jglaser commited on
Commit
19e4502
0 Parent(s):

initial commit

Browse files
Files changed (6) hide show
  1. README.md +47 -0
  2. data/pdbbind.parquet +3 -0
  3. pdbbind.ipynb +517 -0
  4. pdbbind.py +95 -0
  5. pdbbind.slurm +9 -0
  6. pdbbind_complexes.py +128 -0
README.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - molecules
4
+ - chemistry
5
+ - SMILES
6
+ ---
7
+
8
+ ## How to use the data sets
9
+
10
+ This dataset contains more than 16,000 unique pairs of protein sequences and ligand SMILES, and the coordinates
11
+ of their complexes.
12
+
13
+ SMILES are assumed to be tokenized by the regex from P. Schwaller
14
+
15
+ Every (x,y,z) ligand coordinate maps onto a SMILES token, and is *nan* if the token does not represent an atom
16
+
17
+ Every receptor coordinate maps onto the Calpha coordinate of that residue.
18
+
19
+ The dataset can be used to fine-tune a language model, all data comes from PDBind-cn.
20
+
21
+ ### Use the already preprocessed data
22
+
23
+ Load a test/train split using
24
+
25
+ ```
26
+ from datasets import load_dataset
27
+ train = load_dataset("jglaser/protein_ligand_contacts",split='train[:90%]')
28
+ validation = load_dataset("jglaser/protein_ligand_contacts",split='train[90%:]')
29
+ ```
30
+
31
+ ### Pre-process yourself
32
+
33
+ To manually perform the preprocessing, download the data sets from P.DBBind-cn
34
+
35
+ Register for an account at <https://www.pdbbind.org.cn/>, confirm the validation
36
+ email, then login and download
37
+
38
+ - the Index files (1)
39
+ - the general protein-ligand complexes (2)
40
+ - the refined protein-ligand complexes (3)
41
+
42
+ Extract those files in `pdbbind/data`
43
+
44
+ Run the script `pdbbind.py` in a compute job on an MPI-enabled cluster
45
+ (e.g., `mpirun -n 64 pdbbind.py`).
46
+
47
+ Perform the steps in the notebook `pdbbind.ipynb`
data/pdbbind.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e7a0f58df3e45dec1c90b30f2bd8ab62c601a1073dafa1d426e0f36413ecf30
3
+ size 141173725
pdbbind.ipynb ADDED
@@ -0,0 +1,517 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "834aeced-c3c5-42a0-bad1-41e009dd86ee",
6
+ "metadata": {},
7
+ "source": [
8
+ "### Preprocessing"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": 1,
14
+ "id": "86476f6e-802a-463b-a1b0-2ae228bb92af",
15
+ "metadata": {},
16
+ "outputs": [],
17
+ "source": [
18
+ "import pandas as pd"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "code",
23
+ "execution_count": 2,
24
+ "id": "9b2be11c-f4bb-4107-af49-abd78052afcf",
25
+ "metadata": {},
26
+ "outputs": [],
27
+ "source": [
28
+ "df = pd.read_table('data/pdbbind/index/INDEX_general_PL_data.2020',skiprows=4,sep=r'\\s+',usecols=[0,4]).drop(0)\n",
29
+ "df = df.rename(columns={'#': 'name','release': 'affinity'})\n",
30
+ "df_refined = pd.read_table('data/pdbbind/index/INDEX_refined_data.2020',skiprows=4,sep=r'\\s+',usecols=[0,4]).drop(0)\n",
31
+ "df_refined = df_refined.rename(columns={'#': 'name','release': 'affinity'})\n",
32
+ "df = pd.concat([df,df_refined])"
33
+ ]
34
+ },
35
+ {
36
+ "cell_type": "code",
37
+ "execution_count": 3,
38
+ "id": "68983ab8-bf11-4ed6-ba06-f962dbdc077e",
39
+ "metadata": {},
40
+ "outputs": [],
41
+ "source": [
42
+ "quantities = ['ki','kd','ka','k1/2','kb','ic50','ec50']"
43
+ ]
44
+ },
45
+ {
46
+ "cell_type": "code",
47
+ "execution_count": 4,
48
+ "id": "3acbca3c-9c0b-43a1-a45e-331bf153bcfa",
49
+ "metadata": {},
50
+ "outputs": [],
51
+ "source": [
52
+ "from pint import UnitRegistry\n",
53
+ "ureg = UnitRegistry()\n",
54
+ "\n",
55
+ "def to_uM(affinity):\n",
56
+ " val = ureg(affinity)\n",
57
+ " try:\n",
58
+ " return val.m_as(ureg.uM)\n",
59
+ " except Exception:\n",
60
+ " pass\n",
61
+ " \n",
62
+ " try:\n",
63
+ " return 1/val.m_as(1/ureg.uM)\n",
64
+ " except Exception:\n",
65
+ " pass"
66
+ ]
67
+ },
68
+ {
69
+ "cell_type": "code",
70
+ "execution_count": 5,
71
+ "id": "58e5748b-2cea-43ff-ab51-85a5021bd50b",
72
+ "metadata": {},
73
+ "outputs": [],
74
+ "source": [
75
+ "df['affinity_uM'] = df['affinity'].str.split('[=\\~><]').str[1].apply(to_uM)\n",
76
+ "df['affinity_quantity'] = df['affinity'].str.split('[=\\~><]').str[0]"
77
+ ]
78
+ },
79
+ {
80
+ "cell_type": "code",
81
+ "execution_count": 6,
82
+ "id": "d92f0004-68c1-4487-94b9-56b4fd598de4",
83
+ "metadata": {},
84
+ "outputs": [
85
+ {
86
+ "data": {
87
+ "text/plain": [
88
+ "<AxesSubplot:>"
89
+ ]
90
+ },
91
+ "execution_count": 6,
92
+ "metadata": {},
93
+ "output_type": "execute_result"
94
+ },
95
+ {
96
+ "data": {
97
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAQdUlEQVR4nO3df6zdd13H8efLVkYpFjfHbpp22BKL2m1B3GVWiOSSGncFYveHM8XhOrOkYZk4ZYnp+Adj0mQkoLDFjVTBdjiYdZC0OoYuhStR98MWiKUrywqb22WXlR8ydxHHOt/+cT7Vw+3p7XrOvfe03ucjOTnf8/5+Pt/v5+Z+e173+/l+z2mqCkmSfmTYA5AknRkMBEkSYCBIkhoDQZIEGAiSpGbpsAfQr/PPP7/WrFnTV9/vfe97LF++fG4HJDUeX5pvgxxjBw4c+FZVvbLXurM2ENasWcP+/fv76jsxMcHY2NjcDkhqPL403wY5xpL828nWOWUkSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1pwyEJB9NcjTJl7tq5yW5L8mj7fncrnU3JTmS5JEkl3fVL01ysK27JUla/Zwkf9XqDyZZM8c/oyTpRXgxZwg7gfEZtW3AvqpaB+xrr0myHtgMXNT63JZkSetzO7AVWNcex7d5LfDvVfVTwJ8A7+v3h5Ek9e+UgVBVnwe+M6O8CdjVlncBV3TV76qq56rqMeAIcFmSlcCKqrq/Ov8Bwx0z+hzf1t3AxuNnD5KkhdPvJ5VHqmoKoKqmklzQ6quAB7raTbba8215Zv14nyfbto4leQb4CeBbM3eaZCudswxGRkaYmJjoa/DT09N995VOxeNrcTj49WeGtu+1r1gyL8fYXH91Ra+/7GuW+mx9TixW7QB2AIyOjla/H932qwU0nzy+Fodrtt0ztH3vHF8+L8dYv3cZPd2mgWjPR1t9Eriwq91q4KlWX92j/kN9kiwFXsGJU1SSpHnWbyDsBba05S3Anq765nbn0Fo6F48fatNLzybZ0K4PXD2jz/Ft/Trw2fI/epakBXfKKaMknwDGgPOTTALvBW4Gdie5FngCuBKgqg4l2Q08DBwDrq+qF9qmrqNzx9Iy4N72APgI8LEkR+icGWyek59MknRaThkIVfX2k6zaeJL224HtPer7gYt71P+LFiiSpOHxk8qSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQMFAhJfj/JoSRfTvKJJC9Ncl6S+5I82p7P7Wp/U5IjSR5JcnlX/dIkB9u6W5JkkHFJkk5f34GQZBXwu8BoVV0MLAE2A9uAfVW1DtjXXpNkfVt/ETAO3JZkSdvc7cBWYF17jPc7LklSfwadMloKLEuyFHgZ8BSwCdjV1u8CrmjLm4C7quq5qnoMOAJclmQlsKKq7q+qAu7o6iNJWiB9B0JVfR14P/AEMAU8U1V/D4xU1VRrMwVc0LqsAp7s2sRkq61qyzPrkqQFtLTfju3awCZgLfBd4K+TvGO2Lj1qNUu91z630plaYmRkhImJidMY8f+Znp7uu690Kh5fi8ONlxwb2r7n6xjrOxCAXwYeq6pvAiT5FPAG4OkkK6tqqk0HHW3tJ4ELu/qvpjPFNNmWZ9ZPUFU7gB0Ao6OjNTY21tfAJyYm6LevdCoeX4vDNdvuGdq+d44vn5djbJBrCE8AG5K8rN0VtBE4DOwFtrQ2W4A9bXkvsDnJOUnW0rl4/FCbVno2yYa2nau7+kiSFkjfZwhV9WCSu4EvAMeAL9L56/3lwO4k19IJjStb+0NJdgMPt/bXV9ULbXPXATuBZcC97SFJWkCDTBlRVe8F3juj/Byds4Ve7bcD23vU9wMXDzIWSdJg/KSyJAkwECRJjYEgSQIMBElSM9BF5bPVwa8/M7R7iB+/+a1D2a8knYpnCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUrMobzuV5pO3Nets5RmCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJKAAQMhyY8nuTvJV5IcTvKLSc5Lcl+SR9vzuV3tb0pyJMkjSS7vql+a5GBbd0uSDDIuSdLpG/QM4UPAZ6rqZ4DXAoeBbcC+qloH7GuvSbIe2AxcBIwDtyVZ0rZzO7AVWNce4wOOS5J0mvoOhCQrgDcBHwGoqh9U1XeBTcCu1mwXcEVb3gTcVVXPVdVjwBHgsiQrgRVVdX9VFXBHVx9J0gJZOkDfVwPfBP4iyWuBA8ANwEhVTQFU1VSSC1r7VcADXf0nW+35tjyzfoIkW+mcSTAyMsLExERfAx9ZBjdecqyvvoPqd8w6e3h8LQ7D+h0DTE9Pz8vvepBAWAr8PPCuqnowyYdo00Mn0eu6QM1SP7FYtQPYATA6OlpjY2OnNeDjbr1zDx84OMiP3r/Hrxobyn61cDy+Fodrtt0ztH3vHF9Ov+9/sxnkGsIkMFlVD7bXd9MJiKfbNBDt+WhX+wu7+q8Gnmr11T3qkqQF1HcgVNU3gCeT/HQrbQQeBvYCW1ptC7CnLe8FNic5J8laOhePH2rTS88m2dDuLrq6q48kaYEMel77LuDOJC8Bvgb8Np2Q2Z3kWuAJ4EqAqjqUZDed0DgGXF9VL7TtXAfsBJYB97aHJGkBDRQIVfUlYLTHqo0nab8d2N6jvh+4eJCxSJIG4yeVJUmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpGTgQkixJ8sUkf9ten5fkviSPtudzu9relORIkkeSXN5VvzTJwbbuliQZdFySpNMzF2cINwCHu15vA/ZV1TpgX3tNkvXAZuAiYBy4LcmS1ud2YCuwrj3G52BckqTTMFAgJFkNvBX4867yJmBXW94FXNFVv6uqnquqx4AjwGVJVgIrqur+qirgjq4+kqQFsnTA/h8E/gD4sa7aSFVNAVTVVJILWn0V8EBXu8lWe74tz6yfIMlWOmcSjIyMMDEx0degR5bBjZcc66vvoPods84eHl+Lw7B+xwDT09Pz8rvuOxCSvA04WlUHkoy9mC49ajVL/cRi1Q5gB8Do6GiNjb2Y3Z7o1jv38IGDg2Zhfx6/amwo+9XC8fhaHK7Zds/Q9r1zfDn9vv/NZpCj9o3AryV5C/BSYEWSvwSeTrKynR2sBI629pPAhV39VwNPtfrqHnVJ0gLq+xpCVd1UVaurag2di8Wfrap3AHuBLa3ZFmBPW94LbE5yTpK1dC4eP9Sml55NsqHdXXR1Vx9J0gKZj/Pam4HdSa4FngCuBKiqQ0l2Aw8Dx4Drq+qF1uc6YCewDLi3PSRJC2hOAqGqJoCJtvxtYONJ2m0Htveo7wcunouxSJL64yeVJUmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSp6TsQklyY5HNJDic5lOSGVj8vyX1JHm3P53b1uSnJkSSPJLm8q35pkoNt3S1JMtiPJUk6XYOcIRwDbqyqnwU2ANcnWQ9sA/ZV1TpgX3tNW7cZuAgYB25LsqRt63ZgK7CuPcYHGJckqQ99B0JVTVXVF9rys8BhYBWwCdjVmu0CrmjLm4C7quq5qnoMOAJclmQlsKKq7q+qAu7o6iNJWiBzcg0hyRrgdcCDwEhVTUEnNIALWrNVwJNd3SZbbVVbnlmXJC2gpYNuIMnLgU8Cv1dV/zHL9H+vFTVLvde+ttKZWmJkZISJiYnTHi/AyDK48ZJjffUdVL9j1tnD42txGNbvGGB6enpeftcDBUKSH6UTBndW1ada+ekkK6tqqk0HHW31SeDCru6rgadafXWP+gmqagewA2B0dLTGxsb6Gvetd+7hAwcHzsK+PH7V2FD2q4Xj8bU4XLPtnqHte+f4cvp9/5vNIHcZBfgIcLiq/rhr1V5gS1veAuzpqm9Ock6StXQuHj/UppWeTbKhbfPqrj6SpAUyyJ8xbwR+CziY5Eut9h7gZmB3kmuBJ4ArAarqUJLdwMN07lC6vqpeaP2uA3YCy4B720OStID6DoSq+kd6z/8DbDxJn+3A9h71/cDF/Y5FkjQ4P6ksSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAs6gQEgynuSRJEeSbBv2eCRpsTkjAiHJEuBPgV8F1gNvT7J+uKOSpMXljAgE4DLgSFV9rap+ANwFbBrymCRpUVk67AE0q4Anu15PAr8ws1GSrcDW9nI6ySN97u984Ft99h1I3jeMvWqBeXxpXr35fQMdYz95shVnSiCkR61OKFTtAHYMvLNkf1WNDrodqRePL823+TrGzpQpo0ngwq7Xq4GnhjQWSVqUzpRA+BdgXZK1SV4CbAb2DnlMkrSonBFTRlV1LMnvAH8HLAE+WlWH5nGXA087SbPw+NJ8m5djLFUnTNVLkhahM2XKSJI0ZAaCJAlYRIGQZLpr+S1JHk3yqiTvTHL1MMems8OMY+g1ST7dvmrlcJLdSUaSrEny/SRfao8Pd/W5NMnB1ueWJL1ut5b+18net2ZrN4gz4qLyQkqyEbgV+JWqegL48Cm6SD8kyUuBe4B3V9XftNqbgVcC08BXq+rnenS9nc4HKx8APg2MA/cuxJh1duvxvjUvFlUgJPkl4M+At1TVV1vtD4Hpqnr/MMems8pvAvcfDwOAqvocQJI1vTokWQmsqKr72+s7gCswEHQKJ3nfWgt8nM57+Gfmal+LZsoIOAfYA1xRVV8Z9mB0VrsYODDL+rVJvpjkH9o/Zuh8PctkV5vJVpNmc7L3rQ8Bt1fV64FvzNXOFlMgPA/8M3DtsAei/9emgFdV1euAdwMfT7KCF/n1LNIMJ3vfeiPwibb8sbna2WIKhP8GfgN4fZL3DHswOqsdAi7ttaKqnquqb7flA8BXgdfQOSNY3dXUr2fRizHb+9ac/0GxmAKBqvpP4G3AVUk8U1C/Pg68Iclbjxfaf/B0SZJXtv/fgySvBtYBX6uqKeDZJBva3UVX05kKkGZ1kvetf6LzFT8AV83VvhbVRWWAqvpOknHg80mG8hXFOrtV1feTvA34YJIP0jmt/1fgBuBNwB8lOQa8ALyzqr7Tul4H7ASW0bmY7AVlvSg93rduoDMdeQPwybnaj19dIUkCFtmUkSTp5AwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSp+R+8kn6fv7jc8QAAAABJRU5ErkJggg==\n",
98
+ "text/plain": [
99
+ "<Figure size 432x288 with 1 Axes>"
100
+ ]
101
+ },
102
+ "metadata": {
103
+ "needs_background": "light"
104
+ },
105
+ "output_type": "display_data"
106
+ }
107
+ ],
108
+ "source": [
109
+ "df['affinity_quantity'].hist()"
110
+ ]
111
+ },
112
+ {
113
+ "cell_type": "code",
114
+ "execution_count": 7,
115
+ "id": "aa358835-55f3-4551-9217-e76a15de4fe8",
116
+ "metadata": {},
117
+ "outputs": [],
118
+ "source": [
119
+ "df_filter = df[df['affinity_quantity'].str.lower().isin(quantities)]\n",
120
+ "df_filter = df_filter.dropna()"
121
+ ]
122
+ },
123
+ {
124
+ "cell_type": "code",
125
+ "execution_count": 8,
126
+ "id": "802cb9bc-2563-4d7f-9a76-3be2d9263a36",
127
+ "metadata": {},
128
+ "outputs": [],
129
+ "source": [
130
+ "cutoffs = [5,8,11,15]"
131
+ ]
132
+ },
133
+ {
134
+ "cell_type": "code",
135
+ "execution_count": 9,
136
+ "id": "d8e71a8c-11a3-41f0-ab61-3ddc57e10961",
137
+ "metadata": {},
138
+ "outputs": [],
139
+ "source": [
140
+ "dfs_complex = {c: pd.read_parquet('data/pdbbind_complex_{}.parquet'.format(c)) for c in cutoffs}"
141
+ ]
142
+ },
143
+ {
144
+ "cell_type": "code",
145
+ "execution_count": 10,
146
+ "id": "ed3fe035-6035-4d39-b072-d12dc0a95857",
147
+ "metadata": {},
148
+ "outputs": [],
149
+ "source": [
150
+ "import dask.array as da\n",
151
+ "import dask.dataframe as dd\n",
152
+ "from dask.bag import from_delayed\n",
153
+ "from dask import delayed\n",
154
+ "import pyarrow as pa\n",
155
+ "import pyarrow.parquet as pq"
156
+ ]
157
+ },
158
+ {
159
+ "cell_type": "code",
160
+ "execution_count": 11,
161
+ "id": "cd26125b-e68b-4fa3-846e-2b6e7f635fe0",
162
+ "metadata": {},
163
+ "outputs": [
164
+ {
165
+ "name": "stdout",
166
+ "output_type": "stream",
167
+ "text": [
168
+ "(2046, 510)\n"
169
+ ]
170
+ }
171
+ ],
172
+ "source": [
173
+ "contacts_dask = [da.from_npy_stack('data/pdbbind_contacts_{}'.format(c)) for c in cutoffs]\n",
174
+ "shape = contacts_dask[0][0].shape\n",
175
+ "print(shape)"
176
+ ]
177
+ },
178
+ {
179
+ "cell_type": "code",
180
+ "execution_count": 12,
181
+ "id": "9c7c9849-2345-4baf-89e7-d412f52353b6",
182
+ "metadata": {},
183
+ "outputs": [
184
+ {
185
+ "data": {
186
+ "text/html": [
187
+ "<table>\n",
188
+ "<tr>\n",
189
+ "<td>\n",
190
+ "<table>\n",
191
+ " <thead>\n",
192
+ " <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
193
+ " </thead>\n",
194
+ " <tbody>\n",
195
+ " <tr><th> Bytes </th><td> 2.72 GiB </td> <td> 2.72 GiB </td></tr>\n",
196
+ " <tr><th> Shape </th><td> (700, 2046, 510) </td> <td> (700, 2046, 510) </td></tr>\n",
197
+ " <tr><th> Count </th><td> 25 Tasks </td><td> 1 Chunks </td></tr>\n",
198
+ " <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
199
+ " </tbody>\n",
200
+ "</table>\n",
201
+ "</td>\n",
202
+ "<td>\n",
203
+ "<svg width=\"128\" height=\"195\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
204
+ "\n",
205
+ " <!-- Horizontal lines -->\n",
206
+ " <line x1=\"10\" y1=\"0\" x2=\"35\" y2=\"25\" style=\"stroke-width:2\" />\n",
207
+ " <line x1=\"10\" y1=\"120\" x2=\"35\" y2=\"145\" style=\"stroke-width:2\" />\n",
208
+ "\n",
209
+ " <!-- Vertical lines -->\n",
210
+ " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n",
211
+ " <line x1=\"35\" y1=\"25\" x2=\"35\" y2=\"145\" style=\"stroke-width:2\" />\n",
212
+ "\n",
213
+ " <!-- Colored Rectangle -->\n",
214
+ " <polygon points=\"10.0,0.0 35.86269549127143,25.86269549127143 35.86269549127143,145.86269549127144 10.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
215
+ "\n",
216
+ " <!-- Horizontal lines -->\n",
217
+ " <line x1=\"10\" y1=\"0\" x2=\"52\" y2=\"0\" style=\"stroke-width:2\" />\n",
218
+ " <line x1=\"35\" y1=\"25\" x2=\"78\" y2=\"25\" style=\"stroke-width:2\" />\n",
219
+ "\n",
220
+ " <!-- Vertical lines -->\n",
221
+ " <line x1=\"10\" y1=\"0\" x2=\"35\" y2=\"25\" style=\"stroke-width:2\" />\n",
222
+ " <line x1=\"52\" y1=\"0\" x2=\"78\" y2=\"25\" style=\"stroke-width:2\" />\n",
223
+ "\n",
224
+ " <!-- Colored Rectangle -->\n",
225
+ " <polygon points=\"10.0,0.0 52.88780092952726,0.0 78.7504964207987,25.86269549127143 35.86269549127143,25.86269549127143\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
226
+ "\n",
227
+ " <!-- Horizontal lines -->\n",
228
+ " <line x1=\"35\" y1=\"25\" x2=\"78\" y2=\"25\" style=\"stroke-width:2\" />\n",
229
+ " <line x1=\"35\" y1=\"145\" x2=\"78\" y2=\"145\" style=\"stroke-width:2\" />\n",
230
+ "\n",
231
+ " <!-- Vertical lines -->\n",
232
+ " <line x1=\"35\" y1=\"25\" x2=\"35\" y2=\"145\" style=\"stroke-width:2\" />\n",
233
+ " <line x1=\"78\" y1=\"25\" x2=\"78\" y2=\"145\" style=\"stroke-width:2\" />\n",
234
+ "\n",
235
+ " <!-- Colored Rectangle -->\n",
236
+ " <polygon points=\"35.86269549127143,25.86269549127143 78.7504964207987,25.86269549127143 78.7504964207987,145.86269549127144 35.86269549127143,145.86269549127144\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
237
+ "\n",
238
+ " <!-- Text -->\n",
239
+ " <text x=\"57.306596\" y=\"165.862695\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >510</text>\n",
240
+ " <text x=\"98.750496\" y=\"85.862695\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,98.750496,85.862695)\">2046</text>\n",
241
+ " <text x=\"12.931348\" y=\"152.931348\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,12.931348,152.931348)\">700</text>\n",
242
+ "</svg>\n",
243
+ "</td>\n",
244
+ "</tr>\n",
245
+ "</table>"
246
+ ],
247
+ "text/plain": [
248
+ "dask.array<blocks, shape=(700, 2046, 510), dtype=float32, chunksize=(700, 2046, 510), chunktype=numpy.ndarray>"
249
+ ]
250
+ },
251
+ "execution_count": 12,
252
+ "metadata": {},
253
+ "output_type": "execute_result"
254
+ }
255
+ ],
256
+ "source": [
257
+ "contacts_dask[0].blocks[1]"
258
+ ]
259
+ },
260
+ {
261
+ "cell_type": "code",
262
+ "execution_count": 13,
263
+ "id": "0bd8e9b9-9713-4572-bd7f-dc47da9fce91",
264
+ "metadata": {},
265
+ "outputs": [
266
+ {
267
+ "data": {
268
+ "text/plain": [
269
+ "[16232, 16228, 16226, 16223]"
270
+ ]
271
+ },
272
+ "execution_count": 13,
273
+ "metadata": {},
274
+ "output_type": "execute_result"
275
+ }
276
+ ],
277
+ "source": [
278
+ "[len(c) for c in contacts_dask]"
279
+ ]
280
+ },
281
+ {
282
+ "cell_type": "code",
283
+ "execution_count": 14,
284
+ "id": "87493934-3839-476a-a975-7da057c320da",
285
+ "metadata": {},
286
+ "outputs": [
287
+ {
288
+ "data": {
289
+ "text/plain": [
290
+ "16232"
291
+ ]
292
+ },
293
+ "execution_count": 14,
294
+ "metadata": {},
295
+ "output_type": "execute_result"
296
+ }
297
+ ],
298
+ "source": [
299
+ "contacts_dask[0].shape[0]"
300
+ ]
301
+ },
302
+ {
303
+ "cell_type": "code",
304
+ "execution_count": 15,
305
+ "id": "42e95d84-ef27-4417-9479-8b356462b8c3",
306
+ "metadata": {},
307
+ "outputs": [],
308
+ "source": [
309
+ "import numpy as np\n",
310
+ "all_partitions = []\n",
311
+ "for c, cutoff in zip(contacts_dask,cutoffs):\n",
312
+ " def chunk_to_sparse(rcut, chunk, idx_chunk):\n",
313
+ " res = dfs_complex[rcut].iloc[idx_chunk][['name']].copy()\n",
314
+ " # pad to account for [CLS] and [SEP]\n",
315
+ " res['contacts_{}A'.format(rcut)] = [np.where(np.pad(a,pad_width=(1,1)).flatten())[0] for a in chunk]\n",
316
+ " return res\n",
317
+ "\n",
318
+ " partitions = [delayed(chunk_to_sparse)(cutoff,b,k)\n",
319
+ " for b,k in zip(c.blocks, da.arange(c.shape[0],chunks=c.chunks[0:1]).blocks)\n",
320
+ " ]\n",
321
+ " all_partitions.append(partitions)"
322
+ ]
323
+ },
324
+ {
325
+ "cell_type": "code",
326
+ "execution_count": 16,
327
+ "id": "5520a925-693f-43f0-9e76-df2e128f272e",
328
+ "metadata": {},
329
+ "outputs": [
330
+ {
331
+ "data": {
332
+ "text/html": [
333
+ "<div>\n",
334
+ "<style scoped>\n",
335
+ " .dataframe tbody tr th:only-of-type {\n",
336
+ " vertical-align: middle;\n",
337
+ " }\n",
338
+ "\n",
339
+ " .dataframe tbody tr th {\n",
340
+ " vertical-align: top;\n",
341
+ " }\n",
342
+ "\n",
343
+ " .dataframe thead th {\n",
344
+ " text-align: right;\n",
345
+ " }\n",
346
+ "</style>\n",
347
+ "<table border=\"1\" class=\"dataframe\">\n",
348
+ " <thead>\n",
349
+ " <tr style=\"text-align: right;\">\n",
350
+ " <th></th>\n",
351
+ " <th>name</th>\n",
352
+ " <th>contacts_5A</th>\n",
353
+ " </tr>\n",
354
+ " </thead>\n",
355
+ " <tbody>\n",
356
+ " <tr>\n",
357
+ " <th>0</th>\n",
358
+ " <td>10gs</td>\n",
359
+ " <td>[3083, 3084, 3086, 3087, 3088, 3089, 3094, 309...</td>\n",
360
+ " </tr>\n",
361
+ " <tr>\n",
362
+ " <th>1</th>\n",
363
+ " <td>184l</td>\n",
364
+ " <td>[39945, 39946, 39947, 39948, 43010, 43012, 430...</td>\n",
365
+ " </tr>\n",
366
+ " <tr>\n",
367
+ " <th>2</th>\n",
368
+ " <td>186l</td>\n",
369
+ " <td>[39943, 39944, 39945, 43010, 43011, 43012, 430...</td>\n",
370
+ " </tr>\n",
371
+ " <tr>\n",
372
+ " <th>3</th>\n",
373
+ " <td>187l</td>\n",
374
+ " <td>[39937, 39938, 39947, 43009, 43010, 43012, 430...</td>\n",
375
+ " </tr>\n",
376
+ " <tr>\n",
377
+ " <th>4</th>\n",
378
+ " <td>188l</td>\n",
379
+ " <td>[39937, 39938, 39940, 39941, 43009, 43010, 430...</td>\n",
380
+ " </tr>\n",
381
+ " </tbody>\n",
382
+ "</table>\n",
383
+ "</div>"
384
+ ],
385
+ "text/plain": [
386
+ " name contacts_5A\n",
387
+ "0 10gs [3083, 3084, 3086, 3087, 3088, 3089, 3094, 309...\n",
388
+ "1 184l [39945, 39946, 39947, 39948, 43010, 43012, 430...\n",
389
+ "2 186l [39943, 39944, 39945, 43010, 43011, 43012, 430...\n",
390
+ "3 187l [39937, 39938, 39947, 43009, 43010, 43012, 430...\n",
391
+ "4 188l [39937, 39938, 39940, 39941, 43009, 43010, 430..."
392
+ ]
393
+ },
394
+ "execution_count": 16,
395
+ "metadata": {},
396
+ "output_type": "execute_result"
397
+ }
398
+ ],
399
+ "source": [
400
+ "all_partitions[0][0].compute().head()"
401
+ ]
402
+ },
403
+ {
404
+ "cell_type": "code",
405
+ "execution_count": 17,
406
+ "id": "4982c3b1-5ce9-4f17-9834-a02c4e136bc2",
407
+ "metadata": {},
408
+ "outputs": [],
409
+ "source": [
410
+ "ddfs = [dd.from_delayed(p) for p in all_partitions]"
411
+ ]
412
+ },
413
+ {
414
+ "cell_type": "code",
415
+ "execution_count": 18,
416
+ "id": "f6cdee43-33c6-445c-8619-ace20f90638c",
417
+ "metadata": {},
418
+ "outputs": [],
419
+ "source": [
420
+ "ddf_all = None\n",
421
+ "for d in ddfs:\n",
422
+ " if ddf_all is not None:\n",
423
+ " ddf_all = ddf_all.merge(d, on='name')\n",
424
+ " else:\n",
425
+ " ddf_all = d\n",
426
+ "ddf_all = ddf_all.merge(df_filter,on='name')\n",
427
+ "ddf_all = ddf_all.merge(list(dfs_complex.values())[0],on='name')"
428
+ ]
429
+ },
430
+ {
431
+ "cell_type": "code",
432
+ "execution_count": 19,
433
+ "id": "8f49f871-76f6-4fb2-b2db-c0794d4c07bf",
434
+ "metadata": {},
435
+ "outputs": [
436
+ {
437
+ "name": "stdout",
438
+ "output_type": "stream",
439
+ "text": [
440
+ "CPU times: user 8min 53s, sys: 11min 31s, total: 20min 24s\n",
441
+ "Wall time: 3min 29s\n"
442
+ ]
443
+ }
444
+ ],
445
+ "source": [
446
+ "%%time\n",
447
+ "df_all_contacts = ddf_all.compute()"
448
+ ]
449
+ },
450
+ {
451
+ "cell_type": "code",
452
+ "execution_count": 20,
453
+ "id": "45e4b4fa-6338-4abe-bd6e-8aea46e2a09c",
454
+ "metadata": {},
455
+ "outputs": [],
456
+ "source": [
457
+ "df_all_contacts['neg_log10_affinity_M'] = 6-np.log10(df_all_contacts['affinity_uM'])"
458
+ ]
459
+ },
460
+ {
461
+ "cell_type": "code",
462
+ "execution_count": 21,
463
+ "id": "7c3db301-6565-4053-bbd4-139bb41dd1c4",
464
+ "metadata": {},
465
+ "outputs": [
466
+ {
467
+ "data": {
468
+ "text/plain": [
469
+ "(array([6.34387834]), array([3.57815698]))"
470
+ ]
471
+ },
472
+ "execution_count": 21,
473
+ "metadata": {},
474
+ "output_type": "execute_result"
475
+ }
476
+ ],
477
+ "source": [
478
+ "from sklearn.preprocessing import StandardScaler\n",
479
+ "scaler = StandardScaler()\n",
480
+ "df_all_contacts['affinity'] = scaler.fit_transform(df_all_contacts['neg_log10_affinity_M'].values.reshape(-1,1))\n",
481
+ "scaler.mean_, scaler.var_"
482
+ ]
483
+ },
484
+ {
485
+ "cell_type": "code",
486
+ "execution_count": 22,
487
+ "id": "c9d674bb-d6a2-4810-aa2b-e3bc3b4bbc98",
488
+ "metadata": {},
489
+ "outputs": [],
490
+ "source": [
491
+ "# save to parquet\n",
492
+ "df_all_contacts.drop(columns=['name','affinity_quantity']).astype({'affinity': 'float32','neg_log10_affinity_M': 'float32'}).to_parquet('data/pdbbind_with_contacts.parquet',index=False)"
493
+ ]
494
+ }
495
+ ],
496
+ "metadata": {
497
+ "kernelspec": {
498
+ "display_name": "Python 3 (ipykernel)",
499
+ "language": "python",
500
+ "name": "python3"
501
+ },
502
+ "language_info": {
503
+ "codemirror_mode": {
504
+ "name": "ipython",
505
+ "version": 3
506
+ },
507
+ "file_extension": ".py",
508
+ "mimetype": "text/x-python",
509
+ "name": "python",
510
+ "nbconvert_exporter": "python",
511
+ "pygments_lexer": "ipython3",
512
+ "version": "3.9.6"
513
+ }
514
+ },
515
+ "nbformat": 4,
516
+ "nbformat_minor": 5
517
+ }
pdbbind.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from mpi4py import MPI
2
+ from mpi4py.futures import MPICommExecutor
3
+
4
+ import warnings
5
+ from Bio.PDB import PDBParser, PPBuilder, CaPPBuilder
6
+ from Bio.PDB.NeighborSearch import NeighborSearch
7
+ from Bio.PDB.Selection import unfold_entities
8
+
9
+ import numpy as np
10
+ import dask.array as da
11
+
12
+ from rdkit import Chem
13
+
14
+ import os
15
+ import re
16
+ import sys
17
+
18
+ # all punctuation
19
+ punctuation_regex = r"""(\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"""
20
+
21
+ # tokenization regex (Schwaller)
22
+ molecule_regex = r"""(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"""
23
+
24
+ max_seq = 2046 # = 2048 - 2 (accounting for [CLS] and [SEP])
25
+ max_smiles = 510 # = 512 - 2
26
+ chunk_size = '1G'
27
+
28
+ def parse_complex(fn):
29
+ try:
30
+ name = os.path.basename(fn)
31
+
32
+ # parse protein sequence and coordinates
33
+ parser = PDBParser()
34
+ with warnings.catch_warnings():
35
+ warnings.simplefilter("ignore")
36
+ structure = parser.get_structure('protein',fn+'/'+name+'_protein.pdb')
37
+
38
+ ppb = CaPPBuilder()
39
+ seq = []
40
+ xyz_receptor = []
41
+ for pp in ppb.build_peptides(structure):
42
+ seq.append(str(pp.get_sequence()))
43
+ xyz_receptor += [tuple(a.get_vector()) for a in pp.get_ca_list()]
44
+ seq = ''.join(seq)
45
+
46
+ # parse ligand, convert to SMILES and map atoms
47
+ suppl = Chem.SDMolSupplier(fn+'/'+name+'_ligand.sdf')
48
+ mol = next(suppl)
49
+ smi = Chem.MolToSmiles(mol)
50
+
51
+ # position of atoms in SMILES (not counting punctuation)
52
+ atom_order = [int(s) for s in list(filter(None,re.sub(r'[\[\]]','',mol.GetProp("_smilesAtomOutputOrder")).split(',')))]
53
+
54
+ # tokenize the SMILES
55
+ tokens = list(filter(None, re.split(molecule_regex, smi)))
56
+
57
+ # remove punctuation
58
+ masked_tokens = [re.sub(punctuation_regex,'',s) for s in tokens]
59
+
60
+ k = 0
61
+ token_pos = []
62
+ for i,token in enumerate(masked_tokens):
63
+ if token != '':
64
+ token_pos.append(tuple(mol.GetConformer().GetAtomPosition(atom_order[k])))
65
+ k += 1
66
+ else:
67
+ token_pos.append((np.nan, np.nan, np.nan))
68
+
69
+ return name, seq, smi, xyz_receptor, token_pos
70
+
71
+ except Exception as e:
72
+ print(e)
73
+ return None
74
+
75
+
76
+ if __name__ == '__main__':
77
+ import glob
78
+
79
+ filenames = glob.glob('data/pdbbind/v2020-other-PL/*')
80
+ filenames.extend(glob.glob('data/pdbbind/refined-set/*'))
81
+ filenames = sorted(filenames)
82
+ comm = MPI.COMM_WORLD
83
+ with MPICommExecutor(comm, root=0) as executor:
84
+ if executor is not None:
85
+ result = executor.map(parse_complex, filenames)
86
+ result = list(result)
87
+ names = [r[0] for r in result if r is not None]
88
+ seqs = [r[1] for r in result if r is not None]
89
+ all_smiles = [r[2] for r in result if r is not None]
90
+ all_xyz_receptor = [r[3] for r in result if r is not None]
91
+ all_xyz_ligand = [r[4] for r in result if r is not None]
92
+
93
+ import pandas as pd
94
+ df = pd.DataFrame({'name': names, 'seq': seqs, 'smiles': all_smiles, 'receptor_xyz': all_xyz_receptor, 'ligand_xyz': all_xyz_ligand})
95
+ df.to_parquet('data/pdbbind.parquet')
pdbbind.slurm ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH -J preprocess_pdbbind
3
+ #SBATCH -p gpu
4
+ #SBATCH -A STF006
5
+ #SBATCH -t 3:00:00
6
+ #SBATCH -N 2
7
+ #SBATCH --ntasks-per-node=16
8
+
9
+ srun python pdbbind.py
pdbbind_complexes.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """TODO: A dataset of protein sequences, ligand SMILES, binding affinities and contacts."""
16
+
17
+ import huggingface_hub
18
+ import os
19
+ import pyarrow.parquet as pq
20
+ import datasets
21
+
22
+
23
+ # TODO: Add BibTeX citation
24
+ # Find for instance the citation on arxiv or on the dataset repo/website
25
+ _CITATION = """\
26
+ @InProceedings{huggingface:dataset,
27
+ title = {jglaser/pdbbind_complexes},
28
+ author={Jens Glaser, ORNL
29
+ },
30
+ year={2022}
31
+ }
32
+ """
33
+
34
+ # TODO: Add description of the dataset here
35
+ # You can copy an official description
36
+ _DESCRIPTION = """\
37
+ A dataset to fine-tune language models on protein-ligand binding affinity and contact prediction.
38
+ """
39
+
40
+ # TODO: Add a link to an official homepage for the dataset here
41
+ _HOMEPAGE = ""
42
+
43
+ # TODO: Add the licence for the dataset here if you can find it
44
+ _LICENSE = "BSD two-clause"
45
+
46
+ # TODO: Add link to the official dataset URLs here
47
+ # The HuggingFace dataset library don't host the datasets but only point to the original files
48
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
49
+ _URL = "https://huggingface.co/datasets/jglaser/pdbbind_complexes/resolve/main/"
50
+ _data_dir = "data/"
51
+ _file_names = {'default': _data_dir+'pdbbind.parquet'}
52
+
53
+ _URLs = {name: _URL+_file_names[name] for name in _file_names}
54
+
55
+
56
+ # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
57
+ class ProteinLigandContacts(datasets.ArrowBasedBuilder):
58
+ """List of protein sequences, ligand SMILES, binding affinities and contacts."""
59
+
60
+ VERSION = datasets.Version("1.0")
61
+
62
+ def _info(self):
63
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
64
+ #if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
65
+ # features = datasets.Features(
66
+ # {
67
+ # "sentence": datasets.Value("string"),
68
+ # "option1": datasets.Value("string"),
69
+ # "answer": datasets.Value("string")
70
+ # # These are the features of your dataset like images, labels ...
71
+ # }
72
+ # )
73
+ #else: # This is an example to show how to have different features for "first_domain" and "second_domain"
74
+ features = datasets.Features(
75
+ {
76
+ "seq": datasets.Value("string"),
77
+ "smiles": datasets.Value("string"),
78
+ "ligand_xyz": datasets.Sequence(datasets.Sequence(datasets.Value('float32'))),
79
+ "receptor_xyz": datasets.Sequence(datasets.Sequence(datasets.Value('float32'))),
80
+ # These are the features of your dataset like images, labels ...
81
+ }
82
+ )
83
+ return datasets.DatasetInfo(
84
+ # This is the description that will appear on the datasets page.
85
+ description=_DESCRIPTION,
86
+ # This defines the different columns of the dataset and their types
87
+ features=features, # Here we define them above because they are different between the two configurations
88
+ # If there's a common (input, target) tuple from the features,
89
+ # specify them here. They'll be used if as_supervised=True in
90
+ # builder.as_dataset.
91
+ supervised_keys=None,
92
+ # Homepage of the dataset for documentation
93
+ homepage=_HOMEPAGE,
94
+ # License for the dataset if available
95
+ license=_LICENSE,
96
+ # Citation for the dataset
97
+ citation=_CITATION,
98
+ )
99
+
100
+ def _split_generators(self, dl_manager):
101
+ """Returns SplitGenerators."""
102
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
103
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
104
+
105
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
106
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
107
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
108
+ files = dl_manager.download_and_extract(_URLs)
109
+
110
+ return [
111
+ datasets.SplitGenerator(
112
+ # These kwargs will be passed to _generate_examples
113
+ name=datasets.Split.TRAIN,
114
+ gen_kwargs={
115
+ 'filepath': files["default"],
116
+ },
117
+ ),
118
+
119
+ ]
120
+
121
+ def _generate_tables(
122
+ self, filepath
123
+ ):
124
+ from pyarrow import fs
125
+ local = fs.LocalFileSystem()
126
+
127
+ for i, f in enumerate([filepath]):
128
+ yield i, pq.read_table(f,filesystem=local)