# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """JFLEG dataset.""" from __future__ import absolute_import, division, print_function import datasets _CITATION = """\ @InProceedings{napoles-sakaguchi-tetreault:2017:EACLshort, author = {Napoles, Courtney and Sakaguchi, Keisuke and Tetreault, Joel}, title = {JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction}, booktitle = {Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers}, month = {April}, year = {2017}, address = {Valencia, Spain}, publisher = {Association for Computational Linguistics}, pages = {229--234}, url = {http://www.aclweb.org/anthology/E17-2037} } @InProceedings{heilman-EtAl:2014:P14-2, author = {Heilman, Michael and Cahill, Aoife and Madnani, Nitin and Lopez, Melissa and Mulholland, Matthew and Tetreault, Joel}, title = {Predicting Grammaticality on an Ordinal Scale}, booktitle = {Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)}, month = {June}, year = {2014}, address = {Baltimore, Maryland}, publisher = {Association for Computational Linguistics}, pages = {174--180}, url = {http://www.aclweb.org/anthology/P14-2029} } """ _DESCRIPTION = """\ JFLEG (JHU FLuency-Extended GUG) is an English grammatical error correction (GEC) corpus. It is a gold standard benchmark for developing and evaluating GEC systems with respect to fluency (extent to which a text is native-sounding) as well as grammaticality. For each source document, there are four human-written corrections (ref0 to ref3). """ _HOMEPAGE = "https://github.com/keisks/jfleg" _LICENSE = "CC BY-NC-SA 4.0" _URLs = { "dev": { "src": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.src", "ref0": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref0", "ref1": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref1", "ref2": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref2", "ref3": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref3", }, "test": { "src": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.src", "ref0": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref0", "ref1": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref1", "ref2": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref2", "ref3": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref3", }, } class Jfleg(datasets.GeneratorBasedBuilder): """JFLEG (JHU FLuency-Extended GUG) grammatical error correction dataset.""" VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( {"sentence": datasets.Value("string"), "corrections": datasets.Sequence(datasets.Value("string"))} ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" downloaded_dev = dl_manager.download_and_extract(_URLs["dev"]) downloaded_test = dl_manager.download_and_extract(_URLs["test"]) return [ datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": downloaded_dev, "split": "dev", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_test, "split": "test"}, ), ] def _generate_examples(self, filepath, split): """ Yields examples. """ source_file = filepath["src"] with open(source_file, encoding="utf-8") as f: source_sentences = f.read().split("\n") num_source = len(source_sentences) corrections = [] for n in range(0, 4): correction_file = filepath["ref{n}".format(n=n)] with open(correction_file, encoding="utf-8") as f: correction_sentences = f.read().split("\n") num_correction = len(correction_sentences) assert len(correction_sentences) == len( source_sentences ), "Sizes do not match: {ns} vs {nr} for {sf} vs {cf}.".format( ns=num_source, nr=num_correction, sf=source_file, cf=correction_file ) corrections.append(correction_sentences) corrected_sentences = list(zip(*corrections)) for id_, source_sentence in enumerate(source_sentences): yield id_, {"sentence": source_sentence, "corrections": corrected_sentences[id_]}