import pandas as pd import os from typing import Union import datasets from datasets import load_dataset def save_and_compress(dataset: Union[datasets.Dataset, pd.DataFrame], name: str, idx=None): if idx: path = f"{name}_{idx}.jsonl" else: path = f"{name}.jsonl" print("Saving to", path) dataset.to_json(path, force_ascii=False, orient='records', lines=True) print("Compressing...") os.system(f'xz -zkf -T0 --memlimit-compress=60% {path}') # -TO to use multithreading for split in ["train", "valid", "test"]: dataset = load_dataset("parquet", data_files=f"original_data/{split}_en.parquet", split="train") dataset = dataset.remove_columns(['case_marked_as_closed']) # this column brings problems # these are also potentially an issue: overflows dataset = dataset.remove_columns(['filing_date', 'date_first_instance_ruling', 'date_appeal_panel_session']) print(dataset[0]) save_and_compress(dataset, f"data/{split}")