Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -16,7 +16,7 @@ pretty_name: genshin_voice_sovits
|
|
16 |
推荐用**谷歌浏览器**,其他浏览器可能无法正确加载预览的音频。</br>
|
17 |
正常说话的音色转换较为准确,歌曲包含较广的音域且bgm和声等难以去除干净,效果有所折扣。</br>
|
18 |
有推荐的歌想要转换听听效果,或者其他内容建议,[**点我**](https://huggingface.co/datasets/jiaheillu/audio_preview/discussions/new)发起讨论</br>
|
19 |
-
|
20 |
|
21 |
<style>
|
22 |
.scrolling-container {
|
@@ -96,13 +96,22 @@ pretty_name: genshin_voice_sovits
|
|
96 |
<td><a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/blob/main/刻晴_preview/README.md">刻晴</a></td>
|
97 |
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/原_keqing2.wav" controls="controls"></audio></td>
|
98 |
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/待_xiaogong3.wav" controls="controls"></audio></td>
|
99 |
-
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/已
|
100 |
<td>
|
101 |
<a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/嚣张2刻晴.WAV">嚣张</a>,
|
102 |
<a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/ファティマ2刻晴.WAV">ファティマ</a>,
|
103 |
<a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/hero2刻晴.WAV">hero</a>,
|
104 |
</td>
|
105 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
</tbody>
|
107 |
</table>
|
108 |
</div>
|
@@ -123,7 +132,7 @@ step=segments*epoch/batch_size,即模型文件后面数字由来<br>
|
|
123 |
损失函数图像:主要看step 与 loss5,比如:<br>
|
124 |
给一个大致的参考,待转换音频都为高音女生,这是较为刁钻的测试:如图,10min纯净人声,<br>
|
125 |
差不多2800epoch(10000step)就已经出结果了,实际使用的是5571epoch(19500step)的文件,被训练音色和原音色相差几<br>
|
126 |
-
|
127 |
|
128 |
[点我查看相关文件](https://huggingface.co/datasets/jiaheillu/audio_preview/tree/main)<br>
|
129 |
![sanbing_loss](https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/%E6%95%A3%E5%85%B5%E6%95%88%E6%9E%9C%E9%A2%84%E8%A7%88/%E8%AE%AD%E7%BB%83%E5%8F%82%E6%95%B0%E9%80%9F%E8%A7%88.assets/sanbing_loss.png)
|
|
|
16 |
推荐用**谷歌浏览器**,其他浏览器可能无法正确加载预览的音频。</br>
|
17 |
正常说话的音色转换较为准确,歌曲包含较广的音域且bgm和声等难以去除干净,效果有所折扣。</br>
|
18 |
有推荐的歌想要转换听听效果,或者其他内容建议,[**点我**](https://huggingface.co/datasets/jiaheillu/audio_preview/discussions/new)发起讨论</br>
|
19 |
+
下面是预览音频,**上下左右滑动**可以看到全部
|
20 |
|
21 |
<style>
|
22 |
.scrolling-container {
|
|
|
96 |
<td><a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/blob/main/刻晴_preview/README.md">刻晴</a></td>
|
97 |
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/原_keqing2.wav" controls="controls"></audio></td>
|
98 |
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/待_xiaogong3.wav" controls="controls"></audio></td>
|
99 |
+
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/已_xiaogong2keqing.wav" controls="controls"></audio></td>
|
100 |
<td>
|
101 |
<a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/嚣张2刻晴.WAV">嚣张</a>,
|
102 |
<a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/ファティマ2刻晴.WAV">ファティマ</a>,
|
103 |
<a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/hero2刻晴.WAV">hero</a>,
|
104 |
</td>
|
105 |
</tr>
|
106 |
+
<tr>
|
107 |
+
<td><a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/blob/main/imallryt_preview/README.md">imallryt</a></td>
|
108 |
+
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/imallryt_preview/%E5%8E%9F_IVOL_1%20Care_DRY_120_Am_Main_Vocal.wav" controls="controls"></audio></td>
|
109 |
+
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/imallryt_preview/%E5%BE%85_Lead_A%20minor_DRY.wav" controls="controls"></audio></td>
|
110 |
+
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/imallryt_preview/%E5%B7%B2_Lead_A%20minor_DRYwav_0key_imallryt_0.5.wav" controls="controls"></audio></td>
|
111 |
+
<td>
|
112 |
+
<a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/imallryt_preview/%E6%B5%B7%E9%98%94%E5%A4%A9%E7%A9%BA2imallryt.WAV">海阔天空</a>,
|
113 |
+
</td>
|
114 |
+
</tr>
|
115 |
</tbody>
|
116 |
</table>
|
117 |
</div>
|
|
|
132 |
损失函数图像:主要看step 与 loss5,比如:<br>
|
133 |
给一个大致的参考,待转换音频都为高音女生,这是较为刁钻的测试:如图,10min纯净人声,<br>
|
134 |
差不多2800epoch(10000step)就已经出结果了,实际使用的是5571epoch(19500step)的文件,被训练音色和原音色相差几<br>
|
135 |
+
何,请听上方预览音频。正常训练,10min是较为不足的训练集时长。<br>
|
136 |
|
137 |
[点我查看相关文件](https://huggingface.co/datasets/jiaheillu/audio_preview/tree/main)<br>
|
138 |
![sanbing_loss](https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/%E6%95%A3%E5%85%B5%E6%95%88%E6%9E%9C%E9%A2%84%E8%A7%88/%E8%AE%AD%E7%BB%83%E5%8F%82%E6%95%B0%E9%80%9F%E8%A7%88.assets/sanbing_loss.png)
|