jglaser commited on
Commit
2eec835
·
1 Parent(s): 28974f4

update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -6
README.md CHANGED
@@ -14,12 +14,6 @@ of their complexes from the PDB.
14
 
15
  SMILES are assumed to be tokenized by the regex from P. Schwaller.
16
 
17
- Every (x,y,z) ligand coordinate maps onto a SMILES token, and is *nan* if the token does not represent an atom
18
-
19
- Every receptor coordinate maps onto the Calpha coordinate of that residue.
20
-
21
- The dataset can be used to fine-tune a language model.
22
-
23
  ## Ligand selection criteria
24
 
25
  Only ligands
@@ -40,6 +34,65 @@ train = pd.read_pickle('data/pdb_train.p')
40
  test = pd.read_pickle('data/pdb_test.p')
41
  ```
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  ### Manual update from PDB
44
 
45
  ```
 
14
 
15
  SMILES are assumed to be tokenized by the regex from P. Schwaller.
16
 
 
 
 
 
 
 
17
  ## Ligand selection criteria
18
 
19
  Only ligands
 
34
  test = pd.read_pickle('data/pdb_test.p')
35
  ```
36
 
37
+ Receptor features contain protein frames and side chain angles in OpenFold/AlphaFold format.
38
+ Ligand tokens which do not correspond to atoms have `nan` as their coordinates.
39
+
40
+ Documentation by example:
41
+
42
+ ```
43
+ >>> import pandas as pd
44
+ >>> test = pd.read_pickle('data/pdb_test.p')
45
+ >>> test.head(5)
46
+ pdb_id lig_id ... ligand_xyz_2d ligand_bonds
47
+ 0 7k38 VTY ... [(-2.031355975502858, -1.6316778784387098, 0.0... [(0, 1), (1, 4), (4, 5), (5, 10), (10, 9), (9,...
48
+ 1 6prt OWA ... [(4.883261310160714, -0.37850716807626705, 0.0... [(11, 18), (18, 20), (20, 8), (8, 7), (7, 2), ...
49
+ 2 4lxx FNF ... [(8.529427756002057, 2.2434809270065372, 0.0),... [(51, 49), (49, 48), (48, 46), (46, 53), (53, ...
50
+ 3 4lxx FON ... [(-10.939694946697701, -1.1876214529096956, 0.... [(13, 1), (1, 0), (0, 3), (3, 4), (4, 7), (7, ...
51
+ 4 7bp1 CAQ ... [(-1.9485571585149868, -1.499999999999999, 0.0... [(4, 3), (3, 1), (1, 0), (0, 7), (7, 9), (7, 6...
52
+
53
+ [5 rows x 8 columns]
54
+ >>> test.columns
55
+ Index(['pdb_id', 'lig_id', 'seq', 'smiles', 'receptor_features', 'ligand_xyz',
56
+ 'ligand_xyz_2d', 'ligand_bonds'],
57
+ dtype='object')
58
+ >>> test.iloc[0]['receptor_features']
59
+ {'rigidgroups_gt_frames': array([[[[-5.3122622e-01, 2.0922849e-01, -8.2098854e-01,
60
+ 1.7295000e+01],
61
+ [-7.1005428e-01, -6.3858479e-01, 2.9670244e-01,
62
+ -9.1399997e-01],
63
+ [-4.6219218e-01, 7.4056256e-01, 4.8779655e-01,
64
+ 3.3284000e+01],
65
+ [ 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
66
+ 1.0000000e+00]],
67
+ ...
68
+ [[ 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
69
+ -3.5030000e+00],
70
+ [ 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
71
+ 2.6764999e+01],
72
+ [ 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
73
+ 1.5136000e+01],
74
+ [ 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
75
+ 1.0000000e+00]]]], dtype=float32), 'torsion_angles_sin_cos': array([[[-1.90855725e-09, 3.58859784e-02],
76
+ [ 1.55730803e-01, 9.87799530e-01],
77
+ [ 6.05505241e-01, -7.95841312e-01],
78
+ ...,
79
+ [-2.92459433e-01, -9.56277928e-01],
80
+ [ 9.96634814e-01, -8.19697779e-02],
81
+ [ 0.00000000e+00, 0.00000000e+00]],
82
+ ...
83
+
84
+ [[ 2.96455977e-04, -9.99999953e-01],
85
+ [-8.15660990e-01, 5.78530158e-01],
86
+ [-3.17915569e-01, 9.48119024e-01],
87
+ ...,
88
+ [ 0.00000000e+00, 0.00000000e+00],
89
+ [ 0.00000000e+00, 0.00000000e+00],
90
+ [ 0.00000000e+00, 0.00000000e+00]]])}
91
+ >>> test.iloc[0]['receptor_features'].keys()
92
+ dict_keys(['rigidgroups_gt_frames', 'torsion_angles_sin_cos'])
93
+ >>> test.iloc[0]['ligand_xyz']
94
+ [(22.289, 11.985, 9.225), (21.426, 11.623, 7.959), (nan, nan, nan), (nan, nan, nan), (21.797, 11.427, 6.574), (20.556, 11.56, 5.792), (nan, nan, nan), (20.507, 11.113, 4.552), (nan, nan, nan), (19.581, 10.97, 6.639), (20.107, 10.946, 7.954), (nan, nan, nan), (nan, nan, nan), (19.645, 10.364, 8.804)]
95
+ ```
96
  ### Manual update from PDB
97
 
98
  ```