Datasets:
File size: 2,633 Bytes
b54d592 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""IndoQA: Indonesian Question Answering Dataset."""
import csv
import json
import os
import gdown
import datasets
_DESCRIPTION = """\
This dataset is built for question answering task.
"""
_HOMEPAGE = "https://github.com/jakartaresearch"
_TRAIN_URL = "https://drive.google.com/uc?id=1P5qyZQ2J4DoIiQtjvX_HG_qdEAEjxEGd"
_VAL_URL = "https://drive.google.com/uc?id=1rCzF8EJTLvOd0ppPgRI5RSr1NwXiCree"
class GooglePlayReview(datasets.GeneratorBasedBuilder):
"""IndoQA: Indonesian Question Answering Dataset."""
VERSION = datasets.Version("1.0.0")
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answer": datasets.Value("string"),
"category": datasets.Value("string"),
"span_start": datasets.Value("int16"),
"span_end": datasets.Value("int16")
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE
)
def _split_generators(self, dl_manager):
train_path = dl_manager.download_and_extract(_TRAIN_URL)
val_path = dl_manager.download_and_extract(_VAL_URL)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path})
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath):
"""Generate examples."""
with open(filepath, encoding="utf-8") as file:
contents = json.load(file)
for id_, row in enumerate(contents):
yield id_, row |