# coding=utf-8 # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # Copyright 2022 Jim O'Regan # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 from email.mime import audio from pathlib import Path import os import csv import datasets _DESCRIPTION = """ The PSST Challenge focuses on a technically-challenging and clinically important task—high-accuracy automatic phoneme recognition of disordered speech, in a diagnostic context—which has applications in many different areas relating to speech and language disorders. """ class PSSTDataset(datasets.GeneratorBasedBuilder): """PSST Dataset""" VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="psst"), ] # utterance_id session test prompt transcript correctness aq_index duration_frames filename def _info(self): features = datasets.Features( { "utterance_id": datasets.Value("string"), "session": datasets.Value("string"), "test": datasets.Value("string"), "prompt": datasets.Value("string"), "transcript": datasets.Value("string"), "phonemes": datasets.Sequence(datasets.Value("string")), "correctness": datasets.Value("bool"), "aq_index": datasets.Value("float"), "duration_frames": datasets.Value("uint64"), "audio": datasets.Audio(sampling_rate=16_000) } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage="https://psst.study/", ) def _split_generators(self, dl_manager): if hasattr(dl_manager, 'manual_dir') and dl_manager.manual_dir is not None: data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) else: raise Exception("No path to data specified") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "split": "train", "data_dir": data_dir }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "split": "valid", "data_dir": data_dir }, ), ] # utterance_id session test prompt transcript correctness aq_index duration_frames filename def _generate_examples( self, split, data_dir ): """Yields examples as (key, example) tuples. """ data_path = Path(data_dir) split_path = data_path / split if not split_path.exists(): raise Exception(f"{split} directory not found ({split_path})") utterances = split_path / "utterances.tsv" if not utterances.exists(): raise Exception(f"utterances.tsv not found in {split} directory ({split_path})") with open(utterances) as tsvfile: data = csv.DictReader(tsvfile, delimiter='\t') for row in data: audiopath = split_path / row["filename"] if audiopath.exists(): with open(audiopath, "rb") as audiofile: yield row["utterance_id"], { "utterance_id": row["utterance_id"], "session": row["session"], "test": row["test"], "prompt": row["prompt"], "transcript": row["transcript"], "phonemes": row["transcript"].strip().split(" "), "correctness": (row["correctness"] == "True"), "aq_index": float(row["aq_index"]), "duration_frames": int(row["duration_frames"]), "audio": { "path": str(audiopath), "bytes": audiofile.read() } }