File size: 6,175 Bytes
9c423f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# -*- coding: utf-8 -*-
"""data_processing.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1Oz1QL0mD9g3lVBgtmqHa-QiwwIJ2JaX5
"""
import pandas as pd
import numpy as np
import os
from zipfile import ZipFile
import re
import json
import io
from PIL import Image, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from google.colab import drive
drive.mount('/content/drive')
path = "/content/drive/MyDrive/Duke/aphantasia_drawing_project/"
data_path = os.path.join(path,"data",'drawing_experiment')
df = pd.read_excel(data_path+"/questionnaire-data.xlsx", header=2)
df["vviq_score"] = np.sum(df.filter(like = "vviq"), axis = 1)
df["osiq_score"] = np.sum(df.filter(like = "osiq"), axis = 1)
df["treatment"] = np.where(df.vviq_score > 40, "control", "aphantasia")
df = df.rename(columns={
"Sub ID": "sub_id",
df.columns[5]: "art_ability",
df.columns[6]: "art_experience",
df.columns[9]: "difficult",
df.columns[10]: "diff_explanation"
})
df.columns = df.columns.str.lower()
df = df.drop(df.filter(like="unnamed").columns, axis = 1)
df = df.drop(df.filter(regex="(vviq|osiq)\d+").columns, axis = 1)
df[df.columns[df.dtypes == "object"]] = df[df.columns[df.dtypes == "object"]].astype("string")
df = df.replace([np.nan,pd.NA, "nan","na","NA","n/a","N/A","N/a"], None)
df.set_index('sub_id', inplace=True)
actual_image_path = os.path.join(data_path,"Stimuli","Images")
actual_images = {}
for image_file in os.listdir(actual_image_path):
img_path = os.path.join(actual_image_path, image_file)
actual_images[image_file.removesuffix(".jpg")] = Image.open(img_path)
key_map = {
'high_sun_ajwbpqrwvknlvpeh': 'kitchen',
'low_sun_acqsqjhtcbxeomux': 'bedroom',
"low_sun_byqgoskwpvsbllvy":"livingroom"
}
for old_key, new_key in key_map.items():
actual_images[new_key] = actual_images.pop(old_key)
aphantasia_drawings_path = os.path.join(data_path,"Drawings","Aphantasia")
control_drawings_path = os.path.join(data_path,"Drawings","Control")
directories = {
"Aphantasia": aphantasia_drawings_path,
"Control": control_drawings_path
}
aphantasia_subs = {i: "Aphantasia" for i in os.listdir(directories["Aphantasia"]) if "sub" in i}
control_subs = {i: "Control" for i in os.listdir(directories["Control"]) if "sub" in i}
sub_treatment_key = {**aphantasia_subs, **control_subs}
def get_sub_files(sub):
treatment_group = sub_treatment_key[sub]
directory = directories[treatment_group]
pattern = re.compile("^.*" + sub + "-[a-z]{3}\d-(kitchen|livingroom|bedroom).*")
sub_files = os.listdir(os.path.join(directory, sub))
files_needed = {'mem1',"mem2",'mem3','pic1','pic2','pic3'}
sub_key = {}
for f in sub_files:
if pattern.match(f):
main_path = os.path.join(directory, sub, f)
draw_type = f.split("-")[1]
label = f.split("-")[2].removesuffix(".jpg")
alt_path = os.path.join(directory, sub, "-".join([sub, draw_type]) + ".jpg")
try:
img = Image.open(main_path)
except:
img = Image.open(alt_path)
sub_key[draw_type] = {
"label": label,
"drawing": img
}
unknown_drawings = files_needed - sub_key.keys()
if unknown_drawings:
for unk in unknown_drawings:
path = os.path.join(directory, sub, "-".join([sub, unk]) + ".jpg")
try:
img = Image.open(path)
except:
img = "No Image"
sub_key[unk] = {
"label": "unknown",
"drawing": img
}
return sub_key
subject_data = {}
for sub in iter(sub_treatment_key):
subject_data[sub] = get_sub_files(sub)
def is_image_blank(image):
if image.mode != 'RGB':
image = image.convert('RGB')
pixels = list(image.getdata())
return all(pixel == (255, 255, 255) for pixel in pixels)
for sub in iter(subject_data):
dat = subject_data[sub]
for key in dat.keys():
if is_image_blank(dat[key]["drawing"]):
dat[key]["label"] = "blank"
subs_missing_labels = {}
for sub in iter(subject_data):
dat = subject_data[sub]
for key in dat.keys():
if "unknown" in dat[key]["label"]:
if sub not in subs_missing_labels:
subs_missing_labels[sub] = []
subs_missing_labels[sub].append(key)
subs_missing_labels
subject_data["sub8"]["pic3"]["label"] = "livingroom"
subject_data["sub6"]["pic3"]["label"] = "bedroom"
subject_data["sub6"]["pic1"]["label"] = "kitchen"
def clean_sub_dat(sub):
id = int(sub[3:])
treatment_group = sub_treatment_key[sub]
if id in df.index:
demographics_dict = df.loc[id].to_dict()
else:
demographics_dict = {}
demographics_dict.pop("treatment",None)
drawings = {
"bedroom": {},
"kitchen": {},
"livingroom": {}
}
for draw_type, draw_data in subject_data[sub].items():
t = "memory" if draw_type[:-1] == "mem" else "perception"
for d in drawings.keys():
if draw_data["label"] == d:
drawings[d][t] = draw_data["drawing"]
return {
"subject_id": id,
"treatment": treatment_group,
"demographics": demographics_dict,
"drawings": drawings,
"image": actual_images
}
full_data = []
for s in subject_data.keys():
full_data.append(clean_sub_dat(s))
"""160,161,162 removed, they dont have images"""
full_df = pd.json_normalize(full_data)
def image_to_byt(img, size=(224, 224)):
if pd.isna(img):
return None
img_resized = img.resize(size)
img_byte_arr = io.BytesIO()
img_resized.save(img_byte_arr, format='PNG')
return img_byte_arr.getvalue()
drawing_columns = [col for col in full_df.columns if "drawings" in col or "image" in col]
for col in drawing_columns:
full_df[col] = full_df[col].apply(image_to_byt)
def safe_convert_to_int(value):
try:
return int(value)
except (ValueError, TypeError):
return -99
col_to_process = [
"demographics.age",
"demographics.art_ability",
"demographics.vviq_score",
"demographics.osiq_score"
]
for col in col_to_process:
full_df[col] = full_df[col].apply(safe_convert_to_int)
full_data_path = os.path.join(path, "data","aphantasia_data.parquet")
full_df.to_parquet(full_data_path, index=False)
|