File size: 2,668 Bytes
c812221
679bbb4
 
c812221
2d34974
c812221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae30820
 
 
 
 
 
 
 
c812221
 
 
b3083dc
c812221
 
420b7be
2c4d03d
c812221
2c4d03d
c812221
 
 
 
 
2c4d03d
c812221
2c4d03d
c812221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
559a199
1c264e0
934a699
c812221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0049bc5
c812221
2d34974
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
from pdb import set_trace

import datasets
import pandas as pd

_CITATION = """\
Put your dataset citation here.
"""

_DESCRIPTION = """\
Description of your dataset goes here.
"""

_HOMEPAGE = "https://your-dataset-homepage.com"

_LICENSE = "License information goes here."


class Test(datasets.GeneratorBasedBuilder):
    """Your dataset description"""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="customers", 
            version=datasets.Version("1.0.0"), 
            description="This is subset A"),
        datasets.BuilderConfig(
            name="products", 
            version=datasets.Version("1.0.0"), 
            description="This is subset B"),
    ]

    def _info(self):
        # set_trace()
        if self.config.name == "customers":
            features = datasets.Features(
                {
                    "customer_id": datasets.Value("int64"),
                    "name": datasets.Value("string"),
                    "age": datasets.Value("int64"),
                }
            )
        elif self.config.name == "products":
            features = datasets.Features(
                {
                    "product_id": datasets.Value("int64"),
                    "name": datasets.Value("string"),
                    "price": datasets.Value("double"),
                }
            )
        else:
            raise ValueError(f"Unknown subset: {self.config.name}")

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.manual_dir or "./"
        data_dir = os.path.join(data_dir, self.config.name)
        print(data_dir)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": os.path.join(data_dir, "train.csv")},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": os.path.join(data_dir, "val.csv")},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": os.path.join(data_dir, "test.csv")},
            ),
        ]

    def _generate_examples(self, filepath):
        # set_trace()
        with open(filepath, encoding="utf-8") as f:
            df = pd.read_csv(filepath, index_col=0)
            for id_, item in df.iterrows():
                yield id_, item.to_dict()