Datasets:
ArXiv:
File size: 10,700 Bytes
4110b5f 09d6c93 9f21a1c 4110b5f fbe7ad7 4110b5f fbe7ad7 4110b5f e6bf9e3 4110b5f e6bf9e3 7019f71 4110b5f 1b16c78 4110b5f 9f21a1c 4110b5f 0cd3726 4110b5f f9efc22 4110b5f 0cd3726 4110b5f 9f21a1c 4110b5f 9f21a1c 4110b5f 9f21a1c 4110b5f 0cd3726 f9efc22 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 624d289 9f21a1c f9efc22 9f21a1c 624d289 9f21a1c f9efc22 9f21a1c 624d289 9f21a1c f9efc22 9f21a1c 624d289 9f21a1c f9efc22 9f21a1c f9efc22 9f21a1c 0cd3726 4110b5f aafcc41 f9efc22 aafcc41 f9efc22 aafcc41 f9efc22 18c14ae f9efc22 aafcc41 f9efc22 8facea9 18c14ae f9efc22 8facea9 18c14ae 8facea9 18c14ae f9efc22 4110b5f 0cd3726 4110b5f 9f21a1c 18c14ae 8facea9 18c14ae 8facea9 9f21a1c 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 4110b5f 0cd3726 1b16c78 0cd3726 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
---
language:
- en
- da
- de
- nl
- sv
- bg
- cs
- hr
- pl
- sk
- sl
- es
- fr
- it
- pt
- ro
- et
- fi
- hu
- lt
- lv
- el
- mt
multilinguality:
- multilingual
source_datasets:
- extended
task_categories:
- text-classification
- token-classification
task_ids:
- named-entity-recognition
- multi-label-classification
- topic-classification
pretty_name: LegalGLUE
tags:
- german-ler
- lener-br
---
# Dataset Card for "LegalGLUE"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** https://git.rwth-aachen.de/johanna.frenz/legalglue
### Dataset Summary
The "Legal General Language Understanding Evaluation" (LegalGLUE) dataset was created as part of a bachelor thesis.
It consists of four already existing datasets covering three task types and a total of 23 different languages.
### Supported Tasks
<table>
<tr><td>Dataset</td><td>Source</td><td>Task Type</td><td>Languages</td><tr>
<tr><td>German_LER</td><td> <a href="https://arxiv.org/abs/2003.13016">Leitner et al.</a></td><td>Named Entity Recognition</td><td>German</td></tr>
<tr><td>LeNER_Br</td><td> <a href="https://github.com/peluz/lener-br"> de Araujo et al., 2018</a></td><td>Named Entity Recognition</td><td> Portuguese </td></tr>
<tr><td>SwissJudgmentPrediction</td><td> <a href="https://arxiv.org/abs/2110.00806">Niklaus et al.</a> </td><td>Binary Text Classification</td><td>German, French, Italian</td></tr>
<tr><td>MultEURLEX</td><td> <a href="https://arxiv.org/abs/2109.00904">Chalkidis et al. </a> </td><td>Multi-label Text Classification</td><td>23 languages (see below)</td></tr>
</table>
### Languages
see Split section
## Dataset Structure
### Data Instances
#### German_LER
German_LER example
```python
from datasets import load_dataset
dataset = load_dataset('jfrenz/legalglue', 'german_ler')
```
```json
{
'id': '66722',
'tokens':['4.', 'Die', 'Kostenentscheidung', 'für', 'das', 'gerichtliche', 'Antragsverfahren', 'beruht', 'auf', '§', '21', 'Abs.', '2', 'Satz', '1', 'i.', 'V.', 'm.', '§', '20', 'Abs.', '1', 'Satz', '1', 'WBO', '.'],
'ner_tags': [38, 38, 38, 38, 38, 38, 38, 38, 38, 3, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 38]
}
```
#### LeNER-Br
LeNER-Br example
```python
from datasets import load_dataset
dataset = load_dataset('jfrenz/legalglue', 'lener_br')
```
```json
{
'id': '7826',
'tokens': ['Firmado', 'por', 'assinatura', 'digital', '(', 'MP', '2.200-2/2001', ')', 'JOSÉ', 'ROBERTO', 'FREIRE', 'PIMENTA', 'Ministro', 'Relator', 'fls', '.', 'PROCESSO', 'Nº', 'TST-RR-1603-79.2010.5.20.0001'],
'ner_tags': [0, 0, 0, 0, 0, 9, 10, 0, 3, 4, 4, 4, 0, 0, 0, 0, 11, 12, 12]}
```
#### SwissJudgmentPrediction
swissJudgmentPrediction_de example
```python
from datasets import load_dataset
dataset = load_dataset('jfrenz/legalglue', 'swissJudgmentPrediction_de')
```
```json
{
'id': 48755,
'year': 2014,
'text': "Sachverhalt: A. X._ fuhr am 25. Juli 2012 bei Mülligen mit seinem Personenwagen auf dem zweiten Überholstreifen der Autobahn A1 in Richtung Zürich. Gemäss Anklage schloss er auf einen Lieferwagen auf und schwenkte vom zweiten auf den ersten Überholstreifen aus. Danach fuhr er an zwei Fahrzeugen rechts vorbei und wechselte auf die zweite Überholspur zurück. B. Das Obergericht des Kantons Aargau erklärte X._ am 14. Januar 2014 zweitinstanzlich der groben Verletzung der Verkehrsregeln schuldig. Es bestrafte ihn mit einer bedingten Geldstrafe von 30 Tagessätzen zu Fr. 430.-- und einer Busse von Fr. 3'000.--. C. X._ führt Beschwerde in Strafsachen. Er beantragt, er sei von Schuld und Strafe freizusprechen. Eventualiter sei die Sache an die Vorinstanz zurückzuweisen. ",
'label': 0,
'language': 'de',
'region': 'Northwestern Switzerland',
'canton': 'ag',
'legal area': 'penal law'
}
```
#### MultiEURLEX
Monolingual example out of the MultiEURLEX-Dataset
```python
from datasets import load_dataset
dataset = load_dataset('jfrenz/legalglue', 'multi_eurlex_de')
```
```json
{
'celex_id': '32002R0130',
'text': 'Verordnung (EG) Nr. 130/2002 der Kommission\nvom 24. Januar 2002\nbezüglich der im Rahmen der Auss...',
'labels': [3, 17, 5]}
```
Multilingual example out of the MultiEURLEX-Dataset
```python
from datasets import load_dataset
dataset = load_dataset('jfrenz/legalglue', 'multi_eurlex_all_languages')
```
```json
{
'celex_id': '32002R0130',
'text': {
'bg': None,
'cs': None,
'da': 'Kommissionens ...',
'de': 'Verordnung ... ',
'el': '...',
'en': '...',
...
},
'labels': [3, 17, 5]
}
```
### Data Fields
#### German_LER
- `id`: id of the sample
- `tokens`: the tokens of the sample text
- `ner_tags`: the NER tags of each token
#### LeNER_Br
- `id`: id of the sample
- `tokens`: the tokens of the sample text
- `ner_tags`: the NER tags of each token
#### SwissJudgmentPrediction
- `id`: (**int**) ID of the document
- `year`: (**int**) the publication year
- `text`: (**str**) the facts of the case
- `label`: (**class label**) the judgment outcome: 0 (dismissal) or 1 (approval)
- `language`: (**str**) one of (de, fr, it)
- `region`: (**str**) the region of the lower court
- `canton`: (**str**) the canton of the lower court
- `legal area`: (**str**) the legal area of the case
#### MultiEURLEX
Monolingual use:
- `celex_id`: (**str**) Official Document ID of the document
- `text`: (**str**) An EU Law
- `labels`: (**List[int]**) List of relevant EUROVOC concepts (labels)
Multilingual use:
- `celex_id`: (**str**) Official Document ID of the document
- `text`: (dict[**str**]) A dictionary with the 23 languages as keys and the corresponding EU Law as values.
- `labels`: (**List[int]**) List of relevant EUROVOC concepts (labels)
The labels lists consists per default of level 1 EUROVOC concepts. Can be changed by adding the label_level parameter when loading the dataset. (available levels: level_1, level_2, level_3, all_levels)
```python
from datasets import load_dataset
dataset = load_dataset('jfrenz/legalglue', 'multi_eurlex_de', label_level="level_3")
```
### Data Splits
<table>
<tr><th>Dataset</th><th> Language </th> <th> ISO code </th> <th> Number of Documents train/dev/test </th> </tr>
<tr><td>German-LER</td><td>German</td> <td><b>de</b></td> <td> 66723 / - / - </td> </tr>
<tr><td>LeNER-Br</td><td>Portuguese</td> <td><b>pt</b></td> <td> 7828 / 1177 / 1390 </td> </tr>
<tr><td rowspan="3">SwissJudgmentPrediction</td><td>German</td> <td><b>de</b></td> <td> 35458 / 4705 / 9725 </td> </tr>
<tr><td> French </td><td><b>fr</b></td><td> 21179 / 3095 / 6820 </td> </tr>
<tr><td> Italian </td><td><b>it</b></td><td> 3072 / 408 / 812 </td> </tr>
<tr><td rowspan="23">MultiEURLEX</td><td>English </td> <td><b>en</b></td> <td> 55,000 / 5,000 / 5,000 </td> </tr>
<tr><td> German </td> <td> <b>de</b> </td> <td> 55,000 / 5,000 / 5,000 </td> </tr>
<tr><td> French </td> <td> <b>fr</b> </td> <td> 55,000 / 5,000 / 5,000 </td> </tr>
<tr><td> Italian </td> <td> <b>it</b> </td> <td> 55,000 / 5,000 / 5,000 </td> </tr>
<tr><td> Spanish </td> <td> <b>es</b> </td> <td> 52,785 / 5,000 / 5,000 </td> </tr>
<tr><td> Polish </td> <td> <b>pl</b> </td> <td> 23,197 / 5,000 / 5,000 </td> </tr>
<tr><td> Romanian </td> <td> <b>ro</b> </td> <td> 15,921 / 5,000 / 5,000 </td> </tr>
<tr><td> Dutch </td> <td> <b>nl</b> </td> <td> 55,000 / 5,000 / 5,000 </td> </tr>
<tr><td> Greek </td> <td> <b>el</b> </td> <td> 55,000 / 5,000 / 5,000 </td> </tr>
<tr><td> Hungarian </td> <td> <b>hu</b> </td> <td> 22,664 / 5,000 / 5,000 </td> </tr>
<tr><td> Portuguese </td> <td> <b>pt</b> </td> <td> 23,188 / 5,000 / 5,000 </td> </tr>
<tr><td> Czech </td> <td> <b>cs</b> </td> <td> 23,187 / 5,000 / 5,000 </td> </tr>
<tr><td> Swedish </td> <td> <b>sv</b> </td> <td> 42,490 / 5,000 / 5,000 </td> </tr>
<tr><td> Bulgarian </td> <td> <b>bg</b> </td> <td> 15,986 / 5,000 / 5,000 </td> </tr>
<tr><td> Danish </td> <td> <b>da</b> </td> <td> 55,000 / 5,000 / 5,000 </td> </tr>
<tr><td> Finnish </td> <td> <b>fi</b> </td> <td> 42,497 / 5,000 / 5,000 </td> </tr>
<tr><td> Slovak </td> <td> <b>sk</b> </td> <td> 15,986 / 5,000 / 5,000 </td> </tr>
<tr><td> Lithuanian </td> <td> <b>lt</b> </td> <td> 23,188 / 5,000 / 5,000 </td> </tr>
<tr><td> Croatian </td> <td> <b>hr</b> </td> <td> 7,944 / 2,500 / 5,000 </td> </tr>
<tr><td> Slovene </td> <td> <b>sl</b> </td> <td> 23,184 / 5,000 / 5,000 </td> </tr>
<tr><td> Estonian </td> <td> <b>et</b> </td> <td> 23,126 / 5,000 / 5,000 </td> </tr>
<tr><td> Latvian </td> <td> <b>lv</b> </td> <td> 23,188 / 5,000 / 5,000 </td> </tr>
<tr><td> Maltese </td> <td> <b>mt</b> </td> <td> 17,521 / 5,000 / 5,000 </td> </tr>
</table>
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
|