Datasets:
ivelin
commited on
Commit
·
ce1b4f4
1
Parent(s):
5666321
fix: checkpoint
Browse filesSigned-off-by: ivelin <ivelin.eth@gmail.com>
- ui_refexp.py +65 -67
ui_refexp.py
CHANGED
@@ -67,40 +67,40 @@ _METADATA_URLS = {
|
|
67 |
|
68 |
|
69 |
def tfrecord2dict(raw_tfr_dataset: None):
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
|
105 |
|
106 |
class UIRefExp(datasets.GeneratorBasedBuilder):
|
@@ -120,34 +120,35 @@ class UIRefExp(datasets.GeneratorBasedBuilder):
|
|
120 |
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
121 |
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
122 |
BUILDER_CONFIGS = [
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
DEFAULT_CONFIG_NAME = "
|
137 |
|
138 |
def _info(self):
|
139 |
features = datasets.Features(
|
140 |
{
|
141 |
"screenshot": datasets.Image(),
|
142 |
-
|
143 |
-
"
|
|
|
|
|
144 |
}
|
145 |
)
|
146 |
|
147 |
return datasets.DatasetInfo(
|
148 |
description=_DESCRIPTION,
|
149 |
features=features,
|
150 |
-
supervised_keys=("screenshot","prompt", "target_bounding_box"),
|
151 |
homepage=_HOMEPAGE,
|
152 |
license=_LICENSE,
|
153 |
citation=_CITATION,
|
@@ -161,51 +162,48 @@ class UIRefExp(datasets.GeneratorBasedBuilder):
|
|
161 |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
162 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
163 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
164 |
-
image_urls = _DATA_URLs[self.config.name]
|
165 |
-
image_archive = dl_manager.download(image_urls)
|
166 |
# download and extract TFRecord labeling metadata
|
167 |
local_tfrs = {}
|
168 |
-
for split, tfrecord_url in _METADATA_URLS:
|
169 |
local_tfr_file = dl_manager.download(tfrecord_url)
|
170 |
local_tfrs[split] = local_tfr_file
|
171 |
-
|
|
|
|
|
|
|
172 |
return [
|
173 |
datasets.SplitGenerator(
|
174 |
name=datasets.Split.TRAIN,
|
175 |
# These kwargs will be passed to _generate_examples
|
176 |
gen_kwargs={
|
177 |
-
"
|
178 |
-
"metadata_file": local_tfrs["train"],
|
179 |
"images": dl_manager.iter_archive(archive_path),
|
180 |
"split": "train",
|
181 |
-
|
182 |
},
|
183 |
),
|
184 |
datasets.SplitGenerator(
|
185 |
name=datasets.Split.VALIDATION,
|
186 |
# These kwargs will be passed to _generate_examples
|
187 |
gen_kwargs={
|
188 |
-
"
|
189 |
-
"metadata_file": local_tfrs["validation"],
|
190 |
"images": dl_manager.iter_archive(archive_path),
|
191 |
"split": "validation",
|
192 |
-
},
|
193 |
),
|
194 |
datasets.SplitGenerator(
|
195 |
name=datasets.Split.TEST,
|
196 |
# These kwargs will be passed to _generate_examples
|
197 |
gen_kwargs={
|
198 |
-
"
|
199 |
-
"metadata_file": local_tfrs["test"],
|
200 |
"images": dl_manager.iter_archive(archive_path),
|
201 |
"split": "test",
|
202 |
-
},
|
203 |
)
|
204 |
]
|
205 |
|
206 |
def _generate_examples(
|
207 |
self,
|
208 |
-
root_dir,
|
209 |
metadata_file,
|
210 |
images,
|
211 |
split, # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
@@ -214,12 +212,12 @@ class UIRefExp(datasets.GeneratorBasedBuilder):
|
|
214 |
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
215 |
# The `key` is here for legacy reason (tfds) and is not important in itself.
|
216 |
# filter tfrecord and convert to json
|
217 |
-
|
218 |
with open(metadata_path, encoding="utf-8") as f:
|
219 |
files_to_keep = set(f.read().split("\n"))
|
220 |
for file_path, file_obj in images:
|
221 |
if file_path.startswith(_IMAGES_DIR):
|
222 |
-
if file_path[len(_IMAGES_DIR)
|
223 |
label = file_path.split("/")[2]
|
224 |
yield file_path, {
|
225 |
"image": {"path": file_path, "bytes": file_obj.read()},
|
|
|
67 |
|
68 |
|
69 |
def tfrecord2dict(raw_tfr_dataset: None):
|
70 |
+
"""Filter and convert refexp tfrecord file to dict object."""
|
71 |
+
count = 0
|
72 |
+
donut_refexp_dict = []
|
73 |
+
for raw_record in raw_tfr_dataset:
|
74 |
+
count += 1
|
75 |
+
example = tf.train.Example()
|
76 |
+
example.ParseFromString(raw_record.numpy())
|
77 |
+
# print(f"total UI objects in this sample: {len(example.features.feature['image/object/bbox/xmin'].float_list.value)}")
|
78 |
+
# print(f"feature keys: {example.features.feature.keys}")
|
79 |
+
donut_refexp = {}
|
80 |
+
image_id = example.features.feature['image/id'].bytes_list.value[0].decode()
|
81 |
+
image_path = zipurl_template.format(image_id=image_id)
|
82 |
+
donut_refexp["image_path"] = image_path
|
83 |
+
donut_refexp["question"] = example.features.feature["image/ref_exp/text"].bytes_list.value[0].decode()
|
84 |
+
object_idx = example.features.feature["image/ref_exp/label"].int64_list.value[0]
|
85 |
+
object_idx = int(object_idx)
|
86 |
+
# print(f"object_idx: {object_idx}")
|
87 |
+
object_bb = {}
|
88 |
+
# print(f"example.features.feature['image/object/bbox/xmin']: {example.features.feature['image/object/bbox/xmin'].float_list.value[object_idx]}")
|
89 |
+
object_bb["xmin"] = example.features.feature['image/object/bbox/xmin'].float_list.value[object_idx]
|
90 |
+
object_bb["ymin"] = example.features.feature['image/object/bbox/ymin'].float_list.value[object_idx]
|
91 |
+
object_bb["xmax"] = example.features.feature['image/object/bbox/xmax'].float_list.value[object_idx]
|
92 |
+
object_bb["ymax"] = example.features.feature['image/object/bbox/ymax'].float_list.value[object_idx]
|
93 |
+
donut_refexp["answer"] = object_bb
|
94 |
+
donut_refexp_dict.append(donut_refexp)
|
95 |
+
if count != 3:
|
96 |
+
continue
|
97 |
+
print(f"Donut refexp: {donut_refexp}")
|
98 |
+
# for key, feature in example.features.feature.items():
|
99 |
+
# if key in ['image/id', "image/ref_exp/text", "image/ref_exp/label", 'image/object/bbox/xmin', 'image/object/bbox/ymin', 'image/object/bbox/xmax', 'image/object/bbox/ymax']:
|
100 |
+
# print(key, feature)
|
101 |
+
|
102 |
+
print(f"Total samples in the raw dataset: {count}")
|
103 |
+
return donut_refexp_dict
|
104 |
|
105 |
|
106 |
class UIRefExp(datasets.GeneratorBasedBuilder):
|
|
|
120 |
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
121 |
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
122 |
BUILDER_CONFIGS = [
|
123 |
+
datasets.BuilderConfig(
|
124 |
+
name="ui_refexp",
|
125 |
+
version=VERSION,
|
126 |
+
description="Contains 66k+ unique UI screens. For each UI, we present a screenshot (JPG file) and the text shown on the screen that was extracted using an OCR model.",
|
127 |
+
)
|
128 |
+
# ,
|
129 |
+
# # datasets.BuilderConfig(
|
130 |
+
# # name="screenshots_captions_filtered",
|
131 |
+
# # version=VERSION,
|
132 |
+
# # description="Contains 25k unique UI screens. For each UI, we present a screenshot (JPG file) and the text shown on the screen that was extracted using an OCR model. Filtering was done as discussed in this paper: https://aclanthology.org/2020.acl-main.729.pdf",
|
133 |
+
# # ),
|
134 |
+
]
|
135 |
+
|
136 |
+
DEFAULT_CONFIG_NAME = "ui_refexp"
|
137 |
|
138 |
def _info(self):
|
139 |
features = datasets.Features(
|
140 |
{
|
141 |
"screenshot": datasets.Image(),
|
142 |
+
# click the search button next to menu drawer at the top of the screen
|
143 |
+
"prompt": datasets.Value("string"),
|
144 |
+
# [xmin, ymin, xmax, ymax], normalized screen reference values between 0 and 1
|
145 |
+
"target_bounding_box": dict,
|
146 |
}
|
147 |
)
|
148 |
|
149 |
return datasets.DatasetInfo(
|
150 |
description=_DESCRIPTION,
|
151 |
features=features,
|
|
|
152 |
homepage=_HOMEPAGE,
|
153 |
license=_LICENSE,
|
154 |
citation=_CITATION,
|
|
|
162 |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
163 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
164 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
|
|
|
|
165 |
# download and extract TFRecord labeling metadata
|
166 |
local_tfrs = {}
|
167 |
+
for split, tfrecord_url in _METADATA_URLS[self.config.name].items():
|
168 |
local_tfr_file = dl_manager.download(tfrecord_url)
|
169 |
local_tfrs[split] = local_tfr_file
|
170 |
+
# download image files
|
171 |
+
image_urls = _DATA_URLs[self.config.name]
|
172 |
+
archive_path = dl_manager.download(image_urls)
|
173 |
+
|
174 |
return [
|
175 |
datasets.SplitGenerator(
|
176 |
name=datasets.Split.TRAIN,
|
177 |
# These kwargs will be passed to _generate_examples
|
178 |
gen_kwargs={
|
179 |
+
"metadata_file": local_tfrs["train"],
|
|
|
180 |
"images": dl_manager.iter_archive(archive_path),
|
181 |
"split": "train",
|
182 |
+
|
183 |
},
|
184 |
),
|
185 |
datasets.SplitGenerator(
|
186 |
name=datasets.Split.VALIDATION,
|
187 |
# These kwargs will be passed to _generate_examples
|
188 |
gen_kwargs={
|
189 |
+
"metadata_file": local_tfrs["validation"],
|
|
|
190 |
"images": dl_manager.iter_archive(archive_path),
|
191 |
"split": "validation",
|
192 |
+
},
|
193 |
),
|
194 |
datasets.SplitGenerator(
|
195 |
name=datasets.Split.TEST,
|
196 |
# These kwargs will be passed to _generate_examples
|
197 |
gen_kwargs={
|
198 |
+
"metadata_file": local_tfrs["test"],
|
|
|
199 |
"images": dl_manager.iter_archive(archive_path),
|
200 |
"split": "test",
|
201 |
+
},
|
202 |
)
|
203 |
]
|
204 |
|
205 |
def _generate_examples(
|
206 |
self,
|
|
|
207 |
metadata_file,
|
208 |
images,
|
209 |
split, # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
|
|
212 |
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
213 |
# The `key` is here for legacy reason (tfds) and is not important in itself.
|
214 |
# filter tfrecord and convert to json
|
215 |
+
|
216 |
with open(metadata_path, encoding="utf-8") as f:
|
217 |
files_to_keep = set(f.read().split("\n"))
|
218 |
for file_path, file_obj in images:
|
219 |
if file_path.startswith(_IMAGES_DIR):
|
220 |
+
if file_path[len(_IMAGES_DIR): -len(".jpg")] in files_to_keep:
|
221 |
label = file_path.split("/")[2]
|
222 |
yield file_path, {
|
223 |
"image": {"path": file_path, "bytes": file_obj.read()},
|