File size: 4,357 Bytes
5fbc120 83a4601 5fbc120 38b21bf 5fbc120 38b21bf 5fbc120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
"""Legal MC4"""
import ast
import json
import datasets
from huggingface_hub.file_download import hf_hub_url
try:
import lzma as xz
except ImportError:
import pylzma as xz
datasets.logging.set_verbosity_info()
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """
Legal-MC4: A Corpus Covering the Legal Part of MC4 for European Languages
"""
_CITATION = """
"""
_REPO_ID = "joelito/legal-mc4"
_URL = f"https://huggingface.co/datasets/{_REPO_ID}"
_LANGUAGES = {
"bg": 0,
"cs": 2,
"da": 0,
"de": 8,
"el": 0,
"en": 1,
"es": 9,
"et": 0,
"fi": 0,
"fr": 2,
"ga": 0,
# "hr", # hr is not present in mc4
"hu": 0,
"it": 3,
"lt": 0,
"lv": 0,
"mt": 0,
"nl": 0,
"pl": 2,
"pt": 1,
"ro": 0,
"sk": 0,
"sl": 0,
"sv": 0,
}
_LANGS = list(_LANGUAGES.keys())
class LegalMC4Config(datasets.BuilderConfig):
"""BuilderConfig for Legal-MC4."""
def __init__(self, name: str, **kwargs):
"""BuilderConfig for Legal-MC4.
Args:
name: One of bg,cs,da,de,el,en,es,et,fi,fr,ga,hu,it,lt,lv,mt,nl,pl,pt,ro,sk,sl,sv or all
**kwargs: keyword arguments forwarded to super.
"""
super(LegalMC4Config, self).__init__(**kwargs)
self.name = name
class MC4Legal(datasets.GeneratorBasedBuilder):
"""Legal-MC4: A Corpus Covering the Legal Part of MC4 for European Languages"""
BUILDER_CONFIGS = [LegalMC4Config(language) for language in _LANGS + ["all"]]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"url": datasets.Value("string"),
"timestamp": datasets.Value("timestamp[s]"),
"matches": datasets.Sequence(datasets.Value("string")),
"text": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
def get_url(file_name):
return hf_hub_url(repo_id=_REPO_ID, filename=f"data/{file_name}.jsonl.xz", repo_type="dataset")
data_urls = []
languages = _LANGS if self.config.name == "all" else [self.config.name]
split_generators = []
for split in [datasets.Split.TRAIN, datasets.Split.VALIDATION]:
for language in languages:
shards = range(_LANGUAGES[language] + 1) if split == datasets.Split.TRAIN else [0]
for shard in shards:
data_urls.append(get_url(f"{language}.{str(split)}.{shard}"))
downloaded_files = dl_manager.download(data_urls)
split_generators.append(
datasets.SplitGenerator(name=split, gen_kwargs={"filepaths": downloaded_files})
)
return split_generators
def _generate_examples(self, filepaths):
"""This function returns the examples in the raw (text) form by iterating on all the files."""
id_ = 0
for filepath in filepaths:
logger.info("Generating examples from = %s", filepath)
try:
with xz.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
for line in f:
if line:
example = json.loads(line)
if example is not None and isinstance(example, dict):
timestamp = example.get("timestamp", "")
# remove the Z at the end (time zone)
if isinstance(timestamp, str) and timestamp.endswith("Z"):
timestamp = timestamp[:-1]
print(example)
yield id_, {
"url": example.get("url", ""),
"timestamp": timestamp,
"matches": example.get("matches", []),
"text": example.get("text", ""),
}
id_ += 1
except Exception:
logger.exception("Error while processing file %s", filepath)
|