--- dataset_info: features: - name: id dtype: int64 - name: haystack dtype: string - name: keys dtype: string - name: values dtype: string - name: question dtype: string - name: context_length dtype: int64 - name: num_kv_pairs dtype: int64 - name: repeat_number dtype: int64 - name: needle_depth dtype: string - name: num_needles dtype: int64 - name: needle_placement dtype: string - name: conditional_character dtype: string - name: thread_length dtype: int64 - name: thread_direction dtype: string - name: num_threads dtype: int64 splits: - name: Single_Needle num_bytes: 159048560 num_examples: 660 - name: Multiple_Needles num_bytes: 261371340 num_examples: 1080 - name: Conditional_Needles num_bytes: 260974140 num_examples: 1080 - name: Single_Threads num_bytes: 564730140 num_examples: 2340 - name: Multi_Threads num_bytes: 1391847750 num_examples: 5700 download_size: 1798326219 dataset_size: 2637971930 configs: - config_name: default data_files: - split: Single_Needle path: data/Single_Needle-* - split: Multiple_Needles path: data/Multiple_Needles-* - split: Conditional_Needles path: data/Conditional_Needles-* - split: Single_Threads path: data/Single_Threads-* - split: Multi_Threads path: data/Multi_Threads-* license: mit language: - en --- --- --- # Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks? ## Dataset Description - **Homepage:** [https://needle-threading.github.io](https://needle-threading.github.io) - **Paper:** [Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks?](https://arxiv.org/abs/2411.05000) - **Repository** [Needle Threading](https://github.com/jonathan-roberts1/needle-threading) ## Dataset Summary As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. Although the development of longer context models has seen rapid gains recently, our understanding of how effectively they use their context has not kept pace. To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window. Strikingly, we find that many models are remarkably thread-safe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows. ## Example Usage ### Option 1: HuggingFace datasets ```python from datasets import load_dataset # task splits can be downloaded separately: # splits = ['Single_Needle', 'Multi_Needle', 'Conditional_Needle', 'Single_Thread', 'Multi_Thread'] single_needle_dataset = load_dataset("jonathan-roberts1/needle-threading", split='Single_Needle') """ Dataset({ features: ['id', 'haystack', 'keys', 'values', 'question', 'context_length', 'num_kv_pairs', 'repeat_number', 'needle_depth', 'num_needles', 'needle_placement', 'conditional_character', 'thread_length', 'thread_direction', 'num_threads'], num_rows: 660 }) Note the units of context_length are number of characters. """ # query individual questions single_needle_dataset[5] # e.g., the 6th element """ {'id': 5, 'haystack': '{"e3e70682-c209-4cac-629f-6fbed82c07cd": "f728b4fa-4248-5e3a-0a5d-2f346baa9455", "eb1...": "964a870c-7c87-9b74-1d87-8f9f9cdf5a86"}', 'keys': '247a8333-f7b0-b7d2-cda8-056c3d15eef7', 'values': '1759edc3-72ae-2244-8b01-63c1cd9d2b7d', 'question': 'Extract the value corresponding to the specified key in the JSON object. Key: "247a83...-cda8-056c3d15eef7"\n Corresponding value: ', 'context_length': 2000, 'num_kv_pairs': 25, 'repeat_number': 0, 'needle_depth': '50', 'num_needles': 1, 'needle_placement': 'depthwise', 'conditional_character': 'N/A', 'thread_length': 1, 'thread_direction': 'N/A', 'num_threads': 0} """ ``` ### Option 2: Manual download Directly downloading image files and question data from the needle-threading HuggingFace repository into the ```data``` directory in this repo. ``` cd data wget https://huggingface.co/datasets/jonathan-roberts1/needle-threading/resolve/main/data_json.zip unzip data_json.zip && rm data_json.zip ``` #### Expected structure ``` ├── data ├── json_data ├── Single_Needle.json ├── Multiple_Needles.json ├── Conditional_Needles.json ├── Single_Threads.json ├── Multi_Threads.json ``` Note: ```data_json/``` needs to be downloaded. Please visit our [GitHub repository](https://github.com/jonathan-roberts1/needle-threading) for example inference code. ### Dataset Curators This dataset was curated by Jonathan Roberts, Kai Han, and Samuel Albanie ### Citation If you found our work useful in your own research, please consider citing our paper: ```latex @article{roberts2024needle, title={Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks?}, author={Roberts, Jonathan and Han, Kai and Albanie, Samuel}, journal={arXiv preprint arXiv:2411.05000}, year={2024} } ```