Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
json
Sub-tasks:
named-entity-recognition
Languages:
Greek
Size:
10K - 100K
Tags:
legal
License:
import os | |
from glob import glob | |
from pathlib import Path | |
from typing import List | |
import pandas as pd | |
from spacy.lang.el import Greek | |
pd.set_option('display.max_colwidth', None) | |
pd.set_option('display.max_columns', None) | |
base_path = Path("DATASETS/ENTITY RECOGNITION") | |
tokenizer = Greek().tokenizer | |
# A and D are different government gazettes | |
# A is the general one, publishing standard legislation, and D is meant for legislation on urban planning and such things | |
def process_document(ann_file: str, text_file: Path, metadata: dict, tokenizer) -> List[dict]: | |
"""Processes one document (.ann file and .txt file) and returns a list of annotated sentences""" | |
# read the ann file into a df | |
ann_df = pd.read_csv(ann_file, sep="\t", header=None, names=["id", "entity_with_span", "entity_text"]) | |
sentences = [sent for sent in text_file.read_text().split("\n") if sent] # remove empty sentences | |
# split into individual columns | |
ann_df[["entity", "start", "end"]] = ann_df["entity_with_span"].str.split(" ", expand=True) | |
ann_df.start = ann_df.start.astype(int) | |
ann_df.end = ann_df.end.astype(int) | |
not_found_entities = 0 | |
annotated_sentences = [] | |
current_start_index = 0 | |
for sentence in sentences: | |
ann_sent = {**metadata} | |
doc = tokenizer(sentence) | |
doc_start_index = current_start_index | |
doc_end_index = current_start_index + len(sentence) | |
current_start_index = doc_end_index + 1 | |
relevant_annotations = ann_df[(ann_df.start >= doc_start_index) & (ann_df.end <= doc_end_index)] | |
for _, row in relevant_annotations.iterrows(): | |
sent_start_index = row["start"] - doc_start_index | |
sent_end_index = row["end"] - doc_start_index | |
char_span = doc.char_span(sent_start_index, sent_end_index, label=row["entity"], alignment_mode="expand") | |
# ent_span = Span(doc, char_span.start, char_span.end, row["entity"]) | |
if char_span: | |
doc.set_ents([char_span]) | |
else: | |
not_found_entities += 1 | |
print(f"Could not find entity `{row['entity_text']}` in sentence `{sentence}`") | |
ann_sent["words"] = [str(tok) for tok in doc] | |
ann_sent["ner"] = [tok.ent_iob_ + "-" + tok.ent_type_ if tok.ent_type_ else "O" for tok in doc] | |
annotated_sentences.append(ann_sent) | |
print(f"Did not find entities in {not_found_entities} cases") | |
return annotated_sentences | |
def read_to_df(split): | |
"""Reads the different documents and saves metadata""" | |
ann_files = glob(str(base_path / split / "ANN" / "*/*/*.ann")) | |
sentences = [] | |
for ann_file in ann_files: | |
path = Path(ann_file) | |
year = path.parent.stem | |
file_name = path.stem | |
_, gazette, gazette_number, _, date = tuple(file_name.split(' ')) | |
text_file = base_path / split / "TXT" / f"{gazette}/{year}/{file_name}.txt" | |
metadata = { | |
"date": date, | |
"gazette": gazette, | |
# "gazette_number": gazette_number, | |
} | |
sentences.extend(process_document(ann_file, text_file, metadata, tokenizer)) | |
return pd.DataFrame(sentences) | |
splits = ["TRAIN", "VALIDATION", "TEST"] | |
train = read_to_df("TRAIN") | |
validation = read_to_df("VALIDATION") | |
test = read_to_df("TEST") | |
df = pd.concat([train, validation, test]) | |
print(f"The final tagset (in IOB notation) is the following: `{list(df.ner.explode().unique())}`") | |
# save splits | |
def save_splits_to_jsonl(config_name): | |
# save to jsonl files for huggingface | |
if config_name: os.makedirs(config_name, exist_ok=True) | |
train.to_json(os.path.join(config_name, "train.jsonl"), lines=True, orient="records", force_ascii=False) | |
validation.to_json(os.path.join(config_name, "validation.jsonl"), lines=True, orient="records", force_ascii=False) | |
test.to_json(os.path.join(config_name, "test.jsonl"), lines=True, orient="records", force_ascii=False) | |
save_splits_to_jsonl("") | |