Update asr_sundanese_2_hub.py
Browse files- asr_sundanese_2_hub.py +49 -49
asr_sundanese_2_hub.py
CHANGED
@@ -15,43 +15,40 @@
|
|
15 |
|
16 |
import csv
|
17 |
import os
|
18 |
-
from
|
19 |
-
from typing import List
|
20 |
|
21 |
import datasets
|
22 |
|
23 |
from seacrowd.utils import schemas
|
24 |
from seacrowd.utils.configs import SEACrowdConfig
|
25 |
-
from seacrowd.utils.constants import
|
|
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
_CITATION = """\
|
28 |
-
@inproceedings{
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
URL = {http://dx.doi.org/10.21437/SLTU.2018-11},
|
37 |
-
}
|
38 |
"""
|
39 |
|
40 |
-
_DATASETNAME = "su_id_asr"
|
41 |
-
|
42 |
_DESCRIPTION = """\
|
43 |
-
|
44 |
-
|
45 |
-
The file utt_spk_text.tsv contains a FileID, UserID and the transcription of audio in the file.
|
46 |
-
The data set has been manually quality checked, but there might still be errors.
|
47 |
-
This dataset was collected by Google in collaboration with Reykjavik University and Universitas Gadjah Mada in Indonesia.
|
48 |
"""
|
49 |
|
50 |
-
_HOMEPAGE = "
|
51 |
-
_LANGUAGES = ["sun"]
|
52 |
-
_LOCAL = False
|
53 |
|
54 |
-
_LICENSE = "Attribution-ShareAlike 4.0 International"
|
55 |
|
56 |
_URLs = {
|
57 |
"su_id_asr_train": "https://drive.google.com/uc?export=download&id=10YBMnKSfZQKCuYGXAsTeTfUM5t3rGLs-",
|
@@ -59,31 +56,26 @@ _URLs = {
|
|
59 |
"su_id_asr_test": "https://drive.google.com/uc?export=download&id=1P6mtQJoZ2QV7AC9zbR2nDbW6s6YrJ_XU",
|
60 |
}
|
61 |
|
62 |
-
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
|
63 |
|
64 |
_SOURCE_VERSION = "1.0.0"
|
65 |
-
|
66 |
_SEACROWD_VERSION = "2024.06.20"
|
67 |
|
68 |
-
|
69 |
class SuIdASR(datasets.GeneratorBasedBuilder):
|
70 |
-
"""Sundanese ASR training data
|
71 |
-
|
72 |
-
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
73 |
-
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
74 |
|
75 |
BUILDER_CONFIGS = [
|
76 |
SEACrowdConfig(
|
77 |
name="su_id_asr_source",
|
78 |
-
version=
|
79 |
-
description="
|
80 |
schema="source",
|
81 |
subset_id="su_id_asr",
|
82 |
),
|
83 |
SEACrowdConfig(
|
84 |
name="su_id_asr_seacrowd_sptext",
|
85 |
-
version=
|
86 |
-
description="
|
87 |
schema="seacrowd_sptext",
|
88 |
subset_id="su_id_asr",
|
89 |
),
|
@@ -91,7 +83,7 @@ class SuIdASR(datasets.GeneratorBasedBuilder):
|
|
91 |
|
92 |
DEFAULT_CONFIG_NAME = "su_id_asr_source"
|
93 |
|
94 |
-
def _info(self)
|
95 |
if self.config.schema == "source":
|
96 |
features = datasets.Features(
|
97 |
{
|
@@ -111,6 +103,7 @@ class SuIdASR(datasets.GeneratorBasedBuilder):
|
|
111 |
homepage=_HOMEPAGE,
|
112 |
license=_LICENSE,
|
113 |
citation=_CITATION,
|
|
|
114 |
)
|
115 |
|
116 |
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
@@ -121,7 +114,7 @@ class SuIdASR(datasets.GeneratorBasedBuilder):
|
|
121 |
),
|
122 |
datasets.SplitGenerator(
|
123 |
name=datasets.Split.VALIDATION,
|
124 |
-
gen_kwargs={"filepath": dl_manager.download_and_extract(_URLs["
|
125 |
),
|
126 |
datasets.SplitGenerator(
|
127 |
name=datasets.Split.TEST,
|
@@ -129,36 +122,43 @@ class SuIdASR(datasets.GeneratorBasedBuilder):
|
|
129 |
)
|
130 |
]
|
131 |
|
132 |
-
def _generate_examples(self, filepath:
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
137 |
for line in tsv_file:
|
138 |
-
audio_id,
|
139 |
-
|
|
|
140 |
|
141 |
if os.path.exists(wav_path):
|
142 |
if self.config.schema == "source":
|
143 |
ex = {
|
144 |
"id": audio_id,
|
145 |
-
"speaker_id":
|
146 |
"path": wav_path,
|
147 |
"audio": wav_path,
|
148 |
-
"text":
|
149 |
}
|
150 |
yield audio_id, ex
|
151 |
elif self.config.schema == "seacrowd_sptext":
|
152 |
ex = {
|
153 |
"id": audio_id,
|
154 |
-
"speaker_id":
|
155 |
"path": wav_path,
|
156 |
"audio": wav_path,
|
157 |
-
"text":
|
158 |
"metadata": {
|
159 |
"speaker_age": None,
|
160 |
"speaker_gender": None,
|
161 |
},
|
162 |
}
|
163 |
yield audio_id, ex
|
164 |
-
|
|
|
|
|
|
15 |
|
16 |
import csv
|
17 |
import os
|
18 |
+
from typing import Dict, List
|
|
|
19 |
|
20 |
import datasets
|
21 |
|
22 |
from seacrowd.utils import schemas
|
23 |
from seacrowd.utils.configs import SEACrowdConfig
|
24 |
+
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
|
25 |
+
DEFAULT_SOURCE_VIEW_NAME, Tasks)
|
26 |
|
27 |
+
_DATASETNAME = "su_id_asr"
|
28 |
+
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
|
29 |
+
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
|
30 |
+
|
31 |
+
_LANGUAGES = ["sun"]
|
32 |
+
_LOCAL = False
|
33 |
_CITATION = """\
|
34 |
+
@inproceedings{sodimana18_sltu,
|
35 |
+
author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha},
|
36 |
+
title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}},
|
37 |
+
year=2018,
|
38 |
+
booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)},
|
39 |
+
pages={66--70},
|
40 |
+
doi={10.21437/SLTU.2018-14}
|
41 |
+
}
|
|
|
|
|
42 |
"""
|
43 |
|
|
|
|
|
44 |
_DESCRIPTION = """\
|
45 |
+
Sundanese ASR training data set containing ~220K utterances.
|
46 |
+
This dataset was collected by Google in Indonesia.
|
|
|
|
|
|
|
47 |
"""
|
48 |
|
49 |
+
_HOMEPAGE = "https://indonlp.github.io/nusa-catalogue/card.html?su_id_asr"
|
|
|
|
|
50 |
|
51 |
+
_LICENSE = "Attribution-ShareAlike 4.0 International."
|
52 |
|
53 |
_URLs = {
|
54 |
"su_id_asr_train": "https://drive.google.com/uc?export=download&id=10YBMnKSfZQKCuYGXAsTeTfUM5t3rGLs-",
|
|
|
56 |
"su_id_asr_test": "https://drive.google.com/uc?export=download&id=1P6mtQJoZ2QV7AC9zbR2nDbW6s6YrJ_XU",
|
57 |
}
|
58 |
|
59 |
+
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
|
60 |
|
61 |
_SOURCE_VERSION = "1.0.0"
|
|
|
62 |
_SEACROWD_VERSION = "2024.06.20"
|
63 |
|
|
|
64 |
class SuIdASR(datasets.GeneratorBasedBuilder):
|
65 |
+
"""su_id contains ~220K utterances for Sundanese ASR training data."""
|
|
|
|
|
|
|
66 |
|
67 |
BUILDER_CONFIGS = [
|
68 |
SEACrowdConfig(
|
69 |
name="su_id_asr_source",
|
70 |
+
version=datasets.Version(_SOURCE_VERSION),
|
71 |
+
description="SU_ID_ASR source schema",
|
72 |
schema="source",
|
73 |
subset_id="su_id_asr",
|
74 |
),
|
75 |
SEACrowdConfig(
|
76 |
name="su_id_asr_seacrowd_sptext",
|
77 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
78 |
+
description="SU_ID_ASR Nusantara schema",
|
79 |
schema="seacrowd_sptext",
|
80 |
subset_id="su_id_asr",
|
81 |
),
|
|
|
83 |
|
84 |
DEFAULT_CONFIG_NAME = "su_id_asr_source"
|
85 |
|
86 |
+
def _info(self):
|
87 |
if self.config.schema == "source":
|
88 |
features = datasets.Features(
|
89 |
{
|
|
|
103 |
homepage=_HOMEPAGE,
|
104 |
license=_LICENSE,
|
105 |
citation=_CITATION,
|
106 |
+
task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
|
107 |
)
|
108 |
|
109 |
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
|
|
114 |
),
|
115 |
datasets.SplitGenerator(
|
116 |
name=datasets.Split.VALIDATION,
|
117 |
+
gen_kwargs={"filepath": dl_manager.download_and_extract(_URLs["su_id_asr_dev"])},
|
118 |
),
|
119 |
datasets.SplitGenerator(
|
120 |
name=datasets.Split.TEST,
|
|
|
122 |
)
|
123 |
]
|
124 |
|
125 |
+
def _generate_examples(self, filepath: str):
|
126 |
+
|
127 |
+
if self.config.schema == "source" or self.config.schema == "seacrowd_sptext":
|
128 |
+
|
129 |
+
tsv_file = os.path.join(filepath, "asr_sundanese", "utt_spk_text.tsv")
|
130 |
+
|
131 |
+
with open(tsv_file, "r") as file:
|
132 |
+
tsv_file = csv.reader(file, delimiter="\t")
|
133 |
+
|
134 |
for line in tsv_file:
|
135 |
+
audio_id, speaker_id, transcription_text = line[0], line[1], line[2]
|
136 |
+
|
137 |
+
wav_path = os.path.join(filepath, "asr_sundanese", "data", "{}".format(audio_id[:2]), "{}.flac".format(audio_id))
|
138 |
|
139 |
if os.path.exists(wav_path):
|
140 |
if self.config.schema == "source":
|
141 |
ex = {
|
142 |
"id": audio_id,
|
143 |
+
"speaker_id": speaker_id,
|
144 |
"path": wav_path,
|
145 |
"audio": wav_path,
|
146 |
+
"text": transcription_text,
|
147 |
}
|
148 |
yield audio_id, ex
|
149 |
elif self.config.schema == "seacrowd_sptext":
|
150 |
ex = {
|
151 |
"id": audio_id,
|
152 |
+
"speaker_id": speaker_id,
|
153 |
"path": wav_path,
|
154 |
"audio": wav_path,
|
155 |
+
"text": transcription_text,
|
156 |
"metadata": {
|
157 |
"speaker_age": None,
|
158 |
"speaker_gender": None,
|
159 |
},
|
160 |
}
|
161 |
yield audio_id, ex
|
162 |
+
|
163 |
+
else:
|
164 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|