File size: 5,189 Bytes
ff7a392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
annotations_creators:
- expert-generated
language_creators:
- found
languages:
  ca:
  - ca
  eu:
  - eu
licenses:
- cc-by-3-0
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
---

# Dataset Card for MultiBooked

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-instances)
  - [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** http://hdl.handle.net/10230/33928
- **Repository:** https://github.com/jerbarnes/multibooked
- **Paper:** https://arxiv.org/abs/1803.08614
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

MultiBooked is a corpus of Basque and Catalan Hotel Reviews Annotated for Aspect-level Sentiment Classification.

The corpora are compiled from hotel reviews taken mainly from booking.com. The corpora are in Kaf/Naf format, which is
an xml-style stand-off format that allows for multiple layers of annotation. Each review was sentence- and
word-tokenized and lemmatized using Freeling for Catalan and ixa-pipes for Basque. Finally, for each language two
annotators annotated opinion holders, opinion targets, and opinion expressions for each review, following the
guidelines set out in the OpeNER project.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

Each sub-dataset is monolingual in the languages:
- ca: Catalan
- eu: Basque

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

- `text`: layer of the original text.
  - `wid`: list of word IDs for each word within the example.
  - `sent`: list of sentence IDs for each sentence within the example.
  - `para`: list of paragraph IDs for each paragraph within the example.
  - `word`: list of words.
- `terms`: layer of the terms resulting from the analysis of the original text (lemmatization, morphological,
  PoS tagging)
  - `tid`: list of term IDs for each term within the example.
  - `lemma`: list of lemmas.
  - `morphofeat`: list of morphological features.
  - `pos`: list of PoS tags.
  - `target`: list of sublists of the corresponding word IDs (normally, the sublists contain only one element,
    in a one-to-one correspondence between words and terms).
- `opinions`: layer of the opinions in the text.
  - `oid`: list of opinion IDs
  - `opinion_holder_target`: list of sublists of the corresponding term IDs that span the opinion holder.
  - `opinion_target_target`: list of sublists of the corresponding term IDs that span the opinion target.
  - `opinion_expression_polarity`: list of the opinion expression polarities. The polarity can take one of the values:
    `StrongNegative`, `Negative`, `Positive`, or `StrongPositive`.
  - `opinion_expression_target`: list of sublists of the corresponding term IDs that span the opinion expression.

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

Dataset is under the [CC-BY 3.0](https://creativecommons.org/licenses/by/3.0/) license.

### Citation Information

```
@inproceedings{Barnes2018multibooked,
    author={Barnes, Jeremy and Lambert, Patrik and Badia, Toni},
    title={MultiBooked: A corpus of Basque and Catalan Hotel Reviews Annotated for Aspect-level Sentiment Classification},
    booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC'18)},
    year = {2018},
    month = {May},
    date = {7-12},
    address = {Miyazaki, Japan},
    publisher = {European Language Resources Association (ELRA)},
    language = {english}
}
```