system HF staff commited on
Commit
224893f
·
1 Parent(s): cb3f457

Update files from the datasets library (from 1.16.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.16.0

Files changed (3) hide show
  1. README.md +93 -33
  2. dataset_infos.json +1 -1
  3. irc_disentangle.py +25 -15
README.md CHANGED
@@ -2,7 +2,7 @@
2
  annotations_creators:
3
  - expert-generated
4
  language_creators:
5
- - crowdsourced
6
  languages:
7
  - en
8
  licenses:
@@ -10,18 +10,18 @@ licenses:
10
  multilinguality:
11
  - monolingual
12
  size_categories:
13
- - 100K<n<1M
14
  source_datasets:
15
  - original
16
  task_categories:
17
- - sequence-modeling
18
  - structure-prediction
19
  task_ids:
20
- - coreference-resolution
21
- - dialogue-modeling
22
  paperswithcode_id: irc-disentanglement
 
23
  ---
24
 
 
25
  # Dataset Card for IRC Disentanglement
26
 
27
  ## Table of Contents
@@ -47,12 +47,13 @@ paperswithcode_id: irc-disentanglement
47
  - [Licensing Information](#licensing-information)
48
  - [Citation Information](#citation-information)
49
  - [Contributions](#contributions)
 
50
 
51
  ## Dataset Description
52
 
53
  - **Homepage:** https://jkk.name/irc-disentanglement/
54
  - **Repository:** https://github.com/jkkummerfeld/irc-disentanglement/tree/master/data
55
- - **Paper:** https://aclweb.org/anthology/papers/P/P19/P19-1374/
56
  - **Leaderboard:** NA
57
  - **Point of Contact:** jkummerf@umich.edu
58
 
@@ -60,9 +61,16 @@ paperswithcode_id: irc-disentanglement
60
 
61
  Disentangling conversations mixed together in a single stream of messages is a difficult task, made harder by the lack of large manually annotated datasets. This new dataset of 77,563 messages manually annotated with reply-structure graphs that both disentangle conversations and define internal conversation structure. The dataset is 16 times larger than all previously released datasets combined, the first to include adjudication of annotation disagreements, and the first to include context.
62
 
 
 
 
 
 
 
 
63
  ### Supported Tasks and Leaderboards
64
 
65
- Conversational Disentanglement, Coreference Resolution, Dialogue Modeling
66
 
67
  ### Languages
68
 
@@ -130,59 +138,92 @@ data["train"][50]
130
 
131
  ### Data Splits
132
 
133
- ubuntu: This data split is a new dataset introduced by the authors which labels connected messages in an online chatroom about ubuntu.
134
 
135
- channel_two: This data split is a re-analysis of prior work on IRC-Disentanglement where issues about the previous data are resolved. The previous dataset is outlined in https://www.aclweb.org/anthology/P08-1095.pdf.
 
 
 
 
 
 
 
 
136
 
137
  ## Dataset Creation
138
 
139
  ### Curation Rationale
140
 
141
- [More Information Needed]
 
 
 
 
 
142
 
143
  ### Source Data
144
 
145
  #### Initial Data Collection and Normalization
146
 
147
- [More Information Needed]
 
 
 
 
 
 
148
 
149
  #### Who are the source language producers?
150
 
151
- [More Information Needed]
152
 
153
  ### Annotations
154
 
155
  #### Annotation process
156
 
157
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
158
 
159
  #### Who are the annotators?
160
 
161
- [More Information Needed]
 
162
 
163
  ### Personal and Sensitive Information
164
 
165
- [More Information Needed]
 
166
 
167
  ## Considerations for Using the Data
168
 
169
  ### Social Impact of Dataset
170
 
171
- [More Information Needed]
172
 
173
  ### Discussion of Biases
174
 
175
- [More Information Needed]
 
176
 
177
  ### Other Known Limitations
178
 
179
- [More Information Needed]
 
180
 
181
  ## Additional Information
182
 
183
  ### Dataset Curators
184
 
185
- Jonathan K. Kummerfeld, Sai R. Gouravajhala, Joseph Peper, Vignesh Athreya, Chulaka Gunasekara, Jatin Ganhotra, Siva Sankalp Patel, Lazaros Polymenakos, and Walter S. Lasecki
186
 
187
  ### Licensing Information
188
 
@@ -190,21 +231,40 @@ Creative Commons Attribution 4.0
190
 
191
  ### Citation Information
192
 
193
- @InProceedings{acl19disentangle,
194
- author = {Jonathan K. Kummerfeld and Sai R. Gouravajhala and Joseph Peper and Vignesh Athreya and Chulaka Gunasekara and Jatin Ganhotra and Siva Sankalp Patel and Lazaros Polymenakos and Walter S. Lasecki},
195
- title = {A Large-Scale Corpus for Conversation Disentanglement},
196
- booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},
197
- location = {Florence, Italy},
198
- month = {July},
199
- year = {2019},
200
- doi = {10.18653/v1/P19-1374},
201
- pages = {3846--3856},
202
- url = {https://aclweb.org/anthology/papers/P/P19/P19-1374/},
203
- arxiv = {https://arxiv.org/abs/1810.11118},
204
- software = {https://jkk.name/irc-disentanglement},
205
- data = {https://jkk.name/irc-disentanglement},
 
 
 
 
 
 
 
 
 
 
 
206
  }
 
207
 
208
  ### Contributions
209
 
210
- Thanks to [@dhruvjoshi1998](https://github.com/dhruvjoshi1998) for adding this dataset.
 
 
 
 
 
 
 
 
2
  annotations_creators:
3
  - expert-generated
4
  language_creators:
5
+ - found
6
  languages:
7
  - en
8
  licenses:
 
10
  multilinguality:
11
  - monolingual
12
  size_categories:
13
+ - 10K<n<100K
14
  source_datasets:
15
  - original
16
  task_categories:
 
17
  - structure-prediction
18
  task_ids:
19
+ - structure-prediction-other-conversation-disentanglement
 
20
  paperswithcode_id: irc-disentanglement
21
+ pretty_name: IRC Disentanglement
22
  ---
23
 
24
+
25
  # Dataset Card for IRC Disentanglement
26
 
27
  ## Table of Contents
 
47
  - [Licensing Information](#licensing-information)
48
  - [Citation Information](#citation-information)
49
  - [Contributions](#contributions)
50
+ - [Acknowledgments](#acknowledgments)
51
 
52
  ## Dataset Description
53
 
54
  - **Homepage:** https://jkk.name/irc-disentanglement/
55
  - **Repository:** https://github.com/jkkummerfeld/irc-disentanglement/tree/master/data
56
+ - **Paper:** https://aclanthology.org/P19-1374/
57
  - **Leaderboard:** NA
58
  - **Point of Contact:** jkummerf@umich.edu
59
 
 
61
 
62
  Disentangling conversations mixed together in a single stream of messages is a difficult task, made harder by the lack of large manually annotated datasets. This new dataset of 77,563 messages manually annotated with reply-structure graphs that both disentangle conversations and define internal conversation structure. The dataset is 16 times larger than all previously released datasets combined, the first to include adjudication of annotation disagreements, and the first to include context.
63
 
64
+ Note, the Github repository for the dataset also contains several useful tools for:
65
+
66
+ - Conversion (e.g. extracting conversations from graphs)
67
+ - Evaluation
68
+ - Preprocessing
69
+ - Word embeddings trained on the full Ubuntu logs in 2018
70
+
71
  ### Supported Tasks and Leaderboards
72
 
73
+ Conversational Disentanglement
74
 
75
  ### Languages
76
 
 
138
 
139
  ### Data Splits
140
 
 
141
 
142
+ The dataset has 4 parts:
143
+
144
+ | Part | Number of Annotated Messages |
145
+ | ------------- | ------------------------------------------- |
146
+ | Train | 67,463 |
147
+ | Dev | 2,500 |
148
+ | Test | 5,000 |
149
+ | Channel 2 | 2,600 |
150
+
151
 
152
  ## Dataset Creation
153
 
154
  ### Curation Rationale
155
 
156
+ IRC is a synchronous chat setting with a long history of use.
157
+ Several channels log all messages and make them publicly available.
158
+ The Ubuntu channel is particularly heavily used and has been the subject of several academic studies.
159
+
160
+ Data was selected from the channel in order to capture the diversity of situations in the channel (e.g. when there are many users or very few users).
161
+ For full details, see the [annotation information page](https://github.com/jkkummerfeld/irc-disentanglement/blob/master/data/READ.history.md).
162
 
163
  ### Source Data
164
 
165
  #### Initial Data Collection and Normalization
166
 
167
+ Data was collected from the Ubuntu IRC channel logs, which are publicly available at [https://irclogs.ubuntu.com/](https://irclogs.ubuntu.com/).
168
+ The raw files are included, as well as two other versions:
169
+
170
+ - ASCII, converted using the script [make_txt.py](https://github.com/jkkummerfeld/irc-disentanglement/blob/master/tools/preprocessing/make-txt.py)
171
+ - Tok, tokenised text with rare words replaced by UNK using the script [dstc8-tokenise.py](https://github.com/jkkummerfeld/irc-disentanglement/blob/master/tools/preprocessing/dstc8-tokenise.py)
172
+
173
+ The raw channel two data is from prior work [(Elsner and Charniak, 2008)](https://www.aclweb.org/anthology/P08-1095.pdf)].
174
 
175
  #### Who are the source language producers?
176
 
177
+ The text is from a large group of internet users asking questions and providing answers related to Ubuntu.
178
 
179
  ### Annotations
180
 
181
  #### Annotation process
182
 
183
+ The data is expert annotated with:
184
+
185
+ - Training, one annotation per line in general, a small portion is double-annotated and adjudicated
186
+ - Dev, Channel 2, double annotated and adjudicated
187
+ - Test, triple annotated and adjudicated
188
+
189
+ | Part | Annotators | Adjudication? |
190
+ | ------------- | --------------- | ------------------------------------- |
191
+ | Train | 1 or 2 per file | For files with 2 annotators (only 10) |
192
+ | Dev | 2 | Yes |
193
+ | Test | 3 | Yes |
194
+ | Channel 2 | 2 | Yes |
195
 
196
  #### Who are the annotators?
197
 
198
+ Students and a postdoc at the University of Michigan.
199
+ Everyone involved went through a training process with feedback to learn the annotation guidelines.
200
 
201
  ### Personal and Sensitive Information
202
 
203
+ No content is removed or obfuscated.
204
+ There is probably personal information in the dataset from users.
205
 
206
  ## Considerations for Using the Data
207
 
208
  ### Social Impact of Dataset
209
 
210
+ The raw data is already available online and the annotations do not significantly provide additional information that could have a direct social impact.
211
 
212
  ### Discussion of Biases
213
 
214
+ The data is mainly from a single technical domain (Ubuntu tech support) that probably has a demographic skew of some sort.
215
+ Given that users are only identified by their self-selected usernames, it is difficult to know more about the authors.
216
 
217
  ### Other Known Limitations
218
 
219
+ Being focused on a single language and a single channel means that the data is likely capturing a particular set of conventions in communication.
220
+ Those conventions may not apply to other channels, or beyond IRC.
221
 
222
  ## Additional Information
223
 
224
  ### Dataset Curators
225
 
226
+ Jonathan K. Kummerfeld
227
 
228
  ### Licensing Information
229
 
 
231
 
232
  ### Citation Information
233
 
234
+ ```
235
+ @inproceedings{kummerfeld-etal-2019-large,
236
+ title = "A Large-Scale Corpus for Conversation Disentanglement",
237
+ author = "Kummerfeld, Jonathan K. and
238
+ Gouravajhala, Sai R. and
239
+ Peper, Joseph J. and
240
+ Athreya, Vignesh and
241
+ Gunasekara, Chulaka and
242
+ Ganhotra, Jatin and
243
+ Patel, Siva Sankalp and
244
+ Polymenakos, Lazaros C and
245
+ Lasecki, Walter",
246
+ booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
247
+ month = jul,
248
+ year = "2019",
249
+ address = "Florence, Italy",
250
+ publisher = "Association for Computational Linguistics",
251
+ url = "https://aclanthology.org/P19-1374",
252
+ doi = "10.18653/v1/P19-1374",
253
+ pages = "3846--3856",
254
+ arxiv = "https://arxiv.org/abs/1810.11118",
255
+ software = "https://jkk.name/irc-disentanglement",
256
+ data = "https://jkk.name/irc-disentanglement",
257
+ abstract = "Disentangling conversations mixed together in a single stream of messages is a difficult task, made harder by the lack of large manually annotated datasets. We created a new dataset of 77,563 messages manually annotated with reply-structure graphs that both disentangle conversations and define internal conversation structure. Our data is 16 times larger than all previously released datasets combined, the first to include adjudication of annotation disagreements, and the first to include context. We use our data to re-examine prior work, in particular, finding that 89{\%} of conversations in a widely used dialogue corpus are either missing messages or contain extra messages. Our manually-annotated data presents an opportunity to develop robust data-driven methods for conversation disentanglement, which will help advance dialogue research.",
258
  }
259
+ ```
260
 
261
  ### Contributions
262
 
263
+ Thanks to [@dhruvjoshi1998](https://github.com/dhruvjoshi1998) for adding this dataset.
264
+
265
+ Thanks to [@jkkummerfeld](https://github.com/jkkummerfeld) for improvements to the documentation.
266
+
267
+
268
+ ### Acknowledgments
269
+
270
+ This material is based in part upon work supported by IBM under contract 4915012629. Any opinions, findings, conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of IBM.
dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"ubuntu": {"description": "Disentangling conversations mixed together in a single stream of messages is\na difficult task, made harder by the lack of large manually annotated\ndatasets. This new dataset of 77,563 messages manually annotated with\nreply-structure graphs that both disentangle conversations and define\ninternal conversation structure. The dataset is 16 times larger than all\npreviously released datasets combined, the first to include adjudication of\nannotation disagreements, and the first to include context.\n", "citation": "@InProceedings{acl19disentangle,\nauthor = {Jonathan K. Kummerfeld and Sai R. Gouravajhala and Joseph Peper and Vignesh Athreya and Chulaka Gunasekara and Jatin Ganhotra and Siva Sankalp Patel and Lazaros Polymenakos and Walter S. Lasecki},\ntitle = {A Large-Scale Corpus for Conversation Disentanglement},\nbooktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},\nlocation = {Florence, Italy},\nmonth = {July},\nyear = {2019},\ndoi = {10.18653/v1/P19-1374},\npages = {3846--3856},\nurl = {https://aclweb.org/anthology/papers/P/P19/P19-1374/},\narxiv = {https://arxiv.org/abs/1810.11118},\nsoftware = {https://jkk.name/irc-disentanglement},\ndata = {https://jkk.name/irc-disentanglement},\n}\n", "homepage": "https://jkk.name/irc-disentanglement/", "license": "Creative Commons Attribution 4.0 International Public License", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "raw": {"dtype": "string", "id": null, "_type": "Value"}, "ascii": {"dtype": "string", "id": null, "_type": "Value"}, "tokenized": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}, "connections": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "irc_disentangle", "config_name": "ubuntu", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 55970472, "num_examples": 220616, "dataset_name": "irc_disentangle"}, "test": {"name": "test", "num_bytes": 3916881, "num_examples": 15010, "dataset_name": "irc_disentangle"}, "validation": {"name": "validation", "num_bytes": 3079360, "num_examples": 12510, "dataset_name": "irc_disentangle"}}, "download_checksums": {"https://github.com/jkkummerfeld/irc-disentanglement/tarball/master": {"num_bytes": 118470349, "checksum": "9e2c98a15191d729c0dbe10f309d836bd1ab32c0d03ffb2e0e4205287405fc4d"}}, "download_size": 118470349, "post_processing_size": null, "dataset_size": 62966713, "size_in_bytes": 181437062}, "channel_two": {"description": "Disentangling conversations mixed together in a single stream of messages is\na difficult task, made harder by the lack of large manually annotated\ndatasets. This new dataset of 77,563 messages manually annotated with\nreply-structure graphs that both disentangle conversations and define\ninternal conversation structure. The dataset is 16 times larger than all\npreviously released datasets combined, the first to include adjudication of\nannotation disagreements, and the first to include context.\n", "citation": "@InProceedings{acl19disentangle,\nauthor = {Jonathan K. Kummerfeld and Sai R. Gouravajhala and Joseph Peper and Vignesh Athreya and Chulaka Gunasekara and Jatin Ganhotra and Siva Sankalp Patel and Lazaros Polymenakos and Walter S. Lasecki},\ntitle = {A Large-Scale Corpus for Conversation Disentanglement},\nbooktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},\nlocation = {Florence, Italy},\nmonth = {July},\nyear = {2019},\ndoi = {10.18653/v1/P19-1374},\npages = {3846--3856},\nurl = {https://aclweb.org/anthology/papers/P/P19/P19-1374/},\narxiv = {https://arxiv.org/abs/1810.11118},\nsoftware = {https://jkk.name/irc-disentanglement},\ndata = {https://jkk.name/irc-disentanglement},\n}\n", "homepage": "https://jkk.name/irc-disentanglement/", "license": "Creative Commons Attribution 4.0 International Public License", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "raw": {"dtype": "string", "id": null, "_type": "Value"}, "ascii": {"dtype": "string", "id": null, "_type": "Value"}, "tokenized": {"dtype": "string", "id": null, "_type": "Value"}, "connections": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "irc_disentangle", "config_name": "channel_two", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"dev": {"name": "dev", "num_bytes": 197189, "num_examples": 1001, "dataset_name": "irc_disentangle"}, "pilot": {"name": "pilot", "num_bytes": 92514, "num_examples": 501, "dataset_name": "irc_disentangle"}, "test": {"name": "test", "num_bytes": 186494, "num_examples": 1001, "dataset_name": "irc_disentangle"}, "pilot_dev": {"name": "pilot_dev", "num_bytes": 289695, "num_examples": 1501, "dataset_name": "irc_disentangle"}, "all_": {"name": "all_", "num_bytes": 495666, "num_examples": 2602, "dataset_name": "irc_disentangle"}}, "download_checksums": {"https://github.com/jkkummerfeld/irc-disentanglement/tarball/master": {"num_bytes": 118470349, "checksum": "9e2c98a15191d729c0dbe10f309d836bd1ab32c0d03ffb2e0e4205287405fc4d"}}, "download_size": 118470349, "post_processing_size": null, "dataset_size": 1261558, "size_in_bytes": 119731907}}
 
1
+ {"ubuntu": {"description": "Disentangling conversations mixed together in a single stream of messages is\na difficult task, made harder by the lack of large manually annotated\ndatasets. This new dataset of 77,563 messages manually annotated with\nreply-structure graphs that both disentangle conversations and define\ninternal conversation structure. The dataset is 16 times larger than all\npreviously released datasets combined, the first to include adjudication of\nannotation disagreements, and the first to include context.\n", "citation": "@inproceedings{kummerfeld-etal-2019-large, \n title = \"A Large-Scale Corpus for Conversation Disentanglement\", \n author = \"Kummerfeld, Jonathan K. and \n Gouravajhala, Sai R. and \n Peper, Joseph J. and \n Athreya, Vignesh and \n Gunasekara, Chulaka and \n Ganhotra, Jatin and \n Patel, Siva Sankalp and \n Polymenakos, Lazaros C and \n Lasecki, Walter\", \n booktitle = \"Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics\", \n month = jul, \n year = \"2019\", \n address = \"Florence, Italy\", \n publisher = \"Association for Computational Linguistics\", \n url = \"https://aclanthology.org/P19-1374\", \n doi = \"10.18653/v1/P19-1374\", \n pages = \"3846--3856\", \n arxiv = \"https://arxiv.org/abs/1810.11118\", \n software = \"https://jkk.name/irc-disentanglement\", \n data = \"https://jkk.name/irc-disentanglement\", \n abstract = \"Disentangling conversations mixed together in a single stream of messages is a difficult task, made harder by the lack of large manually annotated datasets. We created a new dataset of 77,563 messages manually annotated with reply-structure graphs that both disentangle conversations and define internal conversation structure. Our data is 16 times larger than all previously released datasets combined, the first to include adjudication of annotation disagreements, and the first to include context. We use our data to re-examine prior work, in particular, finding that 89% of conversations in a widely used dialogue corpus are either missing messages or contain extra messages. Our manually-annotated data presents an opportunity to develop robust data-driven methods for conversation disentanglement, which will help advance dialogue research.\", \n}", "homepage": "https://jkk.name/irc-disentanglement/", "license": "Creative Commons Attribution 4.0 International Public License", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "raw": {"dtype": "string", "id": null, "_type": "Value"}, "ascii": {"dtype": "string", "id": null, "_type": "Value"}, "tokenized": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}, "connections": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "irc_disentangle", "config_name": "ubuntu", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 55970472, "num_examples": 220616, "dataset_name": "irc_disentangle"}, "test": {"name": "test", "num_bytes": 3916881, "num_examples": 15010, "dataset_name": "irc_disentangle"}, "validation": {"name": "validation", "num_bytes": 3079360, "num_examples": 12510, "dataset_name": "irc_disentangle"}}, "download_checksums": {"https://github.com/jkkummerfeld/irc-disentanglement/tarball/master": {"num_bytes": 118470349, "checksum": "9e2c98a15191d729c0dbe10f309d836bd1ab32c0d03ffb2e0e4205287405fc4d"}}, "download_size": 118470349, "post_processing_size": null, "dataset_size": 62966713, "size_in_bytes": 181437062}, "channel_two": {"description": "Disentangling conversations mixed together in a single stream of messages is\na difficult task, made harder by the lack of large manually annotated\ndatasets. This new dataset of 77,563 messages manually annotated with\nreply-structure graphs that both disentangle conversations and define\ninternal conversation structure. The dataset is 16 times larger than all\npreviously released datasets combined, the first to include adjudication of\nannotation disagreements, and the first to include context.\n", "citation": "@inproceedings{kummerfeld-etal-2019-large, \n title = \"A Large-Scale Corpus for Conversation Disentanglement\", \n author = \"Kummerfeld, Jonathan K. and \n Gouravajhala, Sai R. and \n Peper, Joseph J. and \n Athreya, Vignesh and \n Gunasekara, Chulaka and \n Ganhotra, Jatin and \n Patel, Siva Sankalp and \n Polymenakos, Lazaros C and \n Lasecki, Walter\", \n booktitle = \"Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics\", \n month = jul, \n year = \"2019\", \n address = \"Florence, Italy\", \n publisher = \"Association for Computational Linguistics\", \n url = \"https://aclanthology.org/P19-1374\", \n doi = \"10.18653/v1/P19-1374\", \n pages = \"3846--3856\", \n arxiv = \"https://arxiv.org/abs/1810.11118\", \n software = \"https://jkk.name/irc-disentanglement\", \n data = \"https://jkk.name/irc-disentanglement\", \n abstract = \"Disentangling conversations mixed together in a single stream of messages is a difficult task, made harder by the lack of large manually annotated datasets. We created a new dataset of 77,563 messages manually annotated with reply-structure graphs that both disentangle conversations and define internal conversation structure. Our data is 16 times larger than all previously released datasets combined, the first to include adjudication of annotation disagreements, and the first to include context. We use our data to re-examine prior work, in particular, finding that 89% of conversations in a widely used dialogue corpus are either missing messages or contain extra messages. Our manually-annotated data presents an opportunity to develop robust data-driven methods for conversation disentanglement, which will help advance dialogue research.\", \n}", "homepage": "https://jkk.name/irc-disentanglement/", "license": "Creative Commons Attribution 4.0 International Public License", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "raw": {"dtype": "string", "id": null, "_type": "Value"}, "ascii": {"dtype": "string", "id": null, "_type": "Value"}, "tokenized": {"dtype": "string", "id": null, "_type": "Value"}, "connections": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "irc_disentangle", "config_name": "channel_two", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"dev": {"name": "dev", "num_bytes": 197189, "num_examples": 1001, "dataset_name": "irc_disentangle"}, "pilot": {"name": "pilot", "num_bytes": 92514, "num_examples": 501, "dataset_name": "irc_disentangle"}, "test": {"name": "test", "num_bytes": 186494, "num_examples": 1001, "dataset_name": "irc_disentangle"}, "pilot_dev": {"name": "pilot_dev", "num_bytes": 289695, "num_examples": 1501, "dataset_name": "irc_disentangle"}, "all_": {"name": "all_", "num_bytes": 495666, "num_examples": 2602, "dataset_name": "irc_disentangle"}}, "download_checksums": {"https://github.com/jkkummerfeld/irc-disentanglement/tarball/master": {"num_bytes": 118470349, "checksum": "9e2c98a15191d729c0dbe10f309d836bd1ab32c0d03ffb2e0e4205287405fc4d"}}, "download_size": 118470349, "post_processing_size": null, "dataset_size": 1261558, "size_in_bytes": 119731907}}
irc_disentangle.py CHANGED
@@ -23,19 +23,29 @@ import datasets
23
 
24
 
25
  _CITATION = """\
26
- @InProceedings{acl19disentangle,
27
- author = {Jonathan K. Kummerfeld and Sai R. Gouravajhala and Joseph Peper and Vignesh Athreya and Chulaka Gunasekara and Jatin Ganhotra and Siva Sankalp Patel and Lazaros Polymenakos and Walter S. Lasecki},
28
- title = {A Large-Scale Corpus for Conversation Disentanglement},
29
- booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},
30
- location = {Florence, Italy},
31
- month = {July},
32
- year = {2019},
33
- doi = {10.18653/v1/P19-1374},
34
- pages = {3846--3856},
35
- url = {https://aclweb.org/anthology/papers/P/P19/P19-1374/},
36
- arxiv = {https://arxiv.org/abs/1810.11118},
37
- software = {https://jkk.name/irc-disentanglement},
38
- data = {https://jkk.name/irc-disentanglement},
 
 
 
 
 
 
 
 
 
 
39
  }
40
  """
41
 
@@ -187,8 +197,8 @@ class IRCDisentangle(datasets.GeneratorBasedBuilder):
187
  if self.config.name == "ubuntu":
188
  # run loop for each date
189
  all_files = sorted(glob.glob(os.path.join(filepath, "*.annotation.txt")))
190
- all_dates = [Path(file).name[:10] for file in all_files]
191
- all_info = [Path(file).name[10:-15] for file in all_files]
192
 
193
  elif self.config.name == "channel_two":
194
  # run loop once (there are no dates for this config)
 
23
 
24
 
25
  _CITATION = """\
26
+ @inproceedings{kummerfeld-etal-2019-large,
27
+ title = "A Large-Scale Corpus for Conversation Disentanglement",
28
+ author = "Kummerfeld, Jonathan K. and
29
+ Gouravajhala, Sai R. and
30
+ Peper, Joseph J. and
31
+ Athreya, Vignesh and
32
+ Gunasekara, Chulaka and
33
+ Ganhotra, Jatin and
34
+ Patel, Siva Sankalp and
35
+ Polymenakos, Lazaros C and
36
+ Lasecki, Walter",
37
+ booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
38
+ month = jul,
39
+ year = "2019",
40
+ address = "Florence, Italy",
41
+ publisher = "Association for Computational Linguistics",
42
+ url = "https://aclanthology.org/P19-1374",
43
+ doi = "10.18653/v1/P19-1374",
44
+ pages = "3846--3856",
45
+ arxiv = "https://arxiv.org/abs/1810.11118",
46
+ software = "https://jkk.name/irc-disentanglement",
47
+ data = "https://jkk.name/irc-disentanglement",
48
+ abstract = "Disentangling conversations mixed together in a single stream of messages is a difficult task, made harder by the lack of large manually annotated datasets. We created a new dataset of 77,563 messages manually annotated with reply-structure graphs that both disentangle conversations and define internal conversation structure. Our data is 16 times larger than all previously released datasets combined, the first to include adjudication of annotation disagreements, and the first to include context. We use our data to re-examine prior work, in particular, finding that 89% of conversations in a widely used dialogue corpus are either missing messages or contain extra messages. Our manually-annotated data presents an opportunity to develop robust data-driven methods for conversation disentanglement, which will help advance dialogue research.",
49
  }
50
  """
51
 
 
197
  if self.config.name == "ubuntu":
198
  # run loop for each date
199
  all_files = sorted(glob.glob(os.path.join(filepath, "*.annotation.txt")))
200
+ all_dates = [Path(filename).name[:10] for filename in all_files]
201
+ all_info = [Path(filename).name[10:-15] for filename in all_files]
202
 
203
  elif self.config.name == "channel_two":
204
  # run loop once (there are no dates for this config)