Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
json
Sub-tasks:
named-entity-recognition
Size:
10K - 100K
License:
File size: 13,921 Bytes
796f4bd ec755d7 27fcb95 b2e16fb 796f4bd 0980367 796f4bd 6d96d04 796f4bd 3984c49 796f4bd ef3395d 796f4bd ec755d7 f5277f5 ec755d7 796f4bd ef3395d 796f4bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
---
annotations_creators:
- other
language_creators:
- found
language:
- multilingual
- bg
- cs
- da
- de
- el
- en
- es
- et
- fi
- fr
- ga
- hu
- it
- lt
- lv
- mt
- nl
- pt
- ro
- sk
- sv
license:
- cc-by-4.0
multilinguality:
- multilingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: Spanish Datasets for Sensitive Entity Detection in the Legal Domain
tags:
- named-entity-recognition-and-classification
---
# Dataset Card for Multilingual European Datasets for Sensitive Entity Detection in the Legal Domain
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **
Repository:** [Spanish](https://elrc-share.eu/repository/browse/mapa-anonymization-package-spanish/b550e1a88a8311ec9c1a00155d026706687917f92f64482587c6382175dffd76/), [Most](https://elrc-share.eu/repository/search/?q=mfsp:3222a6048a8811ec9c1a00155d0267067eb521077db54d6684fb14ce8491a391), [German, Portuguese, Slovak, Slovenian, Swedish](https://elrc-share.eu/repository/search/?q=mfsp:833df1248a8811ec9c1a00155d0267067685dcdb77064822b51cc16ab7b81a36)
- **Paper:** de Gibert Bonet, O., García Pablos, A., Cuadros, M., & Melero, M. (2022). Spanish Datasets for Sensitive
Entity Detection in the Legal Domain. Proceedings of the Language Resources and Evaluation Conference, June,
3751–3760. http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.400.pdf
- **Leaderboard:**
- **Point of Contact:** [Joel Niklaus](mailto:joel.niklaus.2@bfh.ch)
### Dataset Summary
The dataset consists of 12 documents (9 for Spanish due to parsing errors) taken from EUR-Lex, a multilingual corpus of court
decisions and legal dispositions in the 24 official languages of the European Union. The documents have been annotated
for named entities following the guidelines of the [MAPA project]( https://mapa-project.eu/) which foresees two
annotation level, a general and a more fine-grained one. The annotated corpus can be used for named entity recognition/classification.
### Supported Tasks and Leaderboards
The dataset supports the task of Named Entity Recognition and Classification (NERC).
### Languages
The following languages are supported: bg, cs, da, de, el, en, es, et, fi, fr, ga, hu, it, lt, lv, mt, nl, pt, ro, sk, sv
## Dataset Structure
### Data Instances
The file format is jsonl and three data splits are present (train, validation and test). Named Entity annotations are
non-overlapping.
### Data Fields
For the annotation the documents have been split into sentences. The annotations has been done on the token level.
The files contain the following data fields
- `language`: language of the sentence
- `type`: The document type of the sentence. Currently, only EUR-LEX is supported.
- `file_name`: The document file name the sentence belongs to.
- `sentence_number`: The number of the sentence inside its document.
- `tokens`: The list of tokens in the sentence.
- `coarse_grained`: The coarse-grained annotations for each token
- `fine_grained`: The fine-grained annotations for each token
As previously stated, the annotation has been conducted on a global and a more fine-grained level.
The tagset used for the global and the fine-grained named entities is the following:
- Address
- Building
- City
- Country
- Place
- Postcode
- Street
- Territory
- Amount
- Unit
- Value
- Date
- Year
- Standard Abbreviation
- Month
- Day of the Week
- Day
- Calender Event
- Person
- Age
- Email
- Ethnic Category
- Family Name
- Financial
- Given Name – Female
- Given Name – Male
- Health Insurance Number
- ID Document Number
- Initial Name
- Marital Status
- Medical Record Number
- Nationality
- Profession
- Role
- Social Security Number
- Title
- Url
- Organisation
- Time
- Vehicle
- Build Year
- Colour
- License Plate Number
- Model
- Type
The final coarse grained tagset (in IOB notation) is the following:
`['O', 'B-ORGANISATION', 'I-ORGANISATION', 'B-ADDRESS', 'I-ADDRESS', 'B-DATE', 'I-DATE', 'B-PERSON', 'I-PERSON', 'B-AMOUNT', 'I-AMOUNT', 'B-TIME', 'I-TIME']`
The final fine grained tagset (in IOB notation) is the following:
`[
'O',
'B-BUILDING',
'I-BUILDING',
'B-CITY',
'I-CITY',
'B-COUNTRY',
'I-COUNTRY',
'B-PLACE',
'I-PLACE',
'B-TERRITORY',
'I-TERRITORY',
'I-UNIT',
'B-UNIT',
'B-VALUE',
'I-VALUE',
'B-YEAR',
'I-YEAR',
'B-STANDARD ABBREVIATION',
'I-STANDARD ABBREVIATION',
'B-MONTH',
'I-MONTH',
'B-DAY',
'I-DAY',
'B-AGE',
'I-AGE',
'B-ETHNIC CATEGORY',
'I-ETHNIC CATEGORY',
'B-FAMILY NAME',
'I-FAMILY NAME',
'B-INITIAL NAME',
'I-INITIAL NAME',
'B-MARITAL STATUS',
'I-MARITAL STATUS',
'B-PROFESSION',
'I-PROFESSION',
'B-ROLE',
'I-ROLE',
'B-NATIONALITY',
'I-NATIONALITY',
'B-TITLE',
'I-TITLE',
'B-URL',
'I-URL',
'B-TYPE',
'I-TYPE',
]`
### Data Splits
Splits created by Joel Niklaus.
| language | # train files | # validation files | # test files | # train sentences | # validation sentences | # test sentences |
|:-----------|----------------:|---------------------:|---------------:|--------------------:|-------------------------:|-------------------:|
| bg | 9 | 1 | 2 | 1411 | 166 | 560 |
| cs | 9 | 1 | 2 | 1464 | 176 | 563 |
| da | 9 | 1 | 2 | 1455 | 164 | 550 |
| de | 9 | 1 | 2 | 1457 | 166 | 558 |
| el | 9 | 1 | 2 | 1529 | 174 | 584 |
| en | 9 | 1 | 2 | 893 | 98 | 408 |
| es | 7 | 1 | 1 | 806 | 248 | 155 |
| et | 9 | 1 | 2 | 1391 | 163 | 516 |
| fi | 9 | 1 | 2 | 1398 | 187 | 531 |
| fr | 9 | 1 | 2 | 1297 | 97 | 490 |
| ga | 9 | 1 | 2 | 1383 | 165 | 515 |
| hu | 9 | 1 | 2 | 1390 | 171 | 525 |
| it | 9 | 1 | 2 | 1411 | 162 | 550 |
| lt | 9 | 1 | 2 | 1413 | 173 | 548 |
| lv | 9 | 1 | 2 | 1383 | 167 | 553 |
| mt | 9 | 1 | 2 | 937 | 93 | 442 |
| nl | 9 | 1 | 2 | 1391 | 164 | 530 |
| pt | 9 | 1 | 2 | 1086 | 105 | 390 |
| ro | 9 | 1 | 2 | 1480 | 175 | 557 |
| sk | 9 | 1 | 2 | 1395 | 165 | 526 |
| sv | 9 | 1 | 2 | 1453 | 175 | 539 |
## Dataset Creation
### Curation Rationale
*„[…] to our knowledge, there exist no open resources annotated for NERC [Named Entity Recognition and Classificatio] in Spanish in the legal domain. With the
present contribution, we intend to fill this gap. With the release of the created resources for fine-tuning and
evaluation of sensitive entities detection in the legal domain, we expect to encourage the development of domain-adapted
anonymisation tools for Spanish in this field“* (de Gibert Bonet et al., 2022)
### Source Data
#### Initial Data Collection and Normalization
The dataset consists of documents taken from EUR-Lex corpus which is publicly available. No further
information on the data collection process are given in de Gibert Bonet et al. (2022).
#### Who are the source language producers?
The source language producers are presumably lawyers.
### Annotations
#### Annotation process
*"The annotation scheme consists of a complex two level hierarchy adapted to the legal domain, it follows the scheme
described in (Gianola et al., 2020) […] Level 1 entities refer to general categories (PERSON, DATE, TIME, ADDRESS...)
and level 2 entities refer to more fine-grained subcategories (given name, personal name, day, year, month...). Eur-Lex,
CPP and DE have been annotated following this annotation scheme […] The manual annotation was performed using
INCePTION (Klie et al., 2018) by a sole annotator following the guidelines provided by the MAPA consortium."* (de Gibert
Bonet et al., 2022)
#### Who are the annotators?
Only one annotator conducted the annotation. More information are not provdided in de Gibert Bonet et al. (2022).
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
Note that the dataset at hand presents only a small portion of a bigger corpus as described in de Gibert Bonet et al.
(2022). At the time of writing only the annotated documents from the EUR-Lex corpus were available.
Note that the information given in this dataset card refer to the dataset version as provided by Joel Niklaus and Veton
Matoshi. The dataset at hand is intended to be part of a bigger benchmark dataset. Creating a benchmark dataset
consisting of several other datasets from different sources requires postprocessing. Therefore, the structure of the
dataset at hand, including the folder structure, may differ considerably from the original dataset. In addition to that,
differences with regard to dataset statistics as give in the respective papers can be expected. The reader is advised to
have a look at the conversion script ```convert_to_hf_dataset.py``` in order to retrace the steps for converting the
original dataset into the present jsonl-format. For further information on the original dataset structure, we refer to
the bibliographical references and the original Github repositories and/or web pages provided in this dataset card.
## Additional Information
### Dataset Curators
The names of the original dataset curators and creators can be found in references given below, in the section *Citation
Information*. Additional changes were made by Joel Niklaus ([Email](mailto:joel.niklaus.2@bfh.ch)
; [Github](https://github.com/joelniklaus)) and Veton Matoshi ([Email](mailto:veton.matoshi@bfh.ch)
; [Github](https://github.com/kapllan)).
### Licensing Information
[Attribution 4.0 International (CC BY 4.0) ](https://creativecommons.org/licenses/by/4.0/)
### Citation Information
```
@article{DeGibertBonet2022,
author = {{de Gibert Bonet}, Ona and {Garc{\'{i}}a Pablos}, Aitor and Cuadros, Montse and Melero, Maite},
journal = {Proceedings of the Language Resources and Evaluation Conference},
number = {June},
pages = {3751--3760},
title = {{Spanish Datasets for Sensitive Entity Detection in the Legal Domain}},
url = {https://aclanthology.org/2022.lrec-1.400},
year = {2022}
}
```
### Contributions
Thanks to [@JoelNiklaus](https://github.com/joelniklaus) and [@kapllan](https://github.com/kapllan) for adding this
dataset.
|