Commit
·
355e19b
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +170 -0
- dataset_infos.json +1 -0
- dummy/1.0.0/dummy_data.zip +3 -0
- jfleg.py +147 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
languages:
|
7 |
+
- en
|
8 |
+
licenses:
|
9 |
+
- cc-by-nc-sa-4-0
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
- other-language-learner
|
13 |
+
size_categories:
|
14 |
+
- 1K<n<10K
|
15 |
+
source_datasets:
|
16 |
+
- extended|other-GUG-grammaticality-judgements
|
17 |
+
task_categories:
|
18 |
+
- conditional-text-generation
|
19 |
+
task_ids:
|
20 |
+
- conditional-text-generation-other-grammatical-error-correction
|
21 |
+
---
|
22 |
+
|
23 |
+
# Dataset Card for JFLEG
|
24 |
+
|
25 |
+
## Table of Contents
|
26 |
+
- [Dataset Description](#dataset-description)
|
27 |
+
- [Dataset Summary](#dataset-summary)
|
28 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
29 |
+
- [Languages](#languages)
|
30 |
+
- [Dataset Structure](#dataset-structure)
|
31 |
+
- [Data Instances](#data-instances)
|
32 |
+
- [Data Fields](#data-instances)
|
33 |
+
- [Data Splits](#data-instances)
|
34 |
+
- [Dataset Creation](#dataset-creation)
|
35 |
+
- [Curation Rationale](#curation-rationale)
|
36 |
+
- [Source Data](#source-data)
|
37 |
+
- [Annotations](#annotations)
|
38 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
39 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
40 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
41 |
+
- [Discussion of Biases](#discussion-of-biases)
|
42 |
+
- [Other Known Limitations](#other-known-limitations)
|
43 |
+
- [Additional Information](#additional-information)
|
44 |
+
- [Dataset Curators](#dataset-curators)
|
45 |
+
- [Licensing Information](#licensing-information)
|
46 |
+
- [Citation Information](#citation-information)
|
47 |
+
|
48 |
+
## Dataset Description
|
49 |
+
|
50 |
+
- **Homepage:** [Github](https://github.com/keisks/jfleg)
|
51 |
+
- **Repository:** [Github](https://github.com/keisks/jfleg)
|
52 |
+
- **Paper:** [Napoles et al., 2020](https://www.aclweb.org/anthology/E17-2037/)
|
53 |
+
- **Leaderboard:** [Leaderboard](https://github.com/keisks/jfleg#leader-board-published-results)
|
54 |
+
- **Point of Contact:** Courtney Napoles, Keisuke Sakaguchi
|
55 |
+
|
56 |
+
### Dataset Summary
|
57 |
+
JFLEG (JHU FLuency-Extended GUG) is an English grammatical error correction (GEC) corpus. It is a gold standard benchmark for developing and evaluating GEC systems with respect to fluency (extent to which a text is native-sounding) as well as grammaticality. For each source document, there are four human-written corrections.
|
58 |
+
|
59 |
+
### Supported Tasks and Leaderboards
|
60 |
+
Grammatical error correction.
|
61 |
+
|
62 |
+
### Languages
|
63 |
+
English (native as well as L2 writers)
|
64 |
+
|
65 |
+
## Dataset Structure
|
66 |
+
|
67 |
+
### Data Instances
|
68 |
+
Each instance contains a source sentence and four corrections. For example:
|
69 |
+
```python
|
70 |
+
{
|
71 |
+
'sentence': "They are moved by solar energy ."
|
72 |
+
'corrections': [
|
73 |
+
"They are moving by solar energy .",
|
74 |
+
"They are moved by solar energy .",
|
75 |
+
"They are moved by solar energy .",
|
76 |
+
"They are propelled by solar energy ."
|
77 |
+
]
|
78 |
+
}
|
79 |
+
```
|
80 |
+
|
81 |
+
### Data Fields
|
82 |
+
- sentence: original sentence written by an English learner
|
83 |
+
- corrections: corrected versions by human annotators. The order of the annotations are consistent (eg first sentence will always be written by annotator "ref0").
|
84 |
+
|
85 |
+
### Data Splits
|
86 |
+
- This dataset contains 1511 examples in total and comprise a dev and test split.
|
87 |
+
- There are 754 and 747 source sentences for dev and test, respectively.
|
88 |
+
- Each sentence has 4 corresponding corrected versions.
|
89 |
+
|
90 |
+
## Dataset Creation
|
91 |
+
|
92 |
+
### Curation Rationale
|
93 |
+
|
94 |
+
[More Information Needed]
|
95 |
+
|
96 |
+
### Source Data
|
97 |
+
|
98 |
+
#### Initial Data Collection and Normalization
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
#### Who are the source language producers?
|
103 |
+
|
104 |
+
[More Information Needed]
|
105 |
+
|
106 |
+
### Annotations
|
107 |
+
|
108 |
+
#### Annotation process
|
109 |
+
|
110 |
+
[More Information Needed]
|
111 |
+
|
112 |
+
#### Who are the annotators?
|
113 |
+
|
114 |
+
[More Information Needed]
|
115 |
+
|
116 |
+
### Personal and Sensitive Information
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
## Considerations for Using the Data
|
121 |
+
|
122 |
+
### Social Impact of Dataset
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Discussion of Biases
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
### Other Known Limitations
|
131 |
+
|
132 |
+
[More Information Needed]
|
133 |
+
|
134 |
+
## Additional Information
|
135 |
+
|
136 |
+
### Dataset Curators
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
### Licensing Information
|
141 |
+
This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/).
|
142 |
+
|
143 |
+
### Citation Information
|
144 |
+
This benchmark was proposed by [Napoles et al., 2020](https://www.aclweb.org/anthology/E17-2037/).
|
145 |
+
|
146 |
+
```
|
147 |
+
@InProceedings{napoles-sakaguchi-tetreault:2017:EACLshort,
|
148 |
+
author = {Napoles, Courtney and Sakaguchi, Keisuke and Tetreault, Joel},
|
149 |
+
title = {JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction},
|
150 |
+
booktitle = {Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers},
|
151 |
+
month = {April},
|
152 |
+
year = {2017},
|
153 |
+
address = {Valencia, Spain},
|
154 |
+
publisher = {Association for Computational Linguistics},
|
155 |
+
pages = {229--234},
|
156 |
+
url = {http://www.aclweb.org/anthology/E17-2037}
|
157 |
+
}
|
158 |
+
|
159 |
+
@InProceedings{heilman-EtAl:2014:P14-2,
|
160 |
+
author = {Heilman, Michael and Cahill, Aoife and Madnani, Nitin and Lopez, Melissa and Mulholland, Matthew and Tetreault, Joel},
|
161 |
+
title = {Predicting Grammaticality on an Ordinal Scale},
|
162 |
+
booktitle = {Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)},
|
163 |
+
month = {June},
|
164 |
+
year = {2014},
|
165 |
+
address = {Baltimore, Maryland},
|
166 |
+
publisher = {Association for Computational Linguistics},
|
167 |
+
pages = {174--180},
|
168 |
+
url = {http://www.aclweb.org/anthology/P14-2029}
|
169 |
+
}
|
170 |
+
```
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "JFLEG (JHU FLuency-Extended GUG) is an English grammatical error correction (GEC) corpus.\nIt is a gold standard benchmark for developing and evaluating GEC systems with respect to\nfluency (extent to which a text is native-sounding) as well as grammaticality.\n\nFor each source document, there are four human-written corrections (ref0 to ref3).\n", "citation": "@InProceedings{napoles-sakaguchi-tetreault:2017:EACLshort,\n author = {Napoles, Courtney\n and Sakaguchi, Keisuke\n and Tetreault, Joel},\n title = {JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction},\n booktitle = {Proceedings of the 15th Conference of the European Chapter of the\n Association for Computational Linguistics: Volume 2, Short Papers},\n month = {April},\n year = {2017},\n address = {Valencia, Spain},\n publisher = {Association for Computational Linguistics},\n pages = {229--234},\n url = {http://www.aclweb.org/anthology/E17-2037}\n}\n@InProceedings{heilman-EtAl:2014:P14-2,\n author = {Heilman, Michael\n and Cahill, Aoife\n and Madnani, Nitin\n and Lopez, Melissa\n and Mulholland, Matthew\n and Tetreault, Joel},\n title = {Predicting Grammaticality on an Ordinal Scale},\n booktitle = {Proceedings of the 52nd Annual Meeting of the\n Association for Computational Linguistics (Volume 2: Short Papers)},\n month = {June},\n year = {2014},\n address = {Baltimore, Maryland},\n publisher = {Association for Computational Linguistics},\n pages = {174--180},\n url = {http://www.aclweb.org/anthology/P14-2029}\n}\n", "homepage": "https://github.com/keisks/jfleg", "license": "CC BY-NC-SA 4.0", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "corrections": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "jfleg", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 379991, "num_examples": 755, "dataset_name": "jfleg"}, "test": {"name": "test", "num_bytes": 379711, "num_examples": 748, "dataset_name": "jfleg"}}, "download_checksums": {"https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.src": {"num_bytes": 72726, "checksum": "4a0e8b86d18a1058460ff0a592dac1ba68986d135256efbd27e997ac43f295f8"}, "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref0": {"num_bytes": 73216, "checksum": "adea6287c6e2240b7777e63cd56f8e228e742bbfb42c5152bc0bd2bc91f4e53e"}, "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref1": {"num_bytes": 73129, "checksum": "d40d56ec7468ddab03fdcca97065ab3f9d391d749dbc7097b7c777a19ce4242e"}, "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref2": {"num_bytes": 73394, "checksum": "b070691d633e0c4143d96ba21299ae71cb126086517d2970df47420842067793"}, "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref3": {"num_bytes": 73164, "checksum": "9187fd834693fa77d07957991282d32d61ff84a207c25cbfab318c871bacdbc4"}, "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.src": {"num_bytes": 72684, "checksum": "893db119162487aa7f956b65978453576919e6797cd6c1955f93b7a8b9f4bbd8"}, "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref0": {"num_bytes": 73090, "checksum": "875953280a3ea1dea2827337b1778c0105f0c0aa79f2517a6e0e42db5e5e170c"}, "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref1": {"num_bytes": 73325, "checksum": "190d3398f2765f54a39b5489d1e96c483412a656086c731f8712ad0591087d80"}, "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref2": {"num_bytes": 73018, "checksum": "0e3c6abe934ccd16c9dffb2fd889d6f55afc3ad13a63c1e148c720bb4e99046b"}, "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref3": {"num_bytes": 73365, "checksum": "19f49de6eff813b26505ecf756c20dc301aeb80696696b01ca950298f6e58441"}}, "download_size": 731111, "post_processing_size": null, "dataset_size": 759702, "size_in_bytes": 1490813}}
|
dummy/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e68f341e896df513b6f5df1c388b2d8348674e68e41c1e4d0f35a6bc64c9a1a7
|
3 |
+
size 4859
|
jfleg.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""JFLEG dataset."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
|
22 |
+
_CITATION = """\
|
23 |
+
@InProceedings{napoles-sakaguchi-tetreault:2017:EACLshort,
|
24 |
+
author = {Napoles, Courtney
|
25 |
+
and Sakaguchi, Keisuke
|
26 |
+
and Tetreault, Joel},
|
27 |
+
title = {JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction},
|
28 |
+
booktitle = {Proceedings of the 15th Conference of the European Chapter of the
|
29 |
+
Association for Computational Linguistics: Volume 2, Short Papers},
|
30 |
+
month = {April},
|
31 |
+
year = {2017},
|
32 |
+
address = {Valencia, Spain},
|
33 |
+
publisher = {Association for Computational Linguistics},
|
34 |
+
pages = {229--234},
|
35 |
+
url = {http://www.aclweb.org/anthology/E17-2037}
|
36 |
+
}
|
37 |
+
@InProceedings{heilman-EtAl:2014:P14-2,
|
38 |
+
author = {Heilman, Michael
|
39 |
+
and Cahill, Aoife
|
40 |
+
and Madnani, Nitin
|
41 |
+
and Lopez, Melissa
|
42 |
+
and Mulholland, Matthew
|
43 |
+
and Tetreault, Joel},
|
44 |
+
title = {Predicting Grammaticality on an Ordinal Scale},
|
45 |
+
booktitle = {Proceedings of the 52nd Annual Meeting of the
|
46 |
+
Association for Computational Linguistics (Volume 2: Short Papers)},
|
47 |
+
month = {June},
|
48 |
+
year = {2014},
|
49 |
+
address = {Baltimore, Maryland},
|
50 |
+
publisher = {Association for Computational Linguistics},
|
51 |
+
pages = {174--180},
|
52 |
+
url = {http://www.aclweb.org/anthology/P14-2029}
|
53 |
+
}
|
54 |
+
"""
|
55 |
+
|
56 |
+
_DESCRIPTION = """\
|
57 |
+
JFLEG (JHU FLuency-Extended GUG) is an English grammatical error correction (GEC) corpus.
|
58 |
+
It is a gold standard benchmark for developing and evaluating GEC systems with respect to
|
59 |
+
fluency (extent to which a text is native-sounding) as well as grammaticality.
|
60 |
+
|
61 |
+
For each source document, there are four human-written corrections (ref0 to ref3).
|
62 |
+
"""
|
63 |
+
|
64 |
+
_HOMEPAGE = "https://github.com/keisks/jfleg"
|
65 |
+
|
66 |
+
_LICENSE = "CC BY-NC-SA 4.0"
|
67 |
+
|
68 |
+
_URLs = {
|
69 |
+
"dev": {
|
70 |
+
"src": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.src",
|
71 |
+
"ref0": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref0",
|
72 |
+
"ref1": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref1",
|
73 |
+
"ref2": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref2",
|
74 |
+
"ref3": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref3",
|
75 |
+
},
|
76 |
+
"test": {
|
77 |
+
"src": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.src",
|
78 |
+
"ref0": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref0",
|
79 |
+
"ref1": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref1",
|
80 |
+
"ref2": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref2",
|
81 |
+
"ref3": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref3",
|
82 |
+
},
|
83 |
+
}
|
84 |
+
|
85 |
+
|
86 |
+
class Jfleg(datasets.GeneratorBasedBuilder):
|
87 |
+
"""JFLEG (JHU FLuency-Extended GUG) grammatical error correction dataset."""
|
88 |
+
|
89 |
+
VERSION = datasets.Version("1.0.0")
|
90 |
+
|
91 |
+
def _info(self):
|
92 |
+
return datasets.DatasetInfo(
|
93 |
+
description=_DESCRIPTION,
|
94 |
+
features=datasets.Features(
|
95 |
+
{"sentence": datasets.Value("string"), "corrections": datasets.Sequence(datasets.Value("string"))}
|
96 |
+
),
|
97 |
+
supervised_keys=None,
|
98 |
+
homepage=_HOMEPAGE,
|
99 |
+
license=_LICENSE,
|
100 |
+
citation=_CITATION,
|
101 |
+
)
|
102 |
+
|
103 |
+
def _split_generators(self, dl_manager):
|
104 |
+
"""Returns SplitGenerators."""
|
105 |
+
|
106 |
+
downloaded_dev = dl_manager.download_and_extract(_URLs["dev"])
|
107 |
+
downloaded_test = dl_manager.download_and_extract(_URLs["test"])
|
108 |
+
|
109 |
+
return [
|
110 |
+
datasets.SplitGenerator(
|
111 |
+
name=datasets.Split.VALIDATION,
|
112 |
+
gen_kwargs={
|
113 |
+
"filepath": downloaded_dev,
|
114 |
+
"split": "dev",
|
115 |
+
},
|
116 |
+
),
|
117 |
+
datasets.SplitGenerator(
|
118 |
+
name=datasets.Split.TEST,
|
119 |
+
gen_kwargs={"filepath": downloaded_test, "split": "test"},
|
120 |
+
),
|
121 |
+
]
|
122 |
+
|
123 |
+
def _generate_examples(self, filepath, split):
|
124 |
+
""" Yields examples. """
|
125 |
+
|
126 |
+
source_file = filepath["src"]
|
127 |
+
with open(source_file, encoding="utf-8") as f:
|
128 |
+
source_sentences = f.read().split("\n")
|
129 |
+
num_source = len(source_sentences)
|
130 |
+
|
131 |
+
corrections = []
|
132 |
+
for n in range(0, 4):
|
133 |
+
correction_file = filepath["ref{n}".format(n=n)]
|
134 |
+
with open(correction_file, encoding="utf-8") as f:
|
135 |
+
correction_sentences = f.read().split("\n")
|
136 |
+
num_correction = len(correction_sentences)
|
137 |
+
|
138 |
+
assert len(correction_sentences) == len(
|
139 |
+
source_sentences
|
140 |
+
), "Sizes do not match: {ns} vs {nr} for {sf} vs {cf}.".format(
|
141 |
+
ns=num_source, nr=num_correction, sf=source_file, cf=correction_file
|
142 |
+
)
|
143 |
+
corrections.append(correction_sentences)
|
144 |
+
|
145 |
+
corrected_sentences = list(zip(*corrections))
|
146 |
+
for id_, source_sentence in enumerate(source_sentences):
|
147 |
+
yield id_, {"sentence": source_sentence, "corrections": corrected_sentences[id_]}
|