File size: 5,297 Bytes
7ef773c
 
 
 
 
 
 
 
 
 
 
 
 
 
a7bc952
7ef773c
 
 
 
 
a7bc952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ef773c
 
 
 
a7bc952
 
7ef773c
 
a7bc952
 
 
 
 
 
 
 
 
 
 
 
7ef773c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7bc952
 
7ef773c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7bc952
7ef773c
 
a7bc952
 
7ef773c
 
 
 
a7bc952
7ef773c
 
 
 
a7bc952
7ef773c
 
 
 
a7bc952
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""CVIT PIB Multilingual Corpus"""

import datasets


_CITATION = """\
@inproceedings{siripragada-etal-2020-multilingual,
    title = "A Multilingual Parallel Corpora Collection Effort for {I}ndian Languages",
    author = "Siripragada, Shashank  and
      Philip, Jerin  and
      Namboodiri, Vinay P.  and
      Jawahar, C V",
    booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
    month = may,
    year = "2020",
    address = "Marseille, France",
    publisher = "European Language Resources Association",
    url = "https://aclanthology.org/2020.lrec-1.462",
    pages = "3743--3751",
    language = "English",
    ISBN = "979-10-95546-34-4",
}
@article{2020,
   title={Revisiting Low Resource Status of Indian Languages in Machine Translation},
   url={http://dx.doi.org/10.1145/3430984.3431026},
   DOI={10.1145/3430984.3431026},
   journal={8th ACM IKDD CODS and 26th COMAD},
   publisher={ACM},
   author={Philip, Jerin and Siripragada, Shashank and Namboodiri, Vinay P. and Jawahar, C. V.},
   year={2020},
   month={Dec}
}
"""

_DESCRIPTION = """\
Sentence aligned parallel corpus between 11 Indian Languages, crawled and extracted from the press information bureau
website.
"""

_HOMEPAGE = "http://preon.iiit.ac.in/~jerin/bhasha/"

_LICENSE = "Creative Commons Attribution-ShareAlike 4.0 International"

_URL = {
    "0.0.0": "http://preon.iiit.ac.in/~jerin/resources/datasets/pib-v0.tar",
    "1.3.0": "http://preon.iiit.ac.in/~jerin/resources/datasets/pib_v1.3.tar.gz",
}
_ROOT_DIR = {
    "0.0.0": "pib",
    "1.3.0": "pib-v1.3",
}

_LanguagePairs = [
    "or-ur",
    "ml-or",
    "bn-ta",
    "gu-mr",
    "hi-or",
    "en-or",
    "mr-ur",
    "en-ta",
    "hi-ta",
    "bn-en",
    "bn-or",
    "ml-ta",
    "gu-ur",
    "bn-ml",
    "ml-pa",
    "en-pa",
    "bn-hi",
    "hi-pa",
    "gu-te",
    "pa-ta",
    "hi-ml",
    "or-te",
    "en-ml",
    "en-hi",
    "bn-pa",
    "mr-te",
    "mr-pa",
    "bn-te",
    "gu-hi",
    "ta-ur",
    "te-ur",
    "or-pa",
    "gu-ml",
    "gu-pa",
    "hi-te",
    "en-te",
    "ml-te",
    "pa-ur",
    "hi-ur",
    "mr-or",
    "en-ur",
    "ml-ur",
    "bn-mr",
    "gu-ta",
    "pa-te",
    "bn-gu",
    "bn-ur",
    "ml-mr",
    "or-ta",
    "ta-te",
    "gu-or",
    "en-gu",
    "hi-mr",
    "mr-ta",
    "en-mr",
]


class PibConfig(datasets.BuilderConfig):
    """BuilderConfig for PIB"""

    def __init__(self, language_pair, version=datasets.Version("1.3.0"), **kwargs):
        super().__init__(version=version, **kwargs)
        """

        Args:
            language_pair: language pair, you want to load
            **kwargs: keyword arguments forwarded to super.
        """
        self.src, self.tgt = language_pair.split("-")


class Pib(datasets.GeneratorBasedBuilder):
    """This new dataset is the large scale sentence aligned corpus in 11 Indian languages, viz.
    CVIT-PIB corpus that is the largest multilingual corpus available for Indian languages.
    """

    BUILDER_CONFIG_CLASS = PibConfig
    BUILDER_CONFIGS = [PibConfig(name=pair, description=_DESCRIPTION, language_pair=pair) for pair in _LanguagePairs]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {"translation": datasets.features.Translation(languages=[self.config.src, self.config.tgt])}
            ),
            supervised_keys=(self.config.src, self.config.tgt),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        archive = dl_manager.download(_URL[str(self.config.version)])
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "archive": dl_manager.iter_archive(archive),
                },
            ),
        ]

    def _generate_examples(self, archive):
        root_dir = _ROOT_DIR[str(self.config.version)]
        data_dir = f"{root_dir}/{self.config.src}-{self.config.tgt}"
        src = tgt = None
        for path, file in archive:
            if data_dir in path:
                if f"{data_dir}/train.{self.config.src}" in path:
                    src = file.read().decode("utf-8").split("\n")[:-1]
                if f"{data_dir}/train.{self.config.tgt}" in path:
                    tgt = file.read().decode("utf-8").split("\n")[:-1]
            if src and tgt:
                break
        for idx, (s, t) in enumerate(zip(src, tgt)):
            yield idx, {"translation": {self.config.src: s, self.config.tgt: t}}