jainr3 commited on
Commit
d82b204
1 Parent(s): f5d9ccf

Create diffusiondb-pixelart.py

Browse files
Files changed (1) hide show
  1. diffusiondb-pixelart.py +408 -0
diffusiondb-pixelart.py ADDED
@@ -0,0 +1,408 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Original Copyright 2022 Jay Wang, Evan Montoya, David Munechika, Alex Yang, Ben Hoover, Polo Chau
2
+ # MIT License
3
+ """Loading script for DiffusionDB."""
4
+
5
+ import re
6
+ import numpy as np
7
+ import pandas as pd
8
+
9
+ from json import load, dump
10
+ from os.path import join, basename
11
+ from huggingface_hub import hf_hub_url
12
+
13
+ import datasets
14
+
15
+ # Find for instance the citation on arxiv or on the dataset repo/website
16
+ _CITATION = """\
17
+ @article{wangDiffusionDBLargescalePrompt2022,
18
+ title = {{{DiffusionDB}}: {{A}} Large-Scale Prompt Gallery Dataset for Text-to-Image Generative Models},
19
+ author = {Wang, Zijie J. and Montoya, Evan and Munechika, David and Yang, Haoyang and Hoover, Benjamin and Chau, Duen Horng},
20
+ year = {2022},
21
+ journal = {arXiv:2210.14896 [cs]},
22
+ url = {https://arxiv.org/abs/2210.14896}
23
+ }
24
+ """
25
+
26
+ # You can copy an official description
27
+ _DESCRIPTION = """
28
+ DiffusionDB is the first large-scale text-to-image prompt dataset. It contains 2
29
+ million images generated by Stable Diffusion using prompts and hyperparameters
30
+ specified by real users. The unprecedented scale and diversity of this
31
+ human-actuated dataset provide exciting research opportunities in understanding
32
+ the interplay between prompts and generative models, detecting deepfakes, and
33
+ designing human-AI interaction tools to help users more easily use these models.
34
+ """
35
+
36
+ _HOMEPAGE = "https://poloclub.github.io/diffusiondb"
37
+ _LICENSE = "CC0 1.0"
38
+ _VERSION = datasets.Version("0.9.1")
39
+
40
+ # Programmatically generate the URLs for different parts
41
+ # hf_hub_url() provides a more flexible way to resolve the file URLs
42
+ # https://huggingface.co/datasets/poloclub/diffusiondb/resolve/main/images/part-000001.zip
43
+ _URLS = {}
44
+ _URLS_LARGE = {}
45
+ _PART_IDS = range(1, 2001)
46
+ _PART_IDS_LARGE = range(1, 14001)
47
+
48
+ for i in _PART_IDS:
49
+ _URLS[i] = hf_hub_url(
50
+ "poloclub/diffusiondb",
51
+ filename=f"images/part-{i:06}.zip",
52
+ repo_type="dataset",
53
+ )
54
+
55
+ for i in _PART_IDS_LARGE:
56
+ if i < 10001:
57
+ _URLS_LARGE[i] = hf_hub_url(
58
+ "poloclub/diffusiondb",
59
+ filename=f"diffusiondb-large-part-1/part-{i:06}.zip",
60
+ repo_type="dataset",
61
+ )
62
+ else:
63
+ _URLS_LARGE[i] = hf_hub_url(
64
+ "poloclub/diffusiondb",
65
+ filename=f"diffusiondb-large-part-2/part-{i:06}.zip",
66
+ repo_type="dataset",
67
+ )
68
+
69
+ # Add the metadata parquet URL as well
70
+ _URLS["metadata"] = hf_hub_url(
71
+ "poloclub/diffusiondb", filename="metadata.parquet", repo_type="dataset"
72
+ )
73
+
74
+ _URLS_LARGE["metadata"] = hf_hub_url(
75
+ "poloclub/diffusiondb",
76
+ filename="metadata-large.parquet",
77
+ repo_type="dataset",
78
+ )
79
+
80
+ _SAMPLER_DICT = {
81
+ 1: "ddim",
82
+ 2: "plms",
83
+ 3: "k_euler",
84
+ 4: "k_euler_ancestral",
85
+ 5: "ddik_heunm",
86
+ 6: "k_dpm_2",
87
+ 7: "k_dpm_2_ancestral",
88
+ 8: "k_lms",
89
+ 9: "others",
90
+ }
91
+
92
+
93
+ class DiffusionDBConfig(datasets.BuilderConfig):
94
+ """BuilderConfig for DiffusionDB."""
95
+
96
+ def __init__(self, part_ids, is_large, **kwargs):
97
+ """BuilderConfig for DiffusionDB.
98
+ Args:
99
+ part_ids([int]): A list of part_ids.
100
+ is_large(bool): If downloading data from DiffusionDB Large (14 million)
101
+ **kwargs: keyword arguments forwarded to super.
102
+ """
103
+ super(DiffusionDBConfig, self).__init__(version=_VERSION, **kwargs)
104
+ self.part_ids = part_ids
105
+ self.is_large = is_large
106
+
107
+
108
+ class DiffusionDB(datasets.GeneratorBasedBuilder):
109
+ """A large-scale text-to-image prompt gallery dataset based on Stable Diffusion."""
110
+
111
+ BUILDER_CONFIGS = []
112
+
113
+ # Programmatically generate configuration options (HF requires to use a string
114
+ # as the config key)
115
+ for num_k in [1, 5, 10, 50, 100, 500, 1000]:
116
+ for sampling in ["first", "random"]:
117
+ for is_large in [False, True]:
118
+ num_k_str = f"{num_k}k" if num_k < 1000 else f"{num_k // 1000}m"
119
+ subset_str = "large_" if is_large else "2m_"
120
+
121
+ if sampling == "random":
122
+ # Name the config
123
+ cur_name = subset_str + "random_" + num_k_str
124
+
125
+ # Add a short description for each config
126
+ cur_description = (
127
+ f"Random {num_k_str} images with their prompts and parameters"
128
+ )
129
+
130
+ # Sample part_ids
131
+ total_part_ids = _PART_IDS_LARGE if is_large else _PART_IDS
132
+ part_ids = np.random.choice(
133
+ total_part_ids, num_k, replace=False
134
+ ).tolist()
135
+ else:
136
+ # Name the config
137
+ cur_name = subset_str + "first_" + num_k_str
138
+
139
+ # Add a short description for each config
140
+ cur_description = f"The first {num_k_str} images in this dataset with their prompts and parameters"
141
+
142
+ # Sample part_ids
143
+ total_part_ids = _PART_IDS_LARGE if is_large else _PART_IDS
144
+ part_ids = total_part_ids[1 : num_k + 1]
145
+
146
+ # Create configs
147
+ BUILDER_CONFIGS.append(
148
+ DiffusionDBConfig(
149
+ name=cur_name,
150
+ part_ids=part_ids,
151
+ is_large=is_large,
152
+ description=cur_description,
153
+ ),
154
+ )
155
+
156
+ # Add few more options for Large only
157
+ for num_k in [5000, 10000]:
158
+ for sampling in ["first", "random"]:
159
+ num_k_str = f"{num_k // 1000}m"
160
+ subset_str = "large_"
161
+
162
+ if sampling == "random":
163
+ # Name the config
164
+ cur_name = subset_str + "random_" + num_k_str
165
+
166
+ # Add a short description for each config
167
+ cur_description = (
168
+ f"Random {num_k_str} images with their prompts and parameters"
169
+ )
170
+
171
+ # Sample part_ids
172
+ total_part_ids = _PART_IDS_LARGE
173
+ part_ids = np.random.choice(
174
+ total_part_ids, num_k, replace=False
175
+ ).tolist()
176
+ else:
177
+ # Name the config
178
+ cur_name = subset_str + "first_" + num_k_str
179
+
180
+ # Add a short description for each config
181
+ cur_description = f"The first {num_k_str} images in this dataset with their prompts and parameters"
182
+
183
+ # Sample part_ids
184
+ total_part_ids = _PART_IDS_LARGE
185
+ part_ids = total_part_ids[1 : num_k + 1]
186
+
187
+ # Create configs
188
+ BUILDER_CONFIGS.append(
189
+ DiffusionDBConfig(
190
+ name=cur_name,
191
+ part_ids=part_ids,
192
+ is_large=True,
193
+ description=cur_description,
194
+ ),
195
+ )
196
+
197
+ # Need to manually add all (2m) and all (large)
198
+ BUILDER_CONFIGS.append(
199
+ DiffusionDBConfig(
200
+ name="2m_all",
201
+ part_ids=_PART_IDS,
202
+ is_large=False,
203
+ description="All images with their prompts and parameters",
204
+ ),
205
+ )
206
+
207
+ BUILDER_CONFIGS.append(
208
+ DiffusionDBConfig(
209
+ name="large_all",
210
+ part_ids=_PART_IDS_LARGE,
211
+ is_large=True,
212
+ description="All images with their prompts and parameters",
213
+ ),
214
+ )
215
+
216
+ # We also prove a text-only option, which loads the meatadata parquet file
217
+ BUILDER_CONFIGS.append(
218
+ DiffusionDBConfig(
219
+ name="2m_text_only",
220
+ part_ids=[],
221
+ is_large=False,
222
+ description="Only include all prompts and parameters (no image)",
223
+ ),
224
+ )
225
+
226
+ BUILDER_CONFIGS.append(
227
+ DiffusionDBConfig(
228
+ name="large_text_only",
229
+ part_ids=[],
230
+ is_large=True,
231
+ description="Only include all prompts and parameters (no image)",
232
+ ),
233
+ )
234
+
235
+ # Default to only load 1k random images
236
+ DEFAULT_CONFIG_NAME = "2m_random_1k"
237
+
238
+ def _info(self):
239
+ """Specify the information of DiffusionDB."""
240
+
241
+ if "text_only" in self.config.name:
242
+ features = datasets.Features(
243
+ {
244
+ "image_name": datasets.Value("string"),
245
+ "prompt": datasets.Value("string"),
246
+ "part_id": datasets.Value("uint16"),
247
+ "seed": datasets.Value("uint32"),
248
+ "step": datasets.Value("uint16"),
249
+ "cfg": datasets.Value("float32"),
250
+ "sampler": datasets.Value("string"),
251
+ "width": datasets.Value("uint16"),
252
+ "height": datasets.Value("uint16"),
253
+ "user_name": datasets.Value("string"),
254
+ "timestamp": datasets.Value("timestamp[us, tz=UTC]"),
255
+ "image_nsfw": datasets.Value("float32"),
256
+ "prompt_nsfw": datasets.Value("float32"),
257
+ },
258
+ )
259
+
260
+ else:
261
+ features = datasets.Features(
262
+ {
263
+ "image": datasets.Image(),
264
+ "prompt": datasets.Value("string"),
265
+ "seed": datasets.Value("uint32"),
266
+ "step": datasets.Value("uint16"),
267
+ "cfg": datasets.Value("float32"),
268
+ "sampler": datasets.Value("string"),
269
+ "width": datasets.Value("uint16"),
270
+ "height": datasets.Value("uint16"),
271
+ "user_name": datasets.Value("string"),
272
+ "timestamp": datasets.Value("timestamp[us, tz=UTC]"),
273
+ "image_nsfw": datasets.Value("float32"),
274
+ "prompt_nsfw": datasets.Value("float32"),
275
+ },
276
+ )
277
+
278
+ return datasets.DatasetInfo(
279
+ description=_DESCRIPTION,
280
+ features=features,
281
+ supervised_keys=None,
282
+ homepage=_HOMEPAGE,
283
+ license=_LICENSE,
284
+ citation=_CITATION,
285
+ )
286
+
287
+ def _split_generators(self, dl_manager):
288
+ # If several configurations are possible (listed in BUILDER_CONFIGS),
289
+ # the configuration selected by the user is in self.config.name
290
+
291
+ # dl_manager is a datasets.download.DownloadManager that can be used to
292
+ # download and extract URLS It can accept any type or nested list/dict
293
+ # and will give back the same structure with the url replaced with path
294
+ # to local files. By default the archives will be extracted and a path
295
+ # to a cached folder where they are extracted is returned instead of the
296
+ # archive
297
+
298
+ # Download and extract zip files of all sampled part_ids
299
+ data_dirs = []
300
+ json_paths = []
301
+
302
+ # Resolve the urls
303
+ if self.config.is_large:
304
+ urls = _URLS_LARGE
305
+ else:
306
+ urls = _URLS
307
+
308
+ for cur_part_id in self.config.part_ids:
309
+ cur_url = urls[cur_part_id]
310
+ data_dir = dl_manager.download_and_extract(cur_url)
311
+
312
+ data_dirs.append(data_dir)
313
+ json_paths.append(join(data_dir, f"part-{cur_part_id:06}.json"))
314
+
315
+ # Also download the metadata table
316
+ metadata_path = dl_manager.download(urls["metadata"])
317
+
318
+ return [
319
+ datasets.SplitGenerator(
320
+ name=datasets.Split.TRAIN,
321
+ # These kwargs will be passed to _generate_examples
322
+ gen_kwargs={
323
+ "data_dirs": data_dirs,
324
+ "json_paths": json_paths,
325
+ "metadata_path": metadata_path,
326
+ },
327
+ ),
328
+ ]
329
+
330
+ def _generate_examples(self, data_dirs, json_paths, metadata_path):
331
+ # This method handles input defined in _split_generators to yield
332
+ # (key, example) tuples from the dataset.
333
+ # The `key` is for legacy reasons (tfds) and is not important in itself,
334
+ # but must be unique for each example.
335
+
336
+ # Load the metadata parquet file if the config is text_only
337
+ if "text_only" in self.config.name:
338
+ metadata_df = pd.read_parquet(metadata_path)
339
+ for _, row in metadata_df.iterrows():
340
+ yield row["image_name"], {
341
+ "image_name": row["image_name"],
342
+ "prompt": row["prompt"],
343
+ "part_id": row["part_id"],
344
+ "seed": row["seed"],
345
+ "step": row["step"],
346
+ "cfg": row["cfg"],
347
+ "sampler": _SAMPLER_DICT[int(row["sampler"])],
348
+ "width": row["width"],
349
+ "height": row["height"],
350
+ "user_name": row["user_name"],
351
+ "timestamp": None
352
+ if pd.isnull(row["timestamp"])
353
+ else row["timestamp"],
354
+ "image_nsfw": row["image_nsfw"],
355
+ "prompt_nsfw": row["prompt_nsfw"],
356
+ }
357
+
358
+ else:
359
+ num_data_dirs = len(data_dirs)
360
+ assert num_data_dirs == len(json_paths)
361
+
362
+ # Read the metadata table (only rows with the needed part_ids)
363
+ part_ids = []
364
+ for path in json_paths:
365
+ cur_id = int(re.sub(r"part-(\d+)\.json", r"\1", basename(path)))
366
+ part_ids.append(cur_id)
367
+
368
+ # We have to use pandas here to make the dataset preview work (it
369
+ # uses streaming mode)
370
+ metadata_table = pd.read_parquet(
371
+ metadata_path,
372
+ filters=[("part_id", "in", part_ids)],
373
+ )
374
+
375
+ # Iterate through all extracted zip folders for images
376
+ for k in range(num_data_dirs):
377
+ cur_data_dir = data_dirs[k]
378
+ cur_json_path = json_paths[k]
379
+
380
+ json_data = load(open(cur_json_path, "r", encoding="utf8"))
381
+
382
+ for img_name in json_data:
383
+ img_params = json_data[img_name]
384
+ img_path = join(cur_data_dir, img_name)
385
+
386
+ # Query the metadata
387
+ query_result = metadata_table.query(f'`image_name` == "{img_name}"')
388
+
389
+ # Yields examples as (key, example) tuples
390
+ yield img_name, {
391
+ "image": {
392
+ "path": img_path,
393
+ "bytes": open(img_path, "rb").read(),
394
+ },
395
+ "prompt": img_params["p"],
396
+ "seed": int(img_params["se"]),
397
+ "step": int(img_params["st"]),
398
+ "cfg": float(img_params["c"]),
399
+ "sampler": img_params["sa"],
400
+ "width": query_result["width"].to_list()[0],
401
+ "height": query_result["height"].to_list()[0],
402
+ "user_name": query_result["user_name"].to_list()[0],
403
+ "timestamp": None
404
+ if pd.isnull(query_result["timestamp"].to_list()[0])
405
+ else query_result["timestamp"].to_list()[0],
406
+ "image_nsfw": query_result["image_nsfw"].to_list()[0],
407
+ "prompt_nsfw": query_result["prompt_nsfw"].to_list()[0],
408
+ }