jonathanli commited on
Commit
0d02d2b
1 Parent(s): c9c57db

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -0
README.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - text-classification
4
+ language:
5
+ - en
6
+ tags:
7
+ - reddit
8
+ - law
9
+ pretty_name: Legal Advice Reddit
10
+ ---
11
+
12
+ # Dataset Card for Legal Advice Reddit Dataset
13
+
14
+ ## Dataset Description
15
+
16
+ - **Paper: [Parameter-Efficient Legal Domain Adaptation](https://arxiv.org/abs/2210.13712)**
17
+ - **Point of Contact: `jxl@queensu.ca`**
18
+
19
+ ### Dataset Summary
20
+
21
+ We introduce a new dataset from the Legal Advice Reddit community (known as "/r/legaldvice"), sourcing the Reddit posts from the Pushshift
22
+ Reddit dataset. The dataset maps the text and title of each legal question posted into one of eleven classes, based on the original Reddit
23
+ post's "flair" (i.e., tag). Questions are typically informal and use non-legal-specific language. Per the Legal Advice Reddit rules, posts
24
+ must be about actual personal circumstances or situations. We limit the number of labels to the top eleven classes and remove the other
25
+ samples from the dataset.
26
+
27
+
28
+ ### Citation Information
29
+
30
+ ```
31
+ @misc{https://doi.org/10.48550/arxiv.2210.13712,
32
+ doi = {10.48550/ARXIV.2210.13712},
33
+ url = {https://arxiv.org/abs/2210.13712},
34
+ author = {Li, Jonathan and Bhambhoria, Rohan and Zhu, Xiaodan},
35
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
36
+ title = {Parameter-Efficient Legal Domain Adaptation},
37
+ publisher = {arXiv},
38
+ year = {2022},
39
+ copyright = {arXiv.org perpetual, non-exclusive license}
40
+ }
41
+ ```