jiaheillu commited on
Commit
fbb0532
1 Parent(s): 6baf79c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -3
README.md CHANGED
@@ -16,7 +16,7 @@ pretty_name: genshin_voice_sovits
16
  推荐用**谷歌浏览器**,其他浏览器可能无法正确加载预览的音频。</br>
17
  正常说话的音色转换较为准确,歌曲包含较广的音域且bgm和声等难以去除干净,效果有所折扣。</br>
18
  有推荐的歌想要转换听听效果,或者其他内容建议,[**点我**](https://huggingface.co/datasets/jiaheillu/audio_preview/discussions/new)发起讨论</br>
19
- 下面是预览音频,左右滑动可以看到全部
20
 
21
  <style>
22
  .scrolling-container {
@@ -96,13 +96,22 @@ pretty_name: genshin_voice_sovits
96
  <td><a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/blob/main/刻晴_preview/README.md">刻晴</a></td>
97
  <td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/原_keqing2.wav" controls="controls"></audio></td>
98
  <td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/待_xiaogong3.wav" controls="controls"></audio></td>
99
- <td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/已_xiaoogong2keqing.wav" controls="controls"></audio></td>
100
  <td>
101
  <a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/嚣张2刻晴.WAV">嚣张</a>,
102
  <a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/ファティマ2刻晴.WAV">ファティマ</a>,
103
  <a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/hero2刻晴.WAV">hero</a>,
104
  </td>
105
  </tr>
 
 
 
 
 
 
 
 
 
106
  </tbody>
107
  </table>
108
  </div>
@@ -123,7 +132,7 @@ step=segments*epoch/batch_size,即模型文件后面数字由来<br>
123
  损失函数图像:主要看step 与 loss5,比如:<br>
124
  给一个大致的参考,待转换音频都为高音女生,这是较为刁钻的测试:如图,10min纯净人声,<br>
125
  差不多2800epoch(10000step)就已经出结果了,实际使用的是5571epoch(19500step)的文件,被训练音色和原音色相差几<br>
126
- 何,差不多有个概念。当然即使loss也不足以参考,唯一的衡量标准就是当事人的耳朵。当然,正常训练,10min还是有些少的。<br>
127
 
128
  [点我查看相关文件](https://huggingface.co/datasets/jiaheillu/audio_preview/tree/main)<br>
129
  ![sanbing_loss](https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/%E6%95%A3%E5%85%B5%E6%95%88%E6%9E%9C%E9%A2%84%E8%A7%88/%E8%AE%AD%E7%BB%83%E5%8F%82%E6%95%B0%E9%80%9F%E8%A7%88.assets/sanbing_loss.png)
 
16
  推荐用**谷歌浏览器**,其他浏览器可能无法正确加载预览的音频。</br>
17
  正常说话的音色转换较为准确,歌曲包含较广的音域且bgm和声等难以去除干净,效果有所折扣。</br>
18
  有推荐的歌想要转换听听效果,或者其他内容建议,[**点我**](https://huggingface.co/datasets/jiaheillu/audio_preview/discussions/new)发起讨论</br>
19
+ 下面是预览音频,**上下左右滑动**可以看到全部
20
 
21
  <style>
22
  .scrolling-container {
 
96
  <td><a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/blob/main/刻晴_preview/README.md">刻晴</a></td>
97
  <td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/原_keqing2.wav" controls="controls"></audio></td>
98
  <td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/待_xiaogong3.wav" controls="controls"></audio></td>
99
+ <td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/已_xiaogong2keqing.wav" controls="controls"></audio></td>
100
  <td>
101
  <a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/嚣张2刻晴.WAV">嚣张</a>,
102
  <a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/ファティマ2刻晴.WAV">ファティマ</a>,
103
  <a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/hero2刻晴.WAV">hero</a>,
104
  </td>
105
  </tr>
106
+ <tr>
107
+ <td><a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/blob/main/imallryt_preview/README.md">imallryt</a></td>
108
+ <td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/imallryt_preview/%E5%8E%9F_IVOL_1%20Care_DRY_120_Am_Main_Vocal.wav" controls="controls"></audio></td>
109
+ <td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/imallryt_preview/%E5%BE%85_Lead_A%20minor_DRY.wav" controls="controls"></audio></td>
110
+ <td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/imallryt_preview/%E5%B7%B2_Lead_A%20minor_DRYwav_0key_imallryt_0.5.wav" controls="controls"></audio></td>
111
+ <td>
112
+ <a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/imallryt_preview/%E6%B5%B7%E9%98%94%E5%A4%A9%E7%A9%BA2imallryt.WAV">海阔天空</a>,
113
+ </td>
114
+ </tr>
115
  </tbody>
116
  </table>
117
  </div>
 
132
  损失函数图像:主要看step 与 loss5,比如:<br>
133
  给一个大致的参考,待转换音频都为高音女生,这是较为刁钻的测试:如图,10min纯净人声,<br>
134
  差不多2800epoch(10000step)就已经出结果了,实际使用的是5571epoch(19500step)的文件,被训练音色和原音色相差几<br>
135
+ 何,请听上方预览音频。正常训练,10min是较为不足的训练集时长。<br>
136
 
137
  [点我查看相关文件](https://huggingface.co/datasets/jiaheillu/audio_preview/tree/main)<br>
138
  ![sanbing_loss](https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/%E6%95%A3%E5%85%B5%E6%95%88%E6%9E%9C%E9%A2%84%E8%A7%88/%E8%AE%AD%E7%BB%83%E5%8F%82%E6%95%B0%E9%80%9F%E8%A7%88.assets/sanbing_loss.png)