File size: 7,714 Bytes
abdacc9
 
 
 
 
 
46ede22
 
 
 
 
abdacc9
46ede22
 
 
 
abdacc9
46ede22
 
 
 
 
abdacc9
46ede22
 
 
 
 
 
abdacc9
 
 
 
 
46ede22
 
abdacc9
46ede22
abdacc9
46ede22
abdacc9
50b3695
46ede22
abdacc9
 
 
50b3695
46ede22
 
 
 
abdacc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b937e98
abdacc9
 
 
5f180ea
abdacc9
46ede22
 
 
 
 
 
abdacc9
 
 
e7e762d
 
 
 
 
 
 
 
 
 
 
 
 
 
e880b8a
e7e762d
 
abdacc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89c5abc
 
 
 
 
 
 
 
abdacc9
 
 
 
 
 
 
 
 
 
 
6f63c28
 
 
 
 
 
 
 
abdacc9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
---
annotations_creators:
- other
language_creators:
- found
language:
- bg 
- cs 
- da 
- de 
- el 
- en
- es 
- et 
- fi 
- fr 
- ga
- hr 
- hu 
- it 
- lt 
- lv 
- mt
- nl 
- pl 
- pt 
- ro 
- sk 
- sl 
- sv
license:
- cc-by-4.0
multilinguality:
- multilingual
paperswithcode_id: null
pretty_name: "LEXTREME: A Multilingual Legal Benchmark for Natural Language Understanding"
size_categories:
- 10K<n<100K
source_datasets:
- extended
task_categories:
- text-classification
- token-classification
task_ids:
- multi-class-classification
- multi-label-classification
- topic-classification
- text-classification-other-judgement-prediction
- named-entity-recognition
- named entity recognition and classification (NERC)

---

# Dataset Card for LEXTREME: A Multilingual Legal Benchmark for Natural Language Understanding

## Table of Contents

- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
    - [Annotations](#annotations)
    - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)

## Dataset Description

- **Homepage:**
- **Repository:** 
- **Paper:** 
- **Leaderboard:**
- **Point of Contact:** [Joel Niklaus](mailto:joel.niklaus.2@bfh.ch)

### Dataset Summary

The dataset consists of 11 diverse multilingual legal NLU datasets. 6 datasets have one single configuration and 5 datasets have two or three configurations. This leads to a total of 18 tasks (8 single-label text classification tasks, 5 multi-label text classification tasks and 5 token-classification tasks).

Use the dataset like this:
```python
from datasets import load_dataset
dataset = load_dataset("joelito/lextreme", "swiss_judgment_prediction")
```

### Supported Tasks and Leaderboards

The dataset supports the tasks of text classification and token classification.
In detail, we support the folliwing tasks and configurations:


| task                       |                 task type |                  configurations |                                                                                                   link |
|:---------------------------|--------------------------:|--------------------------------:|-------------------------------------------------------------------------------------------------------:|
| Brazilian Court Decisions  |       Judgment Prediction |           (judgment, unanimity) | [joelito/brazilian_court_decisions](https://huggingface.co/datasets/joelito/brazilian_court_decisions) |
| Swiss Judgment Prediction  |       Judgment Prediction |                         default |         [joelito/swiss_judgment_prediction](https://huggingface.co/datasets/swiss_judgment_prediction) |
| German Argument Mining     |           Argument Mining |                         default |       [joelito/german_argument_mining](https://huggingface.co/datasets/joelito/german_argument_mining) |
| Greek Legal Code           |      Topic Classification |      (volume, chapter, subject) |                                   [greek_legal_code](https://huggingface.co/datasets/greek_legal_code) |
| Online Terms of Service    | Unfairness Classification | (unfairness level, claus topic) |             [online_terms_of_service](https://huggingface.co/datasets/joelito/online_terms_of_service) |
| Covid 19 Emergency Event   |      Event Classification |                         default |             [covid19_emergency_event](https://huggingface.co/datasets/joelito/covid19_emergency_event) |
| MultiEURLEX                |      Topic Classification |     (level 1, level 2, level 3) |                                           [multi_eurlex](https://huggingface.co/datasets/multi_eurlex) |
| LeNER BR                   |  Named Entity Recognition |                         default |                                                   [lener_br](https://huggingface.co/datasets/lener_br) |
| LegalNERo                  |  Named Entity Recognition |                         default |                                         [legalnero](https://huggingface.co/datasets/joelito/legalnero) |
| Greek Legal NER            |  Named Entity Recognition |                         default |                             [greek_legal_ner](https://huggingface.co/datasets/joelito/greek_legal_ner) |
| MAPA                       |  Named Entity Recognition |                  (coarse, fine) |                                                   [mapa](https://huggingface.co/datasets/joelito/mapa) |


### Languages

The following languages are supported: bg , cs , da, de, el, en, es, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv

## Dataset Structure

### Data Instances

The file format is jsonl and three data splits are present for each configuration (train, validation and test). 

### Data Fields

[More Information Needed]

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]


### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

How can I contribute a dataset to lextreme?
Please follow the following steps:
1. Make sure your dataset is available on the huggingface hub and has a train, validation and test split.
2. Create a pull request to the lextreme repository by adding the following to the lextreme.py file:
   - Create a dict _{YOUR_DATASET_NAME} (similar to _BRAZILIAN_COURT_DECISIONS_JUDGMENT) containing all the necessary information about your dataset (task_type, input_col, label_col, etc.)
   - Add your dataset to the BUILDER_CONFIGS list: `LextremeConfig(name="{your_dataset_name}", **_{YOUR_DATASET_NAME})`
   - Test that it works correctly by loading your subset with `load_dataset("lextreme", "{your_dataset_name}")` and inspecting a few examples.

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```
@misc{niklaus2023lextreme,
    title={LEXTREME: A Multi-Lingual and Multi-Task Benchmark for the Legal Domain},
    author={Joel Niklaus and Veton Matoshi and Pooja Rani and Andrea Galassi and Matthias Stürmer and Ilias Chalkidis},
    year={2023},
    eprint={2301.13126},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

### Contributions

Thanks to [@JoelNiklaus](https://github.com/joelniklaus) for adding this dataset.