jimregan commited on
Commit
befbfaa
·
1 Parent(s): 11c39b6

add script

Browse files
Files changed (1) hide show
  1. psst.py +127 -0
psst.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ # Copyright 2022 Jim O'Regan
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ # Lint as: python3
17
+
18
+ from email.mime import audio
19
+ from pathlib import Path
20
+ import os
21
+ import csv
22
+
23
+ import datasets
24
+ from datasets.tasks import AutomaticSpeechRecognition
25
+
26
+
27
+
28
+ _DESCRIPTION = """
29
+ The PSST Challenge focuses on a technically-challenging and clinically
30
+ important task—high-accuracy automatic phoneme recognition of disordered
31
+ speech, in a diagnostic context—which has applications in many different
32
+ areas relating to speech and language disorders.
33
+ """
34
+
35
+ class PSSTDataset(datasets.GeneratorBasedBuilder):
36
+ """PSST Dataset"""
37
+
38
+ VERSION = datasets.Version("1.1.0")
39
+
40
+ BUILDER_CONFIGS = [
41
+ datasets.BuilderConfig(name="psst"),
42
+ ]
43
+
44
+ # utterance_id session test prompt transcript correctness aq_index duration_frames filename
45
+ def _info(self):
46
+ features = datasets.Features(
47
+ {
48
+ "utterance_id": datasets.Value("string"),
49
+ "session": datasets.Value("string"),
50
+ "test": datasets.Value("string"),
51
+ "prompt": datasets.Value("string"),
52
+ "transcript": datasets.Value("string"),
53
+ "phonemes": datasets.Sequence(datasets.Value("string")),
54
+ "correctness": datasets.Value("bool"),
55
+ "aq_index": datasets.Value("float"),
56
+ "duration_frames": datasets.Value("uint64"),
57
+ "audio": datasets.Audio(sampling_rate=16_000)
58
+ }
59
+ )
60
+
61
+ return datasets.DatasetInfo(
62
+ description=_DESCRIPTION,
63
+ features=features,
64
+ supervised_keys=None,
65
+ homepage="https://psst.study/",
66
+ task_templates=[
67
+ AutomaticSpeechRecognition(audio_file_path_column="filename", transcription_column="transcript")
68
+ ],
69
+ )
70
+
71
+
72
+ def _split_generators(self, dl_manager):
73
+ if hasattr(dl_manager, 'manual_dir') and dl_manager.manual_dir is not None:
74
+ data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
75
+ else:
76
+ raise Exception("No path to data specified")
77
+
78
+ return [
79
+ datasets.SplitGenerator(
80
+ name=datasets.Split.TRAIN,
81
+ gen_kwargs={
82
+ "split": "train",
83
+ "data_dir": data_dir
84
+ },
85
+ ),
86
+ datasets.SplitGenerator(
87
+ name=datasets.Split.VALIDATION,
88
+ gen_kwargs={
89
+ "split": "valid",
90
+ "data_dir": data_dir
91
+ },
92
+ ),
93
+ ]
94
+
95
+ # utterance_id session test prompt transcript correctness aq_index duration_frames filename
96
+ def _generate_examples(
97
+ self, split, data_dir
98
+ ):
99
+ """Yields examples as (key, example) tuples. """
100
+ data_path = Path(data_dir)
101
+ split_path = data_path / split
102
+ if not split_path.exists():
103
+ raise Exception(f"{split} directory not found ({split_path})")
104
+ utterances = split_path / "utterances.tsv"
105
+ if not utterances.exists():
106
+ raise Exception(f"utterances.tsv not found in {split} directory ({split_path})")
107
+ with open(utterances) as tsvfile:
108
+ data = csv.DictReader(tsvfile, delimiter='\t')
109
+ for row in data:
110
+ audiopath = split_path / row["filename"]
111
+ if audiopath.exists():
112
+ with open(audiopath, "rb") as audiofile:
113
+ yield row["utterance_id"], {
114
+ "utterance_id": row["utterance_id"],
115
+ "session": row["session"],
116
+ "test": row["test"],
117
+ "prompt": row["prompt"],
118
+ "transcript": row["transcript"],
119
+ "phonemes": row["transcript"].strip().split(" "),
120
+ "correctness": (row["correctness"] == "True"),
121
+ "aq_index": float(row["aq_index"]),
122
+ "duration_frames": int(row["duration_frames"]),
123
+ "audio": {
124
+ "path": str(audiopath),
125
+ "bytes": audiofile.read()
126
+ }
127
+ }