
 
 
 
 
 
 
 
 
5db17a7
 
 
 
 
 
 
dc938c7
5db17a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc938c7
 
 
 
 
 
 
 
 
5db17a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc938c7
 
 
5db17a7
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
---
license: cc0-1.0
task_categories:
- image-segmentation
language:
- en
tags:
- clouds
- earth-observation
- remote-sensing
- sentinel-2
- deep-learning
- multi-spectral
- satellite
- geospatial
pretty_name: cloudsen12
size_categories:
- 100K<n<1M
---

<center>
<img src="cloudsen12.gif" alt="drawing" width="35%"/>
</center>


**CloudSEN12+** is a significant extension of the [CloudSEN12](https://cloudsen12.github.io/) dataset, which doubles the number of expert-reviewed labels, making it, by 
a large margin, the largest cloud detection dataset to date for Sentinel-2. All labels from the previous version have been curated and refined, enhancing the 
dataset's trustworthiness. This new release is licensed **under CC0**, which puts it in the public domain and allows anyone to use, modify, and distribute 
it without permission or attribution.

## Data Folder order


The CloudSEN12+ dataset is organized into `train`, `val`, and `test` splits. The images have
been padded from 509x509 to 512x512 and 2000x2000 to 2048x2048 to ensure that the patches are divisible by 32. The padding is filled with zeros in the left and bottom sides of the image. For
those who prefer traditional storage formats, GeoTIFF files are available in our [ScienceDataBank](https://www.scidb.cn/en/detail?dataSetId=2036f4657b094edfbb099053d6024b08&version=V1) repository.

<center>
<img src="https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/9UA4U3WObVeq7BAcf37-C.png" alt="drawing" width="50%"/>
</center>

*CloudSEN12+ spatial coverage. The terms p509 and p2000 denote the patch size 509 × 509 and 2000 × 2000, respectively. ‘high’, ‘scribble’, and ‘nolabel’ refer to the types of expert-labeled annotations*

**ML-STAC Snippet**
```python
import mlstac
dataset = mlstac.load('isp-uv-es/CloudSEN12Plus')
```

**Sensor: Sentinel2 - MSI**

**ML-STAC Task: image-segmentation**

**ML-STAC Dataset Version: 1.0.0**

**Data raw repository:  [https://cloudsen12.github.io/](https://cloudsen12.github.io/)**

**Dataset discussion:  [https://huggingface.co/datasets/isp-uv-es/CloudSEN12Plus/discussions](https://huggingface.co/datasets/isp-uv-es/CloudSEN12Plus/discussions)**

**Split_strategy:  stratified**

**Paper:  [https://www.sciencedirect.com/science/article/pii/S2352340924008163](https://www.sciencedirect.com/science/article/pii/S2352340924008163)**


## Data Providers

|Name|Role|URL|
| :---: | :---: | :---: |
|Image & Signal Processing|['host']|https://isp.uv.es/|
|ESA|['producer']|https://www.esa.int/|

## Curators

|Name|Organization|URL|
| :---: | :---: | :---: |
|Cesar Aybar|Image & Signal Processing|http://csaybar.github.io/|


## Labels

For human **_high-quality_** labels (also UnetMobV2_V2 & UnetMobV2_V1 predictions).

|Name|Value|
| :---: | :---: |
|clear|0|
|thick-cloud|1|
|thin-cloud|2|
|cloud-shadow|3|

For human **_scribble_** labels.

|Name|Value|
| :---: | :---: |
|clear|0|
|thick-cloud border|1|
|thick-cloud center|2|
|thin-cloud border|3|
|thin-cloud center|4|
|cloud-shadow border|5|
|cloud-shadow center|6|


## Dimensions

|Axis|Name|Description|
| :---: | :---: | :---: |
|0|C|Spectral bands|
|1|H|Height|
|2|W|Width|

## Spectral Bands

|Name|Common Name|Description|Center Wavelength|Full Width Half Max|Index|
| :---: | :---: | :---: | :---: | :---: | :---: |
|B01|coastal aerosol|Band 1 - Coastal aerosol - 60m|443.5|17.0|0|
|B02|blue|Band 2 - Blue - 10m|496.5|53.0|1|
|B03|green|Band 3 - Green - 10m|560.0|34.0|2|
|B04|red|Band 4 - Red - 10m|664.5|29.0|3|
|B05|red edge 1|Band 5 - Vegetation red edge 1 - 20m|704.5|13.0|4|
|B06|red edge 2|Band 6 - Vegetation red edge 2 - 20m|740.5|13.0|5|
|B07|red edge 3|Band 7 - Vegetation red edge 3 - 20m|783.0|18.0|6|
|B08|NIR|Band 8 - Near infrared - 10m|840.0|114.0|7|
|B8A|red edge 4|Band 8A - Vegetation red edge 4 - 20m|864.5|19.0|8|
|B09|water vapor|Band 9 - Water vapor - 60m|945.0|18.0|9|
|B10|cirrus|Band 10 - Cirrus - 60m|1375.5|31.0|10|
|B11|SWIR 1|Band 11 - Shortwave infrared 1 - 20m|1613.5|89.0|11|
|B12|SWIR 2|Band 12 - Shortwave infrared 2 - 20m|2199.5|173.0|12|
|CM1| Cloud Mask 1| Expert-labeled image.    |-|-|13|
|CM2| Cloud Mask 2| UnetMobV2-V1 labeled image. |-|-|14|

## Data Structure

We use `.mls` format to store the data in HugginFace and GeoTIFF for ScienceDataBank.

## Folder Structure

The **fixed/** folder contains high and scribble labels, which have been improved in this new version. These changes have already been integrated.

The **demo/** folder contains examples illustrating how to utilize the models trained with CLoudSEN12 to estimate the hardness and trustworthiness indices.

The **images/** folder contains the CloudSEN12+ imagery

## Download

The code below can be used to download the dataset using the `mlstac` library. For a more detailed example, please refer to the `examples` section in our
website [https://cloudsen12.github.io/](https://cloudsen12.github.io/).


```python
import mlstac
import matplotlib.pyplot as plt
import numpy as np

ds = mlstac.load(snippet="isp-uv-es/CloudSEN12Plus")
subset = ds.metadata[(ds.metadata["split"] == "test") & (ds.metadata["label_type"] == "high") & (ds.metadata["proj_shape"] == 509)][10:14]
datacube = mlstac.get_data(dataset=subset)
```

Make a plot of the data point downloaded

```python
datapoint = datacube[2]
datapoint_rgb = np.moveaxis(datapoint[[3, 2, 1]], 0, -1) / 5_000
fig, ax = plt.subplots(1, 3, figsize=(10, 5))
ax[0].imshow(datapoint_rgb)
ax[0].set_title("RGB")
ax[1].imshow(datapoint[13], cmap="gray")
ax[1].set_title("Human label")
ax[2].imshow(datapoint[14], cmap="gray")
ax[2].set_title("UnetMobV2 v1.0")
```


![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/scVhZf3rkB3uWkZZ6Epmu.png)

## Citation

Cite the dataset as:

```bibtex
@article{aybar2024cloudsen12+,
  title={CloudSEN12+: The largest dataset of expert-labeled pixels for cloud and cloud shadow detection in Sentinel-2},
  author={Aybar, Cesar and Bautista, Lesly and Montero, David and Contreras, Julio and Ayala, Daryl and Prudencio, Fernando and Loja, Jhomira and Ysuhuaylas, Luis and Herrera, Fernando and Gonzales, Karen and others},
  journal={Data in Brief},
  pages={110852},
  year={2024},
  publisher={Elsevier}
}
```