File size: 10,700 Bytes
4110b5f
09d6c93
9f21a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4110b5f
fbe7ad7
4110b5f
fbe7ad7
4110b5f
e6bf9e3
 
4110b5f
e6bf9e3
 
 
7019f71
 
 
 
4110b5f
 
1b16c78
4110b5f
 
 
 
9f21a1c
4110b5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cd3726
4110b5f
f9efc22
4110b5f
0cd3726
4110b5f
9f21a1c
 
4110b5f
9f21a1c
4110b5f
9f21a1c
 
 
 
 
 
 
 
 
 
4110b5f
0cd3726
f9efc22
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
624d289
9f21a1c
 
 
f9efc22
 
 
 
 
9f21a1c
 
 
 
 
 
 
 
624d289
9f21a1c
 
 
f9efc22
 
 
 
 
 
9f21a1c
 
 
 
 
 
 
624d289
9f21a1c
 
 
f9efc22
 
 
 
 
9f21a1c
 
 
 
 
 
 
 
 
 
 
 
 
624d289
9f21a1c
f9efc22
 
 
 
 
 
 
9f21a1c
 
 
 
 
 
 
 
 
f9efc22
 
 
 
 
 
9f21a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cd3726
4110b5f
aafcc41
f9efc22
 
 
 
 
 
aafcc41
f9efc22
 
 
 
 
aafcc41
f9efc22
18c14ae
 
 
 
 
 
 
 
f9efc22
 
aafcc41
f9efc22
 
8facea9
18c14ae
 
 
f9efc22
 
8facea9
18c14ae
8facea9
18c14ae
f9efc22
 
 
 
 
 
4110b5f
0cd3726
4110b5f
9f21a1c
 
18c14ae
 
 
8facea9
 
18c14ae
8facea9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f21a1c
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
4110b5f
0cd3726
1b16c78
0cd3726
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
---
language:
- en
- da
- de
- nl
- sv
- bg
- cs
- hr
- pl
- sk
- sl
- es
- fr
- it
- pt
- ro
- et
- fi
- hu
- lt
- lv
- el
- mt
multilinguality:
- multilingual
source_datasets:
- extended
task_categories:
- text-classification
- token-classification
task_ids:
- named-entity-recognition
- multi-label-classification
- topic-classification
pretty_name: LegalGLUE
tags:
- german-ler
- lener-br
---

# Dataset Card for "LegalGLUE"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Repository:** https://git.rwth-aachen.de/johanna.frenz/legalglue

### Dataset Summary

The "Legal General Language Understanding Evaluation" (LegalGLUE) dataset was created as part of a bachelor thesis.
It consists of four already existing datasets covering three task types and a total of 23 different languages.

### Supported Tasks

<table>
<tr><td>Dataset</td><td>Source</td><td>Task Type</td><td>Languages</td><tr>


<tr><td>German_LER</td><td> <a href="https://arxiv.org/abs/2003.13016">Leitner et al.</a></td><td>Named Entity Recognition</td><td>German</td></tr>
<tr><td>LeNER_Br</td><td> <a href="https://github.com/peluz/lener-br"> de Araujo et al., 2018</a></td><td>Named Entity Recognition</td><td> Portuguese </td></tr>
<tr><td>SwissJudgmentPrediction</td><td> <a href="https://arxiv.org/abs/2110.00806">Niklaus et al.</a> </td><td>Binary Text Classification</td><td>German, French, Italian</td></tr>
<tr><td>MultEURLEX</td><td> <a href="https://arxiv.org/abs/2109.00904">Chalkidis et al. </a> </td><td>Multi-label Text Classification</td><td>23 languages (see below)</td></tr>

</table>

### Languages
see Split section

## Dataset Structure

### Data Instances

#### German_LER

German_LER example

```python
from datasets import load_dataset
dataset = load_dataset('jfrenz/legalglue', 'german_ler')
```

```json
{
  'id': '66722',
  'tokens':['4.', 'Die', 'Kostenentscheidung', 'für', 'das', 'gerichtliche', 'Antragsverfahren', 'beruht', 'auf', '§', '21', 'Abs.', '2', 'Satz', '1', 'i.', 'V.', 'm.', '§', '20', 'Abs.', '1', 'Satz', '1', 'WBO', '.'],
  'ner_tags': [38, 38, 38, 38, 38, 38, 38, 38, 38, 3, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 38]
}

```
#### LeNER-Br

LeNER-Br example

```python
from datasets import load_dataset
dataset = load_dataset('jfrenz/legalglue', 'lener_br')
```


```json
{
  'id': '7826',
  'tokens': ['Firmado', 'por', 'assinatura', 'digital', '(', 'MP', '2.200-2/2001', ')', 'JOSÉ', 'ROBERTO', 'FREIRE', 'PIMENTA', 'Ministro', 'Relator', 'fls', '.', 'PROCESSO', 'Nº', 'TST-RR-1603-79.2010.5.20.0001'],
  'ner_tags': [0, 0, 0, 0, 0, 9, 10, 0, 3, 4, 4, 4, 0, 0, 0, 0, 11, 12, 12]}
```

#### SwissJudgmentPrediction

swissJudgmentPrediction_de example

```python
from datasets import load_dataset
dataset = load_dataset('jfrenz/legalglue', 'swissJudgmentPrediction_de')
```

```json
{
  'id': 48755,
  'year': 2014,
  'text': "Sachverhalt: A. X._ fuhr am 25. Juli 2012 bei Mülligen mit seinem Personenwagen auf dem zweiten Überholstreifen der Autobahn A1 in Richtung Zürich. Gemäss Anklage schloss er auf einen Lieferwagen auf und schwenkte vom zweiten auf den ersten Überholstreifen aus. Danach fuhr er an zwei Fahrzeugen rechts vorbei und wechselte auf die zweite Überholspur zurück. B. Das Obergericht des Kantons Aargau erklärte X._ am 14. Januar 2014 zweitinstanzlich der groben Verletzung der Verkehrsregeln schuldig. Es bestrafte ihn mit einer bedingten Geldstrafe von 30 Tagessätzen zu Fr. 430.-- und einer Busse von Fr. 3'000.--. C. X._ führt Beschwerde in Strafsachen. Er beantragt, er sei von Schuld und Strafe freizusprechen. Eventualiter sei die Sache an die Vorinstanz zurückzuweisen. ",
  'label': 0,
  'language': 'de',
  'region': 'Northwestern Switzerland',
  'canton': 'ag',
  'legal area': 'penal law'
}
```

#### MultiEURLEX

Monolingual example out of the MultiEURLEX-Dataset

```python
from datasets import load_dataset
dataset = load_dataset('jfrenz/legalglue', 'multi_eurlex_de')
```


```json
{
  'celex_id': '32002R0130',
  'text': 'Verordnung (EG) Nr. 130/2002 der Kommission\nvom 24. Januar 2002\nbezüglich der im Rahmen der Auss...',
  'labels': [3, 17, 5]}
```

Multilingual example out of the MultiEURLEX-Dataset

```python
from datasets import load_dataset
dataset = load_dataset('jfrenz/legalglue', 'multi_eurlex_all_languages')
```

```json
{
  'celex_id': '32002R0130',
  'text': {
    'bg': None,
    'cs': None,
    'da': 'Kommissionens ...',
    'de': 'Verordnung ... ',
    'el': '...',
    'en': '...',
    ...
    },
    'labels': [3, 17, 5]
  }
```
### Data Fields

#### German_LER

- `id`: id of the sample
- `tokens`: the tokens of the sample text
- `ner_tags`: the NER tags of each token


#### LeNER_Br

- `id`: id of the sample
- `tokens`: the tokens of the sample text
- `ner_tags`: the NER tags of each token

#### SwissJudgmentPrediction

- `id`: (**int**) ID of the document
- `year`: (**int**) the publication year
- `text`: (**str**) the facts of the case
- `label`: (**class label**) the judgment outcome: 0 (dismissal) or 1 (approval)
- `language`: (**str**) one of (de, fr, it)
- `region`: (**str**) the region of the lower court
- `canton`: (**str**) the canton of the lower court
- `legal area`: (**str**) the legal area of the case


#### MultiEURLEX

Monolingual use:

- `celex_id`: (**str**)  Official Document ID of the document
- `text`: (**str**)  An EU Law
- `labels`: (**List[int]**) List of relevant EUROVOC concepts (labels)

Multilingual use:

- `celex_id`: (**str**)  Official Document ID of the document
- `text`: (dict[**str**])  A dictionary with the 23 languages as keys and the corresponding EU Law as values.
- `labels`: (**List[int]**) List of relevant EUROVOC concepts (labels)

The labels lists consists per default of level 1 EUROVOC concepts. Can be changed by adding the label_level parameter when loading the dataset. (available levels: level_1, level_2, level_3, all_levels)
```python
from datasets import load_dataset
dataset = load_dataset('jfrenz/legalglue', 'multi_eurlex_de', label_level="level_3")
```

### Data Splits

<table>
<tr><th>Dataset</th><th> Language </th> <th>   ISO code </th> <th>   Number of Documents train/dev/test </th> </tr>
<tr><td>German-LER</td><td>German</td> <td><b>de</b></td> <td>  66723 / - / -  </td> </tr>
<tr><td>LeNER-Br</td><td>Portuguese</td> <td><b>pt</b></td> <td>   7828 / 1177 / 1390 </td> </tr>
<tr><td rowspan="3">SwissJudgmentPrediction</td><td>German</td> <td><b>de</b></td> <td>  35458 / 4705 / 9725 </td> </tr>
<tr><td> French </td><td><b>fr</b></td><td>  21179 / 3095 / 6820 </td> </tr>
<tr><td> Italian </td><td><b>it</b></td><td>  3072 / 408 / 812 </td> </tr>
<tr><td rowspan="23">MultiEURLEX</td><td>English     </td> <td><b>en</b></td> <td>  55,000 / 5,000 / 5,000 </td> </tr>
<tr><td> German      </td> <td>  <b>de</b>   </td> <td> 55,000 / 5,000 / 5,000 </td> </tr>
<tr><td> French      </td> <td>  <b>fr</b>   </td> <td> 55,000 / 5,000 / 5,000 </td> </tr>
<tr><td> Italian     </td> <td>  <b>it</b>   </td> <td>  55,000 / 5,000 / 5,000 </td> </tr>
<tr><td> Spanish     </td> <td>  <b>es</b>   </td> <td>  52,785 / 5,000 / 5,000 </td> </tr>
<tr><td> Polish      </td> <td>  <b>pl</b>   </td> <td>  23,197 / 5,000 / 5,000 </td> </tr>  
<tr><td> Romanian    </td> <td>  <b>ro</b>   </td> <td>  15,921 / 5,000 / 5,000 </td> </tr>  
<tr><td> Dutch       </td> <td>  <b>nl</b>   </td> <td>  55,000 / 5,000 / 5,000 </td> </tr>  
<tr><td> Greek       </td> <td>  <b>el</b>   </td> <td>  55,000 / 5,000 / 5,000 </td> </tr>  
<tr><td> Hungarian   </td> <td>  <b>hu</b>   </td> <td>  22,664 / 5,000 / 5,000 </td> </tr>  
<tr><td> Portuguese  </td> <td>  <b>pt</b>   </td> <td>  23,188 / 5,000 / 5,000 </td> </tr>  
<tr><td> Czech       </td> <td>  <b>cs</b>   </td> <td>  23,187 / 5,000 / 5,000 </td> </tr>  
<tr><td> Swedish     </td> <td>  <b>sv</b>   </td> <td>  42,490 / 5,000 / 5,000 </td> </tr>  
<tr><td> Bulgarian   </td> <td>  <b>bg</b>   </td> <td>  15,986 / 5,000 / 5,000 </td> </tr>  
<tr><td> Danish      </td> <td>  <b>da</b>   </td> <td>  55,000 / 5,000 / 5,000 </td> </tr>  
<tr><td> Finnish     </td> <td>  <b>fi</b>   </td> <td>  42,497 / 5,000 / 5,000 </td> </tr>  
<tr><td> Slovak      </td> <td>  <b>sk</b>   </td> <td>  15,986 / 5,000 / 5,000 </td> </tr>  
<tr><td> Lithuanian  </td> <td>  <b>lt</b>   </td> <td>  23,188 / 5,000 / 5,000 </td> </tr>  
<tr><td> Croatian    </td> <td>  <b>hr</b>   </td> <td>  7,944 / 2,500 / 5,000  </td> </tr>  
<tr><td> Slovene     </td> <td>  <b>sl</b>   </td> <td>  23,184 / 5,000 / 5,000 </td> </tr>  
<tr><td> Estonian    </td> <td>  <b>et</b>   </td> <td>  23,126 / 5,000 / 5,000 </td> </tr>
<tr><td> Latvian     </td> <td>  <b>lv</b>   </td> <td>  23,188 / 5,000 / 5,000 </td> </tr>  
<tr><td> Maltese     </td> <td>  <b>mt</b>   </td> <td>  17,521 / 5,000 / 5,000 </td> </tr>  
</table>

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

[More Information Needed]

### Contributions

[More Information Needed]