parquet-converter
commited on
Commit
•
5d37eae
1
Parent(s):
e7b3733
Update parquet files
Browse files- .gitattributes +1 -0
- README.md +0 -45
- data/pdbbind.parquet → default/pdbbind_complexes-train.parquet +2 -2
- pdbbind.ipynb +0 -517
- pdbbind.py +0 -177
- pdbbind.slurm +0 -9
- pdbbind_complexes.py +0 -131
.gitattributes
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
default/pdbbind_complexes-train.parquet filter=lfs diff=lfs merge=lfs -text
|
README.md
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
---
|
2 |
-
tags:
|
3 |
-
- molecules
|
4 |
-
- chemistry
|
5 |
-
- SMILES
|
6 |
-
---
|
7 |
-
|
8 |
-
## How to use the data sets
|
9 |
-
|
10 |
-
This dataset contains more than 16,000 unique pairs of protein sequences and ligand SMILES, and the coordinates
|
11 |
-
of their complexes.
|
12 |
-
|
13 |
-
SMILES are assumed to be tokenized by the regex from P. Schwaller
|
14 |
-
|
15 |
-
Every (x,y,z) ligand coordinate maps onto a SMILES token, and is *nan* if the token does not represent an atom
|
16 |
-
|
17 |
-
Every receptor coordinate maps onto the Calpha coordinate of that residue.
|
18 |
-
|
19 |
-
The dataset can be used to fine-tune a language model, all data comes from PDBind-cn.
|
20 |
-
|
21 |
-
### Use the already preprocessed data
|
22 |
-
|
23 |
-
Load a test/train split using
|
24 |
-
|
25 |
-
```
|
26 |
-
from datasets import load_dataset
|
27 |
-
train = load_dataset("jglaser/pdbbind_complexes",split='train[:90%]')
|
28 |
-
validation = load_dataset("jglaser/pdbbind_complexes",split='train[90%:]')
|
29 |
-
```
|
30 |
-
|
31 |
-
### Pre-process yourself
|
32 |
-
|
33 |
-
To manually perform the preprocessing, download the data sets from P.DBBind-cn
|
34 |
-
|
35 |
-
Register for an account at <https://www.pdbbind.org.cn/>, confirm the validation
|
36 |
-
email, then login and download
|
37 |
-
|
38 |
-
- the Index files (1)
|
39 |
-
- the general protein-ligand complexes (2)
|
40 |
-
- the refined protein-ligand complexes (3)
|
41 |
-
|
42 |
-
Extract those files in `pdbbind/data`
|
43 |
-
|
44 |
-
Run the script `pdbbind.py` in a compute job on an MPI-enabled cluster
|
45 |
-
(e.g., `mpirun -n 64 pdbbind.py`).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/pdbbind.parquet → default/pdbbind_complexes-train.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a02d99f9fb9a81c9465ea40e1232bf857725707a688034ca3388f67259ef27b8
|
3 |
+
size 382706029
|
pdbbind.ipynb
DELETED
@@ -1,517 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"id": "834aeced-c3c5-42a0-bad1-41e009dd86ee",
|
6 |
-
"metadata": {},
|
7 |
-
"source": [
|
8 |
-
"### Preprocessing"
|
9 |
-
]
|
10 |
-
},
|
11 |
-
{
|
12 |
-
"cell_type": "code",
|
13 |
-
"execution_count": 1,
|
14 |
-
"id": "86476f6e-802a-463b-a1b0-2ae228bb92af",
|
15 |
-
"metadata": {},
|
16 |
-
"outputs": [],
|
17 |
-
"source": [
|
18 |
-
"import pandas as pd"
|
19 |
-
]
|
20 |
-
},
|
21 |
-
{
|
22 |
-
"cell_type": "code",
|
23 |
-
"execution_count": 2,
|
24 |
-
"id": "9b2be11c-f4bb-4107-af49-abd78052afcf",
|
25 |
-
"metadata": {},
|
26 |
-
"outputs": [],
|
27 |
-
"source": [
|
28 |
-
"df = pd.read_table('data/pdbbind/index/INDEX_general_PL_data.2020',skiprows=4,sep=r'\\s+',usecols=[0,4]).drop(0)\n",
|
29 |
-
"df = df.rename(columns={'#': 'name','release': 'affinity'})\n",
|
30 |
-
"df_refined = pd.read_table('data/pdbbind/index/INDEX_refined_data.2020',skiprows=4,sep=r'\\s+',usecols=[0,4]).drop(0)\n",
|
31 |
-
"df_refined = df_refined.rename(columns={'#': 'name','release': 'affinity'})\n",
|
32 |
-
"df = pd.concat([df,df_refined])"
|
33 |
-
]
|
34 |
-
},
|
35 |
-
{
|
36 |
-
"cell_type": "code",
|
37 |
-
"execution_count": 3,
|
38 |
-
"id": "68983ab8-bf11-4ed6-ba06-f962dbdc077e",
|
39 |
-
"metadata": {},
|
40 |
-
"outputs": [],
|
41 |
-
"source": [
|
42 |
-
"quantities = ['ki','kd','ka','k1/2','kb','ic50','ec50']"
|
43 |
-
]
|
44 |
-
},
|
45 |
-
{
|
46 |
-
"cell_type": "code",
|
47 |
-
"execution_count": 4,
|
48 |
-
"id": "3acbca3c-9c0b-43a1-a45e-331bf153bcfa",
|
49 |
-
"metadata": {},
|
50 |
-
"outputs": [],
|
51 |
-
"source": [
|
52 |
-
"from pint import UnitRegistry\n",
|
53 |
-
"ureg = UnitRegistry()\n",
|
54 |
-
"\n",
|
55 |
-
"def to_uM(affinity):\n",
|
56 |
-
" val = ureg(affinity)\n",
|
57 |
-
" try:\n",
|
58 |
-
" return val.m_as(ureg.uM)\n",
|
59 |
-
" except Exception:\n",
|
60 |
-
" pass\n",
|
61 |
-
" \n",
|
62 |
-
" try:\n",
|
63 |
-
" return 1/val.m_as(1/ureg.uM)\n",
|
64 |
-
" except Exception:\n",
|
65 |
-
" pass"
|
66 |
-
]
|
67 |
-
},
|
68 |
-
{
|
69 |
-
"cell_type": "code",
|
70 |
-
"execution_count": 5,
|
71 |
-
"id": "58e5748b-2cea-43ff-ab51-85a5021bd50b",
|
72 |
-
"metadata": {},
|
73 |
-
"outputs": [],
|
74 |
-
"source": [
|
75 |
-
"df['affinity_uM'] = df['affinity'].str.split('[=\\~><]').str[1].apply(to_uM)\n",
|
76 |
-
"df['affinity_quantity'] = df['affinity'].str.split('[=\\~><]').str[0]"
|
77 |
-
]
|
78 |
-
},
|
79 |
-
{
|
80 |
-
"cell_type": "code",
|
81 |
-
"execution_count": 6,
|
82 |
-
"id": "d92f0004-68c1-4487-94b9-56b4fd598de4",
|
83 |
-
"metadata": {},
|
84 |
-
"outputs": [
|
85 |
-
{
|
86 |
-
"data": {
|
87 |
-
"text/plain": [
|
88 |
-
"<AxesSubplot:>"
|
89 |
-
]
|
90 |
-
},
|
91 |
-
"execution_count": 6,
|
92 |
-
"metadata": {},
|
93 |
-
"output_type": "execute_result"
|
94 |
-
},
|
95 |
-
{
|
96 |
-
"data": {
|
97 |
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAQdUlEQVR4nO3df6zdd13H8efLVkYpFjfHbpp22BKL2m1B3GVWiOSSGncFYveHM8XhOrOkYZk4ZYnp+Adj0mQkoLDFjVTBdjiYdZC0OoYuhStR98MWiKUrywqb22WXlR8ydxHHOt/+cT7Vw+3p7XrOvfe03ucjOTnf8/5+Pt/v5+Z+e173+/l+z2mqCkmSfmTYA5AknRkMBEkSYCBIkhoDQZIEGAiSpGbpsAfQr/PPP7/WrFnTV9/vfe97LF++fG4HJDUeX5pvgxxjBw4c+FZVvbLXurM2ENasWcP+/fv76jsxMcHY2NjcDkhqPL403wY5xpL828nWOWUkSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1pwyEJB9NcjTJl7tq5yW5L8mj7fncrnU3JTmS5JEkl3fVL01ysK27JUla/Zwkf9XqDyZZM8c/oyTpRXgxZwg7gfEZtW3AvqpaB+xrr0myHtgMXNT63JZkSetzO7AVWNcex7d5LfDvVfVTwJ8A7+v3h5Ek9e+UgVBVnwe+M6O8CdjVlncBV3TV76qq56rqMeAIcFmSlcCKqrq/Ov8Bwx0z+hzf1t3AxuNnD5KkhdPvJ5VHqmoKoKqmklzQ6quAB7raTbba8215Zv14nyfbto4leQb4CeBbM3eaZCudswxGRkaYmJjoa/DT09N995VOxeNrcTj49WeGtu+1r1gyL8fYXH91Ra+/7GuW+mx9TixW7QB2AIyOjla/H932qwU0nzy+Fodrtt0ztH3vHF8+L8dYv3cZPd2mgWjPR1t9Eriwq91q4KlWX92j/kN9kiwFXsGJU1SSpHnWbyDsBba05S3Anq765nbn0Fo6F48fatNLzybZ0K4PXD2jz/Ft/Trw2fI/epakBXfKKaMknwDGgPOTTALvBW4Gdie5FngCuBKgqg4l2Q08DBwDrq+qF9qmrqNzx9Iy4N72APgI8LEkR+icGWyek59MknRaThkIVfX2k6zaeJL224HtPer7gYt71P+LFiiSpOHxk8qSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQMFAhJfj/JoSRfTvKJJC9Ncl6S+5I82p7P7Wp/U5IjSR5JcnlX/dIkB9u6W5JkkHFJkk5f34GQZBXwu8BoVV0MLAE2A9uAfVW1DtjXXpNkfVt/ETAO3JZkSdvc7cBWYF17jPc7LklSfwadMloKLEuyFHgZ8BSwCdjV1u8CrmjLm4C7quq5qnoMOAJclmQlsKKq7q+qAu7o6iNJWiB9B0JVfR14P/AEMAU8U1V/D4xU1VRrMwVc0LqsAp7s2sRkq61qyzPrkqQFtLTfju3awCZgLfBd4K+TvGO2Lj1qNUu91z630plaYmRkhImJidMY8f+Znp7uu690Kh5fi8ONlxwb2r7n6xjrOxCAXwYeq6pvAiT5FPAG4OkkK6tqqk0HHW3tJ4ELu/qvpjPFNNmWZ9ZPUFU7gB0Ao6OjNTY21tfAJyYm6LevdCoeX4vDNdvuGdq+d44vn5djbJBrCE8AG5K8rN0VtBE4DOwFtrQ2W4A9bXkvsDnJOUnW0rl4/FCbVno2yYa2nau7+kiSFkjfZwhV9WCSu4EvAMeAL9L56/3lwO4k19IJjStb+0NJdgMPt/bXV9ULbXPXATuBZcC97SFJWkCDTBlRVe8F3juj/Byds4Ve7bcD23vU9wMXDzIWSdJg/KSyJAkwECRJjYEgSQIMBElSM9BF5bPVwa8/M7R7iB+/+a1D2a8knYpnCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUrMobzuV5pO3Nets5RmCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJKAAQMhyY8nuTvJV5IcTvKLSc5Lcl+SR9vzuV3tb0pyJMkjSS7vql+a5GBbd0uSDDIuSdLpG/QM4UPAZ6rqZ4DXAoeBbcC+qloH7GuvSbIe2AxcBIwDtyVZ0rZzO7AVWNce4wOOS5J0mvoOhCQrgDcBHwGoqh9U1XeBTcCu1mwXcEVb3gTcVVXPVdVjwBHgsiQrgRVVdX9VFXBHVx9J0gJZOkDfVwPfBP4iyWuBA8ANwEhVTQFU1VSSC1r7VcADXf0nW+35tjyzfoIkW+mcSTAyMsLExERfAx9ZBjdecqyvvoPqd8w6e3h8LQ7D+h0DTE9Pz8vvepBAWAr8PPCuqnowyYdo00Mn0eu6QM1SP7FYtQPYATA6OlpjY2OnNeDjbr1zDx84OMiP3r/Hrxobyn61cDy+Fodrtt0ztH3vHF9Ov+9/sxnkGsIkMFlVD7bXd9MJiKfbNBDt+WhX+wu7+q8Gnmr11T3qkqQF1HcgVNU3gCeT/HQrbQQeBvYCW1ptC7CnLe8FNic5J8laOhePH2rTS88m2dDuLrq6q48kaYEMel77LuDOJC8Bvgb8Np2Q2Z3kWuAJ4EqAqjqUZDed0DgGXF9VL7TtXAfsBJYB97aHJGkBDRQIVfUlYLTHqo0nab8d2N6jvh+4eJCxSJIG4yeVJUmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpGTgQkixJ8sUkf9ten5fkviSPtudzu9relORIkkeSXN5VvzTJwbbuliQZdFySpNMzF2cINwCHu15vA/ZV1TpgX3tNkvXAZuAiYBy4LcmS1ud2YCuwrj3G52BckqTTMFAgJFkNvBX4867yJmBXW94FXNFVv6uqnquqx4AjwGVJVgIrqur+qirgjq4+kqQFsnTA/h8E/gD4sa7aSFVNAVTVVJILWn0V8EBXu8lWe74tz6yfIMlWOmcSjIyMMDEx0degR5bBjZcc66vvoPods84eHl+Lw7B+xwDT09Pz8rvuOxCSvA04WlUHkoy9mC49ajVL/cRi1Q5gB8Do6GiNjb2Y3Z7o1jv38IGDg2Zhfx6/amwo+9XC8fhaHK7Zds/Q9r1zfDn9vv/NZpCj9o3AryV5C/BSYEWSvwSeTrKynR2sBI629pPAhV39VwNPtfrqHnVJ0gLq+xpCVd1UVaurag2di8Wfrap3AHuBLa3ZFmBPW94LbE5yTpK1dC4eP9Sml55NsqHdXXR1Vx9J0gKZj/Pam4HdSa4FngCuBKiqQ0l2Aw8Dx4Drq+qF1uc6YCewDLi3PSRJC2hOAqGqJoCJtvxtYONJ2m0Htveo7wcunouxSJL64yeVJUmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSp6TsQklyY5HNJDic5lOSGVj8vyX1JHm3P53b1uSnJkSSPJLm8q35pkoNt3S1JMtiPJUk6XYOcIRwDbqyqnwU2ANcnWQ9sA/ZV1TpgX3tNW7cZuAgYB25LsqRt63ZgK7CuPcYHGJckqQ99B0JVTVXVF9rys8BhYBWwCdjVmu0CrmjLm4C7quq5qnoMOAJclmQlsKKq7q+qAu7o6iNJWiBzcg0hyRrgdcCDwEhVTUEnNIALWrNVwJNd3SZbbVVbnlmXJC2gpYNuIMnLgU8Cv1dV/zHL9H+vFTVLvde+ttKZWmJkZISJiYnTHi/AyDK48ZJjffUdVL9j1tnD42txGNbvGGB6enpeftcDBUKSH6UTBndW1ada+ekkK6tqqk0HHW31SeDCru6rgadafXWP+gmqagewA2B0dLTGxsb6Gvetd+7hAwcHzsK+PH7V2FD2q4Xj8bU4XLPtnqHte+f4cvp9/5vNIHcZBfgIcLiq/rhr1V5gS1veAuzpqm9Ock6StXQuHj/UppWeTbKhbfPqrj6SpAUyyJ8xbwR+CziY5Eut9h7gZmB3kmuBJ4ArAarqUJLdwMN07lC6vqpeaP2uA3YCy4B720OStID6DoSq+kd6z/8DbDxJn+3A9h71/cDF/Y5FkjQ4P6ksSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAs6gQEgynuSRJEeSbBv2eCRpsTkjAiHJEuBPgV8F1gNvT7J+uKOSpMXljAgE4DLgSFV9rap+ANwFbBrymCRpUVk67AE0q4Anu15PAr8ws1GSrcDW9nI6ySN97u984Ft99h1I3jeMvWqBeXxpXr35fQMdYz95shVnSiCkR61OKFTtAHYMvLNkf1WNDrodqRePL823+TrGzpQpo0ngwq7Xq4GnhjQWSVqUzpRA+BdgXZK1SV4CbAb2DnlMkrSonBFTRlV1LMnvAH8HLAE+WlWH5nGXA087SbPw+NJ8m5djLFUnTNVLkhahM2XKSJI0ZAaCJAlYRIGQZLpr+S1JHk3yqiTvTHL1MMems8OMY+g1ST7dvmrlcJLdSUaSrEny/SRfao8Pd/W5NMnB1ueWJL1ut5b+18net2ZrN4gz4qLyQkqyEbgV+JWqegL48Cm6SD8kyUuBe4B3V9XftNqbgVcC08BXq+rnenS9nc4HKx8APg2MA/cuxJh1duvxvjUvFlUgJPkl4M+At1TVV1vtD4Hpqnr/MMems8pvAvcfDwOAqvocQJI1vTokWQmsqKr72+s7gCswEHQKJ3nfWgt8nM57+Gfmal+LZsoIOAfYA1xRVV8Z9mB0VrsYODDL+rVJvpjkH9o/Zuh8PctkV5vJVpNmc7L3rQ8Bt1fV64FvzNXOFlMgPA/8M3DtsAei/9emgFdV1euAdwMfT7KCF/n1LNIMJ3vfeiPwibb8sbna2WIKhP8GfgN4fZL3DHswOqsdAi7ttaKqnquqb7flA8BXgdfQOSNY3dXUr2fRizHb+9ac/0GxmAKBqvpP4G3AVUk8U1C/Pg68Iclbjxfaf/B0SZJXtv/fgySvBtYBX6uqKeDZJBva3UVX05kKkGZ1kvetf6LzFT8AV83VvhbVRWWAqvpOknHg80mG8hXFOrtV1feTvA34YJIP0jmt/1fgBuBNwB8lOQa8ALyzqr7Tul4H7ASW0bmY7AVlvSg93rduoDMdeQPwybnaj19dIUkCFtmUkSTp5AwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSp+R+8kn6fv7jc8QAAAABJRU5ErkJggg==\n",
|
98 |
-
"text/plain": [
|
99 |
-
"<Figure size 432x288 with 1 Axes>"
|
100 |
-
]
|
101 |
-
},
|
102 |
-
"metadata": {
|
103 |
-
"needs_background": "light"
|
104 |
-
},
|
105 |
-
"output_type": "display_data"
|
106 |
-
}
|
107 |
-
],
|
108 |
-
"source": [
|
109 |
-
"df['affinity_quantity'].hist()"
|
110 |
-
]
|
111 |
-
},
|
112 |
-
{
|
113 |
-
"cell_type": "code",
|
114 |
-
"execution_count": 7,
|
115 |
-
"id": "aa358835-55f3-4551-9217-e76a15de4fe8",
|
116 |
-
"metadata": {},
|
117 |
-
"outputs": [],
|
118 |
-
"source": [
|
119 |
-
"df_filter = df[df['affinity_quantity'].str.lower().isin(quantities)]\n",
|
120 |
-
"df_filter = df_filter.dropna()"
|
121 |
-
]
|
122 |
-
},
|
123 |
-
{
|
124 |
-
"cell_type": "code",
|
125 |
-
"execution_count": 8,
|
126 |
-
"id": "802cb9bc-2563-4d7f-9a76-3be2d9263a36",
|
127 |
-
"metadata": {},
|
128 |
-
"outputs": [],
|
129 |
-
"source": [
|
130 |
-
"cutoffs = [5,8,11,15]"
|
131 |
-
]
|
132 |
-
},
|
133 |
-
{
|
134 |
-
"cell_type": "code",
|
135 |
-
"execution_count": 9,
|
136 |
-
"id": "d8e71a8c-11a3-41f0-ab61-3ddc57e10961",
|
137 |
-
"metadata": {},
|
138 |
-
"outputs": [],
|
139 |
-
"source": [
|
140 |
-
"dfs_complex = {c: pd.read_parquet('data/pdbbind_complex_{}.parquet'.format(c)) for c in cutoffs}"
|
141 |
-
]
|
142 |
-
},
|
143 |
-
{
|
144 |
-
"cell_type": "code",
|
145 |
-
"execution_count": 10,
|
146 |
-
"id": "ed3fe035-6035-4d39-b072-d12dc0a95857",
|
147 |
-
"metadata": {},
|
148 |
-
"outputs": [],
|
149 |
-
"source": [
|
150 |
-
"import dask.array as da\n",
|
151 |
-
"import dask.dataframe as dd\n",
|
152 |
-
"from dask.bag import from_delayed\n",
|
153 |
-
"from dask import delayed\n",
|
154 |
-
"import pyarrow as pa\n",
|
155 |
-
"import pyarrow.parquet as pq"
|
156 |
-
]
|
157 |
-
},
|
158 |
-
{
|
159 |
-
"cell_type": "code",
|
160 |
-
"execution_count": 11,
|
161 |
-
"id": "cd26125b-e68b-4fa3-846e-2b6e7f635fe0",
|
162 |
-
"metadata": {},
|
163 |
-
"outputs": [
|
164 |
-
{
|
165 |
-
"name": "stdout",
|
166 |
-
"output_type": "stream",
|
167 |
-
"text": [
|
168 |
-
"(2046, 510)\n"
|
169 |
-
]
|
170 |
-
}
|
171 |
-
],
|
172 |
-
"source": [
|
173 |
-
"contacts_dask = [da.from_npy_stack('data/pdbbind_contacts_{}'.format(c)) for c in cutoffs]\n",
|
174 |
-
"shape = contacts_dask[0][0].shape\n",
|
175 |
-
"print(shape)"
|
176 |
-
]
|
177 |
-
},
|
178 |
-
{
|
179 |
-
"cell_type": "code",
|
180 |
-
"execution_count": 12,
|
181 |
-
"id": "9c7c9849-2345-4baf-89e7-d412f52353b6",
|
182 |
-
"metadata": {},
|
183 |
-
"outputs": [
|
184 |
-
{
|
185 |
-
"data": {
|
186 |
-
"text/html": [
|
187 |
-
"<table>\n",
|
188 |
-
"<tr>\n",
|
189 |
-
"<td>\n",
|
190 |
-
"<table>\n",
|
191 |
-
" <thead>\n",
|
192 |
-
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
|
193 |
-
" </thead>\n",
|
194 |
-
" <tbody>\n",
|
195 |
-
" <tr><th> Bytes </th><td> 2.72 GiB </td> <td> 2.72 GiB </td></tr>\n",
|
196 |
-
" <tr><th> Shape </th><td> (700, 2046, 510) </td> <td> (700, 2046, 510) </td></tr>\n",
|
197 |
-
" <tr><th> Count </th><td> 25 Tasks </td><td> 1 Chunks </td></tr>\n",
|
198 |
-
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
|
199 |
-
" </tbody>\n",
|
200 |
-
"</table>\n",
|
201 |
-
"</td>\n",
|
202 |
-
"<td>\n",
|
203 |
-
"<svg width=\"128\" height=\"195\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
|
204 |
-
"\n",
|
205 |
-
" <!-- Horizontal lines -->\n",
|
206 |
-
" <line x1=\"10\" y1=\"0\" x2=\"35\" y2=\"25\" style=\"stroke-width:2\" />\n",
|
207 |
-
" <line x1=\"10\" y1=\"120\" x2=\"35\" y2=\"145\" style=\"stroke-width:2\" />\n",
|
208 |
-
"\n",
|
209 |
-
" <!-- Vertical lines -->\n",
|
210 |
-
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n",
|
211 |
-
" <line x1=\"35\" y1=\"25\" x2=\"35\" y2=\"145\" style=\"stroke-width:2\" />\n",
|
212 |
-
"\n",
|
213 |
-
" <!-- Colored Rectangle -->\n",
|
214 |
-
" <polygon points=\"10.0,0.0 35.86269549127143,25.86269549127143 35.86269549127143,145.86269549127144 10.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
|
215 |
-
"\n",
|
216 |
-
" <!-- Horizontal lines -->\n",
|
217 |
-
" <line x1=\"10\" y1=\"0\" x2=\"52\" y2=\"0\" style=\"stroke-width:2\" />\n",
|
218 |
-
" <line x1=\"35\" y1=\"25\" x2=\"78\" y2=\"25\" style=\"stroke-width:2\" />\n",
|
219 |
-
"\n",
|
220 |
-
" <!-- Vertical lines -->\n",
|
221 |
-
" <line x1=\"10\" y1=\"0\" x2=\"35\" y2=\"25\" style=\"stroke-width:2\" />\n",
|
222 |
-
" <line x1=\"52\" y1=\"0\" x2=\"78\" y2=\"25\" style=\"stroke-width:2\" />\n",
|
223 |
-
"\n",
|
224 |
-
" <!-- Colored Rectangle -->\n",
|
225 |
-
" <polygon points=\"10.0,0.0 52.88780092952726,0.0 78.7504964207987,25.86269549127143 35.86269549127143,25.86269549127143\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
|
226 |
-
"\n",
|
227 |
-
" <!-- Horizontal lines -->\n",
|
228 |
-
" <line x1=\"35\" y1=\"25\" x2=\"78\" y2=\"25\" style=\"stroke-width:2\" />\n",
|
229 |
-
" <line x1=\"35\" y1=\"145\" x2=\"78\" y2=\"145\" style=\"stroke-width:2\" />\n",
|
230 |
-
"\n",
|
231 |
-
" <!-- Vertical lines -->\n",
|
232 |
-
" <line x1=\"35\" y1=\"25\" x2=\"35\" y2=\"145\" style=\"stroke-width:2\" />\n",
|
233 |
-
" <line x1=\"78\" y1=\"25\" x2=\"78\" y2=\"145\" style=\"stroke-width:2\" />\n",
|
234 |
-
"\n",
|
235 |
-
" <!-- Colored Rectangle -->\n",
|
236 |
-
" <polygon points=\"35.86269549127143,25.86269549127143 78.7504964207987,25.86269549127143 78.7504964207987,145.86269549127144 35.86269549127143,145.86269549127144\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
|
237 |
-
"\n",
|
238 |
-
" <!-- Text -->\n",
|
239 |
-
" <text x=\"57.306596\" y=\"165.862695\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >510</text>\n",
|
240 |
-
" <text x=\"98.750496\" y=\"85.862695\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,98.750496,85.862695)\">2046</text>\n",
|
241 |
-
" <text x=\"12.931348\" y=\"152.931348\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,12.931348,152.931348)\">700</text>\n",
|
242 |
-
"</svg>\n",
|
243 |
-
"</td>\n",
|
244 |
-
"</tr>\n",
|
245 |
-
"</table>"
|
246 |
-
],
|
247 |
-
"text/plain": [
|
248 |
-
"dask.array<blocks, shape=(700, 2046, 510), dtype=float32, chunksize=(700, 2046, 510), chunktype=numpy.ndarray>"
|
249 |
-
]
|
250 |
-
},
|
251 |
-
"execution_count": 12,
|
252 |
-
"metadata": {},
|
253 |
-
"output_type": "execute_result"
|
254 |
-
}
|
255 |
-
],
|
256 |
-
"source": [
|
257 |
-
"contacts_dask[0].blocks[1]"
|
258 |
-
]
|
259 |
-
},
|
260 |
-
{
|
261 |
-
"cell_type": "code",
|
262 |
-
"execution_count": 13,
|
263 |
-
"id": "0bd8e9b9-9713-4572-bd7f-dc47da9fce91",
|
264 |
-
"metadata": {},
|
265 |
-
"outputs": [
|
266 |
-
{
|
267 |
-
"data": {
|
268 |
-
"text/plain": [
|
269 |
-
"[16232, 16228, 16226, 16223]"
|
270 |
-
]
|
271 |
-
},
|
272 |
-
"execution_count": 13,
|
273 |
-
"metadata": {},
|
274 |
-
"output_type": "execute_result"
|
275 |
-
}
|
276 |
-
],
|
277 |
-
"source": [
|
278 |
-
"[len(c) for c in contacts_dask]"
|
279 |
-
]
|
280 |
-
},
|
281 |
-
{
|
282 |
-
"cell_type": "code",
|
283 |
-
"execution_count": 14,
|
284 |
-
"id": "87493934-3839-476a-a975-7da057c320da",
|
285 |
-
"metadata": {},
|
286 |
-
"outputs": [
|
287 |
-
{
|
288 |
-
"data": {
|
289 |
-
"text/plain": [
|
290 |
-
"16232"
|
291 |
-
]
|
292 |
-
},
|
293 |
-
"execution_count": 14,
|
294 |
-
"metadata": {},
|
295 |
-
"output_type": "execute_result"
|
296 |
-
}
|
297 |
-
],
|
298 |
-
"source": [
|
299 |
-
"contacts_dask[0].shape[0]"
|
300 |
-
]
|
301 |
-
},
|
302 |
-
{
|
303 |
-
"cell_type": "code",
|
304 |
-
"execution_count": 15,
|
305 |
-
"id": "42e95d84-ef27-4417-9479-8b356462b8c3",
|
306 |
-
"metadata": {},
|
307 |
-
"outputs": [],
|
308 |
-
"source": [
|
309 |
-
"import numpy as np\n",
|
310 |
-
"all_partitions = []\n",
|
311 |
-
"for c, cutoff in zip(contacts_dask,cutoffs):\n",
|
312 |
-
" def chunk_to_sparse(rcut, chunk, idx_chunk):\n",
|
313 |
-
" res = dfs_complex[rcut].iloc[idx_chunk][['name']].copy()\n",
|
314 |
-
" # pad to account for [CLS] and [SEP]\n",
|
315 |
-
" res['contacts_{}A'.format(rcut)] = [np.where(np.pad(a,pad_width=(1,1)).flatten())[0] for a in chunk]\n",
|
316 |
-
" return res\n",
|
317 |
-
"\n",
|
318 |
-
" partitions = [delayed(chunk_to_sparse)(cutoff,b,k)\n",
|
319 |
-
" for b,k in zip(c.blocks, da.arange(c.shape[0],chunks=c.chunks[0:1]).blocks)\n",
|
320 |
-
" ]\n",
|
321 |
-
" all_partitions.append(partitions)"
|
322 |
-
]
|
323 |
-
},
|
324 |
-
{
|
325 |
-
"cell_type": "code",
|
326 |
-
"execution_count": 16,
|
327 |
-
"id": "5520a925-693f-43f0-9e76-df2e128f272e",
|
328 |
-
"metadata": {},
|
329 |
-
"outputs": [
|
330 |
-
{
|
331 |
-
"data": {
|
332 |
-
"text/html": [
|
333 |
-
"<div>\n",
|
334 |
-
"<style scoped>\n",
|
335 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
336 |
-
" vertical-align: middle;\n",
|
337 |
-
" }\n",
|
338 |
-
"\n",
|
339 |
-
" .dataframe tbody tr th {\n",
|
340 |
-
" vertical-align: top;\n",
|
341 |
-
" }\n",
|
342 |
-
"\n",
|
343 |
-
" .dataframe thead th {\n",
|
344 |
-
" text-align: right;\n",
|
345 |
-
" }\n",
|
346 |
-
"</style>\n",
|
347 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
348 |
-
" <thead>\n",
|
349 |
-
" <tr style=\"text-align: right;\">\n",
|
350 |
-
" <th></th>\n",
|
351 |
-
" <th>name</th>\n",
|
352 |
-
" <th>contacts_5A</th>\n",
|
353 |
-
" </tr>\n",
|
354 |
-
" </thead>\n",
|
355 |
-
" <tbody>\n",
|
356 |
-
" <tr>\n",
|
357 |
-
" <th>0</th>\n",
|
358 |
-
" <td>10gs</td>\n",
|
359 |
-
" <td>[3083, 3084, 3086, 3087, 3088, 3089, 3094, 309...</td>\n",
|
360 |
-
" </tr>\n",
|
361 |
-
" <tr>\n",
|
362 |
-
" <th>1</th>\n",
|
363 |
-
" <td>184l</td>\n",
|
364 |
-
" <td>[39945, 39946, 39947, 39948, 43010, 43012, 430...</td>\n",
|
365 |
-
" </tr>\n",
|
366 |
-
" <tr>\n",
|
367 |
-
" <th>2</th>\n",
|
368 |
-
" <td>186l</td>\n",
|
369 |
-
" <td>[39943, 39944, 39945, 43010, 43011, 43012, 430...</td>\n",
|
370 |
-
" </tr>\n",
|
371 |
-
" <tr>\n",
|
372 |
-
" <th>3</th>\n",
|
373 |
-
" <td>187l</td>\n",
|
374 |
-
" <td>[39937, 39938, 39947, 43009, 43010, 43012, 430...</td>\n",
|
375 |
-
" </tr>\n",
|
376 |
-
" <tr>\n",
|
377 |
-
" <th>4</th>\n",
|
378 |
-
" <td>188l</td>\n",
|
379 |
-
" <td>[39937, 39938, 39940, 39941, 43009, 43010, 430...</td>\n",
|
380 |
-
" </tr>\n",
|
381 |
-
" </tbody>\n",
|
382 |
-
"</table>\n",
|
383 |
-
"</div>"
|
384 |
-
],
|
385 |
-
"text/plain": [
|
386 |
-
" name contacts_5A\n",
|
387 |
-
"0 10gs [3083, 3084, 3086, 3087, 3088, 3089, 3094, 309...\n",
|
388 |
-
"1 184l [39945, 39946, 39947, 39948, 43010, 43012, 430...\n",
|
389 |
-
"2 186l [39943, 39944, 39945, 43010, 43011, 43012, 430...\n",
|
390 |
-
"3 187l [39937, 39938, 39947, 43009, 43010, 43012, 430...\n",
|
391 |
-
"4 188l [39937, 39938, 39940, 39941, 43009, 43010, 430..."
|
392 |
-
]
|
393 |
-
},
|
394 |
-
"execution_count": 16,
|
395 |
-
"metadata": {},
|
396 |
-
"output_type": "execute_result"
|
397 |
-
}
|
398 |
-
],
|
399 |
-
"source": [
|
400 |
-
"all_partitions[0][0].compute().head()"
|
401 |
-
]
|
402 |
-
},
|
403 |
-
{
|
404 |
-
"cell_type": "code",
|
405 |
-
"execution_count": 17,
|
406 |
-
"id": "4982c3b1-5ce9-4f17-9834-a02c4e136bc2",
|
407 |
-
"metadata": {},
|
408 |
-
"outputs": [],
|
409 |
-
"source": [
|
410 |
-
"ddfs = [dd.from_delayed(p) for p in all_partitions]"
|
411 |
-
]
|
412 |
-
},
|
413 |
-
{
|
414 |
-
"cell_type": "code",
|
415 |
-
"execution_count": 18,
|
416 |
-
"id": "f6cdee43-33c6-445c-8619-ace20f90638c",
|
417 |
-
"metadata": {},
|
418 |
-
"outputs": [],
|
419 |
-
"source": [
|
420 |
-
"ddf_all = None\n",
|
421 |
-
"for d in ddfs:\n",
|
422 |
-
" if ddf_all is not None:\n",
|
423 |
-
" ddf_all = ddf_all.merge(d, on='name')\n",
|
424 |
-
" else:\n",
|
425 |
-
" ddf_all = d\n",
|
426 |
-
"ddf_all = ddf_all.merge(df_filter,on='name')\n",
|
427 |
-
"ddf_all = ddf_all.merge(list(dfs_complex.values())[0],on='name')"
|
428 |
-
]
|
429 |
-
},
|
430 |
-
{
|
431 |
-
"cell_type": "code",
|
432 |
-
"execution_count": 19,
|
433 |
-
"id": "8f49f871-76f6-4fb2-b2db-c0794d4c07bf",
|
434 |
-
"metadata": {},
|
435 |
-
"outputs": [
|
436 |
-
{
|
437 |
-
"name": "stdout",
|
438 |
-
"output_type": "stream",
|
439 |
-
"text": [
|
440 |
-
"CPU times: user 8min 53s, sys: 11min 31s, total: 20min 24s\n",
|
441 |
-
"Wall time: 3min 29s\n"
|
442 |
-
]
|
443 |
-
}
|
444 |
-
],
|
445 |
-
"source": [
|
446 |
-
"%%time\n",
|
447 |
-
"df_all_contacts = ddf_all.compute()"
|
448 |
-
]
|
449 |
-
},
|
450 |
-
{
|
451 |
-
"cell_type": "code",
|
452 |
-
"execution_count": 20,
|
453 |
-
"id": "45e4b4fa-6338-4abe-bd6e-8aea46e2a09c",
|
454 |
-
"metadata": {},
|
455 |
-
"outputs": [],
|
456 |
-
"source": [
|
457 |
-
"df_all_contacts['neg_log10_affinity_M'] = 6-np.log10(df_all_contacts['affinity_uM'])"
|
458 |
-
]
|
459 |
-
},
|
460 |
-
{
|
461 |
-
"cell_type": "code",
|
462 |
-
"execution_count": 21,
|
463 |
-
"id": "7c3db301-6565-4053-bbd4-139bb41dd1c4",
|
464 |
-
"metadata": {},
|
465 |
-
"outputs": [
|
466 |
-
{
|
467 |
-
"data": {
|
468 |
-
"text/plain": [
|
469 |
-
"(array([6.34387834]), array([3.57815698]))"
|
470 |
-
]
|
471 |
-
},
|
472 |
-
"execution_count": 21,
|
473 |
-
"metadata": {},
|
474 |
-
"output_type": "execute_result"
|
475 |
-
}
|
476 |
-
],
|
477 |
-
"source": [
|
478 |
-
"from sklearn.preprocessing import StandardScaler\n",
|
479 |
-
"scaler = StandardScaler()\n",
|
480 |
-
"df_all_contacts['affinity'] = scaler.fit_transform(df_all_contacts['neg_log10_affinity_M'].values.reshape(-1,1))\n",
|
481 |
-
"scaler.mean_, scaler.var_"
|
482 |
-
]
|
483 |
-
},
|
484 |
-
{
|
485 |
-
"cell_type": "code",
|
486 |
-
"execution_count": 22,
|
487 |
-
"id": "c9d674bb-d6a2-4810-aa2b-e3bc3b4bbc98",
|
488 |
-
"metadata": {},
|
489 |
-
"outputs": [],
|
490 |
-
"source": [
|
491 |
-
"# save to parquet\n",
|
492 |
-
"df_all_contacts.drop(columns=['name','affinity_quantity']).astype({'affinity': 'float32','neg_log10_affinity_M': 'float32'}).to_parquet('data/pdbbind_with_contacts.parquet',index=False)"
|
493 |
-
]
|
494 |
-
}
|
495 |
-
],
|
496 |
-
"metadata": {
|
497 |
-
"kernelspec": {
|
498 |
-
"display_name": "Python 3 (ipykernel)",
|
499 |
-
"language": "python",
|
500 |
-
"name": "python3"
|
501 |
-
},
|
502 |
-
"language_info": {
|
503 |
-
"codemirror_mode": {
|
504 |
-
"name": "ipython",
|
505 |
-
"version": 3
|
506 |
-
},
|
507 |
-
"file_extension": ".py",
|
508 |
-
"mimetype": "text/x-python",
|
509 |
-
"name": "python",
|
510 |
-
"nbconvert_exporter": "python",
|
511 |
-
"pygments_lexer": "ipython3",
|
512 |
-
"version": "3.9.6"
|
513 |
-
}
|
514 |
-
},
|
515 |
-
"nbformat": 4,
|
516 |
-
"nbformat_minor": 5
|
517 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pdbbind.py
DELETED
@@ -1,177 +0,0 @@
|
|
1 |
-
from mpi4py import MPI
|
2 |
-
from mpi4py.futures import MPICommExecutor
|
3 |
-
|
4 |
-
import warnings
|
5 |
-
from Bio.PDB import PDBParser, PPBuilder, CaPPBuilder
|
6 |
-
from Bio.PDB.NeighborSearch import NeighborSearch
|
7 |
-
from Bio.PDB.Selection import unfold_entities
|
8 |
-
|
9 |
-
import numpy as np
|
10 |
-
import dask.array as da
|
11 |
-
|
12 |
-
from rdkit import Chem
|
13 |
-
|
14 |
-
from spyrmsd import molecule
|
15 |
-
from spyrmsd import graph
|
16 |
-
import networkx as nx
|
17 |
-
|
18 |
-
import os
|
19 |
-
import re
|
20 |
-
import sys
|
21 |
-
|
22 |
-
# all punctuation
|
23 |
-
punctuation_regex = r"""(\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"""
|
24 |
-
|
25 |
-
# tokenization regex (Schwaller)
|
26 |
-
molecule_regex = r"""(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"""
|
27 |
-
|
28 |
-
max_seq = 2046 # = 2048 - 2 (accounting for [CLS] and [SEP])
|
29 |
-
max_smiles = 510 # = 512 - 2
|
30 |
-
chunk_size = '1G'
|
31 |
-
|
32 |
-
def rot_from_two_vecs(e0_unnormalized, e1_unnormalized):
|
33 |
-
"""Create rotation matrices from unnormalized vectors for the x and y-axes.
|
34 |
-
This creates a rotation matrix from two vectors using Gram-Schmidt
|
35 |
-
orthogonalization.
|
36 |
-
Args:
|
37 |
-
e0_unnormalized: vectors lying along x-axis of resulting rotation
|
38 |
-
e1_unnormalized: vectors lying in xy-plane of resulting rotation
|
39 |
-
Returns:
|
40 |
-
Rotations resulting from Gram-Schmidt procedure.
|
41 |
-
"""
|
42 |
-
# Normalize the unit vector for the x-axis, e0.
|
43 |
-
e0 = e0_unnormalized / np.linalg.norm(e0_unnormalized)
|
44 |
-
|
45 |
-
# make e1 perpendicular to e0.
|
46 |
-
c = np.dot(e1_unnormalized, e0)
|
47 |
-
e1 = e1_unnormalized - c * e0
|
48 |
-
e1 = e1 / np.linalg.norm(e1)
|
49 |
-
|
50 |
-
# Compute e2 as cross product of e0 and e1.
|
51 |
-
e2 = np.cross(e0, e1)
|
52 |
-
|
53 |
-
# local to space frame
|
54 |
-
return np.stack([e0,e1,e2]).T
|
55 |
-
|
56 |
-
def get_local_frames(mol):
|
57 |
-
# get the two nearest neighbors of every atom on the molecular graph
|
58 |
-
# ties are broken using canonical ordering
|
59 |
-
g = molecule.Molecule.from_rdkit(mol).to_graph()
|
60 |
-
|
61 |
-
R = []
|
62 |
-
for node in g:
|
63 |
-
length = nx.single_source_shortest_path_length(g, node)
|
64 |
-
|
65 |
-
neighbor_a = [n for n,l in length.items() if l==1][0]
|
66 |
-
|
67 |
-
try:
|
68 |
-
neighbor_b = [n for n,l in length.items() if l==1][1]
|
69 |
-
except:
|
70 |
-
# get next nearest neighbor
|
71 |
-
neighbor_b = [n for n,l in length.items() if l==2][0]
|
72 |
-
|
73 |
-
xyz = np.array(mol.GetConformer().GetAtomPosition(node))
|
74 |
-
xyz_a = np.array(mol.GetConformer().GetAtomPosition(neighbor_a))
|
75 |
-
xyz_b = np.array(mol.GetConformer().GetAtomPosition(neighbor_b))
|
76 |
-
|
77 |
-
R.append(rot_from_two_vecs(xyz_a-xyz, xyz_b-xyz))
|
78 |
-
|
79 |
-
return R
|
80 |
-
|
81 |
-
def parse_complex(fn):
|
82 |
-
try:
|
83 |
-
name = os.path.basename(fn)
|
84 |
-
|
85 |
-
# parse protein sequence and coordinates
|
86 |
-
parser = PDBParser()
|
87 |
-
with warnings.catch_warnings():
|
88 |
-
warnings.simplefilter("ignore")
|
89 |
-
structure = parser.get_structure('protein',fn+'/'+name+'_protein.pdb')
|
90 |
-
|
91 |
-
res_frames = []
|
92 |
-
|
93 |
-
# extract sequence, Calpha positions and local coordinate frames using the AF2 convention
|
94 |
-
ppb = CaPPBuilder()
|
95 |
-
seq = []
|
96 |
-
xyz_receptor = []
|
97 |
-
R_receptor = []
|
98 |
-
for pp in ppb.build_peptides(structure):
|
99 |
-
seq.append(str(pp.get_sequence()))
|
100 |
-
xyz_receptor += [tuple(a.get_vector()) for a in pp.get_ca_list()]
|
101 |
-
|
102 |
-
for res in pp:
|
103 |
-
N = np.array(tuple(res['N'].get_vector()))
|
104 |
-
C = np.array(tuple(res['C'].get_vector()))
|
105 |
-
CA = np.array(tuple(res['CA'].get_vector()))
|
106 |
-
|
107 |
-
R_receptor.append(rot_from_two_vecs(N-CA,C-CA).flatten().tolist())
|
108 |
-
|
109 |
-
seq = ''.join(seq)
|
110 |
-
|
111 |
-
# parse ligand, convert to SMILES and map atoms
|
112 |
-
suppl = Chem.SDMolSupplier(fn+'/'+name+'_ligand.sdf')
|
113 |
-
mol = next(suppl)
|
114 |
-
|
115 |
-
# bring molecule atoms in canonical order (to determine local frames uniquely)
|
116 |
-
m_neworder = tuple(zip(*sorted([(j, i) for i, j in enumerate(Chem.CanonicalRankAtoms(mol))])))[1]
|
117 |
-
mol = Chem.RenumberAtoms(mol, m_neworder)
|
118 |
-
|
119 |
-
# position of atoms in SMILES (not counting punctuation)
|
120 |
-
smi = Chem.MolToSmiles(mol)
|
121 |
-
atom_order = [int(s) for s in list(filter(None,re.sub(r'[\[\]]','',mol.GetProp("_smilesAtomOutputOrder")).split(',')))]
|
122 |
-
|
123 |
-
# tokenize the SMILES
|
124 |
-
tokens = list(filter(None, re.split(molecule_regex, smi)))
|
125 |
-
|
126 |
-
# remove punctuation
|
127 |
-
masked_tokens = [re.sub(punctuation_regex,'',s) for s in tokens]
|
128 |
-
|
129 |
-
k = 0
|
130 |
-
token_pos = []
|
131 |
-
token_rot = []
|
132 |
-
|
133 |
-
frames = get_local_frames(mol)
|
134 |
-
|
135 |
-
for i,token in enumerate(masked_tokens):
|
136 |
-
if token != '':
|
137 |
-
token_pos.append(tuple(mol.GetConformer().GetAtomPosition(atom_order[k])))
|
138 |
-
token_rot.append(frames[atom_order[k]].flatten().tolist())
|
139 |
-
k += 1
|
140 |
-
else:
|
141 |
-
token_pos.append((np.nan, np.nan, np.nan))
|
142 |
-
token_rot.append(np.eye(3).flatten().tolist())
|
143 |
-
|
144 |
-
return name, seq, smi, xyz_receptor, token_pos, token_rot, R_receptor
|
145 |
-
|
146 |
-
except Exception as e:
|
147 |
-
print(e)
|
148 |
-
return None
|
149 |
-
|
150 |
-
|
151 |
-
if __name__ == '__main__':
|
152 |
-
import glob
|
153 |
-
|
154 |
-
filenames = glob.glob('data/pdbbind/v2020-other-PL/*')
|
155 |
-
filenames.extend(glob.glob('data/pdbbind/refined-set/*'))
|
156 |
-
filenames = sorted(filenames)
|
157 |
-
comm = MPI.COMM_WORLD
|
158 |
-
with MPICommExecutor(comm, root=0) as executor:
|
159 |
-
if executor is not None:
|
160 |
-
result = executor.map(parse_complex, filenames, chunksize=32)
|
161 |
-
result = list(result)
|
162 |
-
names = [r[0] for r in result if r is not None]
|
163 |
-
seqs = [r[1] for r in result if r is not None]
|
164 |
-
all_smiles = [r[2] for r in result if r is not None]
|
165 |
-
all_xyz_receptor = [r[3] for r in result if r is not None]
|
166 |
-
all_xyz_ligand = [r[4] for r in result if r is not None]
|
167 |
-
all_rot_ligand = [r[5] for r in result if r is not None]
|
168 |
-
all_rot_receptor = [r[6] for r in result if r is not None]
|
169 |
-
|
170 |
-
import pandas as pd
|
171 |
-
df = pd.DataFrame({'name': names, 'seq': seqs,
|
172 |
-
'smiles': all_smiles,
|
173 |
-
'receptor_xyz': all_xyz_receptor,
|
174 |
-
'ligand_xyz': all_xyz_ligand,
|
175 |
-
'ligand_rot': all_rot_ligand,
|
176 |
-
'receptor_rot': all_rot_receptor})
|
177 |
-
df.to_parquet('data/pdbbind.parquet',index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pdbbind.slurm
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
#SBATCH -J preprocess_pdbbind
|
3 |
-
#SBATCH -p batch
|
4 |
-
#SBATCH -A STF006
|
5 |
-
#SBATCH -t 3:00:00
|
6 |
-
#SBATCH -N 4
|
7 |
-
#SBATCH --ntasks-per-node=8
|
8 |
-
|
9 |
-
srun python pdbbind.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pdbbind_complexes.py
DELETED
@@ -1,131 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""TODO: A dataset of protein sequences, ligand SMILES, and complex coordinates."""
|
16 |
-
|
17 |
-
import huggingface_hub
|
18 |
-
import os
|
19 |
-
import pyarrow.parquet as pq
|
20 |
-
import datasets
|
21 |
-
|
22 |
-
|
23 |
-
# TODO: Add BibTeX citation
|
24 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
25 |
-
_CITATION = """\
|
26 |
-
@InProceedings{huggingface:dataset,
|
27 |
-
title = {jglaser/pdbbind_complexes},
|
28 |
-
author={Jens Glaser, ORNL
|
29 |
-
},
|
30 |
-
year={2022}
|
31 |
-
}
|
32 |
-
"""
|
33 |
-
|
34 |
-
# TODO: Add description of the dataset here
|
35 |
-
# You can copy an official description
|
36 |
-
_DESCRIPTION = """\
|
37 |
-
A dataset to fine-tune language models on protein-ligand binding affinity and contact prediction.
|
38 |
-
"""
|
39 |
-
|
40 |
-
# TODO: Add a link to an official homepage for the dataset here
|
41 |
-
_HOMEPAGE = ""
|
42 |
-
|
43 |
-
# TODO: Add the licence for the dataset here if you can find it
|
44 |
-
_LICENSE = "BSD two-clause"
|
45 |
-
|
46 |
-
# TODO: Add link to the official dataset URLs here
|
47 |
-
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
48 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
49 |
-
_URL = "https://huggingface.co/datasets/jglaser/pdbbind_complexes/resolve/main/"
|
50 |
-
_data_dir = "data/"
|
51 |
-
_file_names = {'default': _data_dir+'pdbbind.parquet'}
|
52 |
-
|
53 |
-
_URLs = {name: _URL+_file_names[name] for name in _file_names}
|
54 |
-
|
55 |
-
|
56 |
-
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
57 |
-
class PDBBindComplexes(datasets.ArrowBasedBuilder):
|
58 |
-
"""List of protein sequences, ligand SMILES, and complex coordinates."""
|
59 |
-
|
60 |
-
VERSION = datasets.Version("1.5.0")
|
61 |
-
|
62 |
-
def _info(self):
|
63 |
-
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
64 |
-
#if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
65 |
-
# features = datasets.Features(
|
66 |
-
# {
|
67 |
-
# "sentence": datasets.Value("string"),
|
68 |
-
# "option1": datasets.Value("string"),
|
69 |
-
# "answer": datasets.Value("string")
|
70 |
-
# # These are the features of your dataset like images, labels ...
|
71 |
-
# }
|
72 |
-
# )
|
73 |
-
#else: # This is an example to show how to have different features for "first_domain" and "second_domain"
|
74 |
-
features = datasets.Features(
|
75 |
-
{
|
76 |
-
"name": datasets.Value("string"),
|
77 |
-
"seq": datasets.Value("string"),
|
78 |
-
"smiles": datasets.Value("string"),
|
79 |
-
"receptor_xyz": datasets.Sequence(datasets.Sequence(datasets.Value('float32'))),
|
80 |
-
"ligand_xyz": datasets.Sequence(datasets.Sequence(datasets.Value('float32'))),
|
81 |
-
"ligand_rot": datasets.Sequence(datasets.Sequence(datasets.Value('float32'))),
|
82 |
-
"receptor_rot": datasets.Sequence(datasets.Sequence(datasets.Value('float32'))),
|
83 |
-
# These are the features of your dataset like images, labels ...
|
84 |
-
}
|
85 |
-
)
|
86 |
-
return datasets.DatasetInfo(
|
87 |
-
# This is the description that will appear on the datasets page.
|
88 |
-
description=_DESCRIPTION,
|
89 |
-
# This defines the different columns of the dataset and their types
|
90 |
-
features=features, # Here we define them above because they are different between the two configurations
|
91 |
-
# If there's a common (input, target) tuple from the features,
|
92 |
-
# specify them here. They'll be used if as_supervised=True in
|
93 |
-
# builder.as_dataset.
|
94 |
-
supervised_keys=None,
|
95 |
-
# Homepage of the dataset for documentation
|
96 |
-
homepage=_HOMEPAGE,
|
97 |
-
# License for the dataset if available
|
98 |
-
license=_LICENSE,
|
99 |
-
# Citation for the dataset
|
100 |
-
citation=_CITATION,
|
101 |
-
)
|
102 |
-
|
103 |
-
def _split_generators(self, dl_manager):
|
104 |
-
"""Returns SplitGenerators."""
|
105 |
-
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
106 |
-
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
107 |
-
|
108 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
109 |
-
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
110 |
-
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
111 |
-
files = dl_manager.download_and_extract(_URLs)
|
112 |
-
|
113 |
-
return [
|
114 |
-
datasets.SplitGenerator(
|
115 |
-
# These kwargs will be passed to _generate_examples
|
116 |
-
name=datasets.Split.TRAIN,
|
117 |
-
gen_kwargs={
|
118 |
-
'filepath': files["default"],
|
119 |
-
},
|
120 |
-
),
|
121 |
-
|
122 |
-
]
|
123 |
-
|
124 |
-
def _generate_tables(
|
125 |
-
self, filepath
|
126 |
-
):
|
127 |
-
from pyarrow import fs
|
128 |
-
local = fs.LocalFileSystem()
|
129 |
-
|
130 |
-
for i, f in enumerate([filepath]):
|
131 |
-
yield i, pq.read_table(f,filesystem=local)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|