File size: 2,469 Bytes
29f0162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import os
import datasets
_CITATION = """\
@article{cruz2020investigating,
title={Investigating the True Performance of Transformers in Low-Resource Languages: A Case Study in Automatic Corpus Creation},
author={Jan Christian Blaise Cruz and Jose Kristian Resabal and James Lin and Dan John Velasco and Charibeth Cheng},
journal={arXiv preprint arXiv:2010.11574},
year={2020}
}
"""
_DESCRIPTION = """\
Large-scale dataset of Filipino news articles. Sourced for the NewsPH-NLI Project (Cruz et al., 2020).
"""
_URL = "https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks"
_LICENSE = "GPL-3.0"
_DATA_URL = "https://s3.us-east-2.amazonaws.com/blaisecruz.com/datasets/newsph"
class NewsphConfig(datasets.BuilderConfig):
def __init__(self, data_url, **kwargs):
super(NewsphConfig, self).__init__(
version=datasets.Version(
"1.0.0",
),
**kwargs,
)
self.data_url = data_url
class Newsph(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
NewsphConfig(
name="newsph",
data_url=_DATA_URL + "/" + "newsph.zip",
description=_DESCRIPTION,
),
]
BUILDER_CONFIG_CLASS = NewsphConfig
def _info(self):
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
features=datasets.Features({"text": datasets.Value("string")}),
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_URL,
citation=_CITATION,
license=_LICENSE,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_file = dl_manager.download_and_extract(self.config.data_url)
data_dir = os.path.join(data_file, "newsph")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data_file": os.path.join(data_dir, "train.txt"), "split": "train"},
),
]
def _generate_examples(self, data_file, split):
"""Yields examples."""
with open(data_file, encoding="utf-8") as f:
for idx, row in enumerate(f):
if row.strip():
yield idx, {"text": row}
else:
yield idx, {"text": ""}
|