File size: 5,724 Bytes
d035b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a091e7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1c1dd3
a091e7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2454603
 
a091e7d
 
 
2454603
 
 
a091e7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15b9532
a091e7d
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
---
annotations_creators:
- no-annotation
language:
- en
- es
- pt
- ja
- ar
- in
- ko
- tr
- fr
- tl
- ru
- it
- th
- de
- hi
- pl
- nl
- fa
- et
- ht
- ur
- sv
- ca
- el
- fi
- cs
- iw
- da
- vi
- zh
- ta
- ro
- no
- uk
- cy
- ne
- hu
- eu
- sl
- lv
- lt
- bn
- sr
- bg
- mr
- ml
- is
- te
- gu
- kn
- ps
- ckb
- si
- hy
- or
- pa
- am
- sd
- my
- ka
- km
- dv
- lo
- ug
- bo
language_creators:
- found
license:
- mit
multilinguality:
- multilingual
pretty_name: Bernice Pretrain Data
size_categories:
- 1B<n<10B
source_datasets:
- original
tags:
- twitter
- slang
- code switch
- social
- social media
task_categories:
- other
task_ids: []
---

# Dataset Card for Bernice Pre-train Data

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** N/A
- **Repository:** https://github.com/JHU-CLSP/Bernice-Twitter-encoder
- **Paper:** _Bernice: A Multilingual Pre-trained Encoder for Twitter_ at [EMNLP 2022](https://preview.aclanthology.org/emnlp-22-ingestion/2022.emnlp-main.415)
- **Leaderboard:** N/A
- **Point of Contact:** Alexandra DeLucia aadelucia (at) jhu.edu

### Dataset Summary

Tweet IDs for the 2.5 billion multilingual tweets used to train Bernice, a Twitter encoder.
Read the paper [here](https://preview.aclanthology.org/emnlp-22-ingestion/2022.emnlp-main.415).
The tweets are from the public 1% Twitter API stream from January 2016 to December 2021. 
Twitter-provided language metadata is provided with the tweet ID. The data contains 66 unique languages, as identified by [ISO 639 language codes](https://www.wikiwand.com/en/List_of_ISO_639-1_codes), including `und` for undefined languages.
Tweets need to be re-gathered via the Twitter API. We suggest [Hydrator](https://github.com/DocNow/hydrator) or [tweepy](https://www.tweepy.org/).


### Supported Tasks and Leaderboards

N/A

### Languages

65 languages (ISO 639 codes shown below), plus an `und` (undefined) category. 
All language identification provided by Twitter API.

|    |     |    |    |    |     |    |
|----|-----|----|----|----|-----|----|
| en |  ru | ht | zh | bn |  ps | lt |
| es | bo  | ur | ta | sr | ckb | km |
| pt |  it | sv | ro | bg |  si | dv |
| ja |  th | ca | no | mr |  hy | lo |
| ar |  de | el | uk | ml |  or | ug |
| in |  hi | fi | cy | is |  pa |    |
| ko |  pl | cs | ne | te |  am |    |
| tr |  nl | iw | hu | gu |  sd |    |
| fr |  fa | da | eu | kn |  my |    |
| tl |  et | vi | sl | lv |  ka |    |

## Dataset Structure

### Data Instances

Data is provided in gzip'd files organized by year and month of tweet origin. 
Tweets are one per line, with fields separated by tabs.

### Data Fields

* `tweet ID`: ID of tweet
* `lang`: ISO 639 code of language, provided by Twitter metadata. Accuracy of label is not known.
* `year`: Year tweet was created. Year is also provided in the file names.

### Data Splits

[More Information Needed]


## Dataset Creation

### Curation Rationale

Data was gathered to support the training of Bernice, a multilingual pre-trained Twitter encoder.

### Source Data

#### Initial Data Collection and Normalization

Data was gathered via the Twitter API public 1% stream from January 2016 through December 2021. 
Tweets with less than three non-username or URL space-delimited words were removed.
All usernames and URLs were replaced with `@USER` and `HTTPURL`, respectively.

#### Who are the source language producers?

Data was produced by users on Twitter.

### Annotations

N/A

### Personal and Sensitive Information

As per Twitter guidelines, only tweet IDs and not full tweets are shared.
Tweets will only be accessible if user has not removed their account (or been banned), tweets were deleted or removed, or a user changed their account access to private.

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]


## Additional Information

### Dataset Curators

Dataset gathered and processed by Mark Dredze, Alexandra DeLucia, Shijie Wu, Aaron Mueller, Carlos Aguirre, and Philip Resnik.

### Licensing Information

MIT

### Citation Information

Please cite the Bernice paper if you use this dataset:

> Alexandra DeLucia, Shijie Wu, Aaron Mueller, Carlos Aguirre, Philip Resnik, and Mark Dredze. 2022. Bernice: A Multilingual Pre-trained Encoder for Twitter. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 6191–6205, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.

### Contributions

Dataset uploaded by [@AADeLucia](https://github.com/AADeLucia).